
Incremental Methods for FSM Traversal
Gitanjali M. Swamy Robert K. Brayton Vigyan Singhal
Department of Electrical Engineering and Computer Sciences. Cadence Berkeley Labs

University of California at Berkeley 1919 Addison St.
Berkeley, CA 94720 Berkeley, CA 94704

Abstract
Computing the set of reachablestates of a finite state machine, is an
important component of many problems in the synthesis, and for-
mal verification of digital systems. The process of design is usually
iterative, and the designer may modify and recompute information
many times, and reachability is called each time the designer mod-
ifies the system, because current methods for reachability analysis
are not incremental. Unfortunately, the representation of the reach-
able states that is currently used [1] in synthesis and verification,
is inherently non-updatable. We solve this problem by present-
ing alternate ways to represent the reachable set, and incremental
algorithms that can update the new representation each time the
designer changes the system. The incremental algorithms use the
reachable set computed at a previous iteration, and information
about the changes to the system to update it, rather than compute
the reachable set from the beginning. This results in computational
savings, as demonstrated by the results

1 Introduction
Reachability is an essential computation in both formal verification
[2] as well as sequentialsynthesis [3] & [4]. Given a directed graph,
and a set of initial nodes in the graph, reachability computes the
set of nodes on some path from the initial nodes. A finite state
machine (or FSM) can be represented by a directed graph, which
is also called a state transition graph. Computing the reachable
states (nodes) of this graph is an essential computation in sequential
synthesis and formal verification, and can be done by a breadth first
search (BFS) exploration of the state transition graph beginning at
the initial states.

Unfortunately this computation explodes when the number of
states in the finite state machine becomes very large. This is often
called the state explosion problem. To overcome this problem, an
implicit representation called a binary decision diagram or BDD
[5], is sometimes used to represent all the required quantities. e.g.
the transition relation, which implicitly represents the FSM’s state
transition graph, and any set of states (initial, reachable etc.). When
BDD’s are used, the steps in the BFS traversal of the state transition
graph, can be written as fixed point computations of propositional
formulae on the transition relation, initial states etc ([6]).

The process of design is incremental, and the designer may
modify the design many times. The current techniques for reach-
ability require that each time the designer modifies the design, the
set of reachable states must be re-computed from the beginning.
This results in unnecessary re-computation, which is particularly
cumbersome in light of the state explosion problem. Instead, it is
preferable if the set of reachable states can be updated incremen-
tally at each iteration of the design process.

This paper deals with the construction of such incremental al-
gorithms for reachability. The complete reachability analysis is
executed only once, and all successive changes are propagated
from the previous iteration. We note that knowing only the set of

FSM1 FSM2

1 2 3

S

6 4

VS S

1 2 3

6 4
5

5

Figure 1: Reachability is non-incremental

reachable states obtained from the reachability computation is not
sufficient for updating the reachable set. This can be understood
by considering the two examples in figure 1. Both have identical
reachable states, but if edge (2;3) is deleted, then fsm1 has a
different set of reachable states from fsm2. This is due to the
presence or absence of edge (5; 4), and if no traversal information
is stored, then this cannot be determined without examining the
entire state space of the two FSM’s.

We overcome this problem by storing a reached state relation to
represent the reachable states, instead of the set of reached states.
The spanning tree, or graph that can be generated by any BFS
type procedure for reachability are valid reached state relations.
We update this relation after every change. For example, refer to
the FSM in figure 2. Usual reachability algorithms just store 0-1
reachable information, i.e. whether or not the state is reachable. We
store the spanning tree of edges computed, during FSM traversal.
We use information about the changes made to the system, and the
original spanning graph of the reachable states, to compute a new
spanning tree, which represents the new reachable states.

The paper is organized as follows: the basic definitions are given
in section 2. Previous work is described in section 3. Section 4
describes how changes to the system are characterized, and two
incremental algorithms for reachability; how this information can
be computed, and updated in an implicit framework using BDD’s.
We present some results in section 5. We present future directions
for this work in section 6.

For brevity, details of proofs of theorems have been omitted;
they may be found in [7].

2 Definitions
Definition 1 Finite State Machine: A finite state machine or
finite automatonM is a 5-tuple (Q;Σ;Γ; T; I) where� Q is a finite set of states� Σ is a finite set of input values� Γ is a finite set of output values� T � Q� Σ � Γ �Q is the transition relation� I is a set of initial or starting states of the machine.T (q; �;
; t) = 1 means that from state q 2 Q on input � 2 Σ,
there is a transition to some state t 2 Q, while the output is
 2 Γ.

1

2 3

4

5

6 7

1

2 3

4

5

6 7

1

2 3

4

5

6 7

1

2 3

4

5

6 7

R

R R

R

R

U U

Original Fsm 0-1 Reachable

Spanning tree Spanning Graph

Figure 2: Different ways of storing the reachable states

Thus an FSM can be represented by a state transition graph, whose
vertices are states, and edges are labelled with elements of (Σ�Γ).

