
Proceedings of the Second Spring Young Researchers Colloquium on Software Engineering. SPb.: SPbSU.
2008. V. 2, pp. 15–17.

Verification of automata-based programs
Evgeny Kurbatsky

St. Petersburg State University of Information Technologies,
Mechanics and Optics

Computer Technologies Department
Sablinskaya Street 14, St. Petersburg, Russia

kurbatsky@gmail.com

Abstract—this paper describes a verification method of au-
tomata based programs [1] based on symbolic model checking
algorithms [2]. Author makes an attempt to develop verification
method that can automate process of verification and can be
useful for peoples unacquainted with model checking algorithms
or tools.

I. INTRODUCTION

MODEL checking [2] is a powerful technique for verify-
ing reactive systems. Able to find subtle errors in real

commercial designs, it is gaining wide industrial acceptance.
Compared to other formal verification techniques (e.g. theo-
rem proving) model checking is largely automatic. In model
checking, the specification is expressed in temporal logic and
the system is modeled as transition system with finite number
of states.

Existing verification programs can be divided into three
categories:

• The first category contains verifiers which takes a model
as input. Popular verifiers SMV [3] and SPIN [4] can be
mentioned as examples. In this kind of verifiers, model
constructing, determining it’s properties and understand-
ing of counterexamples are human tasks. This approach
has following disadvantages:

– Doing all mentioned activities can take a lot of time
and effort.

– Mistakes have been done during model constructing
decrease check effectiveness.

• The second category contains verifiers of Turing complete
programming languages. Examples of such verifiers are
Java Pathfinder [5], BLAST [6], Microsoft Static Driver
Verifier [7]. This kind of verifiers automatically constructs
abstract models from program. The main problem of this
kind of verifiers is model adequacy. Model can lost some
properties of program.

• The third category contains verifiers of programming
languages which are not Turing complete. This type of
systems has following advantages:

– Program is not an abstract model and can be exe-
cuted.

The research is supervised by Anatoly Shalyto, PhD, professor at the Com-
puter Technologies Department, St. Petersburg State University of Information
Technologies, Mechanics and Optics Computer Technologies Department
Sablinskaya street 14, St. Petersburg, Russia shalyto@mail.ifmo.ru

– Program is adequate to it’s model.
The main disadvantage of this languages is small expres-
siveness.

This work describes applying third approach for verifying
automata based programs. In work [8] was shoved how to
verify simple automata based programs, that contains one finite
state machine. Often real programs are described as systems
of finite state machines. In this paper we consider algorithms
for verifying such systems.

II. AUTOMATA BASED PROGRAMMING

In context of automata based programming it is recom-
mended to build programs like automated systems, witch
consist of control system (system of cooperating finite state
machines), controlled objects and feedback loops. Finite state
machine transits between states using input actions (events
and input variables) and form output actions which correspond
to controlled objects’ methods. Such a view on programming
is natural while solving different controls problems including
reactive systems. In automata based programs states are di-
vided in two categories: logic states and calculation states [9].
Program have finite number of logic states and infinite number
of calculation states.

III. RELATED WORKS

A. Rebeca

Rebeca [10] (Reactive Objects Language) is an actor-based
language with a formal foundation, designed in an effort to
bridge the gap between formal verification approaches and real
applications. It can be considered as a reference model for
concurrent computation, based on an operational interpretation
of the actor model. It is also a platform for developing object-
based concurrent systems in practice.

B. Statemate model checker

The Statemate model checker is a tool for the System
Development CASE Tool Statemate Magnum. It supports
robustness checks and standard analysis to prevent the user
from typical design errors. Tool generates a scenario where
this kind of error occurs.



Proceedings of the Second Spring Young Researchers Colloquium on Software Engineering. 5Pb.: SPbSU.
2008. V. 2, pp. 15–17.

Model in SMV

SMV Verifier

Counterexample to SMV model

FSM System Requirements to FSM

Translation FSM system to 

model

Counterexample translation

Counterexample to FSM system

Translation requirments to 

ACTL formula

ACTL Formula

Fig. 1. Schema of the method

IV. MODEL

In automata based programming programm is described as
finite state machine system. Finite state machine system used
in this work is a set of a finite state machines (FSM) A =
{A1, A2, ..., An} and a controlled object O.

Controlled object O is pair {Z,X}:
• Z – set of actions z1, z2, ..., zn′ ;
• X – set of input variables x1, x2, ..., xm.

Each FSM Ai can be described as {Σi,Γi, Si, si0, δi, ωi}
where:

• Σi – finite set of input alphabet;
• Γi – finite set of output alphabet;
• Si – finite set of states;
• si0 – start state si0 ∈ Si;
• δi – transition function

Σ × V1 × V2 × ... × Vm × S1 × S2 × ... × Sn → Si,
where V1, V2, ..., Vm - ranges of values of variables
x1, x2, ..., xn, S1, S2, ..., Sn - ranges of states of automa-
tons A1, A2, ..., An accordingly;

• ωi – output function
Σ×V1×v2× ...×Vm×S1×S2× ...×Sn → Γi. Each
element of Γi is list of actions {a1, a2, ..., am}, where ak

is action one of two types:
– ek ∈ Σj – sending event ek to the FSM Aj .
– zk ∈ Z – making action zk.

V. REQUIREMENTS

Following requirements of finite state machines can be
checked:

• system always reaches state f ;
• system never reaches state f ;
• system always reaches state f after state g;
• system always reaches state f before state g.

Where f , g state formulas with this parts:

• A in S – automaton A in state S;
• A.a – automaton A doing action a;
• A.e – automaton A receives event e.

