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I

Foreword of the referee...

I think that the book "Proceedings of students conferences in Mathematics" is a useful
and very nice collection of papers on the topics of undoubtful interest for the students
of scientific faculties of the universites. On each particular topic the principal results are
provided, sometimes even suggesting different ways to prove the same statements, so
as to give the students the opportunity to understand better what they are studying and
to get an essential idea of the whole area of mathematics of which the exposed theories
take part. In some parts the exposition is quite original and unusual. Summing up, 1
would say that this book can be used in the courses of Analysis at the universities as an
excellent supplementary to the existing textbooks.

Antonio Marino,
Professor of Mathematical Analysis,
Universita di Pisa, Traly
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Preface

The book you are opening now is an attempt to describe some results of an experiment
in the courses of Mathematical Analysis to students of of Physics and Mathematics. In
fact, a common problem in teaching Mathematical Analysis at the Universities is that the
bulk of obligatory information to be communicated to students is gradually increasing:
besides "classical" theory of functions, the courses are to include now a deal of general
topology, functional analysis and operator theory. Thus, unless one wants the students
to spend all their time studying only Analysis, one is, however painful it might be, to
neglect some of the topics. But besides being unpleasant for any maths teacher, such
omitting of analytical stuff can never be absolutely harmless for students. A possible
solution to this problem would be to leave some of the beautiful and important, but
usually neglected chapters of Analysis to the students in order that they study these
arguments in a profound way by themselves. Such an approach besides being usetul for
a teacher allowing him to concentrate the attention on fewer central arguments of the
course, is also of great help for the student, who in this way is constrained to undertake
his own efforts to learn Analysis "manually”, not just making textbook excercises but
doing some elements of independent research.

Let us now explain in brief the organization of the students’ work, one of the results of
which is this book. The "research" topics are normally chosen by the students themselves.
It is supposed further that any student can under the appropriate scientific supervision
develop any chosen argument, however complex it might seem. We hope that from the
book it would be clear that such an assumption is justified by an experience. Starting to
look at the given subject, the student is first of all to overview the existing literature. Most
students however, do not limit themselves by simple compilation of the known facts and
making a survey of the literature, they rather rearrange the material by their order of
ideas, sometimes even filling it with examples of their own. Surely, this requires great
cfforts both from the student and its supervisor, but this never comes out to be in vain.

What you find in this book are systemized collections of known results prepared by the
students while working at the assigned research topics. They concern rather delicate,
but beautiful and very important parts of analysis, which normally are destinated to be
neglected in the Analysis courses. Thus we think that the book might be interesting from
at least two points of view: first, for everybody, as an "easy readable" supplement to the
existing Analysis textbooks, and, second, as a source of ideas for those interested in the
above-described didactical approach. We hope that our book be inspiring in this sense.
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2 Absolute continuity of induced measure

A Criterion for Absolute Continuity of Induced Measure

A. Zdorovtsev

Introduction

Let a measure pu absolutely continuous with respect to the N-dimensional Lebesgue
measure A be defined on a region @ C RY. As an example one can think of a measure
generated by an N-dimensional random vector X with the finite probability density
p(x). Consider the transformation of y by the map f: @ — RM (in general, M # N).
It is a measure induced by u by the map f defined by the relationship

pueB = pf~'(B),

where £~1(B) C @ is the preimage of the set B. The question arises, when the induced
measure is also absolutely continuous with respect to the M-dimensional Lebesgue
measure. Translated into terms of the given example, it reads: in which case the
transformed random vector Y = f(X) has a finite probability density ¢(y))?

The absolute continuity of g will be implied by the absolute continuity of Ag, the
measure induced under the action of f by the Lebesgue measure A, In fact, if Af is
absolutely continuous, then for any set Z, AZ = 0, holds

/\fZ = /\f_](Z) - U,
which implies by absolute continuity of p that
weZ = uf(Z) = 0.

Therefore it is sufficient to solve the problem for the Lebesgue measure A which we
consider in what follows.

CaseIl: M =N

We prove Theorem 1.
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Theorem 1 Given a map f of a region (an open and connected set) Q@ C RY into
RN, and let D be ils critical set (the set of points at which f is differentiable and has
Jacobian det £ = 0). Then the measure of the image of the critical set

AM(D) = 0.
Proor. We first prove the following auxiliary result.
Lemma 1.1 Let a map £ be differentiable at o point x € Q and have Jacobian
det f'(x) = detL = L.

Then for any e > 0 there exists a neighborhood U of x such that for any finite collection
of poinls x1,Xq, ..., Xy €U

[V CE(3) £(350), s T3] Y) = Bor W3, 36 005X )| £ E(TI-;::L:{ 1%, — 1(||)\

where {004 ) denoles the N-dimensional simplex with the respective summits und
V' denotes the algebraic volume counting ovientation (positive for right simplices and
negative for lefl ones).

Proor or THE LEMMA. Without loss of generality we may consider that

Then the volumes of simplices are expressed by the determinants:

i

1
'."'((D,xl, i ,X\.’)) = T (1‘.—‘!1-(){1_._, P },

; 1
V({0,£(x), ..., f(xy))) = Edel—(f(?ﬁ)w-wf(XN))-

Now take a sufficiently small § > 0. By definition of a derivative there is a neigh-
horhood U of x such that at any point t € U

f(t)=Lt+u,  [lu]l < éljt].
Consider an arbitrary set of points X;.Xa,...,xy € U. For them we have
f(xn) = Lxp + wn,  [Jua]] < 6[|%a]|-

Then
det(f(xy),...,f(xn)) = det(Lx; + uy,...,Lxy +uy) =

= Z idet(uipui-n”-7u:'..;1—-‘xf.1ainﬂ"".!LX:',\.‘—a_)a

it Ciadidin
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where 7; < 73 < ... < 3y, is the complement of the set of indices i, < b B & g
Hence

| det(f(x;),....f(xn)) — Ldet(xy,...,xn)| =
| det(f(xy),....f(xx)) — det(Lxy,..., Lxy)| =

l
+ det(u;,, usy, .00 Iy, Iy v, Ik, )| <
i<, <y n>0 [
B | det(my;, Wiy - ooy 0,5 Ty, Iy oo, I,y ) <
ty<Lip. <y m>0
> il Mol e f - e - ey ] <

i1 <ig< ... Cipn>0

2. 16 13| N R 3 0 1 1 [ I 1 S R [ S

1<, Cign>0
2 5"?@“‘”‘"‘) [[all - fixea]| - oo - flxen ) <
11<ig<...<tyn>0

i N-1 "
(2" = DAL (max )

for & sufficiently small (6 < ||L[[). This implies the statement of the lemma: it is
sufficient to take

e

[
< _ §
(2V = 1)|ILfiv=
By Lemma 1.1 if a point x belongs to the critical set D (in this case L = 0),
then for any € > 0 there exists a neighborhood U(x) such that for any set of points
Xy, Xay .o, Xy € U(X)

6

i
?

