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Abstract: This paper proposes an application of genetic programming for construction of state machines 

controlling  systems with  complex  behavior.  Application  of  this  method is  illustrated  on  example  of 

unmanned aerial vehicle (UAV) control. It helps to find control strategies of collaborative behavior of 

UAV teams. Multi-agent approach is used, where every agent that controls a UAV is presented by a 

deterministic  finite  state  machine.  Two  representations  of  finite  state  machines  are  used:  abridged 

transition  tables  and  decision  trees.  Novel  algorithms  for  fixing  connections  between states  and  for 

removing unachievable branches of trees are proposed. 

1. INTRODUCTION

Automata based programming is an emerging programming 

paradigm based on representation of  a program as  a  finite 

state  machine  (Shalyto  1991).  Application  of  genetic 

programming  for  generating  automata  essentially  reduces 

development time of automata based programs.

In this work the proposed method is illustrated on example of 

building  a  Mealy  automata  controller  of  unmanned  aerial 

vehicles (UAV).

The paper is structured as follows. 

The problem is described in Section 2. The idea of suggested 

solution is  considered in Section 3 and next  three sections 

explain it. The developed genetic algorithm is considered in 

Section 6. Methods of control system representation in terms 

of individual and genetic operators (crossover and mutation) 

are described in Sections 4 and 5.

2. PROBLEM DESCRIPTION

There  is  competition  between  two  teams  of  UAVs 

(Parachsenko, Tsarev & Shalyto). Each team consists of the 

same number  N of  UAVs. The goal  of the competition is 

reaching maximal distance by one UAV of a team. Further we 

will refer to the competition as “race”. The race takes place 

on the route which is a half-infinite stripe with width equal to 

40  metres.  Altitude  change  is  forbidden  so  the  route  of 

competition can be considered two-dimensional.

At the start of the race UAVs of the first team are located in 

the air randomly on the same distance from the line of start in 

the  left  half  of  the  route.  The  second  team  is  located 

symmetrically in the right half of the route.

It is assumed that all UAVs start the race with the same initial 

speed, direction of movement and fuel supply. 

UAVs  can  turn  in  process  of  racing  and  can  change their 

speed controlled by fuel consumption.

UAVs leaving the route are defined as breaking the rules of 

the race. Leaving the route is defined as intersection of the 

centre of the UAV with the boundary of the route. Also UAV 

is said to crash if its speed becomes less than a pre-defined 

minimum  value  or  in  case  of  UAVs  collision  with  speed 

higher  than  a  pre-defined  maximum  value.  Otherwise 

collisions are allowed.

The  dynamics  of  UAV is  defined  by  the  Second  Law  of 

Newton and is described in the work (Parachsenko, Tsarev & 

Shalyto)  in  detail.  It  is  important  that  location  of  other 

vehicles has influence on the vehicle’s slowing down (due to 

reactive  force  of  engine)  or  speeding  up  (due  to  air 

resistance). 

3. SUGGESTED SOLUTION

3.1 Common Approach

In the work (Parachsenko, Tsarev & Shalyto) a multi-agent 

approach  (Rasse  &  Norwig  2006)  to  control  UAVs  was 

suggested.  Every  UAV is  considered independently  and its 

behaviour is  described by a  finite  state  machine,  same for 

every UAV in the team.

The  purpose  of  this  work  is  building  the  controller  state 

machine  using  genetic  programming  (Angeline  &  Pollack 

1993,  Chambers  1999,  Jefferson  et.  al  1992,  Koza  1992, 

Rassel & Norwig 2006, Tsarev & Shalyto 2007). We will use 

term “individual” when referring to a finite state machine in 

the  context  of  genetic  programming.  In  this  work  two 

representation  methods  for  an  individual  are  explored:  by 

abridged  transition  tables  (ATT)  (Polykarpova,  Tochilin  & 

Shalyto) and decision trees (Danilov 2007). These methods 

are described in sections 4 and 5 respectively. 

3.2 Structure of UAV Control System 
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Every UAV is under the influence of environment and other 

UAVs during the competition. For description of these forces 

the following Boolean input variables are used: 

1 Route boundary is on the left. 

2 Route boundary is on the right. 

3 Other UAV is on the left. 

4 Other UAV is on the right. 

5 Other UAV is at the front. 

6 Other UAV is behind. 

These  variables  are  input  to  the  controller  state  machine 

which forms a sequence of output actions from the following 

list: 

1 Set normal fuel consumption. 

2 Increase fuel consumption by a fixed value. 

3 Decrease fuel consumption by a fixed value. 

4 Set fuel consumption to the maximal value. 

5 Change  the  direction  of  aerodynamic  rudder  by  a 

fixed value to the left. 

6 Change  the  direction  of  aerodynamic  rudder  by  a 

fixed value to the right. 

