System-Level Power Optimization:
Techniques and Tools

LUCA BENINI
Universita di Bologna
and

GIOVANNI DE MICHELI
Stanford University

This tutorial surveys design methods for energy-efficient system-level design. We consider
electronic systems consisting of a hardware platform and software layers. We consider the
three major constituents of hardware that consume energy, namely computation, communica-
tion, and storage units, and we review methods for reducing their energy consumption. We
also study models for analyzing the energy cost of software, and methods for energy-efficient
software design and compilation.

This survey is organized around three main phases of a system design: conceptualization and
modeling, design and implementation, and runtime management. For each phase, we review
recent techniques for energy-efficient design of both hardware and software.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids; B.8.2 [Perfor-
mance and Reliability]: Performance Analysis and Design Aids; C.1.0 [Processor Archi-
tectures]: General; D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms: Design

1. INTRODUCTION

A system is a collection of components whose combined operations provide
a useful service. Components can be heterogeneous in nature and their
interaction may be regulated by some simple or complex means. Most
systems are either electronic in nature (e.g., information processing sys-
tems) or contain an embedded electronic subsystem for monitoring and
control (e.g., vehicle control). In this survey we consider electronic systems
or subsystems; for the sake of simplicity, we refer to both as systems.

This work was supported in part by NSF under grant CCR-9901190, and in part by the
MARCO Gigascale Research Center.

Authors’ addresses: L. Benini, DEIS, Universita di Bologna, Bologna, Italy; G. De Micheli,
CSL, Gates Computer Science, Rm. 333, Stanford University, 353 Serra Mall, Stanford, CA
94305; email: nanni@stanford.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 2000 ACM 1084-4309/00/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000, Pages 115-192.

116 . L. Benini and G. De Micheli

System design consists of realizing a desired functionality while satisfy-
ing some design constraints. Broadly speaking, constraints delimit the
design space and relate to the major design tradeoffs between system
usefulness versus cost. System usefulness is tightly coupled with perfor-
mance, i.e., the number of tasks that can be computed in a time window
(system throughput) as well as the time delay to achieve a task (latency).
Design cost relates to design and manufacturing costs (e.g., silicon area,
testability) as well as to operational costs (e.g., power consumption, energy
consumption per task, dependability).

In recent years the design tradeoff of performance versus power con-
sumption has received much attention because (i) of the large number of
mobile systems that need to provide services with the energy releasable by
a battery of limited weight and size; (ii) the technical feasibility of high-
performance computation due to heat extraction; (iii) concerns about the
operating costs of large systems caused by electric power consumption as
well as the dependability of systems operating at high temperatures
because of power dissipation. (As an example, a data warehouse of an
Internet service provider with 8000 servers needs 2 MW.)

Recent design methodologies and tools have addressed the problem of
energy-efficient design, aiming to provide system realization while reducing
its power dissipation. Note that energy/power optimization under perfor-
mance constraints (and vice versa) is both hard to formulate and solve,
when considering all degrees of freedom in system design. Thus we need to
be satisfied with the notion of “power reduction” or with power minimiza-
tion in a local setting. We use the term “energy-efficient design” to capture
the notion of minimizing/reducing power and/or energy dissipation in
system design, while providing adequate performance levels.

It is interesting to compare the evolution of goals in electronic system
design with those of mechanical design, and in particular with combustion-
engine design. In the beginning, achieving a working design was the
engineer’s goal, which was superseded by the object of achieving high-
performance design. Later, energy efficiency in design was mandated by
environmental and operating costs. In this respect, mechanical system
design faced the problems of energy efficiency earlier, because of the larger
consumption (as compared to electronic systems) of nonrenewable re-
sources. Nevertheless, the energy consumption of electronic systems will
scale up as they become more complex. Thus, economic, ecological, and
ethical reasons mandate the development of energy-efficient electronic
system designs.

2. SYSTEM ORGANIZATION AND SOURCES OF POWER CONSUMPTION

Typically, an electronic system consists of a hardware platform, executing
system, and application software. Energy-efficient design requires reducing
power dissipation in all parts of the design. When considering the hard-
ware platform, we can distinguish three major constituents consuming
significant energy: (i) computation units; (ii) communication units; and (iii)

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 117

storage units. Energy-efficient system-level design must address the reduc-
tion and balance of power consumption in all three constituents. Moreover,
design decisions in a part of a system (e.g., the micro-architecture of a
computing element) can affect the energy consumption in another part
(e.g., memory and/or memory-processor busses).

Analyzing the hardware platform in more detail, we can distinguish
integrated circuit (IC) components and components, such as peripherals,
realized with other technologies. Peripherals may consume a significant
fraction of system power. Examples of peripherals include electro-mechan-
ical components (e.g., hard-disk drives) and electro-optical units (e.g.,
displays), which may consume a significant fraction of the overall power
budget. Energy-efficient design of peripherals is beyond the scope of this
survey; but, nevertheless, we will describe power management techniques
that aim at shutting peripherals down during idle periods, thus drastically
decreasing overall energy consumption.

Since software does not have a physical realization, we need appropriate
models for analyzing the impact of software on hardware power consump-
tion. Choices for software implementation (i.e., system-level software,
application-level software, and their compilation into machine code) also
affect the energy consumption of the three aforementioned componenets
For example, software compilation affects the instructions used by comput-
ing elements, each one bearing a specific energy cost. Software storage and
data access in memory affect energy balance, and data representation (i.e.,
encoding) affects power dissipation of communication resources (e.g., bus-
ses).

Modeling electronic systems is very important in order to abstract their
characteristics and design objectives. Most textbooks, e.g., Hennessy and
Patterson [1996], define architecture in the context of systems having one
major computation engine. Thus, the instruction set architecture (ISA),
which is the programmer-visible instruction set, provides a neat abstrac-
tion between hardware and software. Most recent electronic systems can be
characterized as having several processing engines, operating concurrently
and communicating with each other. Examples can be provided by chips for
multimedia application, with several processing units, including a general-
purpose processor core, a digital signal processor (DSP) core, and a micro-
controller core. In general, we can think of systems as executing parallel
threads of execution, some on processors (with different ISAs) and some
directly in hardware. Thus the notion of system organization, or macro-
architecture, is the appropriate high-level abstraction for implementation
models. Conversely, we refer to the architecture of a single processor core
as a micro-architecture. For brevity, we use the term “architecture” when
its meaning is clear from the context.

System design consists of mapping a high-level functional system model
onto an architecture. Energy efficient system design must be supported by
a design flow that takes power consumption into account in all its steps.
Tackling power dissipation in later design stages is generally an ineffective
strategy because most key decisions on system organization have already

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

118 . L. Benini and G. De Micheli

Specification and constraints

Conceptualization and modeling

Algorithms and architecture

Hardware and software design

Hardware platform and software

System management

f

Hardware, software and runtime management

Fig. 1. Main steps in system design flow.

been taken. On the other hand, power-conscious design should not be
limited to the early design stages alone because energy efficiency ulti-
mately depends on detailed implementation issues. In this work we assume
a top-down system design flow, summarized in Figure 1. We distinguish
three major phases: (i) conceptualization and modeling; (ii) design; (iii)
management.

In the first stage, starting from a system-level specification, the system
architecture is outlined, together with the boundary between hardware and
software. Clearly, at this stage, the designer has a very abstract view of the
system. The most abstract representation of a system is the function it
performs. The choice of the algorithm for performing a function (whether
implemented in hardware or software) affects system performance and
power consumption. In addition, the choice of the physical parameters (e.g.,
word-width) for the implementation of an algorithm is a degree of freedom
that can be used in trading-off quality of service (e.g., image quality) for
energy efficiency. Moreover, algorithms can have approximate implementa-
tions, i.e., certain operations may be implemented with limited accuracy to
reduce energy costs. For example, a cos(x) function can be approximated as
a Taylor expansion 1 — x2/2 + x*/24. Furthermore, it may be approxi-
mated as 1 — x2/2 + x*/32 , which is simpler to realize than the Taylor
expansion because the division of the last term by 32 can be done by shift.
During system conceptualization and modeling, the system architect takes
the key decision on algorithms (i.e., how to obtain the specified functional-
ity), and hardware architectures (i.e., what is the hardware support re-
quired for implementing the functionality with the selected algorithm), but
he/she does not deal with implementation details, which are left to the
design phase.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 119

During system design, organizational and technological choices are per-
formed. At this stage, we are concerned with implementing the hardware
architecture sketched in the conceptualization and modeling steps. When
the architecture contains programmable components, we also need to
produce the (embedded) software that executes on them. Design is sup-
ported by hardware synthesis tools and software compilers. Energy effi-
ciency can obtained by leveraging the degrees of freedom of the underlying
hardware technology. Several new technologies have been developed specif-
ically for low-power systems [Vittoz 1994; Mendl 1995]. Notable examples
are (i) technologies for very low supply-voltage operations; (ii) support for
multiple supply voltages on a single chip; (iii) techniques for handling
dynamically-variable supply voltage and/or clock speed. Special-purpose
technologies are not the only way to design low-power systems. Even within
the framework of a standard implementation technology, there are ample
possibilities for reducing power consumption. It is important to note that
tools for energy-efficient design may leverage degrees of freedom at various
levels of abstraction. For example, a hardware resource scheduler may
choose components operating at different voltages, and thus exploit both
the freedom in choosing the time frames for executing the resources (as
allowed by data flow) as well as resources operating with different supply
voltages (as allowed by the technology) and with correspondingly different
delay/power characteristics.

Once a system has been realized, and is deployed in the field, system-
level software manages resources and thus controls the entire hardware
platform, including peripherals. The main purpose of the last design phase
is to equip the system with an energy-efficient runtime support system.
Lightweight operating systems, i.e., those that avoid performing functions
unimportant for the specific system application, are key to energy-efficient
system design. Dynamic power management techniques allow systems to
adapt to time-varying workloads and to significantly reduce energy con-
sumption.

To help classify and compare energy-efficient system design techniques,
we organize our survey by following a two-dimensional taxonomy. The first
dimension corresponds to the design steps of Figure 1. The second differen-
tiates the power consumed in computation, storage, and communication.
Needless to say, a complete design methodology should cover all dimen-
sions fully. Unfortunately, the state of the art has not yet converged to a
complete methodology, and many techniques in the literature are applica-
ble only during a single step in the design flow and focus on only one of the
causes of power consumption.

The rest of this paper is organized as follows. We first review system
modeling and conceptualization techniques for energy-efficient system de-
sign. Second, we address hardware synthesis and software compilation for
low-power consumption. Finally, we consider system management issues.
Within each design phase, we describe how various power optimization
techniques target computation, storage, and communication energy con-
sumption.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

120 . L. Benini and G. De Micheli

3. SYSTEM CONCEPTUALIZATION AND MODELING

In this section we focus on the early stages of the design process, when the
boundary between hardware and software is not yet decided. Many authors
refer to this design phase as hardware/software codesign [Wolf 1994; De
Micheli and Gupta 1997]. We take a slightly different viewpoint. In our
view, the key objective in this design phase is the creation of an abstract
system model that will act as a frame for refinement and detailed design.
We first survey system conceptualization and modeling styles, then outline
the techniques proposed to steer the conceptualization process toward
low-power solutions. Our main purpose is to identify a set of guiding
principles for energy-efficient system design.

3.1 Models for System Specification and Implementation

System models are representations that highlight some characteristics
while abstracting away some others. Typically, system models that capture
all aspects of a design are complex and less useful than feature-specific
models. Design of complex systems benefits from the orthogonalization of
concerns, i.e., from decomposing the design problem into subproblems that
are fairly independent of each other. The utilization of different, sometimes
orthogonal, models is useful for capturing a design as well as those features
most important to its designers.

3.1.1 Functional Models. Functional models are system specifications
addressing functionality and requirements. A major distinction is between
executable and nonexecutable functional models. Executable functional
models capture the function that the system implements and allow design-
ers to simulate system functionality. Some executable models are detailed
enough to support synthesis of hardware components or software compila-
tion; for example, models in hardware description languages (HDLs) such
as Verilog HDL, or VHDL, and in programming languages such as C or
C++.

Nonexecutable functional models highlight specific system features, while
abstracting away some functional information. For example, the task graph
model abstracts system functionality into a set of tasks represented as
nodes in a graph, and represents functional dependencies among tasks with
graph edges. The task graph is a nonexecutable functional model that
emphasizes communication and concurrency between system tasks. Edge
and node labelling are used to enrich the semantics of this model. For
instance, node labels are used to represent communication bandwidth
requirements, while node labels may store certain task computational
requirements. Nonexecutable models are used when functionality is ex-
tremely complex or incompletely specified, which helps system architects to
focus on just some facets of a complex system design.

Example 3.1 Consider a simple system that performs decimation, scal-
ing, and mixing of two data streams. The executable functional model for
such a system, in the C language, is given in Figure 2(a). A task graph

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 121

while(1) {

read(IN1);

read(IN2);

if (¢ % 10 == 0) {
OUT =IN1 * K1,
write(OUT);
OUT =IN2 * K2;
write(OUT);

}

cH+

}

(a) (b)

Fig. 2. (a)An executable functional model (in C); (b) a nonexecutable functional model (a task
graph).

nonexecutable model is shown in Figure 2(b). While the C specification
fully expresses the functionality of the system, the task graph abstracts
away functionality, but provides information on concurrency (nodes with no
directed path between them can be executed concurrently) and on commu-
nication (the edges represent the flow of data between tasks).

Currently, there is no widespread agreement on specification forms for
system design; hybrid styles are often adopted (e.g., task graphs with
executable functional models for each task). These forms are useful in
bringing many different aspects of the system together, and in helping
designers to keep them consistent during refinement and optimization. The
reader is referred to Gajski et al. [1994] and Lee and Sangiovanni-
Vincentelli [1998] for recent surveys on system specification styles and
languages. Energy-efficient system design requires both executable and
nonexecutable functional models.

3.1.2 Implementation Models. Implementation models are used to de-
scribe the target realizations for systems. To cope with the increasingly
larger complexity of electronic systems, such models need to have specific
properties, including modularity, component-orientation, and hierarchy.
Implementation models include structural models that describe systems as
an assembly of components. Structural models are often used as intermedi-

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

122 . L. Benini and G. De Micheli

ate representations within the design trajectory, from functional models to
detailed implementation models (e.g., logic-level, mask-level models). On
the other hand, structural models are sometimes used to capture design
partitions among components that are an integral part of the specifications
themselves.

Some implementation models blend structural information with func-
tional and operational information. In Section 3.4 we present two imple-
mentation models that are relevant to energy-efficient system modeling
and design: the spreadsheet model [Lidski and Rabaey 1996] and the power
state machine model [Benini et al. 1998¢]. The former expresses a combina-
tion of components and evaluates the overall energy budget. The latter
captures the power consumption of systems and their constituents as they
evolve through a sequence of operational states.

3.1.3 System Models and Design. Depending on the targeted applica-
tion, functional and implementation models are exploited in different ways.
We distinguish between special-purpose and general-purpose systems. Spe-
cial-purpose systems are designed with a specific complex application in
mind, e.g., MPEG2 compression, ABS brake system control. In this case the
system design task can be stated in simple terms: finding a mapping from a
system function onto a macro-architecture. In practice, most systems are
realized using libraries of complex components such as processor cores.
Thus, the first steps in system design consist of finding a suitable partition
of the system specification into processors, memories, and application-
specific hardware units. The choice of a processor for realizing a part of the
system functionality means that the subsystem functionality will be com-
piled into software machine code for the corresponding processor. Con-
versely, the choice of application-specific hardware units implies that the
functionality will be mapped into silicon primitives using synthesis tools.
Overall, the allocation of system functions to processors, implying a hard-
ware/software partition, is a complex task [De Micheli and Gupta 1997].
Whereas tools and methodologies for computer-aided hardware/software
partitioning have been proposed, it is still often done by the designers
themselves We comment on methods for computer-aided hardware/software
partitioning for low power in Section 3.3.

General-purpose systems are developed with no single application in
mind, but with a flexible platform for a number of different applications; for
example, personal digital assistants and portable computers. Functional
models have little relevance for these systems, where the starting point is
an architectural model and system design focuses on selecting the mix of
components that best match design targets and constraints. Design of
general-purpose systems emphasizes reuse of architectural templates and
component families, in order to provide support to legacy applications and
reduce time-to-market. The relationships among types of systems, models,
and design flows are summarized in Figure 3.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 123

Classes of Systems

General-Purpose Systems Special-Purpose Systems

System Modeling Styles

Functional Models

Implementation Models / \

Executable

Non-executable

Fig. 3. Taxonomy of system conceptualization and modeling styles.

In the next sections we survey energy-efficient design techniques, start-
ing from executable, nonexecutable, functional, and implementation mod-
els.

3.2 Energy-Efficient Design from Executable Functional Models

System specifications can be done using mathematical formalisms, i.e.,
pure functional specifications that describe a mapping between inputs and
outputs. For example, in a GPS receiver, the inputs are signals from the
GPS satellites, the outputs are spatial coordinates, mapping is implicitly
expressed by the solution of a set of linear equations where the coefficients
of the unknowns are derived from the input data. Pure functional specifi-
cations are quite uncommon in practice, and functionality is usually
specified through procedural executable models. The widespread use of
procedural models stems from the fact that both HDLs and commonly used
programming languages (e.g., C, C++, Java) have a procedural semantics.

Broadly speaking, the generation of procedural models is a way of
providing a “solution recipe,” i.e., an algorithm. Unfortunately, procedural
models are usually fairly biased, since multiple algorithms can solve a
mathematical problem. As an example, a sorting function can be done by
different algorithms. Search for the “best” algorithm is typically a very
hard problem due to the size of the search space. Nevertheless, different
procedures require more/less computation, storage, and communication.
Thus, according to the relative energy costs of these operations, and
typically to the corresponding performance, one procedure may be better
than another.

Algorithm selection. To limit the search space and allow some form of
algorithmic exploration, some approaches take a hybrid functional-proce-
dural approach based on algorithm selection [Potkonjak and Rabaey 1999].
Procedural specifications usually contain function calls, which can be seen
as pure functional views of subtasks in a complex computation. Algorithm
selection assumes the existence of a library with multiple algorithms for
computation of some common functions. Furthermore, it is assumed that

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

124 . L. Benini and G. De Micheli

the energy consumption and performance of the library elements on a given
target architecture can be characterized beforehand. For each function call
in the procedural specification, we can select the algorithm that minimizes
power consumption while satisfying performance constraints.

Example 3.2 1In their study of algorithm selection for low power, Potkon-
jak and Rabaey [1999] considered several different algorithms for discrete
cosine transform (DCT) computation. As a target architecture, they consid-
ered fully application-specific hardware, synthesized with a high-level
synthesis system. For each algorithm, a power-performance tradeoff curve
was obtained by synthesizing a circuit with different supply voltages.

After library characterization, system optimization based on algorithm
selection is performed. For each call to the DCT function in a complex
procedural specification, a heuristic optimization procedure selects the
DCT implementation and the supply voltage for the corresponding circuit
that optimally trades-off performance for power.

Algorithm selection may also be made from an object-oriented viewpoint,
in which algorithms are seen as methods associated with objects. Hence,
selecting an object or, in traditional terms, an abstract data type, implies
algorithmic selection as well as data structure selection. This approach is
taken by Wuytack et al. [1997] and Da Silva et al. [1998], where it is
demonstratd that abstract data type selection has a major impact on power
dissipation. At a lower level of abstraction, Sacha and Irwin [1998] and
Winzker [1998] show that number representation is also an important
algorithmic design choice for low-energy DSP systems.

The algorithmic-selection approach has several shortcomings. First, it
can be applied only to general-purpose primitives, whose functionality is
well known, and for which many functionally-equivalent algorithms have
been developed. Second, it neglects the impact of the interaction between
the hardware implementing the function and that executing the remaining
computations. Hence, precharacterizing the power consumption of the
function in isolation may be inaccurate. These issues must be addressed by
techniques for energy-efficient design, starting from a generic executable
functional model, which is outlined next.

Algorithm computational energy. The semantic of a generic func-
tional specification can be expressed by hierarchical control-data flow
graphs (CDFGs), where nodes represent elementary operations, edges
represent control and data dependencies among operations, and nested
procedure calls correspond to transitions between successive hierarchy
levels [Aho et al. 1988]. The CDFG contains complete information on the
computation performed by an algorithm, seen as data manipulation and
control flow. Hence, it is conceivable to be able to assess, through CDFG
analysis, the energy cost spent by computation. This approach has been
taken by some researchers [Chau and Powell 1992 ; Tiwari et al. 1996].

To estimate computational energy by CDFG analysis, we need first to
characterize elementary operations with a computational energy metric,

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 125

then we need compositional rules to compute the total cost of a complex
CDFG containing many elementary operations. Energy estimates of ele-
mentary operations can be obtained by assuming an implementation style
and by extracting cost per operation through characterization experiments.
Composition rules also depend on the implementation style, and account
for the impact that the execution of an operation may have on the energy
dissipated in the execution of other operations later in time. Cost per
operation and composition rules have been developed for both processors
[Tiwari et al. 1996] and custom units [Chau and Powell 1992].

Example 3.3 An early example of computational energy estimation is
the power factor analysis (PFA), by Chau and Powell [1992]. The PFA
technique targets pure data-flow computations. Elementary operations are
the basic arithmetic operations. Operational energy is obtained by simulat-
ing arithmetic circuits with random white noise data and by computing
average energy per evaluation. Total energy is computed by simply sum-
ming the energy of all operations. Using this simple model, it is possible to
formulate several algorithms to minimize computational power. For in-
stance, data-flow transformations based on algebraic manipulation, such as
those proposed by Chandrakasan et al. [1995], can be driven by the PFA
metric.

Algorithm communication and storage energy. Unfortunately, pro-
cedural specifications hide storage and communication costs, which are
implicit in the representation. Therefore, a simple algorithm may require
large storage, and thus efficiency of realization cannot simply be related to
computational energy, especially when the energy cost of storage and data
transfer is significant. Several researchers have observed that storage and
communication requirements are related to the locality of a computation
[Mehra et al. 1996; 1997; Catthoor et al. 1994]. Lack of locality in a highly
sequential control flow implies that results computed very early are needed
much later in time. Data variables have a long lifetime, thereby increasing
storage requirements. Similarly, a highly parallel computation with signif-
icant communication between parallel threads is likely to require a com-
plex and power-hungry communication infrastructure.

Estimating algorithmic locality from a CDFG is a difficult task because
this information is not explicitly available. Nevertheless, a few locality
analysis procedures have been developed for data-dominated algorithms,
i.e., pure data-flow specifications. Mehra and Rabaey proposed an approach
based on the analysis of the connectivity of a data-flow specification [Mehra
et al. 1996]. Currently, however, locality analysis for general CDFGs is still
an open issue.

Example 3.4 The technique developed by Mehra et al. [1996] to assess
algorithm locality transforms a given DFG into a weighted graph, where
edge weights are assigned through several heuristics that take into account
the amount of data transferred on each edge of the original DFG. An
optimal linear placement for the graph is then computed using Lagrangian

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

Fig. 4. Locality analysis for pure data-flow graphs.

minimization. Finally, the locality of the algorithms is assessed by detect-
ing clusters in linear placement. Algorithms with poor locality have few
and unbalanced clusters. As an example, consider the data flow of a
fourth-order IIR filter, as shown at the top of Figure 4. The optimal linear
placement of the corresponding weighted graph is shown at the bottom of
the figure. Notice that linear placement has two natural clusters, which
suggest that the algorithms has good locality.

In Mehra’s approach, locality analysis is directly exploited to create
loosely-connected clusters of operations that are mapped to different dedi-
cated hardware units. This partitioning technique reduces the power
consumed in the global interconnects of the hardware implementation of
the initial DFG. In the example of Figure 4, the natural clusters of the
data-flow graph, inferred from locality analysis, are shown by dashed lines.

It is important to observe that the relative energy cost of computation,
communication, and storage is strongly dependent on the target architec-
ture and technology. Consider for instance the relative energy costs of
storage and computation. In traditional technologies, large DRAM memo-
ries cannot be integrated on the same die with logic circuits. Hence, the
energy cost for storing data in large background memories involves off-chip
communication, which is much more power-consuming than on-chip compu-
tation. This observation is the basic motivation behind the large body of
work developed at IMEC [Catthoor et al. 1994], which focuses on algorith-
mic transformations for reducing memory requirements and rationalizing
memory accesses. In contrast, recently developed technology, known as
embedded DRAMs, enables the integration of large DRAMs with digital
logic circuits on the same die. In this technology the balance may shift, and
computation may have energy costs similar to memory access.