[V({£(x),£(x1), ..., f(xa)))| < S(U.lvgxﬂxn e xli)

Take an arbitrary ¢ > 0 and for every point x € D construct an N-dimensional
parallelepiped 7 3 x with rational summits entirely lying in the neighborhood U(x)
corresponding to the given ¢ (and also in the region Q).

By countability of Q (the set of rational points) such parallelepipeds constitute a
countable covering {7} } of D.

Now construct a system of N-dimensional cubes {P,,} on the basis of the svstem
{T}} by indnction:

We consider the parallelepipeds 71,75, ... one by one and add to the system { P}
the sets of cubes generated by them in the following way. Suppose the elements of
{ P} generated by the parallelepipeds T, 7%, ..., Ti_; are already constructed. Then
the part of T} not intersecting with them (denote it by A) can be represented as the
union of a finite set of identical N-dimensional cubes because all the dimensions of
A are rational and can be reduced to a common denominator. Determine for each of
these cubes whether it contains at least one point x such that 7 = 7%. We add to the
system { P, } “on behalf of” T} those cubes which do.

The system {P,, } has the following properties:

a) It is disjoint and therefore has total volume not more than the measure of the
whole region AQ. This is clear from the construction.
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b) It covers the set D. Prove that by contradiction.

Suppose there exists a point x € D not belonging to any of the cubes P,,. Consider
the parallelepiped T}, = T,. Processing it when constructing {P,,} we separated its
part not intersecting with the cubes already constructed into a set of disjoint cubes.
Since x is not covered by {1}, it had to lie in one of those cubes. But then we had
to add that cube to {P,} as containing the point x such that T, = T}, thus covering
x. This is a contradiction.

Denote by t,, one of the points of D due to which the cube P, entered the system

P,}. We have
P, € L. &l (%)

Hence for any sel of points x5, %y, ..., Xy € P,
_ N
V({E(tn), £x1), - Eew))] < & (max [, — ta]) - <
2 == N T
<N VAP,) =eNVAP,.
Now consider an arbitrary simplex (xy,...,3 Xn41) € Py, For it we obtain
IV ({£(x1), - E(xN D) <

N+1

E Z |‘.‘((f(X|)....1f(x”_]) ,” f(X,.” f['x;\r+i)))| S 5(;'\'r+ ]}e'\"',\rf{"!/\}l)m.
Therefore for any set of points yi..... .Yn41 € f(P,) the volume of simplex with apices

does not exceed (N + 1)NN*H1AP,.. We need the following lemma.

¥Yn

Lemma 1.2 Given a set B C RY such that for any finite collection of points
Yise s ¥N41 € ‘l'j)

|V(<YI yoer .-}’N+1))| S C".
where € is some constant. Then A3 < 05C', where the constant 8y depends only on

the dimension of the space.

Proor oF THE LEMMA. For simplicity we restrict ourselves to considering the pla-
nar (N = 2) case. The proof can be then simply reiterated word-to-word for arbitrary
JI'V

Denote by S the supremum of the areas of the triangles with summits in 5. There
exists a triangle AXY Z, with X,Y,Z € B, which possesses an area

Area(AXY Z) > §5/2.

For the heights of this triangle Hxy, Hxz and Hyz we obtain then

5 25 b) 25 5 25

H < Hyyz < ——
<H*‘—[XY| Xz “Hx2 S xgp Wz <Y
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For any point W € B the areas of the triangles AXYW, AXZW and AY ZW
Area( AXY W), Area( AX ZW), Area(AY ZW) < §.

Then for the heights hxy, hxz and hyz, dropped from the point W onto the corre-
sponding sides of these triangles, we have

25 25 25
hxy < XY’ hxy < X2Z]’ hyz < vz
Therefore any point W € B belongs to the meet of the strips, symmetrically enveloping
the lines (XY), (XZ) and (Y Z), of width 45/|X Y|, 45/|1X Z| and 45/|Y Z| respectively.
Hence the whole set 3 lies inside this intersection.

By the relations for Hyxy, Hxz and Hyz we can increase the widths of the strips,
each not more than twice, to make them proportional to the heights of the triangle
AXY Z. Obviously, the intersection of the enlarged sirips contains B as before.

The area of the intersection of the enlarged strips is maximum when the intersection
is a centrally symmetric hexagon and is, in that case, 3/2 of the area of the triangle
similar to AXY Z, with heights equal to the widths of the new strips. The similarity
coeflicient does not exceed 4-2:1 = 8. Hence the area of the intersection is not more
than

3/2 B85 =0,5<6,C,

which implies
AB < 6,0

This completes the proof of the lemma.
Lemma 1.2 implies that

M(P,) < Oye(N 4 1)NVEAP,
Therefore, since {P,,} is a covering of D,

M(D) <D M(Pn) < Oye(N + LN ST AP, < ne(N + )NV,

Hence by arbitrarity ol £ we have
Af(D) =1,

which proves the theorem.
We prove Theorem 2.

Theorem 2 Given a map f of a region @ C RY into RN, let D be its critical sel. Lel
f be differentiable everywhere on a set A, AA > 0, disjoint with D. Then the measure

of the image aof A
Af(A) > 0.
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Proor. Since detf’ # 0 on A, by continuity of the measure \ there exists a subset
K C A, AK > 0, on which the Jacobian is bounded away from zero:
|detf'(x)| > C > 0.
Approximate K outwards with a closed set ¢ also of positive measure.
Lemma 2.1 Lety € £f(G). Then £=Yy)N G is at most countable.

Proor oF Tt LEMMA. We show that every point of f~!(y)N( is isolated. Suppose
the contrary, i.e. that there exists a sequence of points x;,. € f=1{y) N G converging to
apointt e 1 (y)NG, t £ x,.

FFor simplicity consider that

Lol §

Denote L = £'(x). Then we can write the definition of derivative as

f(x) = Lx + a(x), M -, x—0.
x|
Applying it to the sequence x;, we obtain
Lx, = —exy), M — 0, k— o,

[l

bhecause f(x;) = 0. Hence for any € > 0, il & is sufficiently large,
x| < effxll,

which implies that
inl ||Lx]|| = 0.

flx]l=1

But the latter is possible only if
det L = det f'(x) = 0.