7 Fly straight. 

4. PRESENTATION OF AN INDIVIDUAL BY ABRIDGED 

TRANSITION TABLES

4.1 Structure of Individual

Every individual is defined by the following parameters:

• Array of states. 

• Number of states. 

• Number of processing input variables. 

• Number of possible actions. 

Every state stores ATT which contains: 

• Array of meaningful input variables. 

• Array of target states for all outgoing transitions. 

• Array of actions for all outgoing transitions. 

An example of the ATT for one state is presented in Fig.1. 

Column  S is an array of target states, columns  Z1—Z4 are 

arrays  of  actions,  Zj[i]  is  equal  to  one  if  j-th  action  is 

executed  when  i-th  transition  is  selected.  The  Boolean 

variables array  points  which  variables  are  meaningful:  a 

variable  is  called  meaningful in  a  current  state  of  a  state 

machine if it is included in any outgoing transition from this 

state.

4.2 Crossover

Let’s  designate  parent  individuals  as  P1 and  P2,  their 

children as  S1 and  S2, and the  k-th state of individual  A as 

A.a[k]. 

The algorithm of states crossover corresponds to one-point 

crossover  of  the  corresponding  columns  in  the  transitions 

table. For every column the following actions are executed: 

(1) random choice of  a column’s border of differentiation; 
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Fig. 1. Example of an abridged transition table.

(2) corresponding column of state  S1.a[k] will be composed 

in the first part of column of state P1.a[k] and the second part 

of column of state P2.a[k]; 

(3) corresponding column of state  S2.a[k] will be composed 

in the first part of column of state P2.a[k] and the second part 

of column of state P1.a[k].

This algorithm is illustrated in Fig. 2.
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Fig. 2. Crossover of abridged transition tables.

For  choice  of  meaningful  variables  S1.a[k]  and  S2.a[k] 

preview  of  lists  of  meaningful  variables  of  parents  is 

executed. Let’s designate  v[k] the  k-th element of the list of 

meaningful variables. 

One of the following statements is true: 

• P1.v[k] = 0, P2.v[k] = 0 ! S1.v[k] = 0, S2.v[k] = 0; 

• P1.v[k] = 1, P2.v[k] = 1 ! S1.v[k] = 1, S2.v[k] = 1;
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• P1.v[k] = 0, P2.v[k] = 1 or P1.v[k] = 1, P2.v[k] = 0 ! one of 

three following cases is possible: 

(1) lists of meaningful variables of both children are not filled 

yet (number of meaningful variables in both lists is less than 

numbers  of  meaningful  variables  of  parents)  then  with 

probability 1/2 one of following equations is satisfied S1.v[k] 

= 0, S2.v[k] = 1 or S1.v[k] = 1, S2.v[k] = 0; 

(2) list of meaningful variables of the first child is filled, then 

S1.v[k] = 0, S2.v[k] = 1; 

(3) list of meaningful variables of the second child is filled, 

then S1.v[k] = 1, S2.v[k] = 0.

4.3 Mutation

One of the following actions is executed: 

• with probability 1/2 random change of the initial state; 

• mutation of a random state; 

State  mutates  as  follows:  for  every  row  of  the  table  of 

transitions the following actions are executed: 

• with a fixed probability change transition from the current 

state to random value; 

• with a fixed probability change all actions on the transition. 

Every action is executed on the transition with probability n/k 

where  n is  number  of  actions  have  been  executed  on  the 

transition before mutation, k is number of possible actions. 

The choice of meaningful variables of state is realised in the 

following way: 

•a) randomly select two variables; 

•b) if one of them is meaningful in the state and the other is 

not then they are swapped. 

An example of mutation is shown in Fig. 3. The turning out 

parts of the state are marked by grey colour. 

4.4 Fixing Connections between States. 

After  application  of  genetic  operators,  state  machines  may 

contain unachievable states. The following algorithm helps to 

solve  this  problem.  It  provides  achievement  of  greater 

number  of  states  from  the  initial  state  by  changing  some 

transitions. To search for achievable states, the Breadth First 

Search algorithm is used. It is executed once or more and if 

an unachievable state is found then random transition from a 

random achievable  state  is  set  to  the  current  unachievable 

state. 

Fig. 4 illustrates working of this algorithm. States achievable 

from the initial state are marked by grey colour.

4.5 Features of the ATT Method Application 

The  advantages  of  the  ATT  method  in  respect  to  the 

considered problem are as follows: 

•  incompatibility  of  some  input  variables  (for  example, 

“boundary  is  on the  left”  and  “boundary  is  on the  right”) 

makes  some transitions  unusable.  When  we  use  ATTs  the 

probability  of  such  situation  reduces,  compared  to  full 

transition tables; 

• reduction of the memory requirements and speeding-up the 

work of the genetic algorithm. 
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Fig. 3. Mutation of an abridged transition table.
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Fig.  4.  Example  of  working  of  the  algorithm  of  fixing 

connections between states.

