
Application of Genetic Programming for Generation of Controllers represented

by Automata

Andrey Davydov, Dmitry Sokolov, Fedor Tsarev and

Anatoly Shalyto

Saint-Petersburg State University of Information Technologies, Mechanics and Optics (e-mail:

andrey.a.davydov@gmail.com, dimoz_88@rambler.ru, fedor.tsarev@gmail.com, shalyto@mail.ifmo.ru).

Abstract: This paper proposes an application of genetic programming for construction of state machines

controlling systems with complex behavior. Application of this method is illustrated on example of

unmanned aerial vehicle (UAV) control. It helps to find control strategies of collaborative behavior of

UAV teams. Multi-agent approach is used, where every agent that controls a UAV is presented by a

deterministic finite state machine. Two representations of finite state machines are used: abridged

transition tables and decision trees. Novel algorithms for fixing connections between states and for

removing unachievable branches of trees are proposed.

1. INTRODUCTION

Automata based programming is an emerging programming

paradigm based on representation of a program as a finite

state machine (Shalyto 1991). Application of genetic

programming for generating automata essentially reduces

development time of automata based programs.

In this work the proposed method is illustrated on example of

building a Mealy automata controller of unmanned aerial

vehicles (UAV).

The paper is structured as follows.

The problem is described in Section 2. The idea of suggested

solution is considered in Section 3 and next three sections

explain it. The developed genetic algorithm is considered in

Section 6. Methods of control system representation in terms

of individual and genetic operators (crossover and mutation)

are described in Sections 4 and 5.

2. PROBLEM DESCRIPTION

There is competition between two teams of UAVs

(Parachsenko, Tsarev & Shalyto). Each team consists of the

same number N of UAVs. The goal of the competition is

reaching maximal distance by one UAV of a team. Further we

will refer to the competition as “race”. The race takes place

on the route which is a half-infinite stripe with width equal to

40 metres. Altitude change is forbidden so the route of

competition can be considered two-dimensional.

At the start of the race UAVs of the first team are located in

the air randomly on the same distance from the line of start in

the left half of the route. The second team is located

symmetrically in the right half of the route.

It is assumed that all UAVs start the race with the same initial

speed, direction of movement and fuel supply.

UAVs can turn in process of racing and can change their

speed controlled by fuel consumption.

UAVs leaving the route are defined as breaking the rules of

the race. Leaving the route is defined as intersection of the

centre of the UAV with the boundary of the route. Also UAV

is said to crash if its speed becomes less than a pre-defined

minimum value or in case of UAVs collision with speed

higher than a pre-defined maximum value. Otherwise

collisions are allowed.

The dynamics of UAV is defined by the Second Law of

Newton and is described in the work (Parachsenko, Tsarev &

Shalyto) in detail. It is important that location of other

vehicles has influence on the vehicle’s slowing down (due to

reactive force of engine) or speeding up (due to air

resistance).

3. SUGGESTED SOLUTION

3.1 Common Approach

In the work (Parachsenko, Tsarev & Shalyto) a multi-agent

approach (Rasse & Norwig 2006) to control UAVs was

suggested. Every UAV is considered independently and its

behaviour is described by a finite state machine, same for

every UAV in the team.

The purpose of this work is building the controller state

machine using genetic programming (Angeline & Pollack

1993, Chambers 1999, Jefferson et. al 1992, Koza 1992,

Rassel & Norwig 2006, Tsarev & Shalyto 2007). We will use

term “individual” when referring to a finite state machine in

the context of genetic programming. In this work two

representation methods for an individual are explored: by

abridged transition tables (ATT) (Polykarpova, Tochilin &

Shalyto) and decision trees (Danilov 2007). These methods

are described in sections 4 and 5 respectively.

