
28-Jan-08

1

28-Jan-08 (1)

CEG 5010: Reconfigurable Computing
Finite State Machines

“Tortise: You don't need to give an infinite number of monkeys an infinite
amount of time to write Hamlet. A finite number of monkeys and a finite
amount of time will do just fine. And like my father used to say, never use an
infinite number of monkeys when a finite number will do.”

- Mike Schiraldi, in a sci.math posting

28-Jan-08 (2)

Course Summary (Subject to change)

• INTRODUCTION AND FPGAs
• Introduction / Reconfigurable

computing machines
• FPGA Architecture

• COMPUTER ARITHMETIC
• Fixed point arithmetic
• Elementary functions
• Digit serial processing
• Distributed arithmetic
• Floating point arithmetic

• COMPUTER
ARCHITECTURE

• Data path design
• Translating C to VHDL
• Microcoding

• CASE STUDIES
• Digital signal processing
• Cryptography
• Rapid prototyping
• Coprocessors

28-Jan-08 (3)

Introduction

• Most practical digital designs built from
datapath+control
– control implemented as a finite state machine

• Describe how to implement finite state
machines
– how to construct a FSM
– how to describe using VHDL
– examples using memory controller and UART
– how to optimize for time and area

28-Jan-08 (4)

Simple Example: A memory
controller

28-Jan-08

2

28-Jan-08 (5)

First step: define a enumeration type

• type state_t is (idle, decision, read, write);
• signal curstate, nextstate : state_t;

28-Jan-08 (6)

Second step: make combinational
process to implement transisitions

statecomb: process(curstate, rw, ready)
begin

…
end process statecomb;

28-Jan-08 (7)

Combinatorial process
• This process gives the

next state and outputs
from the current state
– Moore state machine
– outputs functions only of

the current state

• Note that the resulting
circuit is all combinatorial

• Is easily derived from the
state diagram

statecomb: process(curstate, rw, ready)
begin

case curstate is
when idle =>

oe <= ‘0’; we <= ‘0’;
if (ready = ‘1’) then
nextstate <= decision;

else -- this statement not necessary
nextstate <= idle;

end if;
when decision =>

oe <= ‘0’; we <= ‘0’;
if (rw = ‘1’) then

nextstate <= read;
else

nextstate <= write;
end if;

….
end case;

end process statecomb;

28-Jan-08 (8)

Sequential process

• We also need a
clocked process to
make the actual state
transition

stateclkd: process(clk)
begin

if (clk’event and clk = ‘1’)
then

curstate <= nextstate;
end if;

end process stateclkd;

28-Jan-08

3

28-Jan-08 (9)

Adding synchronous reset
(how NOT to do it)

if (reset = ‘1’) then
nextstate <= idle;

else
case curstate is

when idle =>
oe <= ‘0’; we <= ‘0’;
if (ready = ‘1’) then

nextstate <= decision;
else

nextstate <= idle;
end if;

…
end if;

• Hint: what happens to
we when reset?

28-Jan-08 (10)

Previous code

• What does this do?
process begin

if (cond)
a <= b;

end if;
end process;

• How about this?
process begin

if (reset)
x <= ‘1’;

else
a <= b;

end if;
end process;

28-Jan-08 (11)

Previous code

• What does this do?
process begin

if (cond)
a <= b;

end if;
end process;

• How about this?
process begin

if (reset)
x <= ‘1’;

else
a <= b;

end if;
end process;

• In VHDL, a retains
value after the
assignment. This is
“implied memory”
– a = cond.b + /cond.a
– x=reset+/reset.x
– a=/reset.b+reset.a

28-Jan-08 (12)

Implied memory
• What circuit does the

following generate?

if (curstate = s0) then
outa <= ‘1’;

elsif (curstate = s1) then
outb <= ‘1’;

else
outc <= ‘1’;

end if;

• How about?
outa <= ‘0’;
outb <= ‘0’;
outc <= ‘0’;
if (curstate = s0) then

outa <= ‘1’;
elsif (curstate = s1) then

outb <= ‘1’;
else

outc <= ‘1’;
end if;

28-Jan-08

4

28-Jan-08 (13)

Combinatorial logic
• To synthesize combinational logic using a

process, all inputs to the design must appear in
the sensitivity list.
– If not synthesis and simulation may differ

• To synthesize combinational logic using a
process, all objects must be assigned under all
conditions.