Therefore we obtain a contradiction with the assumption det f # 0 on the set .
Hence all the points of £=!(y) N & are isolated. Then their quantity is at most

countable because it is impossible to allocate an uncountable set of disjoint balls in

B 8|
By Lemma 2.1 for every point y € f((7)

f(y)nG = {gily)}-

Prove continuity of all the maps g : f(G) — G = gx(f(G)) on f(G). Suppose the
contrary, i.e. that there exists a sequence y,, € f(G) converging to a point y € (&)
such that g.(y,.) does not converge to gi(y). Extract from {g;(y,)} a subsequence
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separated from gi(y) (disjoint with some neighborhood of gi(y)) and then extract {rom
the latter its converging subsequence

gk(%n,,) — X, I 0.

[t can be done because the set (' is compact (bounded and closed).
Further by continuity of f on G (f is everywhere differentiable on G')

Ym,. = f(gk(ym,)) =% f(X)

Hence
fix)= ¥

But then x = g, (y) that implies that
g:(Ym,) — 8:(y),

that contradicts with separability of the sequence gi(y,,,) and the point gi(y). There-
fore the maps g, are continuous.

Now consider the sets (. They are closed as the continuous images of the closed
set. f{G). Ience they are measurable. As in union they constitute the whole (&, there

exists £ such that
AGL > 0,

Lemma 2.2 The map g = g is differentiable on H = £((') and its derivative
g'(y)=[f'(sy)I™".

Proor or THE LEMMA. [or simplicity we prove dillerentiability at a point 0
assuming g(0) = 0. Denote L = f/(0). We have to show that

i = _II'II} y :
g(y) =Ly + B(y), H—”gf%" J M s
r.e. that ps
s =Tl o

Iyl

By continuity of f and g the latter is equivalent to

llx — L f(x)]]
G|

(we have introduced the change of variables x = g(y)). By definition of a derivative

we have

lx - L) _ [x-L (Lx+ax))|  [lax)]
el . [Exta)
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which is equal to

| =L a(x)]] . L= - fleGoll
Tx+a()l = (I_inile) Nl + Gl

Il

_ BT fleGall/x
L ox o [laCo] el

, x—0

1

This proves the statement of the lemma.
Note that on the set f]

| det g'(y)| = | det[f'(g(y))]"'| = |[det '(g(y))]""| < 1/C.

Now prove that Al > (0. Suppose the contrary: Al = 0. Then take an arbitrary
£ > 0 and cover /[ with a system of parallelepipeds {W;} of total volume

Z/\TE{ L8,

!

Further, we construct around every point y € I a parallelepiped 7, with rational
summits entirely Iying in the parallelepiped W, 3 y and in U/, a neighborhood of y
such that for any finite collection of points y i, ys,...,y, € UN H

V({(g(y),g(yi):---,8yn))) —detg (¥ )WV({y,y1,---»yn))| <

' ¥
< |detg'(y)| (mffx lyn — y||) :

Such {7 exists according to Lemma 1.1.

The system {Z,} is a countable covering of the set /I and may be denoted by
{71 }. So by complete analogy with the proof of Theorem 1 we can construct a disjoint
system of cubes {R,,} covering H and entirely lying in the union of the parallelepipeds
W, (hence, of total volume not more than ). Then for any finite collection ol points
Vi:¥2, - ¥ € R I

IV((g(Zm:)wf(.YI)* LA | f(y-'\'))) - (lE‘L g}{z”!)l}r((zm:yh' o 3YN>)| <

< |det g'(zm )INY?| AR,  2m € H.

Therelore,

|V ((g(2m),8(¥1)s---, f(yn))| <
< | det g'(z,)|[NY2AR,, + | det 8'(2,)[[V ((Zons ¥i1s - - ¥w))] €
< |det g'(z,) [NV AR, + | det g'(2,)|ARm =

= |det g/ (y)I(NY/? + AR, < L/C(NV? + 1)AR,,.
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This implies, again in analogy with the proof of Theorem 1, that for an arbitrary finite
collection of points yi,...,yn41 € g(Rm N H ) the volume of the simplex with summnits
¥n does not exceed (N + 1)/C(N¥? 4 1)AR,,. Then by Lemma 1.2

Ag(Rm N H) < On(N 4+ 1)/C(NY? £ 1)AR,,..
Since {R,,} covers H,

AGy = Ag(H) <Y Ag(Ro N H) < Ox(N 4+ 1)/C(NV? 4 DY AR, <

< On(N + 1)/C(NNZ 4 1)e.
Therefore, since £ can be chosen arbitrarily.
AGL =0,
which leads to a contradiction. Thus
Al > 0.
But H = £(G,) C £f(G) C f(K) c £f(A). This implies that
Af(A) > 0. [ ]

Theorems 1 and 2 can be combined into a criterion for absolute continuity of the

induced measure.

Theorem 3 (iven an almost everywhere differentiable map £ of a region Q € RY into
RY, let D be its eritical set. Then for absolute continuily of the induced measure Ay if
15 necessary and sufficient that

AD = 0.

Proor. First prove the necessity. Let the measure Ay be absolutely continuous.

By Theorem 1

AM(D) = 0.
Then the absolute continuity implies that

AD < MTUE(D)) = M(f(D)) =0,

AD = 0.

Now prove sufficiency. Let AD = 0. Suppose the induced measure As is not abso-
lutely continuons, i.e. there exists a set B, AB = 0, such that

/\f( BJ = /\f_l(.B) > [}
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Since f is almost everywhere differentiable and AD = 0, the part K of the set £='(B)
on which f is differentiable and Jacobian zero is also of positive measure

AN = M7Y(B)> 0.

But then by Theorem 2

AM(K) > 0,

which implies that

AB > M(K) > 0.

This is a contradiction, hence the measure A¢ is absolutely continuous, =

Case II: M > N
We prove Theorem 4.

Theorem 4 (lven a map £ of a region Q C RN into RM, M > N, let £ be everyiwhere
differentiable on a set A C Q. Then

Af(A) = 0.
Proor. Introduce the map g: Q x RM-N — R¥:

Blle¥ e o)) = oo™ ).

Obviously the map g is differentiable on the set A x RM~N (by differentiability of f
on A) and its Jacobian det g’ = 0 as including several zero columns. Therefore the set
A x RM=Ni5 contained in the critical set of the map g and hence by Theorem 1

M(A) = g(AxRY M) =0. =

Theorem 4 implies that the induced measure may not be absolutely continuous in
the case of M > N if the map f is differentiable on a set of positive measure.