3.2 Structure of UAV Control System

Preprints of the 13th IFAC Symposium on
Information Control Problems in
Manufacturing, Moscow, Russia, June 3 - 5,
2009

We-C7.4

684

Every UAV is under the influence of environment and other

UAVs during the competition. For description of these forces

the following Boolean input variables are used:

1 Route boundary is on the left.

2 Route boundary is on the right.

3 Other UAV is on the left.

4 Other UAV is on the right.

5 Other UAV is at the front.

6 Other UAV is behind.

These variables are input to the controller state machine

which forms a sequence of output actions from the following

list:

1 Set normal fuel consumption.

2 Increase fuel consumption by a fixed value.

3 Decrease fuel consumption by a fixed value.

4 Set fuel consumption to the maximal value.

5 Change the direction of aerodynamic rudder by a

fixed value to the left.

6 Change the direction of aerodynamic rudder by a

fixed value to the right.

7 Fly straight.

4. PRESENTATION OF AN INDIVIDUAL BY ABRIDGED

TRANSITION TABLES

4.1 Structure of Individual

Every individual is defined by the following parameters:

• Array of states.

• Number of states.

• Number of processing input variables.

• Number of possible actions.

Every state stores ATT which contains:

• Array of meaningful input variables.

• Array of target states for all outgoing transitions.

• Array of actions for all outgoing transitions.

An example of the ATT for one state is presented in Fig.1.

Column S is an array of target states, columns Z1—Z4 are

arrays of actions, Zj[i] is equal to one if j-th action is

executed when i-th transition is selected. The Boolean

variables array points which variables are meaningful: a

variable is called meaningful in a current state of a state

machine if it is included in any outgoing transition from this

state.

4.2 Crossover

Let’s designate parent individuals as P1 and P2, their

children as S1 and S2, and the k-th state of individual A as

A.a[k].

The algorithm of states crossover corresponds to one-point

crossover of the corresponding columns in the transitions

table. For every column the following actions are executed:

(1) random choice of a column’s border of differentiation;

S Z3Z2Z1

0

1

Z4

1

1

1

5

3

1

0

100 0

0

1

11011

0100100

GFEDCBAvariables

Fig. 1. Example of an abridged transition table.

(2) corresponding column of state S1.a[k] will be composed

in the first part of column of state P1.a[k] and the second part

of column of state P2.a[k];

(3) corresponding column of state S2.a[k] will be composed

in the first part of column of state P2.a[k] and the second part

of column of state P1.a[k].

This algorithm is illustrated in Fig. 2.

S Z3Z2Z1

0

1

Z4

1

1

1

5

3

1

0

100 0

0

1

11011

S

4

5

2

3

Z3Z2Z1

0

0

Z4

1

0

1

1

111 1

0

0

1011

S Z3Z2Z1

0

1

Z4

1

1

1

5

3

1

0

100 0

0

1

11 011

S

4

5

2

3

Z3Z2Z1

0

0

Z4

1

0

1

1

111 1

0

0

1 011

Fig. 2. Crossover of abridged transition tables.

For choice of meaningful variables S1.a[k] and S2.a[k]

preview of lists of meaningful variables of parents is

executed. Let’s designate v[k] the k-th element of the list of

meaningful variables.

One of the following statements is true:

• P1.v[k] = 0, P2.v[k] = 0 ! S1.v[k] = 0, S2.v[k] = 0;

• P1.v[k] = 1, P2.v[k] = 1 ! S1.v[k] = 1, S2.v[k] = 1;

685

• P1.v[k] = 0, P2.v[k] = 1 or P1.v[k] = 1, P2.v[k] = 0 ! one of

three following cases is possible:

(1) lists of meaningful variables of both children are not filled

yet (number of meaningful variables in both lists is less than

numbers of meaningful variables of parents) then with

probability 1/2 one of following equations is satisfied S1.v[k]

= 0, S2.v[k] = 1 or S1.v[k] = 1, S2.v[k] = 0;

(2) list of meaningful variables of the first child is filled, then

S1.v[k] = 0, S2.v[k] = 1;

(3) list of meaningful variables of the second child is filled,

then S1.v[k] = 1, S2.v[k] = 0.

4.3 Mutation

One of the following actions is executed:

• with probability 1/2 random change of the initial state;

• mutation of a random state;

State mutates as follows: for every row of the table of

transitions the following actions are executed:

• with a fixed probability change transition from the current

state to random value;

• with a fixed probability change all actions on the transition.