Example 3.5 Consider two well-known video decompression algorithms,
namely MPEG decoding and vector quantization. Roughly speaking, MPEG

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 127

decoding is based on computationally intensive inverse cosine transform
(IDCT) and motion compensation procedures. But vector quantization
decompression is based on lookups in a code decompression table; hence it
is a memory-intensive approach. Meng et al. [1995] designed a low-power
video decoder chip based on vector quantization. They claimed that vector
quantization is very power efficient because decompression is simply based
on a memory lookup, and does not require extensive computations, as in
the case of MPEG decoding. This conclusion is true only if the decompres-
sion memory is on-chip. Indeed, this was the case in the design of Meng et
al. If decompression had required off-chip memory access, MPEG decoding
would probably have been more power-efficient.

Computational kernels. In pure, nonhierarchical data-flow computa-
tion, every elementary operation is executed the same number of times.
This is a very restrictive semantic, even for data-intensive applications,
since almost every nontrivial data processing algorithm involves some form
of control flow and repetitive computation. Hence, most algorithms have
loops, branches, and procedure calls that create a nonuniform distribution
for the number of times each operation is executed. The well-known
empirical “law” that states that most execution time is spent on a small
fraction of a program is an equivalent formulation of the same concept.
Such nonuniformity is very relevant for energy-efficient system design.

We call computational kernels [Wan et al. 1998 ; Henkel 1999] the inner
loops of a computation, where the most time is spent during execution.
Profiling an algorithm execution flow under “typical” input streams can
easily detect computational kernels. To substantially reduce power con-
sumption, each computational kernel is optimized as a stand-alone applica-
tion and implemented on dedicated hardware that interfaces with the less
frequently executed sections of the algorithm whenever the flow of control
transitions into and out of the kernel. During system operation, when the
computation is within a computational kernel, only the kernel processor is
active (and dissipates power), while the rest of the system can be shut
down. Otherwise, the kernel processor is disabled. In other words, kernel
extraction forces mutual exclusiveness in hardware by limiting hardware
sharing. For this reason, energy efficiency is usually obtained at the
expense of silicon area and, in some cases, of marginal delay increases.
These overheads should be taken into account when evaluating the poten-
tial of this approach.

The potential of computational kernels has been exploited by several
optimization techniques at low levels of abstraction [Benini and De Micheli
1997].Research on system-level computational kernels is still in its infancy.
Two techniques with strong similarities have been proposed by Wan et al.
[1998] and by Henkel [1999]. Both assume a system architectural template
containing a general-purpose processor, and one or more application-
specific processor which are synthesized when needed. Profiling data is
collected on a system-level executable model. From profiling, the main
computational kernels are extracted. The kernels are them synthesized in

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

128 . L. Benini and G. De Micheli

hardware as application-specific processors. Increased energy efficiency is
claimed based on the observation that performing a computation on dedi-
cated hardware is usually one or two orders of magnitude more power
efficient than using a general-purpose processor.

Example 3.6 MPEG audio decompression is well-suited for extraction of
computational kernels. Profiling analysis has revealed that for almost any
software implementation of the MPEG standard, most of the execution time
is spent in two procedures: the modified inverse discrete cosine transform
(MIDCT), and the sub-band synthesis filter. These procedures have little
control flow, and mostly perform data manipulation (digital filtering).
Hence, they are ideal candidates for a dedicated hardware implementation.

Notice that most current general-purpose and digital signal processors
can easily perform MPEG decompression in real time; hence, from a
performance viewpoint, mapping computational kernels in hardware is not
needed. However, we can still exploit the energy efficiency of custom-
hardware implementations of MIDCT and subband synthesis to reduce
power dissipation.

Approximate processing. In many cases system functionality is not
specified in a succinct fashion—fuzzy and flexible specifications are very
common in the area of human sensory interfaces. Consider for instance a
video interface such as wireless video phone. Even though we can provide a
succinct specification on video quality (such as image resolution), it may
impose excessively tight constraints on the design. Human users may be
satisfied with low video quality, for instance when watching a television
show, but they may require very high quality when reading a page on
screen.

A few techniques take an aggressive approach to power reduction for
applications where a well-controlled amount of noise can be tolerated. The
key idea here is that power dissipation can be drastically reduced by
allowing some inaccuracies in the computation [Vittoz 1994; Ludwig et al.
1996; Nawab et al. 1997; Hedge and Shanbhag 1998; Flinn and Saty-
anarayanan 1999]. Approximate computation algorithms can adapt this
quality to power constrains and user requirements.

Example 3.7 An example application of approximate computation is
digital filtering. By dynamically controlling the bit width of the processed
data, it is possible to trade-off quantization noise for energy. In the
finite-impulse response (FIR) filter architecture proposed by Ludwig et al.
[1996], it is possible to dynamically change the bit width. The logic in the
fanin and fanout of unused bit lines is disabled and does not consume
power. Clearly, reduced bit-width computation is inaccurate, and the
quality of the output is affected by quantization noise. In some applica-
tions, and for some operating conditions, this is tolerable.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 129

3.3 Energy-Efficient Design from NonExecutable Functional Models

Many systems are not designed starting from executable functional models.
In the early steps of system design, executable models may not be avail-
able, either because the specification is provided in natural language or
because the definition of system characteristics is flexible and evolves as
the design progresses. Furthermore, a complete description of system
functionality is often extremely complex, and some high-level design issues
must be addressed much before a complete executable functional model is
available. As a result, many systems are designed without an executable
specification.

Even when an executable specification does exist, designers may want to
deal with a simplified, abstract view of the system, where only some
specific characteristics are considered in detail, while many others are
abstracted away. Thanks to the complexity reduction provided by abstrac-
tion, it is possible to rapidly explore the design space, at the price of an
increase in the uncertainty of results.

A very common abstract system model, which still contains some infor-
mation on functionality, but eliminates a lot of the detail needed in an
executable specification, is the task graph, described in Section 3.1.1. Task
graphs have been used in a variety of design environments much before
energy efficiency became a primary concern. Hence, the main challenge in
using this model for low-power design is in enhancing its semantics to
include information on power dissipation.

Several authors proposed techniques that start from a task graph speci-
fication for minimizing the power consumption at the system level [Brown
et al. 1997; Kirovski and Potkonjak 1997; Dave et al. 1999; Hong et al.
1998a; 1998b; 1998c; Ishihara and Yasuura 1998a; Qu and Potkonjak
1998]. These techniques attempt to provide a solution for variations of the
following design problem: Given a task graph specification and an architec-
tural template for system implementation with several functional units,
find the mapping of tasks to functional units that minimizes energy while
respecting performance constraints. Notice that we use the term “mapping”
to denote both the binding of a task to a given computational resource and
the scheduling of multiple tasks to the same resource.

The target architectural templates have considerable flexibility: process-
ing elements, interconnect, and memory architecture are application-spe-
cific; more particularly, processing elements can be core processors, custom
hardware, or programmable logics (FPGAs). Memory size and type (SRAM,
DRAM, Cache, etc.) can be selected. Communication is supported through
system busses. In some cases, supply voltage is an additional degree of
freedom. In principle all sources of power dissipation can be addressed at
this level, although the key issue is how to reliably estimate the power
consumed by a given mapping. Needless to say, at this level of abstraction,
only rough estimates can be performed to help designers compare design
alternatives, but these estimates should never be used for design validation

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

130 . L. Benini and G. De Micheli

o [Power[PE1__ PE2] [Link | Pow Speed
o |o [TL] 10 20 L1 | 10'BW 40BW
2 g T2 15 30 L2 | 20'BW_30*BW
8 (& |T3 10 20
A3 | T4 11 7
S
o 1] T5 32 41
C |y |Te 7 10
T7 12 22

F— - Time PE1 PE2| | Mem| Pow Speed

T1 5 8 M1| 50*s 12*S

T2 7 12 M2]| 60*S 15*S

T3 4 7

T4 8 5

T5 20 35

T6 2 3

T7 11 17
PE Allocation, Binding, Scheduling: Mem Allocation Communication
PE1l: {T1->T2—>T3->T7—>T4} M1: {T5, T6} PE1<—>PE2: L1
PE2: {T5—>T6} M2:{T1,T2,T3,T4,T7}

Fig. 5. Power estimation for nonexecutable functional models: Task graph.

(where only small errors with respect to the final implementation are
acceptable).

In the approach proposed by Kirovski and Potkonjak [1997] and Dave et
al. [1999], it is assumed that the power consumed by each task when
mapped to each compatible class of processing elements is known or is
obtained by precharacterization. It is also assumed that memory usage and
communication requirements for each task are known beforehand. Given a
mapping of a task graph into hardware, the total power consumed by
functional units is computed summing the power consumed by each task
when executing on the functional unit specified by the mapping. Task
power consumption for storage is computed by multiplying the expected
number of accesses of each task by the power-per-access of the memory that
stores the task’s data set. Communication power is computed by multiply-
ing the number of data transfers initiated by the task by the cost-per-data
transfer of the system bus used for communication.

Example 3.8 Consider the task graph shown in Figure 5. Two perfor-
mance constraints are specified. The execution period of the entire task
graph must be less than 100 time units; furthermore, execution of task T3
must terminate by time 70. Tasks (i.e., nodes) are labeled with memory
usage. Edges are marked with communication bandwidths. We have two
types of processing elements, PE1 and PE2 (e.g., two different core proces-
sors), two types of memories, M1 and M2 (e.g., SRAM and DRAM), and two
types of communication channels, L1 and L2 (two different busses). The
execution time and power (energy) consumption of each task on each
processor is shown in the tables labeled “Time” and “Power.” The energy
and time costs of communication are a function of bandwidth, and are
collected in the table labeled “Link.” The energy and time costs for memory
are a function of memory size, and are shown in the table marked “Mem.”

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 131

An allocation of processing elements, with binding and scheduling, is
shown at the bottom of Figure 5. Memory and communication channel
allocation is shown as well. With this information, we can compute perfor-
mance and power for the task graph. Let us consider computation energy
first:

Observe that computation energy for a shared processor is computed by
simply summing the energies required by all tasks running on it. Storage
energy is computed by first calculating total memory size for each memory
type and then multiplying it by its energy-per-size value (from table
“Mem”):

Even = Eyy + Eyy=(0.1+0.1+03+0.1+0.1)-60+ (0.5 +0.3)-50 = 88

Finally, communication energy is obtained by first computing the total
communication bandwidth between the two PEs and then multiplying it for
the energy-per-bandwidth of the selected communication link:

Econ = Epgi-pps + Epga_pp1 = (0.1 + 0.4) - 20 = 10

The total energy is E = Epg + Eype + Econ = 109 + 88 + 10 = 206.
Speed is computed in a similar fashion.

The main issues in power estimation (and, as a consequence, optimiza-
tion) for nonexecutable models are the need for exhaustive precharacteriza-
tion and loss of accuracy caused by lack of information on the effects caused
by hardware sharing. Precharacterization requires estimating the power
consumed by each task on every possible hardware implementation, and for
every possible voltage supply (if multiple supply voltages are available).
This process can be extremely onerous for large task graphs and for large
libraries of processors. Furthermore, estimating the power consumed by a
task’s implementation on dedicated hardware is far from trivial, since such
an implementation may be unavailable in the early phases of system
design.

Whenever a hardware resource is shared among several processes, it is
generally very hard to provide an accurate estimate of the power cost of
sharing without having functional information. Consider for instance a
shared processor core with an on-chip cache. If two processes share a
processor, the total power consumption is likely to be substantially larger
than the sum of the power consumed by the two processes running as a
single task. The overhead is caused by task-scheduling support (e.g.,
context switching, preemption, synchronization on mutually exclusive re-
sources) and by cache locality disruption caused by the different work sets
of the two processes. Overhead estimates depend strongly on functional
information, which is not available when dealing with abstract task graphs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

132 . L. Benini and G. De Micheli

#Comp| Vdd | lipLe | lon | %idle | %0n |1 (mA)

Processor 1 3.3 0.5 50 0.3 0.7 35.15

DRAM 1 3.3 0.1 12 0.3 0.7 8.43
FLASH 5 3.3 0.0 9 0.3 0.7 315
IR 1 3.3 0.0 64 0.95 0.05 3.2
RTC 1 3.3 0.0 0.1 0 1 0.1

DC-DC 1 3.3 0.1 55 0.01 0.99 5.44

Total |83.82

Fig. 6. Spreadsheet power model for an electronic agenda.

3.4 Energy-Efficient Design from Implementation Models

Many system designs are upgrades from older products and bear strong
backward compatibility constraints. Such design often exploit commodity
components connected through standard interfaces (e.g., PCI or USB
busses). Thus, system modeling may be constrained from the beginning to
using specific parts and interconnection topologies. Implementation models
are useful in reasoning about different implementation options and the
corresponding energy impact.

The spreadsheet model. In this design flow, executable functional
models are never available, and rapid prototyping on breadboards is a
common technique to obtain running hardware for measurement and test
purposes. Unfortunately, prototyping is a time-consuming process, and
designers need to have first-cut estimates of power consumption early in
the design flow. To support this requirement, a few component-based power
estimation approaches have been developed. The tool of choice for back-of-
the-envelope power estimation is a standard spreadsheet. To estimate the
impact of a component on the power budget, its dissipation is extracted
from the data sheets and entered in the spreadsheet. Total power is
obtained by simply summing over all components. This technique, which is
very straightforward, is widely used and is often the only option available
to designers.

Powerplay, developed by Lidsky and coauthors [Lidski and Rabaey 1996]
is a web-based spreadsheet that offers the opportunity for component
exploration in a distributed environment. This tool offers a library of power
models at several levels of accuracy, starting from a constant power value
up to complex activity-sensitive models that require a fair amount of input
information from the designer.

Example 3.9 Consider a simple general-purpose system, such as an
electronic agenda. The system is built around a microcontroller with 1MB
of RAM memory. 2MB of flash memory is used to store firmware. Addi-
tional 8MB of flash memory is used to store user data. A PC interface is
available through an IR link (implemented by a single integrated component).

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 133

The main user interface is through an LC display, with a touch-sensitive
surface that can be written with a stylus. The system also contains a
real-time clock chip with a quartz oscillator, and a stabilized DC-DC
converter to power the components. All components are powered at 3.3 volts.

The power consumption of all components is taken from data sheets and
collected in a spreadsheet, shown in Figure 6. For each component, the
worksheet reports (i) component count, (ii) voltage supply value, (iii)
current absorbed when idle, (iv) current absorbed when active, (v) percent-
age idle time, (vi) percentage active time, and (vii) average current ab-
sorbed. The average current (in mA) is computed as I = N,mponents © (Liaze *
frac,y. + I, * frac,,). The total current absorbed is reported in the lower
right-hand corner. To compute average power consumption, we multiply
by V.4. We obtain P,,, = 276.6mW.

The main limitation of spreadsheets is that they do not model interac-
tions among components. Also, spreadsheets require substantial user inter-
vention to take into account component utilization. Consider for instance
the power consumed by memory, which is strongly dependent on access
frequency. In a spreadsheet model, the designer must estimate expected
memory utilization and use it to scale memory power. In other words,
whenever power dissipation depends on the interaction of a component
with the rest of the system, the spreadsheet model falls short.

Power state machines. To mitigate the shortcomings of spreadsheets,
Benini et al. [1998c] developed an abstract state-based model for system
components, called a power state machine (PSM). In a power state machine,
states represent modes of operation, while arcs represent legal transitions
between modes of operation. States are labeled with power dissipation
values, transitions are labeled with ¢riggering events, energy costs, and
transition times. A triggering event is an external stimulus that forces a
state transition.

A system description of this model is a structural network of system
components. A power state machine and, optionally, a functional model are
specified for each system component. The functional model is an abstract
specification of component behavior, which specifies how to respond to
external events, possibly generating new events. A system description can
be simulated. An external event source, representing the environment,
drives the model. Clearly, this abstract simulation bears little resemblance
to a functional simulation, but it offers the opportunity of tracking the
power states of system components.

When all state machines are single state and no events are generated,
the PSM model becomes equivalent to the spreadsheet model. However,
PSMs offer the possibility of (i) studying how the system reacts to different
workloads; (ii) modeling interactions between components; and (iii) analyz-
ing the effects of power management. The main limitation is that it
requires more complex component models than a spreadsheet, and some

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

134 . L. Benini and G. De Micheli

P=f(250mW,Activity)

Idle (lusec) ReadWrite (10usec)
P=40uwW

S ReadWrite

(150usec)

Fig. 7. Power-finite state machines for a memory component.

effort on the designer’s part in describing the abstract specification of
component behavior.

Example 3.10 The power state machine for a memory component is
shown in Figure 7. There are three power states, namely “read/write” (RW),
“idle,” and “off.” Each state is characterized by a power consumption level.
Notice that in the active state, power is a function of memory activity (i.e.,
read/write traffic into memory). Edges are marked with external events
that, when asserted, force the transitions. Edges are also labeled with
transition times When the transition time is not reported, it is assumed to
be instantaneous.

4. SYSTEM DESIGN

System modeling and conceptualization yield a hardware/software parti-
tion as well as a macro-architectural template and a set of procedures.
System design consists of refining the hardware model of this template into
computation, memory, and communication units. Different design flows,
often based on computer-aided synthesis, support the mapping of these
units into low-level detailed models ready for manufacture [De Micheli
1994]. When the template, as is most often the case, provides for program-
mable (core) processors to execute procedures, then software must be
developed (or synthesized) and then compiled for the target cores.

The balance between software and hardware can vary widely, depending
on the application and on the macro-architecture. Even though dedicated
hardware is more energy efficient than software running on core proces-
sors, the latter has many compensating advantages, such as flexibility,
ease of late debugging, low-cost, and fast design time. For these reasons,

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 135

CcuU CcuU
Comp. | | Mem Comp.
Unit cu cu Unit
| | |

[[[[[

Mem
Mem Mem Mem 110

Mem

Fig. 8. Generic template for system hardware architecture.

core-based solutions are also present in energy-efficient system design.
Nevertheless, most systems require some amount of hardware design.

This part of the tutorial is dedicated to the analysis of system design
issues. We assume that conceptual analysis and modeling has been carried
out. Therefore, the boundary between hardware and software and the
macro-architectural template is set. In the next section, we focus on design
of system hardware, with special emphasis on synthesis-based approaches.
We consider only high-level system design techniques, and refer the reader
to Macii et al. [1998]; Raghunathan et al. [1998]; Chandrakasan and
Brodersen [1995]; and Rabaey and Pedram [1996] for a comparative analy-
sis of methods for energy-efficient chip design (i.e., micro-architectural
synthesis, logic synthesis, and physical design of ICs). We then report in
Section 4.2 on software design and compilation. Needless to say, almost
every conceivable system design flow entails both hardware and software
synthesis, and it is often difficult to separate them.

4.1 Hardware Synthesis

The outcome of system modeling and conceptualization is a hardware
template, which is the starting point for hardware design. Most systems
can be described as instances of a basic template, shown in Figure 8. The
figure depicts a heterogeneous hardware architecture containing several
computation units, memory, and interconnects. Generality can be increased
by allowing computation units to be hierarchical. Data processing and
control are carried out by computation units, whose micro-architecture can
range from fully application-specific to general-purpose. At one extreme, we
have a dedicated hardware processor that performs a single function, with
limited or no flexibility. At the other extreme, we just instantiate a core
processor that can be programmed to perform any function. Several degrees
of customization exist in between, depending on the granularity of the
blocks employed for building the micro-architecture. We survey techniques
for energy-efficient design and synthesis of computation units in Section
4.1.1.

Storage resources are usually organized as a memory hierarchy. Memo-
ries at low hierarchy levels are small, fast, energy efficient, and dedicated

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

136 . L. Benini and G. De Micheli

to a single processor, or shared among a small number of them. Memory at
high levels of hierarchy are large, relatively slow, and power hungry. The
motivation for hierarchical memory organization is exploitation of temporal
and spatial storage locality. Depending on the specific design flow, the
degrees of freedom in memory hierarchy design can vary widely. At one
extreme, we have a fixed hierarchy, where the only design parameter that
can be controlled is memory size for some levels of the hierarchy. At the
other extreme, we have a fully-flexible memory hierarchy. Low-power
memory design techniques are surveyed in Section 4.1.2.

Communication channels are also hierarchical. Local communication has
short range, and involves a reduced number of terminals (the most common
case is two). Thus, it is fast and power efficient. Long-range global
communication requires complex protocols, it is relatively slow and power
inefficient. Nevertheless, it is required for supporting nonlocal information
transfer. For simple macro-architectures, a single-level communication
hierarchy is often employed. In complex architectures, communication
resources can be organized in a hierarchical fashion. Energy-efficient
communication channel design is analyzed in Section 4.1.3.

Even though we analyze computation, storage, and communication sepa-
rately, it should be clear that it is impossible to design well-balanced
systems by focusing on one of these areas only, and completely disregarding
the others. Ideally, we would like to tackle all design issues at the same
time, and achieve a globally optimum design. In most practical cases,
however design quality benefits from focusing on just a few facets of the
power optimization problem at one time, while keeping the remaining
issues in the background. A well-balanced design is obtained by adopting a
design flow where design challenges are prioritized and solved in sequence,
possibly with iterations.

4.1.1 Synthesis of Computation Units. As mentioned above, data-pro-
cessing units in an electronic system can be customized at different
granularity levels. At the coarser granularity, we have processor cores.
Cores are very successful in embedded system design because they reduce
design turn-around time by moving all system customization tasks into the
software domain. RISC processors are becoming very successful cores
[Segars et al. 1995; Hasegawa et al. [1995], together with specialized
processors for digital signal processing [Lee et al. 1997b; Mutoh et al. 1996;
Verbauwhede and Touriguian 1998].

Cores are easy to use and very flexible, and sometimes they are neces-
sary. However, they are not power efficient when compared with custom
hardware solutions. Consider, for instance, a very simple computation such
as FIR filtering. A core processor can easily implement a FIR filter (by
performing a sequence of multiplications and additions). On the other
hand, a custom hardware architecture for FIR filtering can be created with
just an adder, a multiplier, and a few registers. The energies (or, equiva-
lently, energy-delay products) of these two architectures can easily be more
than two orders of magnitude apart (obviously, in favor of the custom

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 137

architecture). This is just an example of a fairly general principle, which
can be summarized as an “energy-efficiency versus flexibility” tradeoff
[Nishitani 1999]. Any micro-architecture of a computation unit can be seen
as a point on a tradeoff curve of energy-efficiency versus flexibility,
intended to be reconfigured for implementing new computational tasks. We
explore this curve, starting from application-specific units and moving
toward more flexible, and less power-efficient architectures.

Application-specific units. This solution is biased towards maximum
power efficiency, at the price of reduced flexibility. Typically, design starts
from an initial specification that is executable and given in a high-level
language, with constraints on performance, power, and area. The outcome
is a circuit that can perform only the specified function. The most straight-
forward design flow for these units is based on hand-crafted translation of
the executable specification into a register-transfer level (RTL) description,
followed by hand-design of the data path and RTL synthesis of the control
path. To reduce energy consumption, designers can leverage a large num-
ber of low-power RTL, logic-level and physical design techniques, which
have been surveyed in several papers: [Pedram and Vaishnav 1997; Pe-
dram 1996] and monographs [Chandrakasan and Brodersen 1995; Rabaey
and Pedram 1996; Benini and De Micheli 1997].

An alternative design flow relies on automatic synthesis of the custom
computation unit starting from the executable specification. This approach
is often called behavioral synthesis (or, more generically, high-level synthe-
sis). In essence, the main difference between RTL synthesis and behavioral
synthesis is that in the latter the order in the time for executing elemen-
tary operations (scheduling) is not taken from the specification. In other
words, as long as the external performance constraints (latency, through-
put, and synchronization) on the specification are met, the hardware
synthesizer is free to alter the computation flow and to schedule elemen-
tary operations in time. Behavioral synthesis has been studied for more
than fifteen years, and its basic theory is described in several textbooks [De
Micheli 1994; Gajski et al. 1992].

Behavioral synthesis of energy-efficient circuits has been intensively
studied as well. The interested reader is referred to the survey by Macii et
al. [1998] and the monograph by Raghunathan et al. [1998] for an in-depth
analysis of algorithms and tools, as well as an extensive bibliography. In
this section we focus only on the distinctive characteristics of behavioral
synthesis for low power. The optimization target is dynamic power con-
sumption, which is the product of four factors, namely: (i) clock frequency
fork; (i) the square of the supply voltage V2,; (iii) the load capacitance C;
and (iv) the average switching activity.

Probably the most direct way to reduce power is to scale down V.
Unfortunately, CMOS circuits get slower as V,;; decreases because CMOS
transistors have smaller overdrive when they are on. Under these condi-
tions, a good approach to reduce power consumption is to make a circuit
faster than its performance constraint, then decrease the power supply

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

(@ (b) (© (d

Fig. 9. Example of power-driven voltage scaling.

(obtaining a quadratic decrease in power) until the constraint is matched
again. This power-driven voltage scaling approach was studied in depth by
Chandrakasan et al. [1995] and Chandrakasan and Brodersen [1995]. One
of its most interesting features is that it leverages well-established tech-
niques for high-performance computation, such as parallelization, retiming,
and pipelining to design energy-efficient circuits.