Case III: M < N

We prove Theorem 5.

Theorem 5 Given a map f of a region @ C RY into RM, M < N, let D be its
critical set (the set of points at which f is differentiable and with rank ' < M ). Let
f be everywhere differentiable on a set A C Q, AA > 0, disjoint with D. Then the
measure of the image of A

A(A) > 0.
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Proor. Suppose the contrary, i.e. that
Af(A) = 0.

Choose an arbitrary set of axes in the space RY: ny < no < ... < ny_y. Consider the
section of the set A

Alay,..oran—py) = {(2™,...,2"") e RY| xe 4, a"m = U }s

where n, < ny < ... < ny is a collection of indices complementary to ny < ny, < ... <
ny-p- Denote by g, un ot @Qar,...,an_p) — RY the map

PPN (. LTI ) P}

Obviously it is differentiable on A(ay,...,ay_yr) and its Jacobian detg',, .. _,, is
equal to (7,,..., 75 )-minor of the derivative f',
The measure of the image of the section of A

’\gﬂh----ﬂ-f\.'-nf (:"1({1] § ﬁ-‘-\,-'__ﬂ.f'}} S )\f(’l) =i}

Therefore the Jacobian detg's, o, ,, = 0 almost everywhere on A(ay,....ay_y)
(otherwise the measure of the image of that part of A(a;,...,ax_n) on which
detg'y,  anv_n 7# 0 would have been positive, which contradicts with the fact that
the image gq,  aw_n(A(@1,...,an_p)) is & null-set). But then (#,,..., %y )-minor of
' det "5, 4, = 0 almost everywhere on A, because

air =0} )=

= / AM{detg'u,,. an_w =0} N A(ay,...,an_p))Mday) ... Aday_y) =

R —n

= / 0- /\(d.ﬂ._]) v ae /\(_()’Tﬂ.l\;_;w) = (.
RA—M
So any minor of the derivative £’ is zero almost everywhere on A. Hence rank f' < M
almost everywhere on A as the countable union of null-sets is a null-set. We come to a
contradiction with the fact that rank ' = M everywhere on A. Hence

Af(A) > 0. e

The version of Theorem 5 for the case of N = oo can be proved in a similar way.
Theorem 5 can be reformulated as a sufficient condition for absolute continuity of

the induced measure:

Theorem 6 Given an almost everywhere differentiable map £ of a region ) ¢ RN
(resp. R ) into RM, M < N, let D be its critical set. Then for absolute conlinuity of

the induced measure Ay il is sufficient that

AD =10,
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11 Counvergence of series ol functions

Convergence Types of Series of Functions

D. llchenko, A. Zdorovtsev

Series of functions

oo
Definition 1 An infinite series ). u;(z) where wuy, uy, ... 4,, ... are the given functions
i=1
of an independent variable z € R, called terms of series, is called series of funetions.
Fixed z, series of functions becomes an ordinary numerical series. Therelore it is
possible to consider functional series as a mapping of a set of admissible = into a set of

numerical series.
N
Definition 2 A finite sum of functions

=

w; (@) is called a partial sum Sy(x) of series

of lunctions.

Definition 3 If for each x € [a, 0] the given series of functions converges (as a numerical
series) we say that it converges everywhere on a segment [a,b]. In this case by the sum of
such series we mean the sum of a corresponding numerical series considered as function
of r. adopting the notation

fle)= Z ().

=1

(learly,

f(z) = lim Sy(z).

N —oo

Definition 4 The difference f(z) — Sy(z) of series,convergent everywhere on [a,b] is
called the remainder Ry(z) of such series.

The most important question there reads as follows: does sum of a series [(x)
preserve the properties of partial sums Sy(z)? E.g. we know that a sum of a finite
number of continuous functions is a continuous function itself. But can we state the
continuity of this sum f(x) on a segment [a, b], knowing that each u;(z) ol a given series
is continuous on this segment, or should one require something extra?
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Convergence types of the series of functions

[ )
Definition 5 Series of functions )~ u,(x), is called lamely convergent on a segment

1=]
[a,b], if there exist a numerical series with positive terms ¥ £;, which majorate the
=l
absolute values of the corresponding terms of series of functions for all & € [a, b], i.c.

oo
e ks Z €, is convergent and Vn € N |u,(z)] <&, on [a,b].
n=1
. . - . . 29 .
Definition 6 Grouping of the series of functions ) u;(z) is called an operation that
i=1

maps this series into the series

Z Us(x),

i=1
. . - £k \ . R .
in which Up(z) = 37 wi(x), where ¢y = 0, and {¢}52, is increasing sequence of
i=rs_+1

natural numbers. -
Definition 7 Series of {unctions ) w;{x). convergent everywhere on a segment [a,b]
i=1 '
is called generalized tamely convergent on a segment [a,b], if there is a grouping that
maps them into tamely convergent series 3 U;(x) on a segment [a, b].
t=1

Definition 8 Series of functions 5 w(w) is called wuniformly convergent on segment
=1
. - 3 . v - T If -
[«, 0], if for each positive ¢ there exist N € N, such that each part 3 u;(x), p < g of
t=p

the considered series is less in absolute value than g, for p > N, 1. e

fa

YVe>0 dNeEN Vp,g:N<p<yq “ui(z) <e on [a,b].

1=

~

o0
Definition 9 Series of functions Y w;(2), convergent everywhere on a segment [a,b]
i=1
is called generalized uniformly convergent on a segment [a, b], il for each positive € > 0
there exist an infinite set of N € N, for which the remainders Ry(z) of the series for
all @ € [a,b] is less than € in absolute value, i.e.

YVe>0 {N : |Rn(z)|<e on [a,b]} is denumerable.

o0
Definition 10 Series of functions 3 u;(z). convergent everywhere on a segment [a, b]
=1

is called quasiuniformly convergent on a segment [a,b], if for cach ¢ > 0 and for each
m € N there exist such M inN, M > m, that for cach z € [a,b], there is N € N,m <
N < M, for which the remainder Ry(2) is less than € in absolute value, i. e.