Every action is executed on the transition with probability n/k

where n is number of actions have been executed on the

transition before mutation, k is number of possible actions.

The choice of meaningful variables of state is realised in the

following way:

•a) randomly select two variables;

•b) if one of them is meaningful in the state and the other is

not then they are swapped.

An example of mutation is shown in Fig. 3. The turning out

parts of the state are marked by grey colour.

4.4 Fixing Connections between States.

After application of genetic operators, state machines may

contain unachievable states. The following algorithm helps to

solve this problem. It provides achievement of greater

number of states from the initial state by changing some

transitions. To search for achievable states, the Breadth First

Search algorithm is used. It is executed once or more and if

an unachievable state is found then random transition from a

random achievable state is set to the current unachievable

state.

Fig. 4 illustrates working of this algorithm. States achievable

from the initial state are marked by grey colour.

4.5 Features of the ATT Method Application

The advantages of the ATT method in respect to the

considered problem are as follows:

• incompatibility of some input variables (for example,

“boundary is on the left” and “boundary is on the right”)

makes some transitions unusable. When we use ATTs the

probability of such situation reduces, compared to full

transition tables;

• reduction of the memory requirements and speeding-up the

work of the genetic algorithm.

S Z3Z2Z1

0

1

Z4

1

1

1

5

3

1

0

100 0

0

1

11011

0100100

GFEDCBAvariables

S

1

5

2

3

(1 – P1)

P1

(1 – P1)

P1

Z3Z2Z1

0

0

Z4

1

0

1

1

111 1

0

0

1011

P2

P2

(1 – P2)

P2

0100001

GFEDCBAvariables

Fig. 3. Mutation of an abridged transition table.

4

3

7

5
6

2

1

4

3

7

5
6

2

1

4

3

7

5
6

2

1

Fig. 4. Example of working of the algorithm of fixing

connections between states.

When we use abridged transition tables all meaningful

variables have the same priority because decision is made at

once based on all the variables which are used in the state.

5. REPRESENTATION OF AN INDIVIDUAL BY

DECISION TREE

5.1 Structure of an Individual

Every individual stores the following parameters:

• Array of states;

• Advisable height of the tree.

Every state is decision tree for a function of the following

type: f: {0,1}n"N# {0,1}k , where n is number of

entrance variables and k is number of possible actions of

686

UAV. This tree reads values of entrance variables and returns

index of state which state machine must go to and vector of

zeros and ones. If the i-th component of the vector equals to

one then the UAV must execute the i-th action. We will call

this vector action vector. An example of decision tree for a

function of two Boolean variables (A, B) is shown in Fig. 5.

A

B

0

0 1

1

5, {0101}

3, {0010}1, {1101}

Fig. 5. Example of a decision tree.

Every node of a decision tree consists of the following parts:

• a pointer to the left child (this pointer is empty for leaves);

• a pointer to the right child (this pointer is empty for leaves);

• a variable which is used when the decomposition in the

node is made;

• index of the state into which the transition from the current

state follows;

• action vector.

The left child of the inside node corresponds to the case when

the variable of decomposition equals zero and the right child

corresponds to one.

5.2 Crossover

For every state the following algorithm will be executed. It

chooses subtree of the state of the first parent and subtree of

the state of the second parent and then swaps them. This

algorithm is a modification of the Depth First Search and has

recursive structure. When recursive call is invoked, the

following action is executed:

• if current node is a leaf then return current subtree;

• else if current node is internal then with probability P return

current subtree;

• else go to one of subtrees of the current node with equal

probabilities.

Working of the algorithm is shown in Fig.6.

5.3 Mutation

The operator of mutation executes in the following way:

• with probability 1/2 random change of the initial state;

• mutation of a random state.

A

CB

2, {111} 3, {100}2, {010}
C

4, {110} 6, {001}

C

1, {010}
A

2, {100} 5, {110}

A

C

2, {111} 3, {100}

C

1, {010}

A

2, {100} 5, {110}

B

2, {010}
C

4, {110} 6, {001}

Fig. 6. Crossover of decision trees.

