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Abstract—This paper presents the Function Block Assistant
(fbAssistant), an LLM-backed tool prototype for developing
control logic in industrial automation. fbAssistant interprets
natural language requirements and automatically generates state
machines and their function blocks implementation. The study
demonstrates iterative refinement, simulation validation, and
deployment using EcoStruxure Automation Expert. The proposed
approach aims at improved efficiency and accuracy in the
development of automation software.

Index Terms—Requirements engineering, finite-state machines,
IEC 61499, LLM

I. INTRODUCTION

Industrial automation software development is a very
resource-consuming process. It requires the creation of precise
control logic to ensure reliable and safe operation. Traditional
development methods require extensive experience and manual
programming. The development of automation systems starts
with requirements written in natural language and is accompa-
nied by various auxiliary documents, such as I/O assignment
tables, piping and instrumentation diagrams (P&ID), and other
technical drawings and wiring diagrams.

State machines are a fundamental concept in digital design,
providing a structured way to represent sequential logic and
control flows. They allow systems to transition between well-
defined states based on input conditions, ensuring predictable
and deterministic behaviour. In digital circuits design, state
machines are widely used in the design of finite control logic,
sequential processors, and embedded systems, which makes
them essential for automation and control applications.

The concept of direct state-machine programming, or more
generally, programming using visual models, such as state
machines or flow-charts, has been advocated by the authors
in many previous publications, including [[1]]-[4].

In industrial automation, state machines play a crucial role
in structuring control logic for complex processes. They enable
engineers to model different operational states of machines
and define transitions based on specific inputs, such as sensor
readings or user commands. This structured approach helps en-
sure safety, reliability, and efficiency, as each state is explicitly
defined and unexpected behaviour is minimised. Furthermore,
state machines simplify troubleshooting and validation, as
engineers can systematically analyse transitions and conditions
that lead to a particular operational state.

A key advantage of using state machines in industrial au-
tomation is their ability to facilitate the step-by-step refinement
of natural language (NL) requirements. Engineers typically
start by defining automation goals in informal terms, which
are then incrementally transformed into structured states and
transitions. This process allows for continuous refinement,
enabling the incorporation of additional safety features, op-
timisation constraints, and operational refinements. Using Al-
driven tools, such as the Function Block Assistant, engineers
can automate this transformation, improving the speed and
accuracy of control logic development.

The approach and the Function Block Assistant (fbAssis-
tant) proof-of-concept tool, created by Flexbridge AB [J5],
leverage Large Language Models (LLM) to generate au-
tomation logic from natural language descriptions, expediting
development while ensuring compliance with formal models.

Research on retrieval-augmented generation (RAG) methods
[6] has shown that combining pre-trained models with external
knowledge sources enhances the reliability of Al-generated
output. This aligns with the Function Block Assistant’s ap-
proach, where structured knowledge from industrial control
systems is integrated with Al reasoning to produce verifiable
and safe automation logic.

The rest of the paper is structured as follows. Section
puts this work in the context of generative Al progress. Sec-
tion presents the proposed methodology of specifications
refinement using an example of pneumatic cylinder. Section
adds details of another, more complicated case study of a pick
and place manipulator. Section [V] summarises the contribution
with discussion of results. Section [Vl concludes the work with
outlook and future work plans.

II. RELATED WORK: ATl GRAND CHALLENGES AND
SOFTWARE ENGINEERING

The intersection of artificial intelligence and software en-
gineering presents several grand challenges that could lead
to revolutionary advancements in both fields. Al has demon-
strated impressive capabilities in natural language processing,
decision making, and automated reasoning, but its application
to software and systems engineering is still in an evolving
phase.



Fig. 1: Overview of the Function Block Assistant workflow, showing the step-by-step process from natural language

requirements to executable control logic.

One of the main challenges in Al is the development of
generalisable reasoning systems that can model complex hier-
archical decision-making processes [7]]. In software engineer-
ing, this challenge translates into AI’s ability to understand,
refine, and generate structured programme representations
from informal specifications. A key area of exploration is
neurosymbolic Al, which combines statistical learning with
formal logical reasoning [8]]. The Function Block Assistant
aligns with this trend by integrating symbolic state machine
representations with Al-driven refinement processes, bridging
the gap between human intent and executable logic.

Another challenge is to develop AI systems that can fa-
cilitate requirement refinement in digital design, an essential
aspect of the engineering of complex automated systems.
Al models need to go beyond simple pattern matching and
incorporate mechanisms reminiscent of human cognitive pro-
cesses, such as abstraction, hierarchical reasoning, and error
correction [9]. The study of human cognition suggests that
conceptual refinement occurs through iterative adjustments,
where humans learn by interacting with an environment and
refining mental models [10]. Similarly, the Function Block
Assistant iteratively refines its generated control logic based
on user feedback, reflecting a fundamental aspect of human
cognitive modelling.