Waiting

Free Takentake

free

WaitingLeft

step step

Waiting

WaitingRight

step step

Eating

step[left.free]/

left.take

step

step[right.free]/

right.take

Fork

Philosopher

Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com).

Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com).

Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com).

Fig. 2. Finite state machines representing philosopher and fork.

VI. PROPOSED METHOD

In proposed approach verification is divides on this steps:
• Translate automata system to model.
• Translate requirement for finite state machine system to

ACTL formula for transition system.
• Run model verification tool.
• Translate counterexample to model to counterexample to

finite state machine system.
On figure 1 showed schema of finite state machine verifi-
cation. Translation finite state machine system to model and
counterexample translation are automated. Model verification
provided by SMV [3] or NuSMV [11] verifier. This verifiers
uses Symbolic Model Checking algorithm based on OBDDS.

VII. EXPERIMENTAL RESULTS

As result of work verification tool was developed. This
tool provide verification of automata based programs. It takes
transition diagrams describing program and requirements.

Tool were tested at the dining philosophers problem. The
dining philosophers problem is summarized as five philoso-
phers sitting at a table doing one of two things - eating
or thinking. While eating, they are not thinking, and while
thinking, they are not eating. The five philosophers sit at a
circular table with a large bowl of spaghetti in the center. A
fork is placed in between each philosopher, and as such, each
philosopher has one fork to his or her left and one fork to
his or her right. As spaghetti is difficult to serve and eat with
a single fork, it is assumed that a philosopher must eat with
two forks. The philosopher can only use the fork on his or her
immediate left or right.
This problem was described as system of finite state machines
showed at picture 2. Table I shows results of testing.



Proceedings of the Second Spring Young Researchers Colloquium on Software Engineering. 5Pb.: SPbSU.
2008. V. 2, pp. 15–17.

TABLE I
RESULTS OF TESTS

Automatons Total states Time

4 100 0.2s
6 1000 1.4s
8 10000 9s

10 100000 42s
12 1000000 4m
14 10000000 10m
16 100000000 27m
18 1000000000 76m

VIII. FUTURE WORK

In works [12], [13] was proposed usage µ-calculus for
describing system requirements. It was shown how recursive
finite state machines can be verified without stack modeling.
This method can decrease number of model states. In future
work it is planed to apply this method to automata based
programming and upgrade tool to use µ-calculus algorithms
for model checking.

IX. CONCLUSION

Results that were achieved show that applying model check-
ing verification method to automata based programs can be
perspective, because normally such programs has no more than
billion of logical states and can be successfully checked.

REFERENCES

[1] A. A. Shalyto, Switch-Technology Algorithmization and Programming
of Logic Control. Science (Nauka), 1998. [Online]. Available:
http://is.ifmo.ru/books/switch/1/

[2] E. Clarke, O. Glumberg, and D. Peled, Model Checking. MIT Press,
1999.

[3] “Symbolic model verifier.” [Online]. Available: http://www.cs.cmu.edu/
∼modelcheck/smv.html

[4] “Spin model checker.” [Online]. Available: http://spinroot.com/spin/
whatispin.html

[5] “Java pathfinder.” [Online]. Available: http://javapathfinder.sourceforge.
net/

[6] “Berkeley lazy abstraction software verification tool (blast).” [Online].
Available: http://mtc.epfl.ch/software-tools/blast/

[7] “Microsoft static driver verifier.” [Online]. Available: http://www.
microsoft.com/whdc/devtools/tools/sdv.mspx

[8] S. E. Velder and A. A. Shalyto, “Introdaction in verificatin of
automaton based programs using model checking,” Information
control systems, no. 3, pp. 27–38, 2007. [Online]. Available:
http://is.ifmo.ru/download/27-38.pdf

[9] A. A. Shalyto and H. I. Tukkel, “From turing programming to automata-
based programming,” PC World (Russia), no. 2, 2002.

[10] “Reative object language (rebeca).” [Online]. Available: http://khorshid.
ece.ut.ac.ir/∼rebeca/index.htm

[11] “New symbolic model verifier.” [Online]. Available: http://nusmv.irst.
itc.it/

[12] R. Alur, S. Chaudhuri, and P.Madhusudan, “A fixpoint calculus
for local and global program flows,” in 33rd Annual Symposium
on Principles of Programming Languages (POPL), 2006. [Online].
Available: http://www.cse.psu.edu/∼swarat/pubs/popl06.pdf

[13] S. Chaudhuri, “Subcubic algorithms for recursive state machines,” in
35th Annual Symposium on Principles of Programming Languages
(POPL), 2008. [Online]. Available: http://www.cse.psu.edu/∼swarat/
pubs/popl08.pdf

http://is.ifmo.ru/books/switch/1/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.cs.cmu.edu/~modelcheck/smv.html
http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html
http://javapathfinder.sourceforge.net/
http://javapathfinder.sourceforge.net/
http://mtc.epfl.ch/software-tools/blast/
http://www.microsoft.com/whdc/devtools/tools/sdv.mspx
http://www.microsoft.com/whdc/devtools/tools/sdv.mspx
http://is.ifmo.ru/download/27-38.pdf
http://khorshid.ece.ut.ac.ir/~rebeca/index.htm
http://khorshid.ece.ut.ac.ir/~rebeca/index.htm
http://nusmv.irst.itc.it/
http://nusmv.irst.itc.it/
http://www.cse.psu.edu/~swarat/pubs/popl06.pdf
http://www.cse.psu.edu/~swarat/pubs/popl08.pdf
http://www.cse.psu.edu/~swarat/pubs/popl08.pdf

	Introduction
	Automata based programming
	Related works
	Rebeca
	Statemate model checker

	Model
	Requirements
	Proposed method
	Experimental results
	Future work
	Conclusion
	References