The algorithm of mutation of state is a modification of the

Depth First Search. Following actions are executed:

• if current node is a leaf then return random generated

decision tree;

• else with probability P return random generated decision

tree;

• else go to one of the subtrees of current node with equal

probabilities.

In fact, this algorithm randomly chooses a subtree and

replaces it by a randomly generated tree. Choice of the

subtree is not equiprobable: the higher located node has the

higher probability of having its subtree chosen.

A

B

A

0

0

1

1

0

1

3, { 1111}

3, { 0010} 1, { 1000}

2, { 0110}

A

B

C

0

0 1

1

3, {1111}

2, {0110}

1, {0000}A

2, {1110} 4, {0100}

0 1

1 0

Fig. 7. Mutation of decision trees.

5.4 Removing of Unachievable Branches

If a decomposition variable is repeated twice on the path

from the root to the node then the branch corresponding to

687

the value which is opposite to the first occurrence of this

variable will be unachievable. Fig. 8 shows such a situation.

Vertices corresponding to the repeated decomposition

variable are marked by red colour (both A nodes), the

unachievable branch (C and two leafs) is marked by grey

colour.

A

B

A

0

0

1

1

0

1

3, {1111}

3, {0010}

1, {1000}

2, {0110}

C

1, {1010}

0 1

Fig. 8. Unachievable branches of decision tree.

To remove such unachievable branches, a modification of the

Depth First Search is used. The decomposition variables on

the path from root to nodes are searched recursively. If a

variable is met twice then the current node is replaced by the

root of an achievable subtree of current node. Decision about

which subtree is achievable is made based on the stored

values of variables. An example is shown in Fig.9.

A

B

A

0

0

1

1

0

1

3, {1111}

3, {0010}

1, {1000}

2, {0110}

C

1, {1010}

0 1

A

B

0

0 1

1

3, {1111}

2, {0110} 3, {0010}

Fig. 9. Removing the unachievable branches of the decision

tree.

5.5. Features of Application of Decision Trees

Decision tree has the following advantages:

• not all variables may be used. It allows to exclude the

transitions with incompatible variables;

• reduction of using memory (compared to full trees) and

even shorter tables of transitions.

A specific feature of decision trees is that in every state of

state machine variables have different priorities. It’s related to

the fact that the higher node of tree is more possible to get

into comparing to the other variables.

6. GENETIC ALGORITHM

In this work the Island Genetic Algorithm (Koza 1992) is

used. The main schema of this algorithm is that there are few

populations (islands). Most of the time, the progress of

populations on every island occurs independently. After a

fixed number of generations, the migration occurs. Migration

is the transfer of a part of individuals from some island to

another one.

6.1 Forming the Next Generation

Elitism is the main strategy of forming of the next generation.

All individuals except the most fit ones are given up. The

most fit individuals are called elite, they move up straight to

the next generation.

Then the next generation is supplemented on a pro rata basis

by random individuals, individuals which have mutated, and

results of crossover of individuals from the current

generation. Individuals that have right to give children are

selected using a tournament: two pairs of individuals are

chosen and the more fit individual in each pair becomes one

of the parents.

6.2 Calculating the Fitness function

Fitness function of an individual must depend on the result of

the team of UAVs using the strategy described by the

individual. For the setting of dependence we must describe

conditions of competition: initial coordinates of UAVs and

the rival’s team. It is a problem because if we chose initial

coordinates randomly for every start of racing then fitness

function will not be “objective” enough. Opposite way is to

fix the initial coordinates and the rival.

We suggest to calculate fitness function as the mean value of

a few competitions:

F=
$ r

i

k

We choose random initial coordinates but the same for all

teams that realise the strategies described by the generated

individuals. The number of competitions we choose equals

10, in order to reduce the time consumption.

For individuals presented as decision trees formula is

changed a little: F=
$ r

i

k
%C&Z 'hmax ,height (where

C is some constant, hmax is the maximal height of decision

trees corresponded to the states of the state machine, height is

688

the “recommended” height of decision tree, and Z is the

function described by the following way:

Z 'a,b (=if 'a>b (then 'a%b (else 0

Thus this function guarantees that the decision tree doesn’t

expand too much.