Example 4.1 An example of power optimization based on performance
enhancement followed by voltage scaling is shown in Figure 9. The unopti-
mized specification is the data flow in Figure 9(a). Let us assume for
simplicity that addition and multiplication by a constant take one time unit
each. Thus, the critical path of the computation has length 2. First, loop
unrolling is applied. The data-flow graph, unrolled once, is shown in Figure
9(b). The main purpose of this step is to enable speedup transformations. In
Figure 9(c), constant propagation has been applied. Notice that both the
number of operations performed every cycle and the critical path have
increased with respect to (a). However, if we apply pipelining to the
transformed data-flow graph, we reduce the critical path back to 2, but now
we are processing two samples in parallel. The throughput has doubled.
Hence, we can now scale down the voltage supply until delay has doubled,
and we obtain a low-power implementation with the same throughput as
the original specification. Voltage has been reduced from 5V to 2.9V, and
power is reduced by a factor of 2.

The main limitation of power-driven voltage scaling is that it becomes
less effective as technology scales down. In fact, fundamental reliability
concerns are driving voltage supplies in modern submicron technologies to
lower levels with each generation, reducing the headroom available for
voltage scaling. Another issue is that most speedup techniques rapidly
reach a region of diminishing returns when they are applied very aggres-
sively. In other words, it may be easy to obtain good power saving by
speeding up and scaling down voltage supply for circuits that are not
optimized for performance, but further speeding up circuits that have
already been optimized for performance is a challenging task, and may
impose such complexity overhead as to be useless for power reduction.

Let us consider, for instance, two common speedup techniques: pipelining
and parallelization. The point of diminishing returns for pipelining is
reached due to pipeline register overhead. High-performance circuits are

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 139

often deeply pipelined, and the levels of logic between stages are in the 15
to 20 range. In these deep pipelines, a significant fraction of the cycle time
budget is taken by register setup and hold times and by clock skew. Even if
we disregard timing issues, we cannot arbitrarily increase pipeline depth
because registers would occupy excessive area and load the clock too much.

Parallelization (i.e., the speedup technique that duplicates part of the
data path to allow more than one computation at the same time) hits the
region of diminishing returns even earlier than pipelining, due to duplica-
tion of data path structures, imposes a large area overhead and increases
wiring by a substantial amount.

Furthermore, pipelining and parallelization are limited by the presence
of control-flow constraints such as loops and conditionals. To speedup
computation past control-flow bottlenecks, we need speculation (i.e., carry
out a computation assuming that conditionals will follow the most probable
path) or predication (i.e., perform the computation under both the exits of a
conditional). These techniques are power inefficient because they increase
the amount of redundant computation.

The basic power-driven voltage scaling can be extended by allowing
multiple supply voltages on a single die. Various behavioral synthesis
techniques have been proposed to deal with multiple supply voltages
[Chang and Pedram 1997; Raje and Sarrafzadeh 1995; Johnson and Roy
1996]. The key idea in these approaches is to save power in noncritical
functional units by powering them with a down-scaled supply voltage. In
this way delays are equalized, throughput is unchanged, but overall power
is reduced. Real-life implementation of multisupply circuits poses non-
trivial technological challenges (multiple power distribution grids, level-
conversion circuits, DC-DC conversion on chip). Nevertheless, the techno-
logical viability of multisupply circuits has been proven on silicon [Usami
et al. 1998b]. Hence, computer-aided design tools supporting this design
style may gain acceptance in the design community.

Alternative approaches to power reduction have tackled all other depen-
dencies of dynamic power, namely, clock frequency, load capacitance, and
reducing switching activity. Frequency reduction has sometimes been dis-
missed in the literature as ineffective because it reduces power, but not
energy [Chandrakasan and Brodersen 1995] (a system clocked at a low
frequency performs less “computational work” in a time unit). This conclu-
sion is drawn under two implicit assumptions: (i) the entire system is
clocked by a single clock; and (ii) the goal is to minimize average energy. If
we invalidate one of these assumptions, frequency reduction can be an
effective technique.

Let us consider the first assumption. If we allow multiple clock domains
on a single system, we can clock noncritical subsystems at slower frequen-
cies, thereby saving significant power without compromising overall system
performance. Systems with multiple clock domains (also known as globally
asynchronous locally synchronous or GALS), clocked at different rates, are
becoming viable [Brunvand et al. 1999], pushed by the ever-increasing cost
of global clock distribution grids and by the fundamental limitation of

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

140 . L. Benini and G. De Micheli

global synchronicity posed by the finite propagation speed of electric
signals [Dally and Poulton 1998]. The potential of multifrequency clocks for
energy-efficient computation is still largely unexplored, with a few notable
exceptions. In the work of Chung et al. [1995], a clock-distribution tech-
nique is proposed where a low-frequency clock is propagated on long wires
and multiplied locally. In the work by Hemani et al. [1999], a few single-
clock industrial designs are transformed in GALS, reporting power savings
up to 70%.

Clock frequency can be varied over time as well. One example of dynamic
clock speed setting is clock-gating. If a system component is idle (i.e., it is
not performing any useful work), we can set its clock frequency to zero, and
nullify dynamic power consumption. Clock-gating is widely applied in
real-life circuits [Gonzalez and Horowitz 1996; Tiwari et al. 1998; Benini
and De Micheli 1997], and it is often presented as a technique for reducing
switching activity [Benini and De Micheli 1997]. In fact, clock frequency
reduction has the beneficial side effect of reducing switching activity.
Clearly, clock-gating is an extreme case, but we can envision applications
where clock speed is dynamically reduced or increased depending on
system workload. Dynamic power management techniques, including dy-
namic clock speed setting, are surveyed in Section 5.1.2.

Regarding the second assumption, several authors have observed that in
portable systems the ultimate target is not average energy reduction, but
battery lifetime extension. If we model batteries as large ideal capacitors,
then energy reduction translates directly into longer lifetime. Unfortu-
nately, the ideal capacitor model is inaccurate for real-life batteries. More
specifically, several authors [Martin and Sewiorek 1996; Wolfe 1996; Pe-
dram and Wu 1999] have shown that the amount of charge that can be
drawn from a battery depends not only on its capacity (which is a function
of battery mass and chemistry), but also on the rate of discharge. In first
approximation, effective capacity decreases with an increasing discharge
rate, hence extracting charge from a battery at a slow rate can maximize
the amount of computational work performed during a battery’s lifetime.

Example 4.2 Martin and Sewiorek [1996] analyzed the effect of battery
discharge rate on capacity, moving from the empirical formula C = K/I,
where K is a constant determined by battery physical design and chemis-
try; I is the average discharge current and ¢ is a fitting coefficient. If s is
zero, then the battery is ideal (constant capacity). For real-life batteries, s
ranges between 0.1 and 0.7, depending on battery type. Martin showed
that, when considering this relationship, reducing clock frequency (and,
consequencetly, I) can increase the total computational work that can be
performed over a battery’s lifetime.

Power can be reduced by reducing average load capacitance. This prob-
lem has been studied in depth, and it is usually tackled at the level of
physical-design abstraction [Pedram and Vaishnav 1997; Pedram 1996],
which is outside the scope of this survey. At the system level, we can

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 141

Fig. 10. An example of scheduling and binding for reduced switching activity.

observe that there is a tight relationship between locality and average load
capacitance. To understand this statement, observe that an architecture
with good locality minimizes global communication, which is usually car-
ried over long global wires with high capacitance load. This observation is
the basis of the work by Mehra et al. [1996; 1997] on high-level partitioning
for wire-load reduction.

Finally, we consider techniques for reducing average switching activity.
At first this seems the most straightforward way to achieve this goal is to
maximally reduce the number of basic operations. Srivastava and Potkon-
jak [1996] proposed a technique for transforming the data-flow graph of
linear computation in such a way that the number of operations is mini-
mized. This technique was later extended by Hong et al. [1997] to general
data flows. It is important to see that minimizing the number of operations
does not guarantee minimum power, since in general the power dissipated
in executing an elementary operation depends on the switching activity of
the operands.

Commonly-used arithmetic units dissipate more power when their inputs
have high switching activity. We can reduce switching by increasing the
correlation between successive patterns at the input of a functional unit. A
few CDFG transformation techniques for facilitating the identification of
sequences of operations with low switching activity have been presented in
the past [Chandrakasan et al. 1995; Kim and Choi 1997; Guerra et al.
1998]. After CDFG transformations, behavioral synthesis transforms the
CDFG into an RTL netlist. All behavioral synthesis steps (allocation,
scheduling, and binding) have been modified to take into account switching
activity (see Macii et al. [1998] for a survey), and behavioral synthesis of
circuits with low switching activity is an area of active research. A
prerequisite for the applicability of these approaches is some form of
knowledge on input statistics for the hardware unit that is being synthe-
sized.

Example 4.3 Consider the simple data-flow graph shown in Figure
10(a). The constraint on execution time is 3 clock cycles, the resource
constrains are 2 adders, 1 multiplier, and one comparator. Figure 10(b) and
(c) show two schedules compatible with resource constraints. Observe that

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

142 . L. Benini and G. De Micheli

additions 1 and 3 share one of the operands. If we perform both additions
with the same adder, its average switching per operation will be low,
because one of the operands remains the same, and will dissipate less
power than when performing two additions with uncorrelated inputs. In
the schedule in Figure 10(b), however, it is not possible to implement
additions 1 and 3 with the same adder, because the two operations are
scheduled in the same control step. On the other hand, the schedule in
Figure 10(c) does allow sharing, and it leads to a more energy-efficient
implementation.

This simple example shows that in order to minimize power, allocation,
scheduling, and binding algorithms must work synergistically. It is mainly
for this reason that most behavioral synthesis approaches in the literature
are based on iterative improvement heuristics [Chandrakasan et al. 1995;
Kumar et al. 1995; San Martin and Knight 1996; Raghunathan and Jha
1997]. The main challenge in implementing effective optimization tools
based on iterative improvement is estimating the power cost metric.
Estimating power at the behavioral level is still an open problem for many
aspects of implementation. Probably one of the most pressing issues is the
mismatch between zero-delay switching activity and actual switching activ-
ity that may lead to macroscopic underestimates of power consumption
[Raghunathan et al. 1999].

Another class of techniques for energy-efficient behavioral synthesis
exploits control flow and locality of computation. Almost any real-life
application does contain some control flow. Control flow forces mutual
exclusion in computation and unequal execution frequencies that can be
exploited to reduce power consumption. If we evaluate a conditional before
we start the execution of its branches, we can easily detect idleness in
functional units that execute operations in the branch that is not taken
only. When idleness is detected early enough, we can eliminate switching
activity by freezing (with clock gating or similar techniques) the idle units
[Monteiro et al. 1996]. We can push this concept even further. If by
profiling and control-flow analysis, we can determine the most frequently
executed sections of a specification (i.e., the computational kernels), we can
optimize the circuit for the common cases, provided that, at execution time,
we can detect the occurrence of the common cases early enough [Lakshmi-
narayana et al. 1999].

Example 4.4 Consider the simple code fragment shown in Figure 11(a).
Assume that the profiling analysis has revealed that most of the time the
value of ¢ is 2. We can then transform the original code into the equivalent
form shown in Figure 11(b). At a first sight, the second form is less compact
and redundant. However, observe that in the new specification the branch
of the conditional that executes more frequently contains just a shift
operation that is much more power efficient than multiplication and
subtraction, as needed in the infrequent path. Hence, by testing the
condition ¢ == 2, we can disable the circuitry implementing the general
computation, and just perform the power-efficient common-case computation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 143

while (c > 0) { if(c==2) A=z A<<1
A=A*c; else {
c--; while (c > 0) {
} A=A*c--;
C--;
}}
(@) (b)

Fig. 11. Common-case computation and exploitation of mutual exclusion.

Optimization that is based on mutual exclusion and the common case
often has area overhead because both methods limit hardware sharing.
Hence, they can be counterproductive if the circuit operates with input
patterns that completely change the probability distribution of the state-
ments in the specification.

Application-specific processors. Even though dedicated computation
units are very energy efficient, they completely lack flexibility. In many
system design environments, flexibility is a primary requirement, either
because initial specifications are incomplete or because they change over
time. Also, many systems are designed to be reprogrammable in the field.
Computation units for these systems must be programmable to some
degree.

When flexibility is a primary concern, a stored program processor is the
micro-architecture of choice. Besides flexibility, processors offer a few
distinctive advantages. First, their behavior (i.e., the execution of a se-
quence of instructions) is well-understood and matches the procedural
specification style very well. Second, they offer a clean hardware abstrac-
tion (the instruction set architecture, ISA for short) to the designer. Third,
they leverage well-established compilation and debugging technologies.
Finally, their interfaces with the rest of the system (i.e., other processors
and memories) are often standardized, thereby maximizing opportunities
for reuse.

From the energy-efficiency viewpoint, processors suffer from three main
limitations. First, they have an intrinsic power overhead for instruction
fetch and decoding, which is not a major issue for computation units with
hardwired control. Second, they tend to perform computations as a se-
quence of instruction executions, with the power overhead mentioned
above, and cannot take full advantage of algorithmic parallelism. Finally,
they can perform only a limited number of elementary operations, as
specified by their ISA. Thus, they must reduce any complex computation to
a sequence of elementary operations.

Interestingly, these limitations not only affect power adversely, but also
decrease performance. Hardware architects designing general-purpose pro-
cessors have struggled for many years with the performance limitations of
basic processor architecture, and have developed many advanced architec-
tures with enhanced parallelism. When designing a processor for a specific

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

144 . L. Benini and G. De Micheli

application, energy (and performance) optimization can leverage the knowl-
edge of the target application to obtain a highly optimized specialized
processor. This observation has lead to the development of a number of
techniques for application-specific instruction-set processor (ASIP) synthe-
sis [Goossens et al. 1997].

ASIPs are a compromise solution between fixed processor cores and
dedicated functional units. To a large degree, they maintain the flexibility
of general-purpose processors, but are tailored to a specific application.
When they run their target application, they are substantially more power
efficient than a general-purpose core. Traditionally, ASIPs have been
developed for performance and silicon area; research on ASIPs for low
power has recently just started.

Instruction subsetting proposed by Dougherty et al. [1998] aims at
reducing instruction decoding and micro-architectural complexity by reduc-
ing the number of instructions supported by an ASIP. The basic procedure
for instruction subsetting can be summarized as follows: The target appli-
cation is first compiled for a complete ISA, then the executable code is
profiled. Instructions that are never used or instructions that can be
substituted by others with a small performance impact are dropped from
the application-specific ISA. Then, the processor with a reduced ISA is
synthesized, and the code.

Another technique, proposed by Conte et al. [1995] exploits profiling
information to tailor a parameterized superscalar processor architecture to
a single application (or an application mix). Parameters such as number
and type of functional units and register file size can be explored and
optimized. The optimization loop is based on iterative simulation of a
micro-architecture model under the expected workload. Notice that all
architectures that can be generated by the optimization have the same ISA,
hence the executable code does not need to be recompiled. A similar
technique is proposed by Kin et al. [1999] for exploring the design of
application-specific VLIW machines. In this case, a retargetable compiler is
customized whenever a new architecture is examined, and the code must be
recompiled before instruction-level simulation.

As a concluding remark for this section, we want to stress the fact that
both application-specific unit synthesis and general-purpose processor opti-
mization for low power are at a much more advanced research stage than
application-specific processor optimization. Commercial tool support for
power optimization of computation units is still restricted to low levels of
abstraction (gate-level and, to some degree, register-transfer level). We
believe that many interesting research opportunities exist in the area of
application-specific energy-efficient processor synthesis.

Core processors. Core processors are widely used as computation units
in both embedded and general-purpose systems. Even though processors
are inherently less power efficient than specialized units, they can be
optimized for low power. Energy-efficient processor design is covered in
detail in the papers by Gonzalez and Horowitz [1996] and by Burd and

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 145

Brodersen [1996]. We briefly mention a few basic ideas that have been
widely applied in designing low-power processors.

Probably the most commonly used power-reduction technique for proces-
sors is aggressive voltage scaling. Many processor families have “low-
power” versions with reduced supply voltage [Gary et al. 1994; Debnath et
al. 1995; Hasegawa et al. 1995; Furber 1997; Segars et al. 1995; Gowan et
al. 1998]. Needless to say, supply voltage down-scaling often requires some
adjustments in (i) device technology (e.g., lower threshold voltage); (ii)
circuit design (e.g., transistor stack lowering); and (iii) micro-architecture
(e.g., critical path redesign). Lowering supply voltage does not give a
durable competitive advantage because most processor vendors tend to
align themselves on the same technology and supply voltage. In contrast, a
good low-power micro-architecture design can provide a durable competi-
tive advantage across many technology generations. The energy efficiency
of a micro-architecture can be enhanced by avoiding useless switching
activity in idle units (e.g. a floating point unit when the processor is
executing integer code). Power waste in idle units is reduced by clock
gating and operand isolation.

High performance in processor design is often achieved at a substantial
price in power. For instance, speculative techniques (in execution and
memory access) [Hennessy and Patterson 1996] are often detrimental
energy-wise because they do not boost performance enough to compensate
for the increased power dissipation. Hence, some low-power processor
designers have opted for relatively simple micro-architectures that do not
provide top performance, but are more energy-efficient than their high-
performance counterparts [Segars et al. 1995]. Care must be taken, how-
ever, in considering the target application for a processor. In many do-
mains, energy (i.e., the power-delay product) is not an acceptable metric
because the system needs fast response time. In these cases the energy-
delay product is a better metric for comparing processors. Gonzalez and
Horowitz showed that most low-power processors are not better than
high-performance CPUs when comparing their energy delay products.

Ideally, we would like to reduce power and boost performance at the
same time. Specialized instructions are often proposed as a power and
performance enhancement technique. The basic idea is to provide a few
specialized instructions and the required architectural supports that allow
the processor to execute very efficiently under some specific workload.
Subword parallel instructions [Ishihara and Yasuura 1998b], special ad-
dressing modes [Kalambur and Irwin 1997], and native multiply-accumu-
late instructions [Litch and Slaton 1998] are just a few examples of
domain-specific instructions that can reduce power and increase perfor-
mance when the processor is executing data-dominated applications. Digi-
tal signal processors [Mutoh et al. 1996; Lee et al. 1997b; Verbauwhede and
Touriguian 1998] carry this concept to the extreme, providing highly
specialized instruction sets. The main problem with this approach is that it
is very hard to design compilers that fully exploit the potential of special-

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

146 . L. Benini and G. De Micheli

Vdd
ROM CPU control RAM
Vdd CLK Vdd CLK Vdd CLK

DC-DC converter
&VCO

Fig. 12. A variable-voltage processor-based architecture.

ized instructions. In many cases, slow and error-prone hand-coding in
assembly is required.

An emerging low-power processor design technique is based on dynami-
cally variable voltage supply [Nielsen et al. 1994; Suzuki et al. 1997;
Ishihara and Yasuura 1998b]. A variable-voltage processor can dynamically
adapt performance to the workload. The basic variable-voltage architecture
is shown in Figure 12. When the supply voltage is lowered, the processor
clock must be slowed down, hence we need a variable frequency-clock
generator that tracks the changes in circuit speed with voltage supply. This
is done by employing an oscillator whose period is proportional to the
propagation of a dummy chain of gates that replicates the critical path of
the processor. With a variable-voltage processor we can in principle imple-
ment just-in-time computation, i.e., lower the voltage until the processor is
barely fast enough to meet performance constraints. In practice, variable-
voltage processors are faced with many design and validation issues such
as power-efficient variable-voltage supply design [Sratakos et al. 1994;
Gutnik and Chandrakasan 1997]; precise and fast voltage control and clock
tracking [Wei and Horowitz 1996; Namgoong et al. 1997], and power grid
reliability.

4.1.2 Design of Memory Subsystems. Storage is required to support
computation. In the early days of digital computing, researchers focused on
memory size optimization. Memory was expensive, and memory space was
a scarce resource. The fast pace of semiconductor technology, which has
increased the level of integration exponentially with time, has completely
changed this picture. Nowadays, the cost per memory bit is extremely low,
and sheer memory size is rarely the main issue. Memory performance and
power are now the key challenges in system design. The simplest memory
architecture, the flat memory, assumes that every datum is stored in a
single, large memory. Memory accesses become slower and consume more
power with increasing memory size. Hence, memory power and access time
dominate total power and performance for computations with large storage
requirements, and memory becomes the main bottleneck [Lidsky and
Rabaey 1994; Catthoor et al. 1998a].

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 147

Level 1 __L_evelz___‘ I__________i
Level O _———_ | | | |
[mp—— | | | | | | |
L ! | | |
A [N B | | |
— T —_—— T ——— —_— E—_———
CTA T 0 TS T
L — | | | | | |
FpoT0 [-——— ' | I ' I
| R [R : I
L) ypP2T2 @ |
¥ P3T3

Fig. 13. A generic hierarchical memory model.

One obvious remedy to the memory bottleneck problem is to reduce the
storage requirements of the target applications. During system conceptual-
ization and algorithmic design, the principle of temporal locality can be
very helpful in reducing memory requirements. To improve locality, the
results of a computation, should be “consumed” by subsequent computa-
tions as soon as possible, thereby reducing the need for temporary storage.
Other memory-reduction techniques strive to find efficient data representa-
tions that reduce the amount of inessential information stored in memory.
Data compression is probably the best-known example of this approach.

Unfortunately, storage reduction techniques cannot completely remove
memory bottlenecks because they also try to optimize power and perfor-
mance indirectly by reducing memory size. As a matter of fact, memory size
requirements have increased steadily. Designers have tackled memory
bottlenecks following two pathways: (i) power-efficient technology and
circuit design; (ii) advanced memory architectures that overcome the scal-
ability limitation of flat memory. Technology and circuit design are outside
the scope of this survey, the interested reader is referred to the survey by
Itoh et al. [1995]). We focus on memory architectures.

All advanced memory organizations rely on the concept of memory
hierarchy. A large number of excellent textbooks have been written on
organizing memory, which has become a fundamental part of any system
macro-architecture [Hennessy and Patterson 1996]. In this section we
present a general hierarchical memory model that will be used as a frame
for analyzing a number of memory optimizations for low power.

A hierarchical memory model. The generic memory model used in
the following analysis is shown in Figure 13. Various memory organiza-
tions can be seen as specializations of the structure in Figure 13. The model
is hierarchical. Low hierarchy levels are made of small memories, close to
computation units, and tightly coupled with them. High hierarchy levels
are made of increasingly large memories, far from computation units, and
shared. The generic terms “close” and “far”, imply a notion of distance.
Roughly speaking, the distance between a computation unit and a memory
hierarchy level represent the effort needed to fetch (or store) a given
amount of data (say, a byte) from (to) the memory. Effort can be expressed
in units of time—if we are interested in performance—or in terms of

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

148 . L. Benini and G. De Micheli

energy. The labels in Figure 13 represent the effort associated with each
memory level, which includes not only the cost for memory access, but also
the cost for transferring the data through the hierarchy.

Each memory level can be partitioned into several independent blocks
(called banks). This partition may help to reduce the cost of a memory
access in a given level. On the other hand, memory sub-banking increases
addressing complexity and has a sizable area overhead. Both these factors
reduce the power savings that can be achieved by memory partitioning.
Finding an optimal memory partition in every memory level is another
facet of the memory-optimization problem.

Example 4.5 As a concrete example of a memory architecture that can
be modeled with the template of Figure 13 is shown in Figure 14, taken
from the paper by Ko and Balsara [1998]. The hierarchy has four levels.
Three levels of cache are on the same chip as well as the execution units.
Four-way associativity is assumed for all caches. To get high cache-hit
rates, the line sizes at upper levels are bigger than those at lower levels. L0
has 16 bytes lines, L1 has 32 bytes, and L3 has 64 bytes. Similarly, cache
size increases with level. L0 ranges from 1 to 16 KB, L1 from 4 to 64 KB,
and L2 from 16 to 1024 KB. It is assumed that caches are fully inclusive
(i.e., every location contained into a low-level cache is contained in all
higher-level caches).

The last level of memory hierarchy is off-chip DRAM, organized in banks,
with up to 1024 MB for each bank when the bank is fully populated. The
DRAM access is routed through a memory control/buffer that generates
row/column address strobes (RAS/CAS), addresses, and controls sequencing
for burst access. To allow nonblocking external memory access, data from
DRAM is routed through a data-path control buffer that signals the
processor when the data from DRAM is available. Average power for
accessing a LO cache at 100MHz is approximatively 150mW; power for L1
cache access is 300mW; and power for L2 access is 700mW. Average power
of a burst transaction to external DRAM is 12.71W, which is more than two
orders of magnitude larger than the power for accessing L0 cache.