Ve>0 YmeN IM>m,MeN VYz:a<z<h
AINeEN m<N<M, |Ry(z)<e.
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The relations between the different types of convergence of
series of functions

The relations between the different types of series of functions convergence are repre-
sented on a scheme below,

1
All series of functions Nonconvergent
|
2
r ! ‘;
Convergent everywhere r—‘ Not quasiuniformly
1
J . Not generalized tamely
. I‘) M = g
Quasiuniformly = (inclusion 6)
[ i
Not generalized uniformly
7
Generalized tamely | g
= (inclusion 6) ' Not uniformly
Generalized uniformly
9
T g i 1 U i T
Uniformly i —> Not tamely
| L !
11
Tamely

To prove the above scheme we state some theorems and examples. The inclusions
2, 4 follow from the definitions. The inclusions 1 and 12 are self-evident.

o9
Theorem 1 (inclusion 6) Series of functions ) w;(x) is generalized tamely conver-
=

gent on a segment [a,b], if and only if it is generalized uniformly convergent on lhis

segment.

Proor. 1) “if” Because of the generalized tame convergence there exists tamely

oo
convergent series 3. U;(z), obtained by grouping of the given series. Thus there exists
s
t o - -
a series of positive terms Y &;, satisfying |Uy(z)| < 4. Suppose £ > 0. The remainders
t=1
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oo
of the convergent series . £; — (), as ' — oc, hence

i=H 41
3M: ) ei<e VK> M.
i=H+1

Denote the remainders L,( by ri(x). Then for K > M

=R+
o0 o
(@)l € D il D)o e<e
=K 41 =K1

It it clear that rg(z) = Rep(x). Hence forall K > M |R. . (z)] <e. Tt fnlluw that

{N :|Rn(x) <= on [a,b]}includes {earir, eargpn, ...}, 00 e isinfinite. Thus }_' 1,
i=1
is generalized uniformly convergent on [a, b].
2) “only if” Consider an arbitrary convergent numerical series with positive terms
3~ £; Because of the generalized uniform convergence there exist an infinite set of nat-

ural numbers jyg, where b, K = 1,2,..., such that |R;, (z)] <ex on [a,b]. Assume
¢q = 0,¢, = j11, and

cp = min{fexe ¢ Jex > -1t VE> L

Then |R. (2)] < =4. We group the terms of the series according to the increasing
sequence f“.rl,cg, ... I addition
|Ui(2)| = [Rey_ () = Rop(2)] < |Rep_ ()] + | Bep(2)] < €41 + 24
# 3 5 ; ;B2
The series with terms v, = g,y + €5, is evidently convergent, because so is ) ;.
i=1

[ ¥
Therefore the series Y U;(x) is tamely convergent on a segment [a,b], and the given
=1

series is generalized tamely convergent. [

oo
Theorem 2 (inclusion 7) If a series of functions Y w;(x) is generalized uniformly
i=1

convergenl on a segment [a,b], then it is quasiuniformly convergent on this segment.

Proor. Suppose € > 0, m € N. Because of the generalized uniform convergence
on [a,b] there exist an infinite number of N € N, satisfying |Rx(2)| < . In particular,
AN > m. Assume M = N. We will have:

IMeN Vz:a<z<b |Ry(z)l<e, m<N
and therefore
IM>mMeN Ve:a<z<b INEN m<N<LM |Ry(z)<c¢

Because of the arbitrariness of € and m, the series is quasiuniformly convergent on [a, b].
m

»
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Theorem 3 (inclusion 9) If a series of funclions Z () uniformly converge on

i=1

la,b], then it is generalized uniformly convergent on this seqgment.

Proor. Suppose £ > 0. Because of the uniform convergence

INeN Vpge N:N<p<yg IZN, r)<<e on [ab].

i=p

The series is convergent according to the Cauchy criterion, thus we can spoa.k about the
remainders. Passing to the limit for ¢ — oo, we obtain: |R,_;(2)|] < e. Because there
are infinite number of p, such that p > N, the series is (.lemI} f_J(-!II(-EI--i-IIZ{-_’.(] uniformly
convergent on a segment [a, b]. w

oQ
Theorem 4 (inclusion 11) If a series of functions Y. u;(x) is tamely convergent on
i=1

a segment [a,b], then it is uniformly convergent on this segmeni.

Proor. Suppose £ > 0. Because of the tame convergence there exists a convergent
o

series ) £; with positive terms, such that |u,(z)| < &,. The remainders of convergent

=1

l o0
series )" g — 0 as M — oo, therefore,

i=M+1

oo
ANeN : > &<e YM>NMeEN.
=M+

Now assume N < p < ¢q,p,q € N. Then

q q q o0

|Z ui(z)| < Z[u,v(_?, ZE < Z

i=p i=p i=p i=p
Hence the series uniformly converges on a segment [a,b]. |

} Y

Definition 11 Consider a function
W(s.t,w) defined on a segment [a, b], 50 LY
that W(s,{,w) = U for each = ¢ (s,1), |
W(s,t,w) = wfor ** (the middle of the !
interval) and is ll.ll{.rll on both left and |
right halves of the segment [s,(]. :
Thus the graph of W(s,t,w)(z) has a |
shape of an isosceles triangle, built on i
the segment [s,1]. Clearly this function |
is continuons everywhere on the sel of a 5 ! b X
its definition. - - - -

IYig. 1. The graph of W (s, t.w).
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Example (inclusion 3) Consider the series T u;(z) on a segment [0, 1] where
i=1

1 1
thn(z) =W (n ot 1) (z).

1) We prove that it is conver-
Y gent everywhere on this segment.
Fach = € [0,1] belongs to no
more than one interval of the type
( l '—) n=1,2,... Thus for

n+l’n

f\.u

cach z € [a,b] iIn wi(a) se-
i= I

ries will contain no more than one

nounzero term. Therefore it is con-

vergent on [0, 1].

2) We now prove that it does
| X not converge quasiuniformly on

a given segment. Suppose € =

5 - : ; ! . L om =1, Take an arbitrary M >
g2, The graph of the sum of the series. Lix- & & : :
o . . Het & = 3 ( "—j
ample for inclusion 3. 2 \Zarg1 T
Then

u(z) = 0, ua(x) = 0,00 tigpr_g(2) = O, mapy (@) = 1, toprg () = 0, ...