When  we  use  abridged  transition  tables  all  meaningful 

variables have the same priority because decision is made at 

once based on all the variables which are used in the state. 

5. REPRESENTATION OF AN INDIVIDUAL BY 

DECISION TREE

5.1 Structure of an Individual

Every individual stores the following parameters: 

• Array of states;

• Advisable height of the tree. 

Every state is  decision tree for a function of the following 

type:  f: {0,1}n"N# {0,1}k ,  where  n is  number  of 

entrance  variables  and  k is  number  of  possible  actions  of 
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UAV. This tree reads values of entrance variables and returns 

index of state which state machine must go to and vector of 

zeros and ones. If the i-th component of the vector equals to 

one then the UAV must execute the i-th action. We will call 

this vector action vector. An example of decision tree for a 

function of two Boolean variables (A, B) is shown in Fig. 5. 

A

B

0

0 1

1

5, {0101}

3, {0010}1, {1101}

Fig. 5. Example of a decision tree.

Every node of a decision tree consists of the following parts:

• a pointer to the left child (this pointer is empty for leaves); 

• a pointer to the right child (this pointer is empty for leaves); 

•  a  variable which is  used when the decomposition in  the 

node is made; 

• index of the state into which the transition from the current 

state follows; 

• action vector. 

The left child of the inside node corresponds to the case when 

the variable of decomposition equals zero and the right child 

corresponds to one. 

5.2 Crossover

For every state the following algorithm will be executed. It 

chooses subtree of the state of the first parent and subtree of 

the  state  of  the  second parent  and  then  swaps  them.  This 

algorithm is a modification of the Depth First Search and has 

recursive  structure.  When  recursive  call  is  invoked,  the 

following action is executed: 

• if current node is a leaf then return current subtree; 

• else if current node is internal then with probability P return 

current subtree; 

• else go to one of subtrees of the current node with equal 

probabilities. 

Working of the algorithm is shown in Fig.6.

5.3 Mutation

The operator of mutation executes in the following way: 

• with probability 1/2 random change of the initial state; 

• mutation of a random state.
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C

1, {010}
A

2, {100} 5, {110}

A

C

2, {111} 3, {100}

C

1, {010}

A

2, {100} 5, {110}

B

2, {010}
C

4, {110} 6, {001}

Fig. 6. Crossover of decision trees.

The algorithm of mutation of state is a modification of the 

Depth First Search. Following actions are executed: 

• if  current  node  is  a  leaf  then  return  random  generated 

decision tree; 

• else with probability P return random generated decision 

tree; 

• else go to one of the subtrees of current node with equal 

probabilities. 

In  fact,  this  algorithm  randomly  chooses  a  subtree  and 

replaces  it  by  a  randomly  generated  tree.  Choice  of  the 

subtree is not equiprobable: the higher located node has the 

higher probability of having its subtree chosen.
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0
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1

0

1

3, { 1111}

3, { 0010} 1, { 1000}

2, { 0110}

A

B

C

0

0 1

1

3, {1111}

2, {0110}

1, {0000}A

2, {1110} 4, {0100}

0 1

1 0

Fig. 7.  Mutation of decision trees.

5.4 Removing of Unachievable Branches

If  a  decomposition  variable  is  repeated  twice  on  the  path 

from the root to the node then the branch corresponding to 
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the value  which is  opposite  to  the  first  occurrence  of  this 

variable will be unachievable. Fig. 8 shows such a situation. 

Vertices  corresponding  to  the  repeated  decomposition 

variable  are  marked  by  red  colour  (both  A  nodes),  the 

unachievable  branch  (C and  two leafs)  is  marked  by grey 

colour. 

A

B

A

0

0

1

1

0

1

3, {1111}

3, {0010}

1, {1000}

2, {0110}

C

1, {1010}

0 1

Fig. 8. Unachievable branches of decision tree. 

To remove such unachievable branches, a modification of the 

Depth First Search is used. The decomposition variables on 

the  path  from root  to  nodes  are  searched  recursively.  If  a 

variable is met twice then the current node is replaced by the 

root of an achievable subtree of current node. Decision about 

which  subtree  is  achievable  is  made  based  on  the  stored 

values of variables. An example is shown in Fig.9.
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0 1

A

B

0

0 1

1

3, {1111}

2, {0110} 3, {0010}

Fig. 9. Removing the unachievable branches of the decision 

tree.

5.5. Features of Application of Decision Trees 

Decision tree has the following advantages:

•  not  all  variables  may  be  used.  It  allows  to  exclude  the 

transitions with incompatible variables; 

•  reduction  of  using  memory  (compared  to  full  trees)  and 

even shorter tables of transitions. 