The main purpose of energy-efficient design is to minimize overall energy
cost for accessing memory within performance and memory size con-
straints. Hierarchical organizations derived from the generic template of
Figure 13 reduce memory power by exploiting the nonuniformities in access
frequencies. In other words, most applications access a relatively small
area in memory with high frequency, while most locations are accessed a
small number of times. In a hierarchical memory, frequently-accessed
locations should be placed in low hierarchy levels, thereby minimizing
average cost per access.

Approaches to memory optimization in the literature can be grouped into
three classes: Memory hierarchy design belongs to the first class. It as-
sumes a given dynamic trace of memory access, obtained by profiling an
application, and produces a customized memory hierarchy. The second
class of techniques, called computation transformations for memory optimi-

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 149

Processor Chip

LO$ L1$ L2$
Exec

Units

1-16K 4-46K 16-1024K

A Processor bus

Memory M Banks Datapath

DRA
Control Control
& Buffer & Buffer

Fig. 14. A four-level hierarchical memory model with on-chip caches and off-chip DRAM.

zation, assumes a fixed memory hierarchy and tries to modify the storage
requirements and access patterns of the target computation to optimally
match the given hierarchy. Finally, the third approach, called synergic
memory and computation optimization is, in principle, the most powerful,
since it tries to concurrently optimize memory access patterns and memory
architecture.

Memory hierarchy design. Several authors have analyzed the power
dissipation of different memory architectures for a given application mix.
These studies specify a core processor and an application (or an application
mix), and they explore the memory hierarchy design space to find the
organization that best matches the processor and application. Su and
Despain [1995]; Kamble and Ghose [1997]; Ko and Balsara [1998]; Bahar et
al. [1998]; Shiue and Chakrabarti [1999] focus on cache memories. Zyuban
and Kogge [1998] study register files; Coumeri and Thomas [1998] analyze
embedded SRAMs; Juan et al. [1997] study translation look-aside buffers.

The design space is usually parameterized and discretized to allow
exhaustive or near-exhaustive search. Most research efforts in this area
postulate a memory hierarchy with one or more levels of caching. A finite
number of cache sizes and cache organization options are considered (e.g.,
degree of associativity, cache replacement policy, cache sub-banking). The
best memory organization is obtained by simulating the workload for all
possible alternative architectures.

Example 4.6 The memory organization options for a two-level memory
hierarchy (on-chip cache and off-chip main memory) explored in the paper
by Shiue and Chakrabarti [1999] are (i) cache size, ranging from 16 bytes to
8KB, in powers of two; (ii) cache line size from 4 to 32, in powers of two; (iii)
associativity (1, 2, 4, and 8); (iv) off-chip memory size, from 2Mbit SRAM to
16Mbit SRAM.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

150 . L. Benini and G. De Micheli

The main limitation of the explorative approach is that it requires
extensive data collection, and this only provides a posteriori insight. In
order to limit the number of simulations, only a relatively small set of
architectures can be tested and compared. This approach is best suited for
general-purpose systems, where the degrees of freedom on the macro-
architecture are reduced and where the uncertainty of the application mix
imposes the need for robust memory architectures that adapt fairly well to
different workloads. Caches provide hardware-supported capability for
dynamically adapting to time-varying program work sets, but at the price
of increased cost-per-access.

When comparing time and energy per access in memory hierarchy, we
observe that these two cost metrics often behave similarly, namely, they
both increase in large increments as we move from low to high hierarchy
levels. Hence, we may conclude that a memory architecture that performs
well also has low power consumption, and optimizing memory performance
implies power optimization. Unfortunately, this conclusion is often incor-
rect for two main reasons. First, even though both power and performance
increase with memory size and memory hierarchy levels, they are not
guaranteed to increase in the same way. Second, performance is a worst-
case quantity (i.e., intensive), while power is an average-case quantity (i.e.,
extensive). Thus, memory performance can be improved by removing a
memory bottleneck on a critical computation, but this may be harmful for
power consumption, since we need to consider the impact of a new memory
architecture on all memory accesses, not only the critical ones.

Example 4.7 Shiue and Chakrabarti [1999] explored cache organization
for maximum speed and minimum energy for MPEG decoding (within the
design space bounds described in the previous example). Exhaustive explo-
ration resulted in an energy-optimal cache organization with a cache size of
64 bytes, a line size of 4 bytes, and an 8-way set associative. Note that this
is a very small memory size , almost fully associative (only two lines). For
this organization, total memory energy is 293 wd and execution time is
142,000 cycles. In contrast, the best performance is achieved with a cache
size of 512 bytes, line size of 16 bytes, and an 8-way set associative. Notice
that this cache is substantially larger than the energy-optimal one. In this
case execution time is reduced to 121,000 cycles, but energy becomes 1,110 wd.

A couple of interesting observations can be drawn form this result. First,
the second cache dominates the first for size, line size, and associativity,
hence it has a larger hit rate. This is consistent with the fact that
performance strongly depends on the miss rate. On the other hand, if
external memory access power is not too large with respect to cache access
(as in this case), some of the hit rate can be traded-off for decreased cache
energy. This justifies the fact that a small cache with a large miss rate is
more power efficient than a large cache with a smaller miss rate.

Within each memory hierarchy level, power can be reduced by memory-
partitioning techniques [Farrahi et al. 1995; Farrahi and Sarrafzadeh

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 151

1995]. The principle in partitioning memory is to sub-divide the address
space into many blocks and to map blocks to different physical memory
banks that can be i enabled and disabled ndependently. Power for memory
access is reduced when memory banks are small. On the other hand, an
excessively large number of small banks is highly area inefficient, and
imposes a severe wiring overhead, which tends to increase communication
power. For this reason, the number of memory banks should always be
constrained.

When the computation engine is a processor, we need to consider the
consumption of instruction memory power. The cost of instruction memory
fetches is not negligible. During program execution, the processor needs to
be fed with at least one instruction per clock cycle. Parallel processors, such
as superscalar or very-long-instruction-word cores, fetch more than one
instruction per clock cycle. Several energy optimization techniques have
been developed for instruction memories. Predecoded instruction buffers
and loop caches were studied in detail [Bajwa et al. 1997; Kin et al. 1997].
These techniques exploit the strong locality of reference for instruction
flow. In most programs, a large fraction of execution time is spent in a very
small section of executable code, namely in a few critical loops. Predecoded
instruction buffers store instructions in critical loops in a predecoded
fashion, thereby decreasing both fetch and decode power. Loop caches store
most-frequently-executed instructions and can bypass even the first-level
cache. Compared with predecoded instruction buffers, loop caches are less
energy efficient for programs with very high locality, but are more flexible.

The instruction memory bandwidth (and power consumption) can be
reduced by instruction compression techniques [Yoshida et al. 1997; Liao et
al. 1998; Lekatsas and Wolf 1998; Benini et al. 1999a] that aim at reducing
the large amount of redundancy in instruction streams. Several schemes
were proposed to store compressed instructions in main memory and
decompress them on-the-fly before execution (or when they are stored in
the instruction cache). All these techniques trade-off the aggressiveness of
the compression algorithm for the speed and power consumption of a
hardware decompressor. Probably the best-known instruction compression
approach is the “Thumb” instruction set of the ARM microprocessor family
[Segars et al. 1995]. ARM cores can be programmed using a reduced set of
16-bit instructions (an alternative to the standard 32-bit RISC instruc-
tions) that reduce required instruction memory occupation and bandwidth
by a factor of 2.

Computation transformations for memory optimization. If we as-
sume a fixed memory hierarchy, optimization of memory energy consump-
tion can only be carried out by modifying the memory accesses required to
perform a computation. In processor-based architectures, this task relies on
source code optimization techniques, which are surveyed in Section 4.2. At
an even higher level of abstraction than source code, memory power can be
minimized by judicious selection of data structures [Wuytack et al. 1997,
Da Silva et al. 1998]. To allow a systematic exploration of different

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

152 . L. Benini and G. De Micheli

data-structures, a library-based approach is adopted. A set of standard
data structures suitable for a class of applications are developed and
collected in a software library. For a given application, the best data
structure is selected by exploring the library.

In application-specific computation units, memory power can be reduced
by careful assignment of variables (i.e., intermediate results of computa-
tions) to memory elements. This task is known as register allocation in
behavioral synthesis jargon, since traditional behavioral synthesis algo-
rithms assumed that variables are stored exclusively in registers.

Gebotys [1997] proposed a power-minimization approach to simultaneous
register and memory allocation in behavioral synthesis. The allocation
problem is formulated as a minimum-cost network flow that can be solved
in polynomial time. The rationale behind this approach is to map variables
that have nonoverlapping lifetimes but, at the same time, similar values
(i.e., a small average number of bit differences to the same register). The
techniques by Gebotys are only applicable to pure data-flow graphs; they
were extended by Zhang et al. [1999] to general CDFGs.

The register and memory allocation techniques proposed by Gebotys and
Zhang are applied after scheduling. Hence, the order in time of operations
and the lifetime of variables have already been decided. Clearly, scheduling
can impact variable lifetimes and, as a consequence, memory requirements.
Scheduling for reducing memory traffic in behavioral synthesis was studied
by Saied and Chakrabarti [1996], who describe two scheduling schemes
under fixed hardware resource constraints that reduce the number of
memory accesses by minimizing the number of intermediate variables that
need to be stored.

Another degree of freedom that can be exploited for minimizing memory
power during behavioral synthesis is the allocation of arrays. Large arrays
are usually mapped mapped to off-chip memories. Panda and Dutt [1999]
proposed a power-per-access reduction technique that minimizes transition
count on memory address busses. Arrays are mapped to memory trying to
exploit regularity and spatial locality in memory accesses. The authors
describe array-mapping strategies for two memory architectures: (i) a
single off-chip memory; (ii) multiple memory modules drawn from a library.
In the first case, they formulate a heuristic that reduces access power for
each behavioral array. For mapping into multiple memory modules, the
problem is partitioned into three logical-to-physical memory mapping sub-
tasks.

Memory mapping for special multibanked memory architectures in digi-
tal signal processors has been studied by Lee et al. [1997a]. The technique
proposed by Lee exploits the power efficiency of a specialized instruction of
a DSP architecture that can fetch two data in the same cycles from two
parallel RAM banks. The beneficial impact of this instruction is maximized
by mapping independent arrays that can be accessed in parallel, in a
mutually exclusive fashion, to the two RAM banks.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 153

System Specification —r* Global Dataflow
Transformations

Global Control flow
Transformations

Data reuse analysis
hierarchical memory

Cycle Budgeting
allocation, assignment

Optimized CDFG &

In-place optimization Memory architecture

Fig. 15. Optimization flow in the DTSE methodology.

Synergistic memory and computation optimization. It is intu-
itively clear that the best memory optimization results can be obtained by
synergistically optimizing the structure of a computation and the memory
architecture that supports it. The synergistic approach is adopted by
Catthoor and coworkers at IMEC, who focus on data memory optimization
for data-intensive embedded applications (such as networking and multi-
media) [Catthoor et al. 1994; Nachtergaele et al. 1998; De Greef et al. 1998;
Wuytack et al. 1998; Kulkarni et al. 1998]. The techniques proposed by this
research group are integrated into a custom memory management method-
ology called data transfer and storage exploration (DTSE) [Catthoor et al.
1998b; 1998a]. The fundamental premise for the application of this meth-
odology is that in data-dominated applications the power consumption
related to memory transfer and storage dominates overall system power.
Hence, memory optimization should be the top priority, starting with
system specification and moving down the design flow.

DTSE methodology is summarized in the diagram of Figure 15, which is
a simplified version of the flow described in Catthoor et al. [1998a]. The
emphasis on memory optimization drives the choice of an applicative
specification style, where arrays are specified and manipulated in an
abstract fashion and pointers are not allowed. In contrast, traditional
procedural constructs tend to severely limit the degrees of freedom in
memory exploration. For instance, specifications using memory pointers
are notoriously hard to analyze and optimize because of the pointer
aliasing problem [Aho et al. 1988]. The starting point of the DTSE flow is
an executable specification with accesses to multidimensional array struc-
tures (called signals in Catthoor et al. [1998a]) with a single thread of

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

154 . L. Benini and G. De Micheli

control. The output is a memory hierarchy and address-generation logic,
together with an optimized executable specification where memory accesses
are optimized for memory architecture. The optimized specification can
then be fed to behavioral synthesis (when targeting application-specific
computational units), or to software compilation.

The first step of DTSE applies a set of global data-flow transformations
to the initial specification—for example, advanced substitutions across
branches, computation reordering based on associative or distributive
properties, and replacing storage with recomputation. This step is based on
direct designer intervention, and no automatic support is available. In the
second step, global loop and control-flow transformations are applied. This
step is partially automated: the designer can choose from a set of loop
transformations and apply them on selected loops. Basic supported trans-
formations include loop interchange, reversal, splitting, and merging
[Muchnick 1997].

While the first and second steps operate exclusively on the specification,
the third step, data-reuse analysis for hierarchical memory begins to define
memory hierarchy. The memory transfers generated by the specification
are analyzed, clustered, and partitioned over several hierarchical memory
levels. If multiple copies of some data need to be stored (for instance, if
low-level memories are buffers that need to be reused), the required data
copy instructions are inserted automatically. The main purpose of this step
is to find a memory organization that optimally trades-off data replication
and copying with good storage locality for frequently accessed memory
locations.

Once the memory hierarchy is shaped, the DTSE flow proceeds to create
a detailed memory architecture (and the assignment of data to memory) to
minimize memory costs while guaranteeing performance (i.e., a cycle
budget for the execution). This step consists of three substeps, namely
storage cycle distribution, memory allocation, and memory assignment. It
includes estimates of memory cost, speed, and power. The last step in
DTSE is in-place optimization that carefully analyzes and optimizes access
patterns in multiple nested loops to maximally reduce memory traffic.

It is important to stress that both memory architecture and executable
specifications are not fully designed after the application of DTSE, but they
are ready for hardware synthesis and/or software compilation. The main
purpose of the methodology is to provide a specification that, when synthe-
sized into silicon, is very energy efficient (as far as memory power is
concerned).

Example 4.8 As an example of DTSE flow, consider the optimization of
the simple specification shown in Figure 16(a), which implements FIR
filtering of a finite sequence. The input sequence has length N and is stored
in array v[i], the filter coefficients are stored in array f[i] (of size M <<
N), and the output sequence is stored in array r[i]. Notice that the last
elements of r[i] are computed, “wrapping around” the input sequence. To
implement the wrap-around, the v[i] array is extended to size N + M — 1,

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 155

int V[N+M-1], fM], r[N]; int V[N], f[M], r[N]; int V[N], f[M];
for(i=0; i<N: i++) vii] = input(): for(i=0; i<N; i++) V[i] = input(); for(i=0; i<N; i++) Vv[i] = input();

for(i=0; i<M=1; i++) VIN+il=v{i]; for(i=0; i<N; i++) for(i=0; i<N; i++)

for(i=0; i<N; i++) { fokf(fg_;_kM; i { fokr(fig;j-FM; 1
for(=0; j<M: j2+) if (k >= N) k -= N; if (K >= N) k —= N:
su_m += V[I+J] fil; sum += v[k] * f[j]; sum += v[K] * f[jJ;
r[i] = sum; }
rli] = sum; }output(sum);

for(i=0; i<N; i++) output(r[i]);
for(i=0; i<N; i++) output(r[i]);

(@) (b) ©

PU &| L1 buffer L2 Memor
Regs (size M) (size N) y
T L] }

}

(d)
Fig. 16. Example of an application of DTSE methodology.

and its first M — 1 elements are copied into the M — 1 additional ele-
ments at the end of the array.

A simple global data-flow transformation applied to the initial specifica-
tion is shown in Figure 16(b). Instead of enlarging the array, a conditional
test is applied on the index. When index 2 becomes larger than the array
boundary, it is “wrapped around.” As a result, memory use is reduced by
M — 1. This is an example of how additional computation can be traded-off
for reduced memory use. An example of global control-flow transformation
is shown in Figure 16(b). We observe that the only use of array r[i] is the
last loop. Hence, the array and the loop can be removed. This step reduces
memory usage by N. In data reuse analysis, we observe that each element
array f]i] is accessed N times, hence it is a good candidate for storing in a
small and power-efficient access buffer. For this reason, a three-level
memory hierarchy is instantiated as shown in Figure 15(d), with a large
background memory for storing v[i], a small buffer for storing f[i], and
registers within the execution unit to store scalar variables. Finally, in the
in-place optimization step, the access patterns to the arrays are analyzed.
It is observed that, at any given time during execution, only M elements of
v[i] are needed. After an element of v[i] has been used N times, it can be
discarded. Hence, we do not need to read all v[i] in advance and to store it
in memory. We can further reduce L2 memory size by N — M.

DTSE is a very complete methodology proven to be effective in a number
of case studies. However, it is still unclear how much of DTSE can be
automated effectively. Many transformations in DTSE appear to be more
hand-crafted code optimizations than algorithmic power-reduction tech-
niques. Two approaches to automated memory optimization were proposed
by Li and Henkel [1998] and by Kirovski et al. [1998], consisting of a simple
architecture based on a single core processor, one level of data, an instruc-
tion cache, and main memory. Given an executable memory, optimization is

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

156 . L. Benini and G. De Micheli

performed in two steps. In the first step, a restricted set of code transfor-
mations is applied to the executable specification, creating a pool of
possible solutions. A number of memory architectures are evaluated for
each possible solution. The most power-efficient optimized code and mem-
ory architecture pairs are then selected. The selection process is based on
heuristic search strategies, such as steepest descent or genetic algorithms.
To improve convergence, the design space is pruned using a set of heuris-
tics based on dominance relationships and constraints. In contrast to
DTSE, these approaches explore a much reduced design space, but are fully
automated.

Furthermore, DTSE targets data memory exclusively. The power con-
sumed by instruction memory, when the computation is performed by a
processor, can also benefit from synergic approaches that join specialized
memory architectures with program optimization. An interesting technique
for instruction memory power optimization was proposed by Panwar and
Rennels [1995], and later improved by Bellas et al. [1998]. This technique
aims at improving the effectiveness of instruction buffers. To optimally
exploit the buffer, most frequently executed basic blocks are placed into
memory locations that are statically mapped into the buffer address space.
This requires code reordering and the insertion of some unconditional
branches in the original code. A similar basic block reordering technique,
targeting improved instruction cache locality, was proposed by Kirovski et
al. [1998].

4.1.3 Design of Communication Resources. Communication among sys-
tem components is always required to carry out any meaningful task.
Communication energy is a fundamental and unavoidable part of the
overall energy budget of a system. The main purpose of this section is to
analyze the energy costs of communication and survey techniques for
energy-efficient design. Consistent with previous sections, we focus on
electronic systems where all components are close to each other (on the
same chip or board).

One of the best proofs of the fast progress of semiconductor technology is
that computation speed (which is tightly related to device speed) has
increased at an impressive rate, but communication speed has not scaled
accordingly. In other words, the relative impact of communication on
overall system performance has steadily increased over time [Dally and
Poulton 1998]. The same holds for communication energy, which is taking
an increasingly large fraction of the power budget. To tackle these funda-
mental issues, VLSI engineers and researchers have started to leverage
technologies developed for distributed systems, where the cost of communi-
cation has always been the central issue. One of the most widespread
abstractions employed in the analysis and design of distributed systems
and communications engineering is the protocol stack.

A simplified protocol stack for a generic communication system [Agrawal
1998] is shown in Figure 17. Abstraction decreases from top to bottom.
Lower layers offer an abstract view of the communication channel to the

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 157

Application & Services

OS & Middleware

Network

Data Link > Mult|ple Access
— Link Error Control
— Channel Allocation

Physical > Modulation .
— Channel Coding

— TX & RX Circuits

Fig. 17. The communication protocol stack.

layers above. In this way design complexity within each layer is reduced. In
distributed wireless systems, communication power consumption has been
tackled at all the levels of the stack (for recent surveys on this topic, see
Agrawal [1998] and Bambos [1998]). In current electronic VLSI systems,
most efforts in energy-efficient communication channel design have focused
on the bottom layers of the stack, namely the physical and link layers.
Thus, we narrow our analysis to techniques within these stack layers. It is
important however to acknowledge that VLSI designers will soon have to
deal with the stack levels above the link layer. We believe that, for
communications, future VLSI systems will increasingly resemble today’s
distributed systems.

The physical layer of the protocol stack deals with the physical nature of
the communication channels, and the circuit technology needed to send and
receive information over them. In VLSI systems, communication is carried
over interconnect wires. Transmitters and receivers are implemented in the
same technology used for logic circuits. The design of transmitters and
receivers that matches the characteristics of interconnect wires is one of
the key physical layer challenges. This problem has been studied in detail,
with emphasis on achieving maximum performance [Dally and Poulton
1998]. Additional issues tackled in the physical layer are modulation and
channel coding. The modulation and channel-coding schemes traditionally
used in VLSI were straightforward. Rail-to-rail binary signals from compu-
tation or storage units were directly transmitted on the communication
bus. But recently this situation has changed.

In the data link layer, the physical nature of the channel is abstracted
away, as well as the architecture of transmitter and receiver circuits. The
issues addressed in this layer are error control through coding and manage-
ment of channel resources when multiple transmitters and receivers must
communicate over it (channel allocation and multiple access control). In

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

158 . L. Benini and G. De Micheli

traditional VLSI systems, communication was reliable, and error control
was not considered a top priority. In constrast, channel allocation and
multiple access control have been studied in detail for shared system
busses, where several computations and storage must communicate over
the same channel [Duato et al. 1997]. However, most research and develop-
ment efforts have focused on performance.

We survey recent work on power-efficient communication, moving from
the physical layer up to the data link layer. We employ a simple model for
estimating the power dissipated in communication. We assume that com-
munication is carried over a set of metal wires (a bus). Consistent with
previous sections, we assume that the energy dissipated in communication
is mainly dynamic. The total capacitance of the wires supporting communi-
cation is fixed, and it is assumed to be much larger (two to three orders of
magnitude) than the average capacitance of local wires. Furthermore,
communication throughput and latency are tightly constrained. Communi-
cation power can therefore be reduced by either scaling down the voltage
swing or the average number of signal transitions.

Swing reduction. At the physical level, we can lower power consump-
tion by reducing the voltage swing on the high-capacitance wires of the bus.
By lowering the voltage swing, the corresponding power dissipation de-
creases quadratically. The trend in reducing voltage levels is fundamen-
tally limited by noise margins as well as component compatibility. How-
ever, in current CMOS technology, sizable power savings can be achieved
by reduced-swing signalling without compromising communication reliabil-
ity. Single-ended communication schemes can transmit information reli-
ably with voltage swings in the neighborhood of 0.7V. For even smaller
voltage swings, differential signalling is required. CMOS circuits for low
swing, single-ended signalling are surveyed by Zhang and Rabaey [1998].
Differential signalling techniques are studied in detail in the textbook by
Dally and Poulton [1998].

It is important to note that low-swing signalling is beneficial for perfor-
mance and because it takes less time for a finite-slope signal to complete a
small swing than a large swing. Hence, both performance and energy
optimization push towards low-swing signalling. The tradeoff is against
reliability, which will ultimately limit swing reductions. However, there
are techniques, based on redundant coding, that can greatly help in
mitigating reliability concerns. Coding for error control has been a major
research area in wireless telecommunications, where the channel is ex-
tremely unreliable. Hence, VLSI designers can tap into a well-developed
field to look for solutions to reliability issues in communications. Preliminary
studies of the energy-reliability tradeoff were performed by Hedge and Shan-
bhag from an information-theoretical viewpoint [Hedge and Shanbhag 1998].
Their analysis clearly indicates the potential for error tolerance via error-
control coding in achieving low-energy operations. Future low-energy signal-
ling schemes may allow some nonnegligible error rates in the physical layer,
and then provide robust error-control coding techniques at the data link layer.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 159

MODULE A MODULE B

ENC BUS

DEC
CONTROL

Fig. 18. Bus encoding: One-directional communication.

Data encoding. Bus data communication in VLSI circuits has tradi-
tionally adopted simple signal encoding and modulation techniques for
communication. The transfer function of the encoder and modulator was
implicitly assumed to be unitary. In other words, no modulation and
encoding were applied to the binary data before sending it on the bus.
Low-energy communication techniques have eliminated this implicit as-
sumption by introducing the concept of signal coding for low power.

The basic idea behind these approaches is to encode the binary data sent
through the communication channel to minimize its average switching
activity, which is proportional to dynamic power consumption. Ramprasad
et al. [1998] studied data encoding for the minimum switching activity
problem and obtained upper and lower bounds on transition activity
reduction for any encoding algorithm. This important result can be summa-
rized as follows: the savings obtainable by encoding depend on the entropy
rate of the data source and on the amount of redundancy in the code. The
higher the entropy rate, the lower the energy savings that can be obtained
by encoding from a given code redundancy.