Hence the sum of series 15 equal to 1, and the remainders

Ri{a)=1Rel8) = LiswaBgppanld) = & a8 =0 Riprae(8) =105 v

Then it is evident that for no N between m and M will |Ry ()| be less than £ = L, for
|Rx(z)| = L. Since M is arbitrary, Z u;(2) is not quasiuniformly convergent. ]
i=1
o0
nl b - 1 A . a3
Example (inclusion 5) Counsider the series Y w;(a) on a segment [0,1], where
=]

(1 L ..
un(z) = W (ﬁ? n 1) =) =W (n-{-Z nt+ 1 >(J')'

1) We prove that it converges quasiuniformly on this segment. The partial sums

e = () (3 o]« o (33 )
(HH)(*H
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Bach z € [0,1] belongs to no more than one interval of the type (,\%H, ]T) , NeN.
Thus for each = in sequence {SJ.,-(:;t:)};";1 we will encounter no more than one term
not equal to W(,1,1)(z). Hence this sequence I(nds to flz) = W(s, I,_l_)(:r.::). Then
the remainders ff,\( ) = fl@) = Bl = W( YEIST \“ AR \Towuqup]m% > 0,
m € N. Set M = m+ 1. Assume z € [0,1]. Then a will get into no more than to one
interval of the type (ﬁ, mil) : (m'_l—-i-?’ mbr?) = (-{ﬁ; TJ;'JF—I) Therefore at least one of
Ri(z), Ryp1(2) = Rp(z) will be equal to 0, and less than e, i. e. there will exist such
N € N, n < N < M that |[Ry(z)] < &. Since m,z and ¢ are arbitrary, the series is
quasiuniformly convergent on a segment [0,1].

2) We show that the series is not generalized uniformly convergent on the

given segment. Suppose £ = :. Tor each N ¢ N the remainder Ry(z) =
W (\+> N]Hal) (‘: (\—+z + N—Lr—l)) = 1. Therefore it can not be less than = = ;
(in absolute value) everywhere on the segment [0,1]. Therefore, {N : |Ry(z)| <
¢ on [0,1]} is numerable (it is void), and the series is not generalized uniformly
convergent on [0, 1]. =
o
Example (inclusion 8) Consider the series )~ w;(z), on [0, 1], where
i=1

1 l
Uap—1(z) =W (,__, — ]) (), vup(T) = —wap (7). k= 120000
k+1"k '
1) We prove that it is generalized uniformly convergent on this segment. The partial

Sums

Sarc—1(z) = uy () + ua(z) + ... F wag () =

: 1 1
h‘l( ) —ug(z) + ug(z) — 'IL:E(TJ + oo Uniea () = wak_1(x) = W (fs' 1 Fid [) €N
Sox(z) = w(x) +us(z)+ .o+ tag_1(x) + wag(z) =
() — uy(z) + us(e) — us(a) + ...+ tog_1(2) — wyp_1(x) = 0.
Fach = € [0,1] belongs to no more than to one interval of the type (==,+), & € N.
Thus for each a in sequence Sy(x), S(z),..... Sosc—1(2); Sax(2)y. .. there extsiq no more
than one nonzero term. Therefore this sequence tends to f(z) = 0. Then the remainders
| |

Rog_1(2) = f(z) — Sax—i(2) = _W(K——f—l‘ I L)(),

Rox(z) = f(z) — Sax(z) = 0.
Suppose now £ > 0. Then |Rax(z)| = |0} = 0 < £ everywhere on [0, 1] forall K. I.e. the
set {N :|Ry(2)] <e on [0,1]}is infinite because it includes all even numbers. since
£ > () can be chosen arbitrarily, the given series is generalized uniformly convergent on
10,1].
2) Now we prove that it does not converge uniformly on the given segment. Suppose
£ =1, N is arbitrary. Choose p=¢= N+ 1> N. For all &

s (3 D)o ()




D. llchenko, A. Zdorovtsev 21

5 ui(x)

i=p

hence = |unyi(x)] is equal to 1 in a certain point, and therefore is greater

q
than £. Then it is not frue that [Z ?:.,-{J;)I < ¢ everywhere on [0,1]. Thus, by the

i=p
arbitrariness of N, we can conclude that the series does not converge uniformly on
[0, 1]. |
Do
Example (inclusion 10) Consider the series 3 u;(z) on [0, 1], where
=1

un(z) =W (-l—--,}-,l) (z), 1= L2 s

1) We prove that it converges uni- Y
formly on this segment. Suppose
e > 0. Chose N > f, assuming
N < p < q. Fach z on [0,1]
belongs to no more than one in-
terval of the type (5,1) n €
N. Thus for each z € [0,1]
in sequence uyy (), unia(r), ...
there exists no more than one
nonzero term. Furthermore, if
there exist such a nonzero term,
it is equal to 1‘1’(;‘;—1—‘_ L Lyfora

certain m > N. Hence it can not
be greater than - < & < £. Thus
" N

Fig. 3. The sum of the series. Iixample (inclu-

sion 10).
if-‘ f;
Zu:(r) :Zﬂ.i(.i)(S
i=p 1=p

for each x, and according to the arbitrarity of ¢, the given series are uniformly conver-
gent on [0, 1].
2) Now we show that it does not converge tamely on the given segment. Suppose

(s8]
e = 3. Forallnfus (4 (r +3))| = we (3 (75 + &)) = 1 hence the series 22 Jui(<)
1=

can not be majorized by the numerical series less than nonconvergent harmonic series

o0 [ =]
Y. 1+ on [0,1]. Therefore the series - u;(2) can not be tamely convergent on [0, 1].

i1 =1

Continuity criterion for the sum of series of functions

The following important result is known as the Arzela-Borel theorem.
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o0

Theorem 5 (Arzela—Borel) Lel the series of continuous functions ) w;(x) converge
: ) =

everywhere on |a,bl. Then ils sum is continuous, if and only if the convergence is

quasiuniform.

Proor.

1) “if” We prove the continuity of f(z) in an arbitrary point of zy € [a,b], i. e.
that f(z) — f(zq) as @ — xo. Suppose € > 0. Because of the convergence of the series
as T — 2y, remainders Ry(z,) become less than £. Since convergence is quasiuniform,
there exist such M > m, that

Veia<ez<b AN, EN m<N<M |Ry(z)| <

o |

Since each term is continuous in @y, for all n € N u,(z) — u,(®y). @ — xy. There
fore in a certain neighbourhood V;, of zy holds |u,(z) — u,(2o)| < 337, Denote the
minimum of such neighbourhoods Vi, Va,...,Va by V. |u,(2) — u,(2)| < 35 for all
n=1,2,...,M. Hence for all z € V we have:

[f(2) = fzo)| =
Sn.(®) = S, (zo)| + | B (2)| + | By, (20)] < |Sn.(2) = Sn.(20)| +

5‘;\!‘(.’?::} ‘+‘ RN_'.(.'T:) - .‘7‘;\.‘: (.’!.‘(] ] — H,J'\"; (I.'J'Iﬂ” S

.+..