• Rule: for combinatorial logic, all input
combinations involve the variable being
assigned before it is read

• Hint: best way is to assign first as in previous
slide column 2

http://www.doulos.com/knowhow/vhdl_designers_guide

28-Jan-08 (14)

To do synchronous reset
if (reset = ‘1’) then

oe <= ‘-’; we <= ‘-’;
nextstate <= idle;

else
case curstate is

when idle =>
oe <= ‘0’; we <= ‘0’;
if (ready = ‘1’) then

nextstate <= decision;
else

nextstate <= idle;
end if;

…
end if;

• ‘-’ means “don’t care”
• it is easy to make a

mistake here so be
careful!
– Check the number of

inferred
latches/registers is
what you expect

28-Jan-08 (15)

A better way
statecomb: process(curstate, rw, ready)
begin

case curstate is
when idle =>

oe <= ‘0’; we <= ‘0’;
if (ready = ‘1’) then

nextstate <= decision;
else

nextstate <= idle;
end if;

….
end case;
if (reset = ‘1’) then

nextstate <= idle;
end if;

end process statecomb;

• This takes advantage
of the fact that the last
assignment to
nextstate is applied

• We do not need to
remember to make all
the outputs “don’t
cares”

28-Jan-08 (16)

Asynchronous reset
stateclkd: process(clk)
begin

if (reset = ‘1’) then
curstate <= init;

else if (clk’event and clk = ‘1’)
then

curstate <= nextstate;
end if;

end process stateclkd;

• May require less
hardware since the
FPGA can use the
reset of the flip-flop
rather than additional
combinatorial logic
– could also use GSR

feature

28-Jan-08

5

28-Jan-08 (17)

Another way to describe the circuit
(one process instead of two)

if CLK'event and CLK = '1' then
if reset='1' then

state <= idle;
else
case state is

when decision =>
if rw then

state <= read;
elsif ~rw then

state <= write;
end if;

when idle =>
if ready then

state <= decision;
end if;

...
end process;

-- signal assignment statements for
combinatorial outputs

oe <= 0 when (state = decision) else
1 when (state = read) else
0 when (state = write) else
0;

we <= 0 when (state = decision) else
0 when (state = read) else
1 when (state = write) else
0;

end state_arch;

28-Jan-08 (18)

Optimization for speed/area
• Often there is no need

– FPGA usually fast enough so almost any description is
acceptable

• in this case use the most straightforward implementation (easiest to
write/read/debug)

– otherwise giving timing constraints often does the job

• Optimization
– FSM dependent

• most efficient FSM depends on # states, complexity of logic etc
– architecture dependent

• different for FPGA/CPLD/ASIC
– speed max freq?, smallest clock to output delay?

• interrelated but we can optimize one in favor of another

28-Jan-08 (19)

Other FSM architectures

• We will look at 4 different implementations
– outputs decoded from state bits

combinatorially
– output decoded in parallel output registers
– outputs encoded within state bits
– one hot encoding

28-Jan-08 (20)

Outputs decoded from state bits
combinatorially

• This is the technique described earlier
• Output logic is a combinatorial function of

the state
– suffers from an additional delay from output of

state bits to the output signals

28-Jan-08

6

28-Jan-08 (21)

Output decoded in parallel
output registers

• Decode the outputs before the state bits are registered i.e. at the
output of the nextstate

• Outputs are generated earlier than the previous version this is
because the output combinatorial logic delay is removed

• Area larger because we have additional registers for the output
• Speed we have two combinatorial delays to the output so maximum

speed may be affected

Next State Logic State Registersinputs next_state current_state

outputsOutput Logic Output Registers

28-Jan-08 (22)

Outputs encoded within state
bits

• An example is a counter - the output is also the state
• Find a state encoding which directly generates the output

– design more difficult
• we need to find such an encoding
• code more complicated and difficult to read