Even though the work by Ramprasad et al. provides a theoretical
framework for analyzing encoding algorithms, it does not provide general
techniques for obtaining effective encoders and decoders. It is also impor-
tant to note that the complexity and energy costs of encoding and decoding
circuits must be taken into account when evaluating an encoding scheme.

Several authors have proposed low-transition activity encoding and de-
coding schemes. To illustrate the characteristics of these schemes, we
consider, in the sequel, a point-to-point one-directional bus connecting two
modules (e.g., a processor and its memory), as shown in Figure 18. Data
from the source module is encoded, transmitted on the bus, and decoded at
the destination. An instance of this problem, as shown in Figure 19, is the
address bus for the processor/memory system. The techniques described
here have wider applicability, e.g., for data busses connecting arbitrary
computational units.

In the sequel, we assume that busses have relatively large parasitic
capacitance, so that the energy dissipated in data transfers is significant,
and dominates the energy required to encode/decode the signals at both
ends. This assumption has been verified on practical circuits for most of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

160 . L. Benini and G. De Micheli

PROCESSOR MEMORY
ADDRESS BUS

Instructions

INSTRUCTION/DATA BUS Data

Fig. 19. Simple example of processor/memory subsystem with a Von Neumann architecture.

schemes described below, and must be validated whenever a new encoding
scheme is considered.

Encoding for random white noise data. A few encoding schemes
have been studied starting from the assumption that the data sent on the
bus is random white noise (RWN), i.e., it has the maximum entropy rate.
By this assumption, it is possible to just focus on how to exploit redundancy
to decrease switching activity, since all irredundant codes have the same
switching activity (this result is proved by Ramprasad et al. [1998]). Data
is formatted in words of equal width, and a single word is transmitted
every clock cycle.

Encoding schemes are based on the notion of adding redundant control
wires to the bus. This can be seen as extending the word’s width by one or
more redundant bits. These bits inform the receiver about how the data
was encoded before the transmission (see Figure 18). Low energy encodings
exploit the correlation between the word currently being sent and the
previously transmitted one. The rationale is that energy consumption is
related to the number of switching lines, i.e., to the the Hamming distance
between the words. Thus, transmitting identical words will consume no
power, but alternating a word and its complement will produce the largest
power dissipation, since all bus lines would be switching.

A conceptually simple and powerful encoding scheme, called bus invert
(BI), was proposed by Stan and Burleson [1995]. To reduce switching, the
transmitter computes the Hamming distance between the word to be sent
and the previously transmitted one. If the distance is larger than half the
word width, the word to be transmitted is inverted, i.e., complemented. An
additional wire carries the bus invert information, which is used at the
receiver’s end to restore the data.

This encoding scheme has some interesting properties. First, the worst-
case number of transitions of an n-bit bus is n/2 at each time frame.
Second, if we assume that data is uniformly randomly distributed, it is
possible to show that the average number of transitions with this code is
lower than that of any other encoding scheme with just one redundant line
[Stan and Burleson 1995].

An unfortunate property of the 1-bit redundant bus-invert code is that
the average number of transitions per line increases as the bus gets wider,
and asymptotically converges to 0.5, which is also the average switching

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 161

Table I. Comparing Code Efficiency To BI Code

#line mode AT AT/line AP MT MT/line MP
2 unencoded 1 0.5 100% 2 1 100%
2 l-invert 0.75 0.375 75% 1 0.5 50%
8 unencoded 4 0.5 100% 8 1 100%
8 1-invert 3.27 0.409 81.8% 4 0.5 50%
8 4-invert 3 0.375 75% 4 0.5 50%
16 unencoded 8 0.5 100% 16 1 100%
16 1-invert 6.83 0.427 85.4% 8 0.5 50%

Legend: AT = Average Transition per time frame.
AP = Average normalized Power dissipation per time frame.
MT = Maximum Transition per time frame.
MP = Maximum normalized Power dissipation per time frame

per line of an unencoded bus (see Table I). Moreover, the average number of
transitions per line is already close to 0.5 for 32-bit busses. Thus, this
encoding provides small energy saving for busses of typical width.

A solution to this problem is to partition the bus into fields, and to use
bus inversion in each field independently. If a word is partitioned in m
fields, then m control lines are needed. Whereas this scheme can be much
more energy efficient as compared to 1-bit bus invert, m-bit bus invert is no
longer the best among m-redundant codes. Nevertheless, it is conceptually
simpler than other encoding schemes based on redundancy, and thus its
implementation overhead (in terms of power) is small.

Extensions to the bus-invert encoding approach include the use of limited-
weight codes and transition signalling. A k-limited-weight code is a code
having at most 2 1’s per word. This can be achieved by adding appropriate
redundant lines [Stan and Burleson 1997]. Such codes are useful in
conjunction with transition signalling, i.e., with schemes where 1’s are
transmitted as a 0-1 (or 1-0) transition and 0’s by the lack of a transition.
Thus, a k-limited-weight code would guarantee at most %2 transitions per
time frame (if we neglect the transitions on the redundant lines).

Exploiting spatio-temporal correlations. Even though the random
white noise data model is useful for developing redundant codes with good
worst-case behavior, in many practical cases data words have significant
spatio-temporal correlation. From an information-theoretic viewpoint, this
means that the data source is not maximum entropy. This fact can be
profitably exploited by advanced encoding schemes that outperform codes
developed under the RWN model [Stan and Burleson 1997], even without
adding any redundant bus line.

A typical example of highly correlated data streams is the address stream
in processor/memory systems. Addresses show a high degree of sequential-
ity. This is typical for instruction addresses (within basic blocks) and for
data addresses (when data is organized in arrays). Therefore, in the
limiting case of addressing a stream of data with consecutive addresses,

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

162 . L. Benini and G. De Micheli

Gray coding is beneficial [Su and Despain 1995] because the Hamming
distance between any pair of consecutive words is one, and thus the
transitions on the address bus are minimized.

By using Gray encoding, instruction addresses need to be converted to
Gray addresses before being sent off to the bus. The conversion is necessary
because offset addition and arithmetic address manipulation is best done
with standard binary encoding [Mehta et al. 1996]. Moreover, address
increments depend on the word width n. Since most processors are byte-
addressable, consecutive words require an increment by n/8, e.g., by 4 (8)
for 32-bit (64-bit) processors. Thus the actual encoding of interest is a
partitioned code, whose most significant field is Gray encoded and whose
least significant field has og n/80bits.

Musoll et al. [1998] proposed a different partitioned code for addresses,
which exploits the locality of reference. Namely, most software programs
favor working zones of their address space. The proposed approach parti-
tions the address into an offset within a working zone and an identifier of
the current working zone. In addition, a bit is used to denote a hit or a miss
of the working zone. When there is a miss, the full address is transmitted
through the bus. In the case of a hit, the bus is used to transmit the offset
(using 1-hot encoding and transition signalling) and additional lines are
used to send the identifier of the working zone (using binary encoding).

The T'0 code [Benini et al. 1997] uses one redundant line to denote when
an address is consecutive to the previously-transmitted one. In this case
the transmitter does not need to transmit the address, and freezes the
information on the bus, thus avoiding any switching. The receiver updates
the previous address. When the address to be sent is not consecutive, it is
transmitted tout court, and the redundant line is deasserted to inform the
receiver to accept the address as is. When transmitting a sequence of
consecutive addresses, this encoding requires no transition on the bus, as
compared to the single transition (per transmitted word) of the Gray code.

It is interesting to note the complementarity and similarity of BI and TO
codes. In its simplest implementation, BI uses one redundant line as TO
does. Such a line is asserted when the transmitted word needs to be either
complemented or incremented at the receiving end, while it is deasserted
when the transmitted word should be preserved as is. This observation
justifies the combination of BI and TO codes for busses that transmit both
data and addresses. For such shared busses, two redundant lines can be
used to require complementation or increment at the receiving end.

Some processors, such as those in the MIPS family, have time-multi-
plexed address busses for both instructions and data addresses. The two
address streams may have different characteristics: instructions are likely
to be highly sequential and data may have few in-sequence patterns. An
efficient encoding scheme for multiplexed address busses is to use two
redundant signals, one of which is already present in the bus interface, to
demultiplex the bus on the receiving side. When this signal denotes an
incoming instruction address stream, the receiver expects such addresses

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 163

Bus & Buffers

x(n)

x(n)

x(nl)

Decorrelator Correlator

Fig. 20. Advanced encoder-decoder architecture template.

encoded with the TO code, controlled by the second redundant signal. In a
similar vein, the signal denoting the incoming stream can be used to switch
from TO to the BI code [Benini et al. 1998a].

The highly sequential nature of addresses is just one simple example of
spatio-temporal correlation on communication busses. Several encoding
schemes have been proposed for dealing with much more general correla-
tions [Benini et al. 1998b; 1999a; Ramprasad et al. 1998]. The basic
assumption in these approaches is that data stream statistics can be
collected and analyzed at design time.

A complete statistical characterization of the data stream is a discrete
function fx(w,, wsy, ..., wg) — [0,1], where the input domain is the set
of K-tuples of input symbols to be transmitted, and the output value is the
probability of each K-tuple. Even though it is in principle possible to
construct function fx for an arbitrary value of K by examining the input
stream, in practice the complexity of the data-collection process grows very
rapidly with K. Thus, fx is constructed for K = 1 (first-order statistic) and
K = 2 (second order, or pairwise, statistic). Given f; or f,, we wish to build
an encoder and decoder pair that minimizes average switching activity.
These circuits can be described as specializations of a basic template,
shown in Figure 20.

The encoder takes as inputs I + 1 consecutive symbols (i.e., unencoded
words) x(n), x(n — 1), ..., x(n — I) from the source, and produces an
encoded word. The decoder takes as input one encoded word and I previ-
ously decoded words, and outputs the original unencoded symbol x(n). A
decorrelator-correlator pair (DECOR) can optionally be inserted between
the encoder-decoder pair and the bus, as shown in Figure 20. This circuit
has as its only purpose mapping the ones in y(n) into transitions on the bus
lines, and vice versa. It is useful because it translates the problem of
minimizing transitions into the problem of minimizing the number of ones.

Beach code, described by Benini et al. [1998b] is algorithmically con-
structed starting from second-order statistics. Its encoder takes one input
word x(n) (i.e., I = 0), produces one output word, and does not use a
DECOR. The basic rationale in Beach code construction is to assign codes
with small Hamming distance to data words that are likely to be sent on
the bus in two successive clock cycles. The code was tested on the processor-

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

164 . L. Benini and G. De Micheli

f2 x(n) E x(n)
00 01 11 10 Gray Beach 00 01 11 10

00| 01| 00]02]00 00 ﬂ 00 n 00| 01 | 10 | 11 | 0O
o1 |005| 0.0 005 0.1 01 01 o1|o1| 10| 11|00
x(n-1) x(n-1)

11{005| 00 | 0.1 {005 11 11 1|00 |10 |o01|n

10| 0201|0000 10 10 10|10 | 00 |01 11

CY (b) (© (d)

Fig. 21. Examples of low transition encodings.

memory bus of a MIPS R4000 core (in single user mode). It decreased
average switching activity by 40%, on average.

Several encoding schemes with I = 1 (i.e., exploiting both x(n) and x(n
— 1) to decide the value of y(n)) were investigated by Ramprasad et al.
[1998]. A procedure for building optimum I = 1 codes for a given f,
statistic is described by Benini et al. [1999a]. Extensive tests on these codes
indicate that they can be much more effective than any other low-transition
codes. Average transition activity reductions exceeding 80% have been
reported.

It is important to acknowledge, however, that reducing transition activity
does not directly map into power savings. The power consumed by encoder
and decoder has to be taken into account. For large bus widths, the power
of the encoder and decoder may scale up more than linearly, thereby
reducing power savings. To mitigate this problem, clustering techniques
have been proposed [Benini et al. 1998b; 1999a] that divide the wide bus
into several smaller clusters. Minimum-transition encoder and decoder
pairs are then built for each cluster. This approach trades-off some of the
theoretically achievable reduction in transition activity for reduced encod-
er-decoder complexity (and power).

Example 4.9 Consider the 2-bit data bus with the second-order statistic
f2 shown in Figure 21(a). The average transition activity of the original
binary code is 1.25. If we apply Gray encoding on the data, as shown in
Figure 21(b), average switching is reduced to 1.05. The same result is
obtained by constructing the Beach code, shown in Figure 21(c), for the
given f,. However, if we build the optimal code according to the procedure
described by Benini et al. [1999a], we obtain an average transition activity
0.45. The encoding function is shown in Figure 21(d). Note that the
encoding function takes as inputs two consecutive values of the original
downstream. Hence the encoding function has four inputs, and its imple-
mentation is expected to be more expensive than the Gray or Beach
encoders. This example shows that the encoder architecture of Figure 20
can achieve much better reduction in transition activity than encoders that
observe only one data word at a time. On the other hand, the complexity of
the encoder and the decoder (and their power dissipation) grows.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 165

The main limitation of approaches that assume known data stream
statistics is that it is not always possible to collect fx in advance. If fx is not
available, then there is not enough information to build the encoder and
decoder. To address this limitation, an adaptive encoding approach was
proposed by Benini et al. [1999a]. Adaptive encoding is less effective than
the ones previously described in reducing transition activity, but it can be
applied to data streams with unknown statistics. The basic principle of
adaptive encoding is to “learn” input statistics online and to automatically
select the code that reduces switching. Another adaptive encoding tech-
nique was proposed by Komatsu et al. [1999]. This scheme relies on the
presence of a “code table” in the encoder and decoder that stores the most
frequently communicated data words. The code table can be periodically
updated, thereby guaranteeing online adaptation.

Arbitration protocols. Up to now, we have only considered point-to-
point busses with a single bus master. Many practical bus organizations
support multiple masters and multiple independent receivers. Protocols for
bus sharing are designed in the data link layer of the protocol stack.
Techniques for bus access control are often called arbitration protocols.
Arbitration for low power is still an open issue. The work by Dasgupta and
Karri [1998] on scheduling and binding of data transfer on a shared bus
shows that bus power consumption can be reduced if highly correlated data
streams are scheduled consecutively on the bus.

Givargis and Vahid [1998] investigated the impact of different types of
data transfer on bus power consumption. They considered equal split data
transfers, where long data words are split in many consecutive short
subwords and sent consecutively over a narrow bus. These research results
confirm that link-layer media access protocols do impact power. However,
no complete investigation has been carried out for complex, realistic bus
protocols.

Bus design. Bus power can be reduced not only by lowering switching
activity, but also by reducing the capacitance that needs to be switched.
This goal can be achieved either by minimizing bus length with careful
module placement and bus routing [Pedram and Vaishnav 1997], or by
building a partitioned and hierarchical bus. Several interconnect architec-
tures were analyzed by Zhang and Rabaey [1998]. The emphasis of this
work is on reconfigurable systems where heterogeneous computation units
are connected together through an reconfigurable network. Global intercon-
nect networks such as the crossbar (i.e., a network with a dedicated
connection between each source and each destination), multistage intercon-
nects (e.g., Omega networks [Duato et al. 1997]), and multibus networks
are considered. These architectures provide routes with identical costs for
all connections between any pair of modules, but they are not power
efficient because they do not allow exploitation of locality in data transfers
in order to reduce energy consumption.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

166 . L. Benini and G. De Micheli

Local interconnection networks are asymmetric, in the sense that they
provide local low-cost connection for modules that are close together, while
using global connection for communications among topologically remote
modules. Network architectures in this class are the generalized mesh, and
several flavors of hierarchical interconnect networks (for details, see Zhang
and Rabaey [1998].) The authors conclude that hierarchical generalized
meshes are the most power efficient because they have enough flexibility to
support remote data transfers, but they also provide abundant bandwidth
for low-power short-range interconnects for local communication.

Bus segmentation is a technique for automatically transforming a long,
heavily loaded global bus into a partitioned multistage network by insert-
ing pass transistors on the bus lines to separate various local busses, called
segments [Chen et al. 1999]. This transformations can reduce power by as
much as 60% compared to a global unpartitioned bus.

4.2 Software Analysis and Compilation

Systems have several software layers running on the hardware platform.
Here we consider application software programs, and defer issues related
to runtime system software to Section 5. Application software is typically
written in programming languages (e.g., C, C++, Java) and then compiled
into machine code for specific instruction-set micro-architectures.

Interesting metrics for power consumptions are the energy required by a
program to perform a batch (one-time) job, as well as average power
consumption for interactive applications. Performance metrics are latency
(i.e., user waiting time) for batch jobs and average response time for
interactive programs.

Software does not consume energy per se, but the execution and storage
of software requires energy consumption by the underlying hardware.
Software execution corresponds to performing operations on hardware, as
well as accessing and storing data. Thus software execution involves power
dissipation for computation, storage, and communication. Moreover, stor-
age of computer programs in semiconductor memories requires energy
(refresh of DRAMs, static power for SRAMs). The energy budget for storing
programs is typically small (with the choice of appropriate components) and
predictable at design time. Hence we concentrate on energy consumption of
software during its execution. Nevertheless, it is important to remember
that reducing the size of programs, which is the usual goal in compilation,
correlates with reducing their energy storage costs. Additional reduction of
code size can be achieved by means of compression techniques, described in
Section 4.1.2.

The energy cost of executing a program depends on its machine code and
on the corresponding micro-architecture—if we exclude the intervention of
the operating system in the execution (e.g., swapping). Thus, for any given
micro-architecture, energy cost is tied to machine code. Since the machine
code is derived from the source code from compilation, it is the compilation
process itself that affects energy consumption. It is interesting to note that

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 167

FRONT END CODE GENERATION

ARCHITECTURE
INDEPENDENT

OPTIMIZATION

Lex & parse Instruction selection

Syntactic analysis Register assignment

Semantic analysis Operation Scheduling

Fig. 22. Grouping major tasks in a software compiler.

the style of the software source program (for any given function) affects
energy cost. This issue is addressed in Section 4.2.3. It is conceivable to
think that the front-end of a compiler could handle source/source transfor-
mations, and thus the program transformations in Section 4.2.3 could be
automated and embedded in a compiler. But this is not the case with
current software technologies.

On the basis of the aforementioned arguments, the energy cost of
machine code can be affected by the back-end of software compilation (see
Figure 22 for a typical flow inside a software compiler). In particular,
energy is affected by the type, number, and order of operations and by the
means of storing data, e.g., locality (registers vs. memory arrays), address-
ing, and order.

In the sequel, we first address the energy/performance analysis of soft-
ware and then leverage this information to show how energy-efficient
compilation is performed.

4.2.1 Software Analysis. There are two avenues to take in exploring the
energy costs of programs: simulation and experimentation, which have
different goals.

The first involves simulating the execution of software programs on a
given architecture. Simulation is used to achieve an overall assessment of
the energy/performance of a software program. It requires models, possibly
of different types, for the hardware platform. When high-level models are
used, such as instruction set and/or bus functional models, energy/perfor-
mance models for instructions and/or bus transactions are needed. When
detailed electrical models are used, energy/performance can be derived
from the electrical properties of the semiconductor process. Nevertheless,
this approach is too computationally expensive, since execution of a soft-
ware program involves a very large amount of electrical switching. When
models are not available, or when an accurate measure of energy is
required for a given operation in an ISA, experimental measurements can
be used, as described below. The goal of experimental measurement is to
derive empirical models for operation execution and bus transactions.

The search for appropriate energy/performance models is an area of
active research. The overall objective is to abstract the cost of operations
and memory access, while considering the different memory structures.
Modeling the cost of each operation is the easiest problem, and can be done
by means of detailed electrical simulation of the corresponding hardware
resources. Modeling memory access has been addressed by various re-

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

168 . L. Benini and G. De Micheli

searchers. Accurate energy consumption cache models are presented by
Kamble and Ghose [1997]. The cache models rely on knowledge of the
capacitance of each portion of cache design, stochastic distributions for
signal values, and the runtime statistics for hit/miss and read/write counts.
Jouppi and Wilton [1996] designed CACTI - an enhanced cache access and
cycle time model based on resistance and capacitance values derived from
the technology files and the cache netlist. RAM energy consumption and
performance models based on technology parameters and the netlists are
described by Itoh et al. [1995]. These models require knowledge of the
internal structure and implementation of commodity components.

There are also a few tools [Li and Henkel 1998; Kapoor 1998] that
estimate the energy consumption of software, caches and off-chip memory
for system on a chip (SOC) design. Within these tools, performance and
energy consumption of each component can be analyzed separately. The
final system’s energy consumption is obtained by summing the results of
each analysis. Energy consumption models used by these approaches
require detailed knowledge of the internal structure and implementation of
the components, and as such are not applicable to designs based on
commodity parts. In addition, it is difficult to estimate their accuracy, since
no comparison is given of the simulation results with the hardware
measurements.

Example 4.10 Simunié et al. [1999a] developed energy models for sys-
tems using processors of the ARM family. Such models are used in
conjunction with the cycle-accurate instruction-level simulator for the ARM
processor family, called the ARMulator [Advanced RISC Machines Ltd
(ARM) 1996]. With these power models (addressing memories, caches,
interconnect, DC-DC converters, and energy source), as well as with
application software (written in C) that is cross-compiled and loaded in
specified locations of the system memory model, the ARMulator can accu-
rately measure the execution of software code.

The experimental approach to energy measurement was pioneered by
Tiwari et al. [1994], who measured the current consumption of some
processors (e.g., an Intel 486DX2, a Fujitsu SparcLite 934), while executing
loops with a specific instruction. This measure is then repeated for each
instruction. Each iteration contains enough instructions to make the loop
jump overhead negligible, but not too many, in order to avoid cache miss
effects. A typical size for the loop body is 200 instructions. A first set of
measurements yields the base cost of each operation. Sample results of base
cost measurements are shown in Table II. A second set of measurements
targets interinstruction effects, to take into account the effect of issuing an
instruction in the state set by the previous ones. Interinstruction effects
are measured by analyzing streams of instruction pairs. The current
absorbed by each pair is larger than the sum of the currents absorbed while
executing the corresponding single instruction: the difference can be tabu-
lated for different pairs of instructions. These differences tend to be
uniform for most pairs, and thus can be assimilated to a constant, repre-

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 169

Table II. Some Base Costs for Intel 486DX2

Computation Current (mA) Cycles
1 NOP 257.7 1
2 MOV DX, BX 302.4 1
3 MOV DX, [BX 428.3 1
4 MOV DX, [BX][DI] 409.0 2
5 MOV [BX] DX 521.7 1
6 MOV [BX] [DI] DX 451.7 2

senting the circuit state overhead. The energy cost of an instruction (pair)
is obtained by multiplying the measured current by the supply voltage and
by the number of cycles, and dividing it by the operating frequency.

Nonideal instruction execution (e.g., pipeline stalls) is modeled by mea-
suring the additional current consumption caused by the combination of
instructions that cause the event of interest to occur.

Example 4.11 Wan et al. [1998] extend the StrongARM processor model
with base current costs for each instruction. The average power consump-
tion for most of the instructions is 200mW measured at 170MHz. Load and
store instructions required 260mW each. Nonideal effects, such as stalls
due to register dependencies and cache effects, are not considered by Wan.
If all effects are measured, the total power consumed per instruction
matches the data sheets. Because the difference in energy per instruction is
minimal, it is expected that the average power consumption value from the
data sheets is on the same level of accuracy as the instruction-level model.

4.2.2 Software Compilation. Software compilation is the object of exten-
sive research [Aho et al. 1988; Muchnick 1997]. The design of an embedded
system running dedicated software has brought a renewed interest in
compilation, especially due to the desire for high-quality code (fast and
energy efficient), possibly at the expense of longer compilation time (which
is tolerable for embedded systems running code compiled by the manufac-
turer).

Most software compilers consists of three layers: the front-end, the
machine-independent optimization, and the back-end (see Figure 22). The
front-end is responsible for parsing and performing syntax and semantic
analysis, as well as for generating an intermediate form, which is the object
of many machine-independent optimizations [Aho et al. 1988]. The back-
end is specific to the hardware architecture, and it is often called the code
generator or codegen. Typically, energy-efficient compilation is done by
introducing specific transformations in the back-end because they are
directly related to the underlying architecture. Nevertheless, some ma-
chine-independent optimizations can be useful in general to reduce energy
consumption [Mehta et al. 1997]. An example is selective loop unrolling,
which reduces the loop overhead, but is effective if the loop is short enough.
Another example is software pipelining that decreases the number of stalls
by fetching instructions from different iterations; a third is removing tail
recursion, which eliminates the stack overhead.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

170 . L. Benini and G. De Micheli

The main tasks of a code generator are instruction selection, register
allocation, and scheduling. Instruction selection is the task of choosing
instructions, each performing a fragment of the computation. Register
allocation is allocating data to registers—when all registers are in use, data
is spilled to main memory. Spills are usually undesirable, due to perfor-
mance and energy overhead in saving temporary information in main
memory. Instruction scheduling is ordering instructions in a linear se-
quence. When considering compilation for general-purpose microprocessors,
instruction selection and register allocation are often achieved by dynamic
programming algorithms [Aho et al. 1988], which also generate the order of
instructions. When considering compilers for application-specific architec-
tures (e.g., DSPs), the compiler back-end is often more complex due to
irregular structures such as inhomogeneous register sets and connections.
As a result, instruction selection, register allocation, and scheduling are
intertwined problems that are much harder to solve [Goossens et al. 1997].