From the software engineering perspective, increasing the
complexity of the system requires new Al models that can
handle higher levels of abstraction, composability, and explain-
ability. Current Al-driven software generation techniques often
rely on neural networks that lack intrinsic explainability, mak-

ing it difficult for engineers to verify their correctness [11[]. To
address this, Al systems must incorporate structured reasoning
frameworks that allow human-interpretable justifications of
their decisions. Recent research on retrieval-augmented gener-
ation [6]] suggests that combining external knowledge sources
with Al reasoning improves system transparency, which is
crucial for Al-assisted software engineering.

Furthermore, Al-driven automation introduces new chal-
lenges related to verification and validation. Traditional soft-
ware verification techniques involve formal methods and
model checking, but scaling these approaches to Al-generated
code remains a fundamental challenge. The integration of for-
mal verification with Al-generated control logic is essential to
ensure safety and reliability, especially in industrial automation
settings, where failures can have significant consequences.

Finally, AI’s influence on software engineering is also bidi-
rectional: progress in software and systems engineering can
drive new advancements in Al. As Al becomes increasingly
integrated into engineering workflows, there is a growing
need for Al models that can reason about complex software
architectures, perform automated debugging, and self-correct
erroneous logic. These capabilities require a deeper under-
standing of the cognitive processes involved in software de-
velopment, suggesting that future Al models must incorporate
meta-learning strategies inspired by human problem solving
techniques.

Recent work on integrating large language models (LLMs)
into industrial automation has demonstrated their ability to
improve intelligent analysis and visualisation of IEC 61499



Fig. 2: Pneumatic cylinder system.

control systems [12]. Using Al-powered reasoning, these
approaches improve system transparency and facilitate more
efficient debugging and optimisation of automation workflows.

Generative Al has also been explored as a co-pilot for
rapid prototyping of IEC 61499 control applications, signif-
icantly reducing development time and increasing automation
efficiency [13]. These advancements align with the Function
Block Assistant’s goal of bridging the gap between human
intent and executable control logic by automating function
block generation and refinement.

III. METHODOLOGY

The Function Block Assistant (fbAssistant) follows an iter-
ative methodology to develop automation logic. The workflow
of the tool is presented in Fig.

We illustrate the application of the Function Block Assistant
using a simple example of a pneumatic cylinder. This system,
shown in Fig.[2] consists of a double-acting pneumatic cylinder
controlled by two actuating signals that move forward and
backward and are monitored by two position sensors that
indicate the left and right positions.

The process begins (Step (1) in Fig. with the user
providing natural-language descriptions of the required control
logic. These descriptions are then processed by an LLM, which
generates a corresponding state machine representation.

For best efficiency of requirements refinement, it is recom-
mended that fbAssistant is run in parallel with the IEC 61499
development environment, such as EcoStruxure Automation
Expert (EAE) [14], in which a closed-loop simulation model
of the system is already running, for example, in case of the
cylinder, as the one shown in Fig. 3] The function block ap-
plication follows the Cyber-Physical Components architecture
[15] - the adaptation of object-oriented Model-View-Controller
pattern for component-based automation.

The overall workflow is briefly outlined as follows:

1) Closed-loop simulation environment is created in IDE
with empty controller function block connected in the
loop to function block implementing simulation model
of the process, and function block(s) implementing in-
teractive HMI elements, such as buttons and indicators.

2) Natural language requirements are prepared and input to
the tool;

3) State machine is created by LLM and displayed for
visual inspection;

4) State machine is refined in several iterative steps;

Fig. 3: Closed-loop HMI-Controller-Model environment in
IEC 61499 for the Cylinder.

Fig. 4: Initial dummy state machine module transformed to
a state machine with proper interface based on IO list and
initialisation of output signals.

5) The correctness of the logic is checked by simulation in
the loop with model running under IDE;

6) Equivalent function block is generated and “implanted”
to the project in IDE;

7) The updated closed-loop environment is deployed to
softPLC runtime and tested with the autogenerated con-
troller FB;

8) Deployment to the real PLC.

In fbAssistant, the development starts with an empty state
machine module in Figure [] (left side). Application of the
initial prompt, describing the interface of the system, forms the
interface of the module, and initialises all outputs to FALSE
Fig. [] (right side).

The initial user prompt to fbAssistant included the following
instructions:



The pneumatic double-acting cylinder system is described by the
following input and output interface. Add these signals to the
module’s interface and remove dummy signals.