5|

W]

S|

|"f-'3!('7:J _ u,(:vu:) + ‘UQ('JJ) = ug(;ru) F oo F 'u.N_:(T.) - 'U.,i\,v___(.'f.‘[])| + 2‘,‘,’—5 <
2¢

[us(z) — wi(zo)| + |ua(z) — ua(zo)| 4 - o 4 |un, () — uy, (To)| + o <

P}

luy () — wy(2o)| + |us(z) — wal@o)| + .. .+

uy

| 0

luy, (@) —uy (o)l + ..o+ Jun(2) — upr(20)| + g <
Me P 2
aM '3

Thus we found the neighbourhood V of zg, where |f(2) — [(z¢)| < . Therefore, since
£ is arbitrary, f(z) indeed tends to f(zy). Thus f(z) is continuous on [a, b].

2) “only if” Suppose £ > 0, m € N. Since the series is convergent everywhere on
[a,b], for each z on [a,b] there exist such N, > m, that |[Ry, (z)| < . [ is continuous in
z, hence Ry, is, too, continuous in z. Therefore there exists a certain neighbourhood
V, of z, in which |R#x.| < e. Consider the class of neighbourhoods V. for various z
of [a,b]. Evidently, each z of this class is covered by at least one of the members
of this class (e.g., V,). This class, therefore, forms the covering of a segment [a,b].
According to the Borel lemma, one can select a finite subcovering V... V,,,...,V;, of
la,b]. Denote M = max{N,,N.,,...,N., }. Suppose now that = € [a,b]. Then it is
covered by a certain element V., of this subcovering. Therefore, |Ry, ()] < =. But,
clearly, m < N., < M. So we have found such N from the_De‘linitioﬁ 10 between m
and M, that |Ry(2)| < €. Since €, m and 2 are arbitrary, the series is quasiuniformly
|

convergent on [a, b].
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The Arzeli- Borel theorem solves completely the problem of continuity conditions
for a sum of series of continuous functions. The relations between the different types
of convergence provide a set of evident sufficient conditions on continuity of a sum of a
series of continuous functions.

Corollary 5.1 A sum of a series of continuous on [a,b] functions is conlinuous, pro-
vided that one of the following 4 conditions holds:

1) The series is generalized uniformly convergent on [a,b].

2) The series is generalized tamely convergent on [a,b].

3) The series is uniformly convergent on [a,b].

1) The series is tamely convergent on [a, b].

One must note, however, that none of these conditions is necessary for the sum
to be continuous. This is shown by an example for inclusion 5. In fact, the series
ey * ; 0 WEERR, 1 7 i) e _ TATT L 1 -
of continuous terms u,(z) = ¥ (”Jrf = 1) : W (—”H, =i 1)(x). on [0, 1] considered
there tends to the continuous sum f(z) = W(3,1,1)(z). Nevertheless, this series on

[0, 1] does not converge even generalized uniformly (or, as was proven above, generalized
tamely). Of course, one can not speak about uniform or tame convergence in this case.

The case of series with constant signs

Observe that in the above examples the series had alternating signs. The sign of term
n(2) was changing not even with the change of n, but also of z. It turns out that
there does not exist any suitable example for series of constant signs, which is claimed
by the following theorem.

o0
Theorem 6 Lel the series of continuous nonnegative (nonpositive) functions 3 u;(z)
=1

converge everywhere on [a,b]. Then ils sum is conlinuous, if and only if the convergence
is uniform.

Proo¥. lor nonpositive terms, changing signs for all terms we come to nonnegative
series. Thus it is sufficient to consider the case u,(z) > 0 on [a,b].

1) “if” This part follows directly from the Arzela-Borel theorem, since u niformly
convergent series converge quasiuniformly.

2) “only if” Suppose ¢ > 0. Partial sums Sy are continuous as finite sums of
continuous functions. Therefore, so are remainders Ry = [ — Sy, as difference of
two continuous functions. Remainders of convergent series tend to 0 for all z from a
segment [a,b]. Hence we can find such N,, that Ry, (z) < . Since functions Ry, are all
continuous, there exists such neighbourhood V, of z, where Ry (z) < €. Consider the
class of such neighbourhoods V, for various z from [a,b]. Evidently, each z of this class
is covered by at least one of the members of this class (e.g., V.). This class, therefore,
forms the covering of a segment [a,b]. According to the Borel lemma, one can select
a finite subcovering of V., V.., ..., Vs, of [a,b]. Denote M = max{N, ,N,,,..., N b
Suppose now thap @ € [a,b]. Then it is covered by a certain element V;, of this
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subcovering. Therefore, |Ry, (¢)] < &. It is clear that sequence Ry is decreasing:
Ryyy = By —uyy. Since N,, <N, Ry <e. Thus, Ry < € on [a,b]. Then

1
Vp.ge N : N<p<gq Z u;(z) <e on [a,b],
i=p
since
g (=]
Z'rr,l-(:zr] < Z u(z) = Ry(z).
i=p i=N+1

Thus there exists N € N from the uniform convergence definition, since we can choose
¢ arbitrarily, the series is uniformly convergent on [a, b]. ]

The theorem proven above looks similar to Arzela-Borel theorem. Comparing them,
we come to an obvious corollary.

Corollary 6.1 Uniform and quasiuniform convergence definitions coincide in the case
of constant-signed series.

It is clear that in this case all four definitions (quasiuniform, uniform, generalized
tame and generalized uniform convergence) coincide.

The following particular case of the corollary considered in the previous chapter can
be examined as a corollary of this theorem.
Particular case The sum of continuous terms series of constanl signs on [a,b] is
continuous, if the series is tamely convergent on [a,b].

Again, we must note that this condition is not necessary for the sum to be con-
tinunous. This is shown by the example for inclusion 5. In fact, constant-signed series
with continuous terms u,(z) = W(-—,+, 7)(z) on the segment [0, 1] considered there

is uniformly convergent and hence have the continuous sum. However, this series is not
tamely convergent on [0, 1].

Convergence of series with constant signs

As we have noted in the corollary in above paragraph, the scope of the possible conver-
gence types is highly shrunk for series with constant signs at least for the series with
continuous terms. We prove the [ollowing more general statement.

Theorem 7 Quasiuniform, generalized uniform, genervalized lame and uniform con-

vergence coincide for series with conslant signs.