The traditional compiler goal is to speed up the execution of the gener-
ated code by reducing code size (which correlates with latency in execution
time) and minimizing spills. Interestingly enough, executing machine code
of minimum size consumes minimum energy if we neglect the interaction
with memory and assume a uniform energy cost for each instruction.

Energy-efficient compilation strives to achieve machine code that re-
quires less energy, compared to a performance-driven traditional compiler,
by leveraging the disuniformity in instruction energy costs and the energy
costs for storage in registers and in main memory, due to addressing and
address decoding. Nevertheless, results are sometimes contradictory.
Whereas for some architectures, energy-efficient compilation gives a com-
petitive advantage compared to traditional compilation, for some others the
most compact code is also the most economical in terms of energy, thus
obviating the need for specific low-power compilers. In summary, this area
is still an open field for research.

Consider first energy-efficient compilation that exploits instruction selec-
tion. This idea was proposed by Tiwari et al. [1994], and tied to software
analysis and determination of base costs for operations. Tiwari et al. argue
that accessing registers is much less energy consuming than accessing
memory, and thus a reduction of memory operands is highly beneficial.
Moreover, the resulting code also runs faster. Tiwari et al. propose an
instruction selection algorithm based on the classical dynamic program-
ming tree cover [Aho et al. 1988], where instruction weights are the energy
costs. Experimental results show that this algorithm yields results similar
to the traditional algorithm, thus supporting the hypothesis that the
shortest code is the least-energy code when storage side-effects are ne-
glected.

Instruction scheduling is an enumeration of the instructions consistent
with the partial order induced by data and control flow dependencies.
Instruction reordering for low energy can be done by exploiting the degrees
of freedom allowed by the partial order. Instruction reordering may have
several beneficial effects, including reduction of interinstruction effects

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 171

[Tiwari et al. 1996], as well as switching on the instruction bus [Su et al.
1994] and/or in some hardware circuits, such as the instruction decoder.

Su et al. [1994] proposed a technique called cold scheduling, which aims
at ordering instructions to reduce interinstruction effects. In their model,
interinstruction effects are dominated by switching on the instruction bus
internal to a processor and by the corresponding power dissipation in the
processor’s control circuit. Given op-codes for the instructions, each pair of
consecutive instructions requires as many bit lines to switch as the Ham-
ming distance between the respective op-codes. The cold scheduling algo-
rithm belongs to the family of list schedulers [De Micheli 1994]. At each
step of the algorithm, all instructions that can be scheduled next are placed
on a ready list. The priority for scheduling an instruction is inversely
proportional to the Hamming distance from the currently scheduled in-
struction, thus locally minimizing interinstruction energy consumption on
the instruction bus. Su et al. [1994] reported a reduction in overall bit
switching in the range from 20% to 30%.

Tomiyama et al. [1998] generalized this scheduling problem to processor/
memory systems. Their technique aims at reducing transitions on the data
bus between an on-chip cache and off-chip main memory (when instruction
cache misses occur), and thus at reducing the power consumed by the
off-chip drivers and on the communication bus. A low-power compiler was
designed that schedules instructions within basic blocks, so that bus
switching is reduced. The scheduler searches for linear orders of instruc-
tion consistent with data-flow constraints, using a graph-based data struc-
ture annotated with the cost of a solution. The algorithm performs a
pseudo-exhaustive search of the solution space, with the help of a pruning
mechanism that avoids a redundant solution (by hashing subtrees) and by
heuristically limiting the number of subtrees. Experimental results show a
reduction of bus activity up to 28%.

Register assignment aims at the best utilization of available registers by
reducing spills to main memory. Moreover, registers can be labeled during
the compilation phase, and register assignment can be done with the goal
of reducing switching in the instruction register as well as in register
decoders [Mehta et al. 1997]. Again, the idea is to reduce the Hamming
distance between pairs of consecutive register accesses. When comparing
this approach to cold scheduling, note that the instruction order is now
fixed, but the register labels can be changed. Mehta et al. [1997] proposed
an algorithm that improves upon an initial register labeling by greedily
swapping labels, until no further switching reduction is allowed. Experi-
mental results show an improvement ranging from 4.2 % to 9.8%.

When considering embedded system applications, the memory/processor
bandwidth can be reduced by recoding the relevant instructions and
compressing the corresponding object code. As an example, if an embedded
software program requires only a subset of instructions, then these instruc-
tions can be recoded (possibly with minimum-length code). This scheme
requires instruction decompression ahead of the processor (core). An encoding

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

172 . L. Benini and G. De Micheli

scheme proposed by Yoshida et al. [1997] is applied to an ARM 610
processor core.

4.2.3 Writing Energy-Efficient Software Programs. Software programs
capture the system functionality to be executed by processors. It is often
the case that programs that properly emulate the system functionality
display poor performance and/or low energy efficiency. Therefore, such
programs need to be rewritten. It is desirable that designers use software
programs to model system functions and are energy efficient at the same
time. The difficulty stems from the fact that (i) procedural languages allow
designers to represent functions in many different ways; and (ii) software
programs are sometimes written (or ported) without the knowledge of the
target processor or of its specifics.

At present, there are very few guidelines for writing efficient software
code. On the other hand, experiments show that, for some processors, some
particular software writing styles are more efficient [Simuni¢ et al. 1999b]
than others. To be specific, we next consider a case study.

Example 4.12 We now summarize some considerations for writing soft-
ware for the ARM processor family in the form of tips to the programmer.
Details are reported in Simunié et al. [1999b], where energy savings are
measured by comparing fragments of software code, using a specific style,
against fragments coded with a generic style.

—Integer division and modulo operation. The ARM compiler uses a
shift operation for modulo 2 division, since it is much more efficient than
the standard division operation. In modulo 2 division, unsigned numbers
should be used whenever possible, as the unsigned implementation is
more efficient than the signed version (which requires sign extension
correction on the shift operation).

—Conditional execution. All ARM instructions can be guarded; called
conditionalized, in jargon. Conditionalizing is done in two steps. Firsts a
few compare instructions set the compare codes; these instructions are
then followed by the standard ARM instructions with their flag fields set,
so that their execution proceeds only if the preset condition is true.

—Boolean expressions. A more energy-efficient way to check if a variable
is within some range is to use the ability of the ARM compiler to
conditionalize the arithmetic function.

—Switch statement vs. table lookup. Table lookup is more energy
efficient than the switch statement when switch statement codes are
more than half of the range of the possible labels.

—Register allocation. A compiler cannot usually assign local variables to
a register if their addresses are passed to other functions. If the copy of
the variable is made and the address of the copy is used instead, then a
variable can be placed in the register, thus saving memory access. If

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 173

global variables are used, it is beneficial to make a local copy so that they
can be assigned to registers.

—Variable types. The most energy-efficient variable type for the ARM
processor is integer. The compiler by default uses 32 bits in each
assignment, so when either short of char are used, sign or zero extension
is needed, costing at most two extra instructions as compared to ints.

—Function design. By far the largest savings are possible with good
function design. Function call overhead on ARM is four cycles. Function
arguments are usually passed on the stack, but when there are four or
fewer arguments, they can be passed in registers. Upon return from a
function, structures up to four words can be passed through registers to
the caller. When the return from one function calls another, the compiler
can convert that call to branch to another function.

5. SYSTEM MANAGEMENT

We now consider digital systems during their operation. Typically, applica-
tion software programs are monitored and controlled by an operating
system (0OS), which coordinates the various tasks, and thus plays an
important role in achieving energy efficiency. Nevertheless, typical operat-
ing systems, like Unix, Windows, and MacOS, were not designed originally
with energy efficiency in mind. Some support for low-power execution was
introduced only recently [Intel, Microsoft, and Toshiba 1996; Microsoft
1997].

A first set of considerations revolve around the selection of an operating
system and its size. The choice is often dictated by compatibility require-
ments. The size of the OS (and of its kernel) affect memory sizing and its
traffic. Thus, there is an overall energy cost associated with the operating
system’s complexity.

Consider OSs in three different classes of systems: (i) general-purpose
computing systems, e.g., portable computers; (ii) systems dedicated to an
application, e.g., portable wireless terminals; (iii) systems operating under
real-time constraints, e.g., vehicle operation controllers.

In the first case, operating systems provide a variety of services to the
user. Nevertheless, it is important for the user to be able to customize the
OS to his/her usage profile. In dedicated systems, the OS should support
only the required functions. Lightweight, modular, and subsettable OSs are
mandatory. Also, in this case, compatibility makes the choice of the OS (or
of its subsetting) problematic. Real-time systems use specific operating
systems to insure satisfaction of real-time constraints, which often relate to
performance specs. These operating systems are typically simpler (com-
pared to general-purpose OSs), and centered around a real-time scheduler.
They are usually power aware to some extent.

A second and more important set of considerations relate to the heart of
any OS, which is the task scheduler and should be energy aware. A
scheduler usually determines the set of start times for each task, with the

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

174 . L. Benini and G. De Micheli

goal of optimizing a cost function related to the completion time of all tasks,
and to satisfy real-time constraints, if applicable. Since tasks are associ-
ated with resources having specific energy models, the scheduler can
exploit this information to reduce run-time power consumption.

Recent research has followed two avenues. One relates to the design of
schedulers that are better aware of processes, their needs, and their
usefulness. For example, Lorch and Smith [1997] suggest heuristics to (i)
avoid running processes that are still blocked and waiting on an event; (ii)
delaying processes that execute without producing output or signalling
useful activity; (iii) delaying the frequency of periodic processes that are
not likely to produce useful services.

The second avenue deals with the task-scheduling itself, in presence of a
time-varying workload. These techniques fall under the umbrella of dy-
namic power management, and are described in detail next. Specific
scheduler implementations that exploit variable voltage and frequency
processing units are described in Section 5.1.3.

5.1 Dynamic Power Management

Dynamic power management (DPM) is a design methodology that dynami-
cally reconfigures an electronic system to provide the requested services
and performance levels with a minimum number of active components or a
minimum load on such components [Lorch and Smith 1998; Benini and De
Micheli 1997]. DPM encompasses a set of techniques that achieve energy-
efficient computation by selectively turning off (or reducing the perfor-
mance of) system components when they are idle (or partially unexploited).
DPM is used in various forms in most portable (and some stationary)
electronic designs; yet its application is sometimes primitive because its
full potential is still unexplored and because the complexity of interfacing
heterogeneous components has limited designers to simple solutions.

The fundamental premise for the applicability of DPM is that systems
(and their components) experience nonuniform workloads during operation
time. Such an assumption is valid for most systems, both when considered
in isolation and when internetworked. A second assumption of DPM is that
it is possible to predict, with a certain degree of confidence, the fluctuations
of workload. Workload observation and prediction should not consume
significant energy.

Dynamic power managers can have different embodiments, according to
the level (e.g., component, system, network) where DPM is applied and to
the physical realization style (e.g., timer, hard-wired controller, software
routine). Typically, a power manager (PM) implements a control procedure
based on some observations and/or assumptions about the workload (see
Figure 23). The control procedure is often called a policy. An example of a
simple policy, ubiquitously used for laptops and palmtops, is the timeout
policy, which shuts down a component after a fixed inactivity time, under
the assumption that it is highly likely that a component will remain idle if
it has been idle for the timeout time.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 175

Workload
information

| |
' |
: OBSERVER CONTROLLER :
: |

Observations Commands

Fig. 23. Abstract view of a system-level power manager.

5.1.1 Modeling Power-Managed Components. We model a power-man-
aged system as a set of interacting power-manageable components (PMCs)
controlled by the power manager. We view PMCs as black boxes. The
fundamental characteristic of a PMC is availability of multiple modes of
operation that span the power-performance tradeoff. Examples of PMCs are
processor cores (e.g., the ARM SA-1100 that has three main states), hard
disk drives (e.g., the IBM Travelstar that has nine states), and displays.

An important characteristic of real-life PMCs is that transitions between
modes of operation have a cost. In many cases, the cost is in terms of delay
or performance loss. If a transition is not instantaneous and the component
is not operational during a transition, performance is lost whenever a
transition is initiated. Transition cost depends on PMC implementation: for
example, restarting the clock and restoring the context in a SA-1100
requires 160ms.

In most practical instances, we can model a PMC by a power state
machine (PSM), as illustrated in Section 3.4. States are the various modes
of operation that span the tradeoff between performance and power. State
transitions have a power and delay cost. In general, low-power states have
lower performance and larger transition latency than states with higher
power. This simple abstract model holds for many single-chip components,
such as processors [Gary et al. 1994] and memories [Advanced Micro
Devices 1998]; as well as for devices such as disk drives [Harris et al. 1996];
wireless network interfaces [Stemm and Katz 1997]; and displays [Harris
et al. 1996] that are more heterogeneous and complex than a single chip.

Example 5.1 The StrongARM SA-1100 processor [Intel 1998] is an
example of PMC, and has three modes of operation: run , idle , and sleep .
Run mode is the normal operating mode of the SA-1100: every on-chip
resource is functional. The chip enters run mode after successful power-up
and reset. Idle mode allows a software application to stop the CPU when
not in use, while continuing to monitor interrupt requests on or off-chip. In
idle mode, the CPU can be brought back to run mode quickly when an
interrupt occurs. Sleep mode offers the greatest power savings, and

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

176 . L. Benini and G. De Micheli

Wait for interrupt Wait for wake-up event
Fig. 24. Power state machine for the StrongARM SA-1100 processor.

consequently the lowest level of available functionality. In the transition
from run or idle , the SA-1100 performs an orderly shutdown of on-chip
activity. In a transition from sleep to any other state, the chip steps
through a rather complex wake-up sequence before it can resume normal
activity.

The PSM model of the StrongARM SA-1100 is shown in Figure 24. States
are marked with power dissipation and performance values, edges are
marked with transition times. The power consumed during transitions is
approximatively equal to that in run mode. Notice that both idle and
sleep have null performance, but the time for exiting sleep is much
longer than that for exiting idle (10 ws versus 160 ms). On the other hand,
the power consumed by the chip in sleep mode (0.16mW) is much smaller
than that in idle (50mW).

5.1.2 Dynamic Power-Management Techniques. Putting a PMC into an
inactive state causes a period of inactivity whose duration 7', is the sum of
the actual time spent in the target state and the time spent to enter and
exit it. We define the break-even time (denoted Tpp) as the minimum
inactivity time required to compensate the cost of shutting down a compo-
nent. The break-even time Ty is inferred directly from the power-state
machine of a PMC.

If T, < Tgg, either there is not enough time to enter and exit the
inactive state or the power saved when in the inactive state does not
amortize the additional power consumption typically required to turn on
the component. Intuitively, DPM aims at exploiting idleness to transition a
component to an inactive low-power state. If no performance loss is
tolerated, the length of the workload’s idle periods is an upper bound for
the inactivity time of the resource. On the other hand, if some performance
loss is tolerated, inactivity times may be longer than idle periods.

An analysis of the break-even times of the system’s PMCs in conjunction
with the workload statistics can measure the usefulness of applying DPM.
On the other hand, when designing components for power-managed sys-
tems, workload statistics can yield useful information on the transition
times and power levels required for the component to be useful.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 177

When designing a power-managed system, the central problem is to
determine the policy that the PM will implement. Several approaches have
been followed, which are described next.

Predictive techniques. In most real-world systems there is little
knowledge of future input events, and DPM decisions have to be taken
based on uncertain predictions. The rationale in all predictive techniques is
that of exploiting the correlation between the past history of the workload
and its near future, in order to make reliable predictions about future
events. We denote by p the future event that we want to predict. We denote
by o the past event whose occurrence is used to make predictions on p. For
the purpose of DPM, we are interested in predicting idle periods long
enough to go to sleep; that is, p = {T;y. > Tsx}.

Example 5.2 The most common predictive PM policy is the fixed timeout
that uses the elapsed idle time as observed event (0 = {T,y. > Tro}) used
to predict the total duration of the current idle period (p = {Tig. > Tro

+ Tgr}). The policy can be summarized as follows: when an idle period
begins, a timer is started with duration T'7. If after T'7o the system is still
idle, then the PM forces the transition to the off state. The system
remains off until it receives a request from the environment that signals
the end of the idle period. The critical design decision is obviously the
choice of the timeout value T'p¢.

When it is possible to chose as timeout the break-even time of the
component, the corresponding policy has an important property: the energy
consumption is at worse twice the energy consumed by an ideal policy
(computed off-line) [Karlin et al. 1994]. The rationale of this strong result is
related to the fact that the worse case happens for workloads with repeated
idle periods of length T',;, = Tz separated by pointwise activity.

Timeouts have two main advantages: they are general and simple to
implement. Unfortunately, large timeouts cause a large number of under-
predictions, that represent missed opportunity of saving power, and a
sizable amount of power is wasted waiting for the timeout to expire.
Moreover there is a performance penalty upon wakeup.

Predictive shut-down policies [Golding et al. 1996; Srivastava et al. 1996]
improve upon timeouts by taking decisions as soon as a new idle period
starts, based on the observation of past idle and busy periods.

Example 5.3 Two predictive shut-down schemes were proposed by Sriv-
astava et al. [1996]. In the first scheme, a nonlinear regression equation is
obtained from the past history: it yields a predicted idle time T',,.4. If T'.q

> Tgg, the system is immediately shut down as soon as it becomes idle.

The format of the nonlinear regression is decided heuristically, while the
fitting coefficients can be computed with standard techniques. The main
limitations of this approach are (i) there is no automatic way to decide the
type of regression equation; (ii) offline data collection and analysis are
required to construct and fit the regression model.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

178 . L. Benini and G. De Micheli

The second approach proposed by Srivastava et al. [1996] is based on a
threshold. The duration of the busy period immediately preceding the
current idle period is observed. If o = {T",), < Tr.}, the idle period is
assumed to be larger than Tz and the system is shut down. The rationale
is that, for the class of systems considered by Srivastava et al. (i.e.,
interactive graphic terminals), short active periods are often followed by
long idle periods. Clearly, the choice of Ty, is critical. Careful analysis of
the scatter plot of Ty, versus T .. is required to set it to a correct value,
hence this method is inherently offline (i.e., based on extensive data
collection and analysis). Furthermore, the method is not applicable if the
scatter plot is not L-shaped.

The DPM strategy proposed by Hwang and Wu [1997] addresses another
limitation of timeout policies, namely the performance penalty that is
always paid on wakeup. To reduce this cost, the power manager performs
predictive wakeup when the predicted idle time expires, even if no new
requests have arrived. This choice may increase power dissipation if T,
has been under-predicted, but decreases the delay for servicing the first
incoming request after an idle period.

Adaptive techniques. Since the optimality of DPM strategies depends
on the workload statistics, static predictive techniques are all ineffective
(i.e., suboptimal) when the workload is either unknown a priori, or nonsta-
tionary. So some form of adaptation is required. For timeouts the only
parameter to be adjusted is timer duration, for history-based predictors
even the type of observed events could in principle be adapted to the
workload.

Several adaptive predictive techniques were proposed to deal with non-
stationary workloads. In the work by Krishnan et al. [1995], a set of
timeout values is maintained, and each timeout is associated with an index
indicating how successful it will be. The policy chooses, at each idle time,
the timeout that will perform best among the set of available ones. Another
policy, presented by Helmbold et al. [1996], also keeps a list of candidate
timeouts, and assigns a weight to each based on how well it will perform
relative to an optimum offline strategy for past requests. The actual
timeout is obtained as a weighted average of all candidates with their
weight. Another approach, introduced by Douglis et al. [1995] is to keep
only one timeout value and to increase it when it is causing too many
shutdowns. The timeout is decreased when more shutdowns can be toler-
ated. Several predictive policies are surveyed and classified in Douglis’

paper.
Example 5.4 The shutdown policy proposed by Hwang and Wu [1997] is

n

capable of online adaptation, since the predicted idle time T',,, is obtained
as a weighted sum of the last idle period T'};," and the last prediction T'},.%.

Namely, T%,.; = aT}y" + (1 — a)T)i The impact of under-prediction is

mitigated by employing a timeout scheme to periodically reevaluate T',,, if

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 179

the system is idle and has not been shut down. The impact of over-
prediction is reduced by imposing a saturation condition on predictions:
T;red < CmaxTzr;é'

Stochastic control. Policy optimization is a problem under uncer-
tainty. Predictive approaches address workload uncertainty, but they as-
sume deterministic response and transition times for the system. However,
the system model for policy optimization is very abstract, and abstraction
introduces uncertainty. Hence, it is more appropriate to assume a stochas-
tic model for the system as well. Moreover, predictive algorithms are based
on a two-state system model, while real-life systems have multiple power
states. Policy optimization involves not only the choice of when to perform
state transitions, but also the choice of which transition should be per-
formed. Furthermore, predictive algorithms are heuristic, and their opti-
mality can only be gauged through comparative simulation. Parameter
tuning for these algorithms can be very hard if many parameters are
involved. Finally, predictive algorithms are geared toward power minimiza-
tion, and cannot finely control performance penalty.

The stochastic control approach addresses the generality and optimality
issues outlined above. Rather than trying to eliminate uncertainty by
prediction, it formulates policy optimization as an optimization problem
under uncertainty. More specifically [Benini et al. 1999b], power-manage-
ment optimization has been studied within the framework of controlled
Markov processes [Ross 1997; Puterman 1994]. In this flavor of stochastic
optimization, it is assumed that the system and the workload can be
modeled as Markov chains. Under this assumption, it is possible to: (i)
model the uncertainty in system power consumption and response (transi-
tion) times; (ii) model complex systems with many power states, buffers,
queues, and so on; (iii) compute power-management policies that are
globally optimum; and (iv) explore tradeoffs between power and perfor-
mance in a controlled fashion.

When using Markov models, the problem of finding a minimum-power
policy that meets given performance constraints can be cast as a linear
program (LP). The solution of the LP produces a stationary, randomized
policy. Such a policy is a nondeterministic function which, given a present
system state, associates a probability with each command. The command to
be issued is selected by a random trial on the basis of state-dependent
probabilities. It can be shown [Puterman 1994] that the policy computed by
LP is globally optimum. Furthermore, LP can be solved in polynomial time
in the number of variables. Hence, policy optimization for Markov pro-
cesses is exact and computationally efficient.

Example 5.5 A simple Markov model for a power-managed system
[Benini et al. 1999b] is shown in Figure 25. The workload is modeled by a
two-state Markov chain with two states: 0 (no request) and 1 (a request).
The transition probabilities between states are represented as edge weights
in Figure 25(a). The chain models a “bursty” workload. There is a high

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

180 . L. Benini and G. De Micheli

s_on: 0.0
0,05 s_off: 0.2 s_on:0.9
‘ - = ‘o.@ 3
008 o ‘ s_on: 1.0 ‘
015 s_off:0.8 s on:0.1
s_off: 0.0

() (b)

Fig. 25. A Markov model of a power-managed system and its environment.

probability (0.85) of receiving a request during period n + 1 if a request is
received during period n, and the mean duration of a stream of requests is
equal to 1/0.15 = 6.67 periods.

The PMC model has two states as well, namely {on, off }. State transi-
tions are controlled by two commands that can be issued by the power
manager. The commands are, respectively, s on and s _off , with the
intuitive meaning of “switch on” and “switch off”. When a command is
issued, the PMC will move to a new state in the next period with a
probability dependent on the command and on the departure and arrival
states. The Markov chain model of the PMC is shown in Figure 25(b). Edge
weights represent transition probabilities. Note that their values depend
on the command issued by the power manager. A power-management policy
can be represented as a table that associates a command with each pair of
states. For instance, a simple deterministic policy is f: {(0, on) —
s off , (1, on) — s_on, (0, off) - s off , (1, off) > s _on}.

Stochastic control based on Markov models has several advantages over
predictive techniques. First, it captures the global view of the system, thus
allowing the designer to search for a global optimum that possibly exploits
multiple inactive states of multiple interacting resources. Second, it en-
ables the exact solution (in polynomial time) of the performance-con-
strained power optimization problem. Third, it exploits the strength and
optimality of randomized policies.

One limitation of the stochastic optimization technique described above
is that it assumes complete a priori knowledge of the system and its
workload statistics. Even though it is generally possible to construct a
model for the system once for all, the workload is generally much harder to
characterize in advance. Furthermore, workloads are often nonstationary.