In addition add Init input for initialisation. Do not modify the state
machine.

The interface specification is based on the IO list of the
system:

home Input BOOL  Home position sensor (detects
if the cylinder is in the home
position)

end Input BOOL  End position sensor (detects if
the cylinder is fully extended)

Start Input BOOL  Start button for the cylinder

Stop Input BOOL  Stop button to halt cylinder op-
eration

Auto Input BOOL  Auto mode selector switch

Clear Input BOOL  Clear/reset button

fwd Output BOOL  Extend (move cylinder for-
ward)

bkwd Output BOOL  Retract (move cylinder back-
ward)

startled ~ Output  BOOL  Indicator light for the start sig-
nal

stopled Output BOOL  Indicator light for the stop sig-
nal

autoled  Output BOOL  Indicator light for the auto
mode signal

clearled Output BOOL Indicator light for the clear/re-
set signal

Init Input BOOL  Initialization signal

The next step is to give the assistant essential information
about the desired behaviour of the system and provide some
expectations about the structure of the state-machine.

When the system starts up, it initializes and makes sure the cylinder
is in a known state. If the cylinder is not at home, the controller
automatically moves it backward until it reaches the home position.
Once at home, the cylinder waits for a user command. When the user
presses “Start”, the cylinder extends forward until it reaches the end
position. If "Start” is pressed again, the cylinder moves backward to
home. In addition to the existing states START and INIT, the resulting
state machine must have states: TOLEFT, ATLEFT, ATRIGHT, GO
and GOBACK. In TOLEFT cylinder moves to the home position state
ATLEFT after initialisation. The condition transition from INIT to
TOLEFT should be Always, i.e. always true. In the state ATLEFT the
cylinder is standing still and waiting for the Start button. Another
static state is ATRIGHT, where cylinder should wait for the Start
button before moving back to the home position. Two motion states
GO and GOBACK implement the cylinder’s motion in the forward
and reverse directions. Make sure to always reset the control signals

when the motion should end.

Based on these requirements, fbAssistant has generated the
state machine in Fig5] left side.

Once the state machine is created, it is visualised for user
verification. This visualisation helps identify any missing tran-
sitions or incorrect states. If adjustments are needed, the user

Fig. 5: Auto-generated state machine (left), and ECC of the
function block autogenerated from the state machine (right).

can submit requests for corrections also in natural language
form. Once the user feels that the state-machine is correct,
they can immediately run it using the built-in interpreter in
fbAssistant. The interpreter connects to the simulation model
running in the EAE environment thus enabling simulation in
the loop. For example, for the cylinder case, the simulator has
exactly the interface shown in Fig[2] so the user can press the
start button and make sure the state machine works properly
by observing the cylinder’s motion.

After initial validation of the state machine, an equivalent
IEC 61499 function block can be generated so that it could
be immediately open in an industrial automation tools such as
EAE. Execution control chart of the generated function block
is shown in Fig[3] right side. The block can be seamlessly
put in the closed-loop environment from Fig[3] by changing
the function block type of the controller to that of the newly
generated function block. Then the control logic is deployed
to a virtual or physical environment for testing as a part of the
closed-loop application.

Testing involves simulating the generated control logic
within a virtual commissioning environment. This allows
engineers to verify the expected behaviour before deploying
it to the actual hardware. The refinement process ensures that
any discrepancies between expected and actual behaviour are
resolved prior to full implementation.

As an intermediate summary, the state machine was gen-
erated based on natural language descriptions of the required
behaviour. The Al-assisted development included the follow-
ing steps:

1) The initialisation logic was added to move the cylinder



to the left position on start-up.

2) The requirements were extended to describe HMI logic,
first starting with the START button, then, adding the
light behind the button and describing its behaviour.

Once validated, the function block was generated and de-
ployed to the EcoStruxure Automation Expert system. The
final version ensured smooth and reliable cylinder operation,
with correct state transitions and improved safety handling.

In one of the following state machine refinement steps we
added the emergency stop button functionality as illustrated in

Fig[6]

Fig. 6: Adding emergency stop button functionality.

The prompt for this requirement can be divided onto three
parts as shown in the figure. It describes behaviour of two
buttons Stop and Clear in process of implementing the emer-
gency stop and clearing it. The diagram shows the places in the
modified state machine which are related to the corresponding
parts of the prompt. The prompt was implemented successfully
from the first run.

IV. PICK AND PLACE MANIPULATOR USE CASE

Another use-case of the Function Block Assistant is the
development of control logic for pick and place manipulator.

These robotic systems require precise sequencing of oper-
ations, including gripping, lifting, transporting, and releasing
objects. Using fbAssistant, engineers can define the high-level
behaviour of the manipulator in natural language, allowing the
Al to generate an initial state machine.