Proor. Without loss of generality, we can make the proof for nonnegative terms
series only. I'urthermore, according to the scheme of relations between the different
types of convergence, it is auﬂ"lrlom to prove only one inclusion: that nonnegative and
guasiuniformly convergent series ) w;(#) converge uniformly. Suppose & > 0 and chose

=1
m = 1. Then thanks to the quasiuniform convergence,

AM>1 : Va,agz<b IN. S M, Ry (2)<e
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As we noted above, the remainders Ry, (z) of nonnegative series decrease. Therefore,
Ry (z) < e, for each z € [a,b] since N, < M. Then

q
Vp,ge N : M < p<q holds Z ui(x) <e on [a,b],
i=p
hecause i .
Z ui(r) < Z [ &8) =Ry ()
1=p =M +1

Thus according to the definition, since we choose £ arbitrarily, the series is uniformly
convergent on [a, b]. ]

Nevertheless, the definition of tame convergence even for series of constant signs re-
mains unique. It can be concluded from the Example to inclusion 10. And the Example
for inclusion 3 demonstrates that for series with constant signs quasiuniform conver-
oence (as well as the generalized tame and the generalized uniform) does not coincide
with an ordinary pointwise convergence. Thus the scheme of relations is modified in
the following way for series of constant signs.

All series of functions .
— Nouconvergent

of constant sign 1

Not quasiuniformly =

= = Cooneraliz ifor ;=
Convergent everywhere not generalized uniformly

(Absolutely) = not generalized tamely =

= not uniformly convergent

Quasiuniformly =

= generalized uniformly = -

Not tamely convergent

= generalized tamely =

= uniformly convergent

Tamely convergent

Conclusion

It was proven in the above paragraphs that none of the sufficient conditions for con-
tinuity of sum of series of functions, derived from the Arzela-Borel theorem and the
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Theorem 6 is necessary. Namely, it is not necessary for the series with continuous
terms to be even generalized uniformly (tamely) convergent, for its sum to be continu-
ous. However, here we come to a question: il a series does not have the required type
of convergence on the whole interval, maybe it is uniformly (tamely) convergent on a
certain subinterval of this interval? It turns out to be sometimes wrong. To illustrate
this we will state two examples—for arbitrary series and for series with constant signs.

Example 1 Here we apply an unusual way to construct the series of functions. Instead
of presenting each term u,(z) explicitly we will provide the pointwisely infinitesimal
consequence of remainders R, (z) and show that this consequence in fact define the
series of functions convergent everywhere. Define the terms of the series as u,(x) =
R, y(x)— R,(z). Then the partial sums

N

N
Sule) = Zw.,—_(a:) = Z(R;_](:r) — Ri(z)) = Ro(2) — Ry(z)

i=1 =1

evidently tend to Ry(z), given N — oo, since Ry(z) — 0. Therefore }: w(x) tends

i=1
pointwisely to the sum f(z) = Rg(z). The remainders f(z) — Sy(z) are equal to
Ro(z) — (Ry(x)— Ry(2)) = Ry(x). Using this method, we build an example of series of
contintous functions on an interval (0, 1) which is not generalized uniformly convergent
on any subinterval of (0,1). Denote the function W(52ms, 5o, 50 )(2) by Yi(2).

selting

. 1 . 2
Ikm(m) - Ykrn(x) i Ykm ('1" - 2_;) =ik g Y.‘:m e

At last, let Rg(z) = lpax(2) + Liox(z) + ...+ Ixax(z). Then Ri(z) represents the
sum of functions of the type W(z), equal to zero everywhere, except for a certain num-
ber of intervals. Using the definition of Ry (2). we write ont these intervals:

1 L
jr[I_L'h' {,J-K-{—I 3 }K‘)

1 1 471 1 | 1
”I_'_JK : (L}zxu;—ﬂ'_i )(§+ 2:1\'.‘-§+ 2‘;.«—1_)

i 1 | 1 1 1 1 i1 1 L 1 '3 I 3 1
{9,!!\ (gzh‘—l 3 g.m'—?,](ﬁf + 9IR-113 4 1 2R —2 )(:} g 92R—17 3 | BIk-2 )(H o IR =14 = GIK—3 )
_! . S e 1 ] g .2;\._.1. ,‘ Jn-’\_l ..... ;

K2K (miarilze + mmse +a%) (Eois 4 aareri oon 57 )

We rewrite them in the reverse order:
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1 1 i 1 | 1 %

(-‘,:K-l-l? (T+ h ia | e (Z‘l‘gk-ﬂ: (§+ JR+1 1 (f + -m'l+11
1 1 1 1 1 1 1 3
7K ar+7) s ta3w) 5 +5e) $+ox)

i i ] e 1 3

(J.m'-n (1+g2h’—;: (§+3-.1h‘-1-: ( + 2215 13
1 i = 1

J"j‘_-") 4 T 233\“-2) a + ):K—:J o + 'h 3 )
1 1 1
Q2R (5 + 29K 1
1 1 1

J:K—l) E"I’ 2:!\'—|J

3 i

(22}\'-{-—11
)

')’.'.h')

Intervals of the first group belong to [0, 5], of the vaond group belong to [ZT> 21,

and so further so that the intervals of 2%-th group belong [ =L, 1]. Thus intervals of dif-
ferent groups do not intersect each other. It is also easy to noLe that within each group
the intervals are mutually disjoint. Hence all the intervals are mutually disjoint. We
show now that Rg(z) — 0 given K — oo. We take a z € [0,1]. Suppose £ > 0 and
choose N, such that 5 < £. Then z hits no more than one interval for all & on which
the functions of the type W(x) that form the remainder Ry (z) are not equal to zero.
Consider the functions the maximal values ol which are greater than . Obviously, they
all have to be included in the expression for functions Iy ax (@), [y ox (@), ooy In_q 0k ().
We write out the intervals on which these functions are not equal to zero, as above:

amrms | wen | ks F aoiamgav| wos | Ko T mmmrngsi| » o [%+,,;-L,J+_ !
N

('_i)*i'—l? {%“.‘ !zhi-—m {'J}-—I_z:h-l: (_i—l"_!zhl——t

v;.';\l'—x_) }|'+ ;.}-]—-) 1;4' }'3%::") | ,';‘+ ﬁ)

(5= (T e |

PE=E) A

(5o

%)

As we see, there is only finite number of them, namely 1 4+ 2+ ...+ 2V"1. With
unlimited increase of A the structure remains, and intervals of each group shrink to
their limit pmm intervals of the first group shrink to 0, intervals of the second group
shrink to :e”—” and so further, so that intervals of the 9N=1_t} group shrink fo %
Therefore, since the number of intervals is finite, if 2 does not coincide with no point
of limit we always can find M, such that for all ' > M the intervals will be closer
to their limit point than z, and hence z will not hit any of