Example 5.6 An adaptive extension of the static stochastic optimization
approach was presented by Chung et al. [1999]. Adaptation is based on
three simple concepts: policy precharacterization, parameter learning, and
policy interpolation. A simple, two-parameters Markov model for the work-
load is assumed, but the value of the two parameters is initially unknown.

Policy precharacterization constructs a two-dimensional table addressed
by values of the two parameters. The table element uniquely identified by a
pair of parameters contains the optimal policy for the system under the
workload uniquely identified by the pair. The table is filled by computing
optimum policies under different workloads. During system operation,

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 181

parameter learning is performed online. Short-term averaging techniques
are employed to obtain run-time estimates of workload parameters based
on past history. The parameter values estimated by learning are then used
for addressing the lookup table and obtain the power-management policy.
Clearly, in many cases the estimated parameter values do not correspond
exactly to values sampled in the table. If this is the case, policy interpola-
tion is employed to obtain a policy as a combination of the policies in table
locations corresponding to parameter values close to the estimated ones.

Experimental results reported by Chung et al. [1999] indicate that
adaptive techniques are advantageous, even in the stochastic optimization
framework. Simulations of power-managed systems under highly nonsta-
tionary workloads show that the adaptive technique performs nearly as
well as the ideal policy computed offline, assuming perfect knowledge of
workload parameters over time.

5.1.3 Implementation of Dynamic Power Management. Dynamic power
management can be implemented in different ways. For clocked hardware
units, energy can be saved by reducing the clock frequency (and in the limit
by stopping the clock), or by reducing the supply voltage (and in the limit
by powering off a component). For example, clock-gating is widely used for
controlling digital components [Benini and De Micheli 1997; Usami et al.
1998al.

Power shutdown to a component is a radical solution that eliminates all
sources of power dissipation (including leakage). Moreover, it is widely
applicable to all kinds of electronic components, i.e., digital and analog
units, sensors, and transducers. A major disadvantage is the wake-up
recovery time, which is typically higher than in clock-gating because the
component’s operation must be reinitialized.

Typical electronic systems are software-programmable, and a majority
have an operating system ranging from a simple run-time scheduler or
real-time operating system (RTOS) (for embedded applications) to a full-
fledged operating system (as in the case of personal computers or worksta-
tions).

There are several reasons for migrating the power manager to software.
Software power managers are easy to write and to reconfigure. In most
cases, the designer cannot, or does not want to, interfere with and modify
the underlying hardware platform. DPM implementations are still a novel
art, and experimentation with software is easier than with hardware.

In general, the operating system is the software layer where the dynamic
power-management policy can be implemented best. OS-based power man-
agement (OSPM) has the advantage that the power/performance dynamic
control is performed by the software layer (i.e., the OS) that manages the
computational, storage, and I/O tasks of the system.

Recent initiatives to handle system-level power management include
Microsoft’s OnNow initiative [Microsoft 1997] and the Advanced Configura-
tion and Power Interface (ACPI) standard proposed by Intel, Microsoft, and
Toshiba [1996]. The former supports the implementation of OSPM and

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

182 . L. Benini and G. De Micheli

targets the design of personal computers with improved usability through
innovative OS design. The latter simplifies the codesign of OSPM by
providing an interface standard to control system resources. On the other
hand, the aforementioned standards do not provide procedures for optimal
control of power-managed system. Using ACPI, several policies have been
implemented and tested on both a desktop and a laptop computer. A
comparative evaluation of results is reported in Lu et al. [2000].

Recent research has addressed the design of task schedulers within OSs
that take advantage of multiple frequency, multiple voltage components. In
this case the scheduler implements a policy that sets the clock speed (and
voltage) of the processor. For example, Weiser et al. [1994] developed a
predictive technique that assumes that workload in a near-future time
window is similar to that in a near-past window. Accordingly, this sched-
uler reduces the clock rate to satisfy scheduling constraints. Govil et al.
[1995] perfected Weiser’s scheme by proposing other predictive policies.

Scheduling for real-time systems with variable-voltage components was
studied extensively in various flavors [Hong et al. 1998a; 1998b; 1998c;
Ishihara and Yasuura 1998a; Pering et al. 1998; Qu and Potkonjak 1998].
An optimal schedule fixes both the time frame for the execution of a task
and the supply voltage for the processor that runs the task. Shin and Choi
studied a fixed priority scheduling algorithm for real-time systems with a
variable voltage processor that can be shut down [Shin and Choi 1999].
Brown et al. [1997] considered the task scheduling problem form the
perspective of increasing the efficiency of DPM. Consecutive tasks sepa-
rated by an idle period are scheduled to execute after each other, thus
eliminating the shut down and wake up costs.

Task scheduling and clock setting should be computed while using
realistic battery models. Since the overall objective of DPM (for mobile
systems) is to extend battery lifetime, then the charge should be extracted
from the battery with a time-varying rate and the battery should be given
some recovery intervals. Experiments by Martin and Sewiorek [1999] on
the Itsy hand-held computer show that ideal clock setting policies change
when considering different battery sources, such as alkaline or lithium-ion.

Even though the operating system is probably the most significant
software layer for a power manager, information exchange between appli-
cations and OS can greatly help in aggressively reducing power consump-
tion. Several authors have observed that applications should be involved in
power management [Ellis 1999; Flinn and Satyanarayanan 1999]. How-
ever, the development of a communication infrastructure to support appli-
cation-aware power management is still an unexplored research area.

6. CONCLUSIONS

Electronic system design aims at striking a balance between performance
and energy efficiency. Designing energy-efficient systems is a multifaceted
problem, due to the plurality of embodiments that a system specification
may have and the variety of degrees of freedom that designers have to cope
with power reduction.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 183

We envision system design as consisting of three stages: modeling,
implementation, and run-time management. Energy-efficient design must
be addressed in all these phases. Moreover, it must target the sources of
power consumption that can be identified as computation, communication,
and storage.

Within this framework, we have attempted to cover a wide range of
problems and their solutions. Our coverage is by no means exhaustive.
Several problems in this framework have not been addressed yet, since this
is still an area of active research. We have also limited ourselves to
high-level system-level issues, and have purposely neglected chip-level
design techniques at the logic, electrical, and physical design levels.

REFERENCES

ADVANCED MicroO DEVICES, 1998. AM29SLxxx low-voltage flash memories.

ADVANCED RISC MACHINES LTD., 1996. ARM software development toolkit version 2.11.

AGRAWAL, P. 1998. Energy conservation design techniques for mobile wireless VLSI
systems. In Proceedings of the Computer Society Workshop on VLSI System-Level Design
(Apr.), 34-39.

Ano, A., SETHI, R., AND ULLMAN, J. 1986. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA.

BAHAR, R. I., ALBERA, G., AND MANNE, S. 1998. Power and performance tradeoffs using various
caching strategies. In Proceedings of the 1998 International Symposium on Low Power
Electronics and Design (ISLPED 98, Monterey, CA, Aug. 10-12), A. Chandrakasan and S.
Kiaei, Eds. ACM Press, New York, NY, 64—-69.

Baswa, R. S., Hirakr, M., Kosima, H., Gorny, D. J., NiTTA, K., SHRIDHAR, A., SEKI, K., AND
Sasaki, K. 1997. Instruction buffering to reduce power in processors for signal
processing. IEEE Trans. Very Large Scale Integr. Syst. 5, 4, 417—-424.

BamBos, N. 1998. Toward power-sensitive network architectures in wireless
communications. IEEE Personal Commun. 5, 3 (June), 50-58.

BeNINI, L. AND DE MICHELL, G. 1997. Dynamic Power Management: Design Techniques and
CAD Tools. Kluwer Academic, Dordrecht, Netherlands.

BeENINI, L., DE MicHELIL, G., Maci, E., Sciuto, D., AND SiLvano, C. 1997. Asymptotic
zero-transition activity encoding for address busses in low-power microprocessor-based
systems. In Proceedings of the Great Lakes Symposium on VLSI (Mar.), 77-82.

BeNINI, L., DE MicHELI, G., MAc, E., Sciuto, D., AND SiLvANO, C. 1998a. Address bus
encoding techniques for system-level power optimization. In Proceedings of the Conference
on Design, Automation and Test in Europe 98, 861-866.

Bening, L., DE MicHELL, G., MAcI, E., PoNcIiNO, M., AND QUER, S. 1998b. Power optimization
of core-based systems by address bus encoding. IEEE Trans. Very Large Scale Integr. Syst.
6, 4, 554-562.

BENINI, L., HODGSON, R., AND SIEGEL, P. 1998c. System-level power estimation and optimization.
In Proceedings of the 1998 International Symposium on Low Power Electronics and Design
(ISLPED ’98, Monterey, CA, Aug. 10-12), A. Chandrakasan and S. Kiaei, Eds. ACM Press,
New York, NY, 173-178.

BeNINT, L., Mact, A., Macr, E., PonciNo, M., AND ScARsI, R. 1999a. Synthesis of low-overhead
interfaces for power-efficient communication over wide buses. In Proceedings of the
Conference on Design Automation (June), 128-133.

BEeNINI, L., BogLioLo, A., PALEOLOGO, G., AND DE MicHELI, G. 1999b. Policy optimization for
dynamic power management. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18, 6
(June), 813-833.

Brown, J. J., CHEN, D. Z., GREENwWoOD, G. W., Hu, X., AND TAYLOR, R. W. 1997. Scheduling for
power reduction in a real-time system. In Proceedings of the 1997 International Symposium

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

184 . L. Benini and G. De Micheli

on Low Power Electronics and Design (ISLPED ’97, Monterey, CA, Aug. 18-20), B. Barton,
M. Pedram, A. Chandrakasan, and S. Kiaei, Eds. ACM Press, New York, NY, 84-87.

BrunvanD, E., Nowick, S., AND YUN, K. 1999. Practical advances in asynchronous design and
in asynchronous/synchronous interfaces. In Proceedings of the Conference on Design
Automation (June), 104-109.

BurDp, T. D. AND BRODERSEN, R. W. 1996. Processor design for portable systems. . VLSI
Signal Process. 13, 2/3, 203-221.

CATTHOOR, F., FRANSSEN, F., WUYTACK, S., NACHTERGAELE, L., AND DE MaAN, H. 1994. Global
communication and memory optimizing transformations for low power systems. In Proceed-
ings of the International Workshop on Low Power Design, 203-208.

CATTHOOR, F., WUYTACK, S., DE GREEF, E., BALASA, F., NACHTERGAELE, L., AND VANDECAPPELLE,
A. 1998a. Custom Memory Management Methodology: Exploration of Memory Organization
for Embedded Multimedia System Design. Kluwer Academic, Dordrecht, Netherlands.

CATTHOOR, F., WUYTACK, S., DE GREEF, E., FRANSSEN, F., NACHTERGAELE, L., AND DE MAN, H.
1998b. System-level transformations for low-power data transfer and storage. In Low-
Power CMOS Design, R. Chandrakasan and R. Brodersen, Eds. IEEE Press, Piscataway,
NJ.

CHANDRAKASAN, A. P., POTKONJAK, M., MEHRA, R., RABAEY, J., AND BRODERSEN, R. 1995.
Optimizing power using transformations. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 14, 1 (Jan.), 13-32.

CHANDRAKASAN, M. AND BRODERSEN, R. 1995. Low Power Digital CMOS Design. Kluwer
Academic, Dordrecht, Netherlands.

CHANG, J.-M. AND PEDRAM, M. 1997. Energy minimization using multiple supply voltages.
IEEE Trans. Very Large Scale Integr. Syst. 5, 4, 436—443.

CHAU, P. M. AND POWELL, S. R. 1992. Power dissipation of VLSI array processing systems. oJ.
VLSI Signal Process. 4, 2/3 (May 1992), 199-212.

CHEN, J., JONE, W., WANG, J., Lu, H., AND CHEN, T. 1999. Segmented bus design for low-power
systems. IEEE Trans. Very Large Scale Integr. Syst. 7, 1 (Mar.), 25-29.

CHUNG, E., BENINI, L., BoGLIOLO, A., AND DE MICHELI, G. 1999. Dynamic power management
for non-stationary service requests. In Proceedings of the Conference on Design Automation
and Test in Europe (Mar.), 77-81.

CHUNG, J. W., Kao, D.-Y., CHENG, C.-K., AND LiN, T.-T. 1995. Optimization of power
dissipation and skew sensitivity in clock buffer synthesis. In Proceedings of the 1995
International Symposium on Low Power Design (ISLPD-95, Dana Point, CA, Apr. 23—-26), M.
Pedram, R. Brodersen, and K. Keutzer, Eds. ACM Press, New York, NY, 179-184.

ConTE, T., MENEZES, K., AND SATHAYE, S. 1995. Technique to determine power-efficient,
high-performance superscalar processors. In Proceedings of the Hawaii International
Conference on System Sciences (HICSS 95, Maui, Hawaii, Jan.), IEEE Computer Society
Press, Los Alamitos, CA, 534-333.

CouMERI, S. L. aND THoMAS, D. E. 1998. Memory modeling for system synthesis. In
Proceedings of the 1998 International Symposium on Low Power Electronics and Design
(ISLPED ’98, Monterey, CA, Aug. 10-12), A. Chandrakasan and S. Kiaei, Eds. ACM Press,
New York, NY, 179-184.

DavLry, W. J. AND PouLrtoN, J. W. 1998. Digital Systems Engineering. Cambridge University
Press, New York, NY.

Dasgupta, A. AND Karri, R. 1998. High-reliability, low-energy microarchitecture
synthesis. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 17, 12 (Dec.), 1273-1280.

DA SILVA, J. L., CATTHOOR, F., VERKEST, D., AND DE MAN, H. 1998. Power exploration for
dynamic data types through virtual memory management refinement. In Proceedings of the
1998 International Symposium on Low Power Electronics and Design (ISLPED ’98,
Monterey, CA, Aug. 10-12), A. Chandrakasan and S. Kiaei, Eds. ACM Press, New York,
NY, 311-316.

DAVE, B., LAKSHMINARAYANA, G., AND JHA, N. 1999. COSYN: Hardware-software co-synthesis
for heterogeneous distributed embedded systems. IEEE Trans. Very Large Scale Integr.
Syst. 7, 1 (Mar.).

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 185

DEBNATH, G., DEBNATH, K., AND FERNANDO, R. 1995. The Pentium processor-90/100, microar-
chitecture and low-power circuit design. In Proceedings of the IEEE International Confer-
ence on VLSI Design (Jan. 1995), IEEE Press, Piscataway, NJ, 185-190.

DE GREEF, E., CATTHOOR, F., AND DE MAN, H. 1998. Program transformation strategies for
memory size and power reduction of pseudoregular multimedia subsystems. IEEE Trans.
Circuits Syst. Video Technol. 8, 6 (Oct.), 719-733.

DE MicHELI, G. AND GuUPTA, R. 1997. Hardware/sofware co-design. Proc. IEEE 95, 3 (Mar.),
349-365.

DE MicHELL, G. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill, Inc.,
New York, NY.

Douauis, F., KrisHNAN, P., AND BERSHAD, B. 1995. Adaptive disk spin-down policies for mobile
computers. In Proceedings of the 2nd USENIX Symposium on Mobile and Location-
Independent Computing, 121-137.

DoOUGHERTY, W., PURSLEY, D., AND THOMAS, D. 1998. Instruction subsetting: Trading power for
programmability. In Proceedings of the Computer Society Workshop on VLSI System-Level
Design (Apr.), 42-47.

Duato, J., YALAMANCHILI, S., AND N1, L. 1997. Interconnection Networks. An Engineering
Approach. IEEE Computer Society Press, Los Alamitos, CA.

Ervis, C. 1999. The case for higher-level power management. In Proceedings of the IEEE
Workshop on Hot Topics in Operating Systems (Mar.), IEEE Computer Society Press, Los
Alamitos, CA, 162-167.

FarraHI, A. H., TELLEZ, G. E., AND SARRAFZADEH, M. 1995. Memory segmentation to exploit
sleep mode operation. In Proceedings of the 32nd ACM/IEEE Conference on Design
Automation (DAC 95, San Francisco, CA, June 12-16), B. T. Preas, Ed. ACM Press, New
York, NY, 36—-41. http:www.getridofme.com

FARRAHI, A. H. AND SARRAFZADEH, M. 1995. System partitioning to maximize sleep time. In
Proceedings of the 1995 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD-95, San Jose, CA, Nov. 5-9), R. Rudell, Ed. IEEE Computer Society Press, Los
Alamitos, CA, 452—455.

FLINN, J. AND SATYANARAYANAN, M. 1999. Energy-aware adaptation for mobile applications.
In Proceedings of the ACM Symposium on Operating System Principles (Dec.), ACM Press,
New York, NY, 48-63.

FURrBER, S. 1997. ARM System Architecture. Addison-Wesley Publishing Co., Inc., Redwood
City, CA.

GaJski, D. D., Durrt, N. D., Wu, A. C.-H., aND LIN, S. Y.-L. 1992. High-Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic Publishers, Hingham, MA.

GaJski, D. D., VaHID, F., NARAYAN, S., AND GONG, J. 1994. Specification and Design of
Embedded Systems. Prentice-Hall, Inc., Upper Saddle River, NJ.

GARYy, S. AND IppOLITO ET AL., P. 1994. PowerPC 603, a microprocessor for portable
computers. IEEE Des. Test 11, 4 (Winter), 14-23.

GeBOTYs, C. 1997. Low energy memory and register allocation using network flow. In
Proceedings of the 34th Conference on Design Automation (DAC ’97, Anaheim, CA,
June), 435-440.

GIvARGIS, T. AND VAHID, F. 1998. Interface exploration for reduced power in core-based
systems. In International Symposium on System-Level Synthesis (Dec.), 117-122.

GOLDING, R., BosH, P., AND WILKES, J. 1996. Idleness is not Sloth. Hewlett-Packard, Fort
Collins, CO.

GonzALEZ, R. AND HorowiTz, M. 1996. Energy dissipation in general purpose
microprocessors. IEEE J. Solid-State Circuits 31, 9 (Sept.), 1277-1284.

GOOSSENS, G., PAULIN, P., VAN PRAET, J., LANNEER, D., GUERTS, W., KIFLI, A., AND LIEM, C.
1997. Embedded software in real-time signal processing systems: Design
technologies. Proc. IEEE 85, 3 (Mar.), 436—454.

GoviL, K., CHAN, E., AND WASSERMAN, H. 1995. Comparing algorithm for dynamic speed-
setting of a low-power CPU. In Proceedings of the First Annual International Conference on
Mobile Computing and Networking (MOBICOM ’95, Berkeley, CA, Nov. 13-15), B. Awer-
buch and D. Duchamp, Eds. ACM Press, New York, NY, 13-25.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

186 . L. Benini and G. De Micheli

Gowan, M. K., Biro, L. L., AND JACKSON, D. B. 1998. Power considerations in the design of the
Alpha 21264 microprocessor. In Proceedings of the 35th Annual Conference on Design
Automation (DAC ’98, San Francisco, CA, June 15-19), B. R. Chawla, R. E. Bryant, and J.
M. Rabaey, Eds, ACM Press, New York, NY, 726-731.

GUERRA, L., POTKONJAK, M., AND RABAEY, J. 1998. A methodology for guided behavioral-level
optimization. In Proceedings of the 35th Annual Conference on Design Automation (DAC ’98,
San Francisco, CA, June 15-19), B. R. Chawla, R. E. Bryant, and J. M. Rabaey, Eds, ACM
Press, New York, NY, 309-314.

GUTNIK, V. AND CHANDRAKASAN, A. P. 1997. Embedded power supply for low-power DSP.
IEEE Trans. Very Large Scale Integr. Syst. 5, 4, 425—435.

HaJgg, N. B. 1., StamouLls, G., BELLAS, N., AND POLYCHRONOPOULOS, C. 1998. Architectural and
compiler support for energy reduction in the memory hierarchy of high performance
microprocessors. In Proceedings of the 1998 International Symposium on Low Power
Electronics and Design (ISLPED ’98, Monterey, CA, Aug. 10-12), A. Chandrakasan and S.
Kiaei, Eds. ACM Press, New York, NY, 70-75.

HARRIS ET AL., E. 1995. Technology directions for portable computers. Proc. IEEE 83, 4
(Apr.), 636—657.

Hasecawa, A., Kawasaki, 1., Yamapa, K., YOsSHIOKA, S., YOSHIOKA, S., KAWASAKI, S., AND
Biswas, P. 1995. SH3: High code density, low power. IEEE Micro 15, 5 (Dec.).

HEGDE, R. AND SHANBHAG, N. R. 1998. Energy-efficiency in presence of deep submicron
noise. In Proceedings of the 1998 IEEE /ACM International Conference on Computer-Aided
Design (ICCAD ’98, San Jose, CA, Nov. 8-12), H. Yasuura, Ed. ACM Press, New York, NY,
228-234.

HevLMBOLD, D. P., LoNG, D. D. E., AND SHERROD, B. 1996. A dynamic disk spin-down technique
for mobile computing. In Proceedings of the 2nd Annual International Conference on Mobile
Computing and Networking (MOBICOM ’96, Rye, NY, Nov. 10-12), H. Ahmadi, R. H. Katz,
I. F. Akyildz, and Z. J. Haas, Eds. ACM Press, New York, NY, 130-142.

Hewmani, A., MEINCKE, T., KUMAR, T., OLssoN, T., NiLssoN, P., OBERG, dJ., ELLERVEE, P., AND
Lunpqvist, D. 1999. Lowering power consumption in clock by using globally asynchronous
locally synchronous design style. In Proceedings of the Conference on Design Automation
(June), 873-878.

HEeENkEL, J. 1999. A low-power hardware/software partitioning approach for core-based
embedded systems. In Proceedings of the Conference on Design Automation
(June), 122-127.

HenNEssy, J. L. AND PATTERSON, D. A. 1996. Computer Architecture: A Quantitative
Approach. 2nd ed. Morgan Kaufmann Publishers Inc., San Francisco, CA.

Hong, 1., PoTKONJAK, M., AND KARRI, R. 1997. Power optimization using divide-and-conquer
techniques for minimization of the number of operations. In Proceedings of the 1997
IEEE/ACM International Conference on Computer-Aided Design (ICCAD ’97, San Jose, CA,
Nov. 9-13), R. H. J. M. Otten and H. Yasuura, Eds. IEEE Computer Society, Washington,
DC, 108-111.

Hong, 1., Kirovski, D., Qu, G., POTKONJAK, M., AND SRIVASTAVA, M. B. 1998. Power
optimization of variable voltage core-based systems. In Proceedings of the 35th Annual
Conference on Design Automation (DAC 98, San Francisco, CA, June 15-19), B. R. Chawla,
R. E. Bryant, and J. M. Rabaey, Eds, ACM Press, New York, NY, 176-181.

Hong, 1., POTKONJAK, M., AND SRIvasTAVA, M. B. 1998. On-line scheduling of hard real-time
tasks on variable voltage processor. In Proceedings of the 1998 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD ’98, San Jose, CA, Nov. 8-12), H. Yasuura,
Ed. ACM Press, New York, NY, 653-656.

Hong, L., Qu, G., AND POTKONJAK, M. 1998. Synthesis techniques for low-power hard real-time
systems on variable voltage processors. In Proceedings of the 19th IEEE Symposium on
Real-Time Systems (Madrid, Spain, Dec.), IEEE Computer Society Press, Los Alamitos, CA,
178-187.

Hwang, C.-H. anp Wu, A. C.-H. 1997. A predictive system shutdown method for energy
saving of event-driven computation. In Proceedings of the 1997 IEEE/ACM International

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 187

Conference on Computer-Aided Design (ICCAD ’97, San Jose, CA, Nov. 9-13), R. H. J. M.
Otten and H. Yasuura, Eds. IEEE Computer Society, Washington, DC, 28-32.

INTEL. 1998. SA-1100 Microprocessor Technical Reference Manual. Intel Corp., Santa Clara, CA.

IsHIHARA, T. AND YASUURA, H. 1998. Voltage scheduling problem for dynamically variable
voltage processors. In Proceedings of the 1998 International Symposium on Low Power
Electronics and Design (ISLPED 98, Monterey, CA, Aug. 10-12), A. Chandrakasan and S.
Kiaei, Eds. ACM Press, New York, NY, 197-202.

IsHiHARA, T. AND YASUURA, M. 1998. Power-Pro: Programmable power management
architecture. In Proceedings of the on Asia and South Pacific Design Automation
(Feb.), 321-322.

Iton, K., Sasaki, K., AND NAKAGOME, Y. 1995. Trends in low-power RAM circuit
technologies. Proc. IEEE 83, 4 (Apr.), 524-543.

JoHNSON, M. AND Roy, K. 1996. Optimal selection of supply voltages and level-conversion
during data-path scheduling under resource constraints [AUTHOR: This citation does NOT
appearin this Proceedings. We need CORRECT info.]. In Proceedings of the 1996 IEEE/
ACM International Conference on Computer-Aided Design (ICCAD ’96, San Jose, CA, Nov.
10-14), R. A. Rutenbar and R. H. J. M. Otten, Eds. IEEE Computer Society Press, Los
Alamitos, CA.