The pick-and-place manipulator Fig. [/| used in this experi-
ment handles a total of 4 locations where items either appear or
disappear at: 3 input trays and 1 output tray. The objective of
the pick-and-place machine is to transfer these items, referred

to as workpieces, from the input trays to the output tray. The
input trays can hold one workpiece each at a time, and the
output tray disposes of the workpieces as they are placed in
it.

Fig. 7: Pick and place manipulator.

As in the previously considered Cylinder case, the de-
velopment process began with defining the system’s inputs
and outputs, such as actuator control signals and position
sensors. The following description of the desired behaviour
was provided:

The initial position of the robot is when all cylin-
ders are retracted. Desired behaviour: If workpiece
is available in one of input trays, the robot must
extend the required number of horisontal cylinders to
reach the tray, then extend the vertical cylinder, switch
the vacuum on, wait for suction sensor confirms the
workpiece is sucked, then lift the vertical cylinder,
retract horisontal cylinders, retract back to the output
tray, and if the output tray is empty - extend the vertical
cylinder, drop the workpiece, and go to the initial
position.

The AI generated a state machine with initial logic, which
was iteratively refined based on simulation feedback. The
assistant ensured that transitions between states, such as grip-
ping and releasing, were executed in the correct sequence and
prevented undesired simultaneous movements.

The iterative dialogue between the developer and the Al led
to enhancements such as:

« Preventing the manipulator from dropping objects prema-

turely.

o Ensuring a safe return to the home position.

« Optimizing motion sequences to reduce cycle time.

Figure [§] illustrates one step in the state machine refinement
process supported by fbAssistant. Given the incomplete state
machine of PnP controller on the left, the user provided five
comments in natural language, each of which was correctly
addressed by the assistant, making the corresponding modifi-
cations to the state machine.

The iterative refinement process has converged to the state
machine shown in Fig. [0



Fig. 8: A step in the refinement of PnP controller state
machine.

Once the refined state machine was validated in simulation,
it was converted into a function block and deployed within
EcoStruxure Automation Expert. The real-world testing con-
firmed that the Al-generated control logic met the expected
functional requirements.

V. DISCUSSION

The initial experiments with the proof-of-concept tool im-
plementing the Al-driven approach prove significant reduction
of development time while maintaining high accuracy.

The iterative refinement process with fbAssistant helps
developer to better understand their intentions formulated in
natural language. Sometimes LLM is quite sharp in handling
misinterpretations or imprecisions, which otherwise could lead
to ambiguities.

However, minor manual adjustments were required to fine-
tune state transitions and Ul interactions.

Examples of famous hallucinations” include creation of
states without predecessor states, or cleaning states from
actions on request to remove only one action, which proves
the need for more explicit prompt commands.

On the other side, fbAssistant has shown stable capability
in handling natural language requirements, even in different
languages. For example, we repeated the Cylinder use case
with requirements presented in Mandarine with the same
result.

VI. CONCLUSIONS AND OUTLOOK

fbAssistant demonstrates the feasibility of Al-assisted con-
trol logic generation for industrial automation. The iterative
approach allows engineers to refine automation logic effi-
ciently, improving overall system safety and performance.

Future work plans are multi-fold: One direction of work
will focus on improving Al understanding of ambiguous

requirements and integrating additional safety constraints as
reported in the paper [16]. The available formal verification
framework described in [[17]] is planned to be used for formal
verification of the autogenerated function blocks, while the
automated testing from [18] can be used for their extensive
testing.

Another direction of work relates to application use case of
gradual change of the manufacturing facility to produce a new
product on it, by applying iteratively changing requirements.

INIT

hlextend = FALSE;
hilretract == FALSE;
h2extend = FALSE:
h2retract == FALSE;
vextend ;== FALSE;

turn vacuum_on ;= FALSE;
turn_vacuum_off = FALSE;

(exrm ) [

( htextend = TRUE; | { h2extend = TRUE |

hlextend = TRUE;
hZextend := TRUE;

vextend = TRUE;
turn_vacuuin_on = TRULE;

VACUUNM_ON

hlextend = FALSE;
h2extend = FALSE;
vextend = FALSE;

retracted

hlretract == TRUE;
h2retract := TRUE;

EXT_VER
hiretract == FALSE;
hlretract .= FALSE;
vextend ;- TRUE:

vextended

A J

RELEASE

turn_vacuum_off = TRUE;
turn_vacuum_on == FALSE;

NOT VACUUM_ON

LIFT_VER

vextend = FALSE;

Fig. 9: Final result of PnP control development.
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