Two teams are chosen as rivals. The first team realises the

aggressive strategy. Its strategy implicates that one UAV flies

only forward with normal fuel consumption (i.e. such that

provides the longest flight). Other UAVs of the team try to

knock down the rival’s team members.

The second rival is a team with strategy described by finite

state machine built using the described genetic algorithm at

the first stage, i.e. when we use only one rival (aggressive).

This rival realises a friendly strategy. Its strategy implicates

that UAVs help each other to fly and don't try to knock down

the rival’s UAVs. It helps to train the new individuals on two

different strategies at once: on the aggressive one and on the

friendly one.

The problem is that it is impossible to grade a given

individual on an absolute scale. It is caused by the non-

determinism of initial parameters of the competition and of

the rivals.

Number of generations of the genetic algorithm is limited,

because the individuals generated in later generations don’t

have a universal behaviour, but are rather adapted for specific

rivals and initial conditions.

But if a specific rival is defined it will not be difficult to grow

up a team which plays better against it.

6.3. Features of Applications of Island Genetic Algorithm

The Island Genetic Algorithm has the following advantages

compared to the algorithms which generation evolves as a

single entity:

• faster convergence to maximum, thanks to migrations;

• possibility of leaving the local maximum without losing the

previous results, thanks to isolation of islands.

A disadvantage of the Island Genetic Algorithm is the

frequent hitting of local maximums.

7. CONCLUSION

In this work we described an application of Island Genetic

Algorithm and two methods of presentation of individuals

(shorter table of transitions and decision trees) for building

controller finite state machine for a model of UAV.

All automata, which are constructed by hand or by previous

methods (Parachsenko, Tsarev & Shalyto) show results equal

to 242 meters at best and less than 220 meters on the average.

Methods which are described in this paper provide results

equal to 310 meters at best and 270 on the average. It proves

the efficiency of used methods of presentation of state

machines and their optimisation in respect to the considered

problem.

We can't state which method of the two suggested methods is

better. The second method is a little more complex and when

using the genetic algorithms, it works a little longer but it

shows better results. It seems that these methods must be

used for more complex problems in order to establish which

one is better.

REFERENCES

Angeline P. J., Pollack J. (1993). Evolutionary Module

Acquisition. Proceedings of the Second Annual

Conference on Evolutionary Programming. La Jolla,

California.

Chambers L. (1999). Practical Handbook of Genetic

Algorithms. Complex Coding Systems. Volume III. CRC

Press.

Danilov V. R. (2007). Technology of genetic programming

for generating state machines for controlling by system

with complex behaviour. Bachelor diploma. SPbSU

IFMO.

Jefferson D., Collins R., Cooper C., Dyer M., Flowers M.,

Korf R., Taylor C., Wang A. (1992). The Genesys

System. Los Angeles, California.

Koza J. R. (1992). Genetic programming: on the

programming of computers by means of natural

selection. MIT Press.

Paracshenko D. A., Tsarev F.N., Shalyto A.A. (2006). The

Technology of simultation of a class of multiagent

system on basis of automata-based programming by the

example if game Flying Plates Competition. Project

documentation. SPbSU IFMO, Saint-Petersburg.

http :// is . ifmo . ru / unimod - projects / plates /

Polykarpova N.I., Tochilin V.N., Shalyto A.A. (2007). Using

of genetic programming for implementation system with

complex behaviour. Scientific and technical bulletin.

Effort over the range information technology. SPbSU

IFMO. Edt. 39, p. 276–293.

Rassel S., Norwig P. (2006). Artificial intelligence. Modern

Approach. Williams, Moscow.

Shalyto A.A. (1998). Technolgy of automata-based

programming. Works of the first All-Russian scientist

conference. MSU, Moscow.

Tsarev F. N., Shalyto A. A. (2007). About constructing

automata with minimal number of states for “Artificial

Ant” problem. Proceedings of X international

conference on soft computing and measuring. SPbSU

“Eltech”. Volume II, 2007, p. 88–91.

689