Jouppr, N. AND WiLToN, N. 1996. CACTI: An enhanced cache access and cycle time
model. IEEE J. Solid-State Circuits 31, 5 (May), 677—-688.

Juan, T., LANG, T., AND NAVARRO, J. J. 1997. Reducing TLB power requirements. In
Proceedings of the 1997 International Symposium on Low Power Electronics and Design
(ISLPED ’97, Monterey, CA, Aug. 18—20), B. Barton, M. Pedram, A. Chandrakasan, and S.
Kiaei, Eds. ACM Press, New York, NY, 196-201.

KALAMBUR, A. AND IRWIN, M. J. 1997. An extended addressing mode for low power. In
Proceedings of the 1997 International Symposium on Low Power Electronics and Design
(ISLPED ’97, Monterey, CA, Aug. 18—20), B. Barton, M. Pedram, A. Chandrakasan, and S.
Kiaei, Eds. ACM Press, New York, NY, 208-213.

KaMBLE, M. B. AND GHOSE, K. 1997. Analytical energy dissipation models for low-power
caches. In Proceedings of the 1997 International Symposium on Low Power Electronics and
Design (ISLPED 97, Monterey, CA, Aug. 18—-20), B. Barton, M. Pedram, A. Chandrakasan,
and S. Kiaei, Eds. ACM Press, New York, NY, 143-148.

KAPOOR, B. 1998. Low power memory architectures for video applications. In Proceedings of
the Great Lakes Symposium on VLSI (Feb.), 2-17.

KARLIN, A., MANASSE, M., McGEocH, L., AND Owicki, S. 1994. Competitive randomized
algorithms for nonuniform problems. Algorithmica 11, 6 (June), 542-571.

Kmv, D. anD CHor, K. 1997. Power-conscious high level synthesis using loop folding. In
Proceedings of the 34th Annual Conference on Design Automation (DAC '97, Anaheim, CA,
June 9-13), E. J. Yoffa, G. De Micheli, and J. M. Rabaey, Eds. ACM Press, New York, NY,
441-445.

Kin, J., GupTa, M., AND MANGIONE-SMITH, W. H. 1997. The filter cache: an energy efficient
memory structure. In Proceedings of the 30th Annual IEEE /ACM International Symposium
on Microarchitecture (MICRO 30, Research Triangle Park, NC, Dec. 1-3), M. Smotherman
and T. Conte, Eds. IEEE Computer Society Press, Los Alamitos, CA, 184-193.

Kin, J., LEE, C., MANGIONE-SMITH, W., AND POTKONJAK, M. 1999. Power efficient mediaproces-
sors: Design space exploration. In Proceedings of the Conference on Design Automation
(June), 321-326.

Kirovski, D., LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. 1998. Synthesis of power
efficient systems-on-silicon. In Proceedings of the Conference on Asian and South Pacific
Design Automation (Feb.), 557-562.

Kirovski, D. AND POTKONJAK, M. 1997. System-level synthesis of low-power hard real-time
systems. In Proceedings of the 34th Annual Conference on Design Automation (DAC ’97,
Anaheim, CA, June 9-13), E. J. Yoffa, G. De Micheli, and J. M. Rabaey, Eds. ACM Press,
New York, NY, 697-702.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

188 . L. Benini and G. De Micheli

Ko, U., BaLsAra, P. T., AND NanDa, A. K. 1998. Energy optimization of multilevel cache
architectures for RISC and CISC processors. IEEE Trans. Very Large Scale Integr. Syst. 6,
2, 299-308.

KomaTsH, S., IKEDA, M., AND AsADA, K. 1999. Low power chip interface based on bus data
encoding with adaptive code-book method. In Proceedings of the Great Lakes Symposium on
VLSI, 368-371.

KRISHNAN, P., LONG, P., AND VITTER, J. 1995. Adaptive disk spindown via optimal rent-to-buy
in probabilistic environments. In Proceedings of the 12th International Conference on
Machine Learning (Lake Tahoe, CA), 322-330.

KULKARNI, C., CATTHOOR, F., AND DE MaN, H. 1998. Code transformations for low power
caching in embedded multimedia processors. In Proceedings of the First Merged IPPS/
SPDP Symposium on Parallel and Distributed Processing (IPPS/SPDP ’98, Mar.), 23-26.

KuMAR, N., KATKOORI, S., RADER, L., AND VEMURI, R. 1995. Profile-driven behavioral synthesis
for low-power VLSI systems. IEEE Des. Test 12, 3 (Fall 1995), 70-84.

LAKSHMINARAYANA, G., RAGHUNATHAN, A., Koouri, K., JHA, N., AND DErvy, S. 1999.
Common-case computation: A high-level technique for power and performance
optimization. In Proceedings of the Conference on Design Automation (June), 56—61.

Leg, M. T.-C., FuJita, M., TiwARI, V., AND MALIK, S. 1997. Power analysis and minimization
techniques for embedded DSP software. IEEE Trans. Very Large Scale Integr. Syst. 5, 1,
123-135.

LEE ET AL, W. 1997. A 1-V programmable DSP for wireless communications. I[EEE J.
Solid-State Circuits 32, 11 (Nov.), 1766-1776.

LEE, E. AND SANGIOVANNI-VINCENTELLI, A. 1998. A framework for comparing models of
computation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 17, 12 (Dec.), 1217—
1229.

LEKATSAS, H. AND WoLF, W. 1998. Code compression for embedded systems. In Proceedings of
the 35th Annual Conference on Design Automation (DAC 98, San Francisco, CA, June
15-19), B. R. Chawla, R. E. Bryant, and J. M. Rabaey, Eds, ACM Press, New York, NY,
516-521.

L1, Y. AND HENKEL, J.-R. 1998. A framework for estimation and minimizing energy dissipation
of embedded HW/SW systems. In Proceedings of the 35th Annual Conference on Design
Automation (DAC ’98, San Francisco, CA, June 15-19), B. R. Chawla, R. E. Bryant, and J.
M. Rabaey, Eds, ACM Press, New York, NY, 188-193.

Liao, S., DEvADAS, S., AND KEUTZER, K. 1998. Code density optimization for embedded DSP
processors using data compression techniques. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 17, 7 (July), 601-608.

Lipsky, D. AND RABAEY, J. M. 1996. Early power exploration—a World Wide Web
application. In Proceedings of the 33rd Annual Conference on Design Automation (DAC ’96,
Las Vegas, NV, June 3-7), T. P. Pennino and E. J. Yoffa, Eds. ACM Press, New York, NY,
27-32.

Lipsky, D. AND RABAEY, J. 1994. Low-power design of memory intensive functions. In
Proceedings of the IEEE Symposium on Low Power Electronics (Sept.), IEEE Computer
Society Press, Los Alamitos, CA, 16-17.

LircH, T. AND SLATON, J. 1998. Portable communications. IEEE Micro 18, 2 (Apr.), 48-55.

LorcH, J. AND SMITH, A. 1998. Software strategies for portable computer energy
management. I[EEE Personal Commun. 5, 3 (June).

LoRcCH, J. R. AND SMITH, A. J. 1997. Scheduling techniques for reducing processor energy use
in MacOS. Wireless Networks 3, 5, 311-324.

Lu, Y., CHUNG, E. Y., Imuni, T., BENINI, L., AND DE MicHEL], G. 2000. Quantitative
comparison of power management algorithms, DATE. In Proceedings of the Conference on
Design Automation and Test in Europe (Mar.),

Lupwia, J., NawaB, H., AND CHANDRAKASAN, A. 1996. Low-power digital filtering using
approximate processing. IEEE J. Solid-State Circuits 31, 3 (Mar.), 395-399.

Maci, E., PEDRAM, M., AND SOMENZI, F. 1998. High-level power modeling, estimation and
optimization. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 17, 11 (Nov.), 1061—
1079.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 189

MARTIN, T. AND SEWIOREK, D. 1999. The impact of battery capacity and memory bandwith on
CPU speed-setting: A case study. In Proceedings of the International Symposium on Low
Power Electronics and Design (June), 200-205.

MARTIN, T. AND SIEWIOREK, D. 1996. A power metric for mobile systems. In Proceedings of the
1996 International Symposium on Low Power Electronics and Design (ISLPED 96,
Monterey, CA, Aug 12-14), M. Horowitz, J. Rabaey, B. Barton, and M. Pedram, Eds. IEEE
Press, Piscataway, NJ, 37-42.

MEHRA, R., GUERRA, L. M., AND RABAEY, J. M. 1996. Low-power architectural synthesis and
the impact of exploiting locality. J. VLSI Signal Process. 13, 2/3, 239-258.

MEeHRA, R., GUERRA, L., AND RABAEY, J. 1997. A partitioning scheme for optimizing
interconnect power. IEEE J. Solid-State Circuits 32, 3 (Mar.), 433—443.

MEHTA, H., OWENS, R. M., AND IRWIN, M. J. 1996. Some issues in Gray code addressing. In
Proceedings of the Great Lakes Symposium on VLSI (Ames, IA), IEEE Computer Society
Press, Los Alamitos, CA, 178-180.

MEgHTA, H., OWENS, R. M., IrRwIN, M. J., CHEN, R., AND GHOSH, D. 1997. Techniques for low
energy software. In Proceedings of the 1997 International Symposium on Low Power
Electronics and Design (ISLPED ’97, Monterey, CA, Aug. 18-20), B. Barton, M. Pedram, A.
Chandrakasan, and S. Kiaei, Eds. ACM Press, New York, NY, 72-75.

MENDL, J. 1995. Low power microelectronics: Retrospect and prospect. Proc. IEEE 83, 4
(Apr.), 619-635.

MENG, T., GORDON, B., TSENG, E., AND HUNG, A. 1995. Portable video-on-demand in wireless
communication. Proc. I[IEEE 83, 4 (Apr.), 659-690.

MICROSOFT AND ToOsHIBA. 1996. Advanced configuration and power interface specification.
Tech. Rep.

MicroSOFT. 1997. OnNow: the evolution of the PC platform. Microsoft Press, Redmond, WA.

MONTEIRO, J., DEVADAS, S., ASHAR, P., AND MAUSKAR, A. 1996. Scheduling techniques to enable
power management. In Proceedings of the 33rd Annual Conference on Design Automation
(DAC 96, Las Vegas, NV, June 3-7), T. P. Pennino and E. J. Yoffa, Eds. ACM Press, New
York, NY, 349-352.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA.

MusoLL, E., LANG, T., AND CORTADELLA, J. 1998. Working-zone encoding for reducing the
energy in microprocessor address buses. IEEE Trans. Very Large Scale Integr. Syst. 6, 4,
568-572.

MUTOH, S., SHIGEMATSU, S., MATSUYA, Y., FUKUDA, H., KANEKO, T., AND YAMADA, J. 1996. A 1-V
multithreshold-voltage CMOS digital signal processor for mobile phone applications. IEEE
J. Solid-State Circuits 31, 11 (Nov.), 1795-1802.

NACHTERGAELE, L., MOOLENAAR, D., VANHOOF, B., CATTHOOR, F., AND DE MaN, H. 1998.
System-level power optimization of video codecs on embedded cores: a systematic approach.
J. VLSI Signal Process. 18, 2, 89-109.

NamGcoonG, W., Yu, M., AND MENG, T. 1997. A high-efficiency variable-voltage CMOS dynamic
DC-DC switching regulator. In Proceedings of the IEEE International Conference on
Solid-State Circuits, IEEE Computer Society Press, Los Alamitos, CA, 380-381.

NaAwaB, S. H., OPPENHEIM, A. V., CHANDRAKASAN, A. P., WINOGRAD, J. M., AND Lubpwia, J. T.
1997. Approximate signal processing. J. VLSI Signal Process. 15, 1-2, 177-200.

NiELSEN, L. S. AND NIEsSsSEN, C. 1994. Low-power operation using self-timed circuits and
adaptive scaling of the supply voltage. IEEE Trans. Very Large Scale Integr. Syst. 2, 4 (Dec.
1994), 391-397.

NisHiTant, T. 1999. Low-power architectures for programmable multimedia
processors. [EICE Trans. Fundam. Electron. Commun. Comput. Sci. E82-A, 2 (Feb.),
184-196.

Panpa, P. aND DutT, N. 1999. Low-power memory mapping through reducing address bus
activity. IEEE Trans. Very Large Scale Integr. Syst. 7, 3 (Sept.), 309-320.

PANWAR, R. AND RENNELS, D. 1995. Reducing the frequency of tag compares for low power
I-cache design. In Proceedings of the 1995 International Symposium on Low Power Design

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

190 . L. Benini and G. De Micheli

(ISLPD-95, Dana Point, CA, Apr. 23-26), M. Pedram, R. Brodersen, and K. Keutzer, Eds.
ACM Press, New York, NY, 57-62.

PeEDRAM, M. 1996. Power minimization in IC design: Principles and applications. ACM Trans.
Des. Autom. Electron. Syst. 1, 1, 3-56.

PEDRAM, M. AND VAISHNAV, H. 1997. Power optimization in VLSI layout: A survey. <. VLSI
Signal Process. 15, 3, 221-232.

PeEDRAM, M. AND WU, Q. 1999. Design considerations for battery-powered electronics. In
Proceedings of the Conference on Design Automation (June), 861—-866.

PERING, T., BURD, T., AND BRODERSEN, R. 1998. The simulation and evaluation of dynamic
voltage scaling algorithms. In Proceedings of the 1998 International Symposium on Low
Power Electronics and Design (ISLPED ’98, Monterey, CA, Aug. 10-12), A. Chandrakasan
and S. Kiaei, Eds. ACM Press, New York, NY, 76-81.

PoTrONJAK, M. AND RABAEY, M. 1999. Algorithm selection: A quantitative optimization-
intensive approach. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18, 5 (May),
524-532.

PUTERMAN, M. 1994. Finite Markov Decision Processes. John Wiley and Sons, Inc., New York,
NY.

Qu, G. AND POTKONJAK, M. 1998. Techniques for energy minimization of communication
pipelines. In Proceedings of the 1998 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD 98, San Jose, CA, Nov. 8-12), H. Yasuura, Ed. ACM Press, New
York, NY, 597-600.

RABAEY, J. AND PEDRAM, M. 1996. Low Power Design Methodologies. Kluwer Academic,
Dordrecht, Netherlands.

RAGHUNATHAN, A. AND JHA, N. 1997. SCALP: An iterative improvement-based low-power
datapath synthesis algorithm. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 14, 11
(Nov.), 1260-1277.

RAGHUNATHAN, A., JHA, N., anp Dey, S. 1998. High-Level Power Analysis and
Optimization. Kluwer Academic, Dordrecht, Netherlands.

RAGHUNATHAN, A., DEY, S., AND JHA, N. 1999. Register transfer level power optimization with
emphasis on glitch analysis and reduction. IEEE Trans. Comput.-Aided Des. 18, 8 (Aug.),
1114-1131.

RAJE, S. AND SARRAFZADEH, M. 1995. Variable voltage scheduling. In Proceedings of the 1995
International Symposium on Low Power Design (ISLPD-95, Dana Point, CA, Apr. 23-26), M.
Pedram, R. Brodersen, and K. Keutzer, Eds. ACM Press, New York, NY, 9-14.

RAMPRASAD, S., SHANBHAG, N., AND HAJJy, I. 1998. Signal coding for low power: Fundamental
limits and practical realizations. In Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS), IEEE Computer Society Press, Los Alamitos, CA.

Ross, S. 1997. Introduction to Probability Models. Academic Press, Inc., New York, NY.

SACHA, J. AND IRWIN, M. 1998. Number representation for reducing switching capacitance in
subband coding. In Proceedings of the International Conference on Acoustics, Speech and
Signal Processing (May), 12-15.

SAIED, R. AND CHAKRABARTI, C. 1996. Scheduling for minimizing the number of memory
accesses in low power applications. In VLSI Signal Processing 169-178.

SAN MARTIN, R. AND KNIGHT, J. 1996. Optimizing power in ASIC behavioral synthesis. IEEE
Des. Test 13, 2, 58-T70.

SEGARS, S., CLARKE, K., AND GOUDGE, L. 1995. Embedded control problems, thumb and the
ARMTTDMI. IEEE Micro 15, 5 (Dec.), 22-30.

SHIN, Y. AND CHoI, K. 1999. Power conscious fixed priority scheduling for hard real-time
systems. In Proceedings of the Conference on Design Automation (June), 134-139.

SHIUE, W. AND CHAKRABARTI, C. 1999. Memory exploration for low power, embedded
systems. In Proceedings of the Conference on Design Automation (June), 140-145.

Smmunic, T., BENINI, L., AND DE MIcHELI, G. 1999. Cycle-accurate simulation of energy
consumption in embedded systems. In Proceedings of the Conference on Design Automation
(June), 867-872.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

System-Level Power Optimization . 191

Smmunic, T., BENINT, L., AND DE MIicHELI, G. 1999. Energy-efficient design of battery-powered
embedded systems. In Proceedings of the International Symposium on Low Power Elector-
nics and Design (June), 212-217.

SRATAKOS, A., SANDERS, S., AND BRODERSEN, R. 1994. A low-voltage CMOS DC-DC converter
for a portable battery-operated system. In Proceedings of the IEEE Conference on Power
Electronics Specialists, IEEE Computer Society Press, Los Alamitos, CA, 619-626.

SRIVASTAVA, M. B., CHANDRAKASAN, A. P., AND BRODERSEN, R. W. 1996. Predictive system
shutdown and other architectural techniques for energy efficient programmable
computation. IEEE Trans. Very Large Scale Integr. Syst. 4, 1, 42-55.

SRIVASTAVA, M. B. AND POTKONJAK, M. 1996. Power optimization in programmable processors
and ASIC implementations of linear systems: Transformation-based approach. In Proceed-
ings of the 33rd Annual Conference on Design Automation (DAC ’96, Las Vegas, NV, June
3-7), T. P. Pennino and E. J. Yoffa, Eds. ACM Press, New York, NY, 343-348.

STAN, M. R. AND BURLESON, W. P. 1995. Bus-invert coding for low-power I/O. IEEE Trans.
Very Large Scale Integr. Syst. 3, 1 (Mar. 1995), 49-58.

StaN, M. R. AND BURLESON, W. P. 1997. Low-power encodings for global communication in
CMOS VLSI. IEEE Trans. Very Large Scale Integr. Syst. 5, 4, 444—455.

STEMM, M. AND KA1z, R. 1997. Measuring and reducing energy consumption of network
interfaces in hand-held devices. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
E80-B, 8 (Aug.), 1125-1131.

Su, C. L., Tsur, C. Y., AND DESPAIN, A. M. 1994. Saving power in the control path of embedded
processors. IEEE Des. Test 11, 4 (Winter), 24-30.

Su, C.-L. AND DEspaIN, A. M. 1995. Cache design trade-offs for power and performance
optimization: a case study. In Proceedings of the 1995 International Symposium on Low
Power Design (ISLPD-95, Dana Point, CA, Apr. 23-26), M. Pedram, R. Brodersen, and K.
Keutzer, Eds. ACM Press, New York, NY, 63—-68.

SUZUKI ET AL., K. 1997. A 300 MIPS/W RISC core processor with variable supply-voltage
scheme in variable threshold-voltage CMOS. In Proceedings of the Conference on Custom
Integrated Circuits (May), 112-118.

TIwARI, V., MALIK, S., AND WOLFE, A. 1994. Power analysis of embedded software: a first step
towards software power minimization. IEEE Trans. Very Large Scale Integr. Syst. 2, 4 (Dec.
1994), 437—-445.

TIwARI, V., MALIK, S., WOLFE, A., AND LEg, M. T.-C. 1996. Instruction level power analysis
and optimization of software. J. VLSI Signal Process. 13, 2/3, 223—-238.

TIwARI, V., SINGH, D., RAJGOPAL, S., MEHTA, G., PATEL, R., AND BAEZ, F. 1998. Reducing power
in high-performance microprocessors. In Proceedings of the 35th Annual Conference on
Design Automation (DAC ’98, San Francisco, CA, June 15-19), B. R. Chawla, R. E. Bryant,
and J. M. Rabaey, Eds, ACM Press, New York, NY, 732-737.

TomivaMmA, H., IsHIHARA, T., INOUE, A., AND YASUURA, H. 1998. Instruction scheduling for
power reduction in processor-based system design. In Proceedings of the Conference on
Design, Automation and Test in Europe 98, 855-860.

Usawmi, K. AND IGARASHI ET AL., M. 1998. Automated low-power technique exploiting multiple
supply voltages applied to a media processor. IEEE J. Solid-State Circuits 33, 3 (Mar.),
463-472.

Usawmi, K., IGARASHI, M., ISHIKAWA, T., KANAZAWA, M., TAKAHASHI, M., HAMADA, M., ARAKIDA, H.,
TERAZAWA, T., AND KURODA, T. 1998. Design methodology of ultra low-power MPEG4 codec
core exploiting voltage scaling techniques. In Proceedings of the 35th Annual Conference on
Design Automation (DAC ’98, San Francisco, CA, June 15-19), B. R. Chawla, R. E. Bryant,
and J. M. Rabaey, Eds, ACM Press, New York, NY, 483-488.

VERBAUWHEDE, I. AND ToURIGUIAN, M. 1998. A low power DSP engine for wireless
communications. J. VLSI Signal Process. 18, 2, 177-186.

Vitroz, E. 1994. Low power microelectronics: Ways to approach the limits. In Proceedings of
the International Conference on Solid-State Circuits (Jan.), 14-18.

WAaN, M., IcHIKAWA, Y., LIDSKY, D., AND RABAEY, J. 1998. An energy conscious methodology for
aarly design exploration of heterogeneous DSPs. In Proceedings of the Conference on
Custom Integrated Circuits (May), 111-117.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

192 . L. Benini and G. De Micheli

WEeIL, G. AND Horowitz, M. 1996. A low power switching power supply for self-clocked
systems. In Proceedings of the 1996 International Symposium on Low Power Electronics and
Design (ISLPED ’96, Monterey, CA, Aug 12-14), M. Horowitz, J. Rabaey, B. Barton, and M.
Pedram, Eds. IEEE Press, Piscataway, NJ, 313-317.

WEISER, M., WELCH, B., DEMERS, A., AND SHENKER, S. 1994. Scheduling for reduced CPU
energy. In Proceedings of the First USENIX Symposium on Operating Systems Design and
Implementation (Monterey, CA, May), USENIX Assoc., Berkeley, CA, 13-23.

WINZKER, M. 1998. Low-power arithmetic for the processing of video signals. IEEE Trans.
Very Large Scale Integr. Syst. 6, 3 (Sept.).

Worr, W. 1994. Hardware-software co-design of embedded systems. Proc. IEEE 82, 7 (July
1994), 967-989.

WOLFE, A. 1996. Issues for low-power CAD tools: A system-level design study. J. Des. Autom.
Embedded Syst. 1, 4, 315-332.

WUYTACK, S., CATTHOOR, F., AND DE MaN, H. 1997. Transforming set data types to power
optimal data structures. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 15, 6
(June), 619-629.

WUYTACK, S., DIGUET, J.-P., CATTHOOR, F. V. M., AND DE MaN, H. J. 1998. Formalized
methodology for data reuse exploration for low-power hierarchical memory mappings. IEEE
Trans. Very Large Scale Integr. Syst. 6, 4, 529-537.

YoSHIDA, Y., SONG, B.-Y., OKUHATA, H., ONOYE, T., AND SHIRAKAWA, I. 1997. An object code
compression approach to embedded processors. In Proceedings of the 1997 International
Symposium on Low Power Electronics and Design (ISLPED ’97, Monterey, CA, Aug. 18-20),
B. Barton, M. Pedram, A. Chandrakasan, and S. Kiaei, Eds. ACM Press, New York, NY,
265-268.

ZHANG, H. AND RABAEY, J. 1998. Low-swing interconnect interface circuits. In Proceedings of
the 1998 International Symposium on Low Power Electronics and Design (ISLPED ’98,
Monterey, CA, Aug. 10-12), A. Chandrakasan and S. Kiaei, Eds. ACM Press, New York,
NY, 161-166.

ZHANG, Y., Hu, X., AND CHEN, D. 1999. Low energy register allocation beyond basic blocks. In
Proceedings of the International Symposium on Circuits and Systems (June), 290-293.

ZYUBAN, V. AND KOGGE, P. 1998. The energy complexity of register files. In Proceedings of the
1998 International Symposium on Low Power Electronics and Design (ISLPED ’98,
Monterey, CA, Aug. 10-12), A. Chandrakasan and S. Kiaei, Eds. ACM Press, New York,
NY, 305-310.

Received: December 1999; accepted: February 2000

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 2, April 2000.