– can resolve clashes by adding outputs to differentiate similar bits
• e.g. for the memory controller can add ST0 to differentiate the IDLE and

DECISION states

• Efficiency depends on the particular circuit
– may be more/less efficient in area/speed, best way is to try it for a

critical design

Next State Logic State Registersinputs next_state

current_state

outputs

28-Jan-08 (23)

One hot encoding

• Use n flip-flops to represent an n-state FSM
• Significantly reduces the logic for outputs and

nextstate
– why?
– also reduces logic to generate outputs
– at the expense of more registers

• FPGAs
– rich in registers
– for max speed and small to medium FSMs often the

best choice

28-Jan-08 (24)

Mealy machines

• All FSMs we have discussed are Moore
machines since outputs are functions only of
the current state
– for Mealy FSMs, outputs functions of current state

and inputs

28-Jan-08

7

28-Jan-08 (25)

Fault tolerance
• What happens if for whatever reason the FSM gets into

an undefined state
– fault tolerant designs can recover

case curstate is
…
when others => nextstate <= idle;

end case;

– alternatively could enter an error state that somehow reports
– explicit “don’t care”
when others => nextstate <= “------”;

28-Jan-08 (26)

Fault tolerance for one-hot
designs

• There are many more possible illegal
states for 1-hot designs
– could detect with
badstate <= (s1 and (s2 or s3 or s4)) or

(s2 and (s1 or s3 or s4))
(s3 and (s1 or s3 or s4))
(s4 and (s1 or s2 or s3));

– this is quite expensive, affects performance
and area

– could be pipelined

28-Jan-08 (27)

BlockRAM Applications, State
Machine

Store next address in the ROM
Conditional jump info is being entered as
additional address inputs
One BlockRAM can be split in two:

One 18K dual-port = two 9K BlockRAMs
with independent everything:
(R/W, clock, address, data content, aspect ratio)
200 MHz, independent of complexity

Slide courtesy of Peter Alfke

28-Jan-08 (28)

Fast State Machine in one
BlockRAM

256 states, 4-way branch (or 128 states, 8-way)
36 optional parallel outputs from the second port

200 MHz operation, independent of code

8 bits 8 + 1 bits
Branch
Control 2 bits

Output

BlockROM

1K x 9

256 x 368 bits 36 bits

Slide courtesy of Peter Alfke

28-Jan-08

8

28-Jan-08 (29)

Conclusions

• Studied many different ways to implement
FSMs

• Mostly we use
– outputs decoded combinatorially from state

registers
– one-hot (particularly good for high speed

small-medium FSMs on FPGAs)
– RAM/ROM

28-Jan-08 (30)

Review Questions
• Implement a latch, D-flip flop and SR flip flop in

VHDL (check with any text book)
• Implement a simple 2-bit counter with an “up”

and “down” switch in VHDL (i.e. pressing up
increases the count and down decreases it)

• Add a synchronous reset to it
• Study the FPGA resource usage and make sure

what you implemented is what was expected
• Make sure you understand how to implement a

ROM-based FSM

28-Jan-08 (31)

References

• http://www.actel.com/documents/hdlcode_ug.pdf
is an excellent tutorial on HDL, particularly the
“Technology Independent Coding Style” chapter.

28-Jan-08 (32)

Project Ideas
Functions well suited to FPGA

acceleration
• searching
• sorting
• signal processing
• audio/video/image manipulation
• basestations
• encryption
• error correction
• coding/decoding
• packet processing
• random-number generation for Monte

Carlo simulations

• Specific ideas
– Parallel sort/search
– Linear regression
– Artificial neural network
– Genetic algorithm
– RC4/AES/RSA encryption
– Regular expression compiler
– Mersenne twister RNG
– Elementary functions
– Module generators for different

applications
– Simple high level synthesis tools
– Graphics adaptor (vga/svga)
– Floating point unit
– FSL link
– Compression (MP3, video, Huffman,

Lempel-Ziv)
– DLL, PLL, DAC, wireless link etc
– SD, CF, IR, hard disk etc
– Embedded applications using the

microblaze