A  specific feature of decision trees is that in every state of 

state machine variables have different priorities. It’s related to 

the fact that the higher node of tree is more possible to get 

into comparing to the other variables.

6. GENETIC ALGORITHM

In this  work  the  Island Genetic  Algorithm (Koza 1992)  is 

used. The main schema of this algorithm is that there are few 

populations  (islands).  Most  of  the  time,  the  progress  of 

populations  on  every  island  occurs  independently.  After  a 

fixed number of generations, the migration occurs. Migration 

is the transfer of a part of individuals from some island to 

another one.

6.1 Forming the Next Generation

Elitism is the main strategy of forming of the next generation. 

All  individuals except the most fit  ones  are given up. The 

most fit individuals are called elite, they move up straight to 

the next generation. 

Then the next generation is supplemented on a pro  rata basis 

by random individuals, individuals which have mutated, and 

results  of  crossover  of  individuals  from  the  current 

generation.  Individuals that  have right to  give children are 

selected  using  a  tournament:  two  pairs  of  individuals  are 

chosen and the more fit individual in each pair becomes one 

of the parents.

6.2 Calculating the Fitness function

Fitness function of an individual must depend on the result of 

the  team  of  UAVs  using  the  strategy  described  by  the 

individual. For the setting of dependence we must describe 

conditions of  competition:  initial  coordinates  of  UAVs and 

the rival’s team. It is a problem because if we chose initial 

coordinates  randomly for  every start  of  racing then fitness 

function will not be “objective” enough. Opposite way is to 

fix the initial coordinates and the rival. 

We suggest to calculate fitness function as the mean value of 

a few competitions:

F=
$ r

i

k

We choose random initial  coordinates  but  the same for  all 

teams that realise the strategies described by the generated 

individuals. The number of competitions we choose equals 

10, in order to reduce the time consumption.

For  individuals  presented  as  decision  trees  formula  is 

changed a little: F=
$ r

i

k
%C&Z 'hmax ,height (  where 

C is some constant,  hmax is the maximal height of decision 

trees corresponded to the states of the state machine, height is 
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the  “recommended”  height  of  decision  tree,  and  Z  is  the 

function described by the following way: 

Z 'a,b ( =if 'a>b ( then 'a%b ( else 0

Thus this function guarantees that the decision tree doesn’t 

expand too much. 

Two teams are chosen as rivals. The first team realises the 

aggressive strategy. Its strategy implicates that one UAV flies 

only forward with normal  fuel  consumption (i.e.  such that 

provides the longest flight). Other UAVs of the team try to 

knock down the rival’s team members. 

The second rival is a team with strategy described by finite 

state machine built using the described genetic algorithm at 

the first stage, i.e. when we use only one rival (aggressive). 

This rival realises  a  friendly strategy. Its strategy implicates 

that UAVs help each other to fly and don't try to knock down 

the rival’s UAVs. It helps to train the new individuals on two 

different strategies at once: on the aggressive one and on the 

friendly one. 

The  problem  is  that  it  is  impossible  to  grade  a  given 

individual  on  an  absolute  scale.  It  is  caused  by  the  non-

determinism  of initial parameters of the competition and of 

the rivals. 

Number of generations of  the genetic  algorithm is limited, 

because the individuals generated in later generations don’t 

have a universal behaviour, but are rather adapted for specific 

rivals and initial conditions. 

But if a specific rival is defined it will not be difficult to grow 

up a team which plays better against it. 

6.3. Features of Applications of Island Genetic Algorithm 

The Island Genetic Algorithm has the following advantages 

compared to  the algorithms which generation evolves  as  a 

single entity:

• faster convergence to maximum, thanks to migrations; 

• possibility of leaving the local maximum without losing the 

previous results, thanks to isolation of islands. 

A  disadvantage  of  the  Island  Genetic  Algorithm  is  the 

frequent hitting of local maximums. 

7. CONCLUSION

In this work we described an application of Island Genetic 

Algorithm and  two methods  of  presentation  of  individuals 

(shorter table of transitions and decision trees) for building 

controller finite state machine for a model of UAV. 

All automata, which are constructed by hand or by previous 

methods (Parachsenko, Tsarev & Shalyto) show results equal 

to 242 meters at best and less than 220 meters on the average. 

Methods which  are  described  in  this  paper  provide  results 

equal to 310 meters at best and 270 on the average. It proves 

the  efficiency  of  used  methods  of  presentation  of  state 

machines and their optimisation in respect to the considered 

problem.

We can't state which method of the two suggested methods is 

better. The second method is a little more complex and when 

using the genetic  algorithms, it  works a little longer  but it 

shows  better  results.  It  seems  that  these  methods  must  be 

used for more complex problems in order to establish which 

one is better.  
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