Since, we are only concerned with reachable behavior in this
paper, we will be using the transition relation after removing input
and output dependencies. This will be referred to as T (x; y), wherex and y are present state and next state variables respectively. Note
that T (x; y) = 9(�;
)T (x; y; �;
).

Path: A sequenceof states, r = ro : : : ri : : : ; r 2 Q! , is a path,
or run of T for a word � = (�0 : : : �i : : :), � 2 Σ! , if r0 2 I and
for i � 0, 9
iT (ri; �i;
i; ri+1) = 1.

Definition 2 Reachable states: The set of reachable states is
denoted by R, q 2 R if and only if there is a path from some initial
state q0 2 I (the set of initial states) to q.

In general, let x represent the present state variables and y
represent the next state variables. T (x; y) represents the transition
relation, which defines a relationship between present states (x
variables) and next states (y variables) in the state transition graph,
irrespective of input and output, and T (y; x) represents the same
transition relation, with the caveat that the x and y variables are
interchanged (i.e. y used for present state). Let R(x) denote the
reachable states, and I(x) denote the initial states. In general,
since x; y are fixed (present, next state) variables over the state
space, any relation r(x; y), gives rise to a new relation r(y; x) by
interchanging the x and y variables.

Definition 3 Fixed point Let f(x) be a monotone (increasing or
decreasing) function, the fixedpoint FP of f given I is given by
the set f i, where f(f i(I) = f i(I)) (refer to [8]).

If f is monotonically increasing, then the fixed point is called the
least fixed point or LFP , and if f is monotonically decreasing, it
is called the greatest fixed point or GFP .FP (f(); IR = f(I)
if (R = I)

return R
else

return FP (f();R)

Initial Set

Superset Final

Final Set

GFP: Supply superset of final

Final Set

Subset Final

Intial Set

LFP: Supply subset of final

Figure 3: Fixed Points

Cproject(T(x,y),y)

1

2 3

4

5

1

2 3

4

5

Figure 4: Using Cproject

For example the set of reachable states is computed as theLFP (f(); I) of f(Q(x)) = Q(x) + 9yT (y; x) � Q(y), givenI(x) the initial states.
Our incremental algorithms will use the following fact about

fixed points: any subset of the final answer that contains the initial
set, returns the correct final answer to an LFP, when supplied to
any algorithm to compute it. Figure 3 illustrates this point. A
similar statement can be made about GFP computations, as shown
by Swamy, and Brayton [9].

Definition 4 Cproject Operator[10]: The cproject project op-
erator can be used to extract a tree subset graph of an
acyclic graph. The cproject operator is a selection opera-
tor, which when given a relation T (x; y), and a reference ver-
tex �(y) = �1(y1); : : : ; �n(yn) in the y = y1; : : : ; yn vari-
ables, F = cproject(T (x;y); y) = f(x; y0)j8x9y0 s:t: y0 =closest vertex to � such that T (x; y0) = 1g.

The interested reader may refer to [10] for a more detailed descrip-
tion of the cproject operator. For example, the operation of cproject
is shown in Figure 4.

3 Previous work
Computing the set of reachable states in the transition relation of
a finite state machine is equivalent to doing a traversal of the state
transition graph, beginning at the initial states. This traversal may
be breadth first, or depth first.

Touati et-al [6] Burch et-al [11], and Coudert et-al [1] inde-
pendently extended this concept to handle reachability in larger
systems, by using implicit methods. All quantities (transition rela-
tions, sets of states etc.) are represented by BDD’s (binary decision
diagrams), and the algorithm is represented by a fixed point com-
putation (refer to section 2).

Algorithm 3(T (x; y); I(x))f(Q(x)) = 9yT (y; x)Q(y) +Q(x)R(x) = LFP (f; I(x))
return R(x)

Unfortunately, this algorithm is not incremental, and if the designer
modifies the system, the reachable states have to be computed from

the beginning. In Swamy and Brayton [9], incremental algorithms
for methods of formal verification are described. Although reach-
ability is an essential part of any formal verification procedure, the
issue of how the reachability computation might be made incre-
mental is not discussed; we intend to address this issue here.

4 Incremental Algorithms for Reachability
Let R(x) is a set of reachable states in the system. We want to
use information about the changes to the system to incrementally
modify R(x). The potential for speedup is that R(x) need not be
recomputed from the beginning; intermediate results can be used
to avoid unnecessary computations.

Unfortunately, as shown in Figure 1 in section 1, just the old set
of reachable states is not sufficient the reachable set. However, the
traversal tree that is generated during the fsm traversal, or a variant
of it, may be used to update the reachable set. Thus, we overcome
the aforementioned problem by storing a variant of the traversal
tree that can be generated during reachability computations. We
call this variant the reached state relation (P (x; y)). This variant
must satisfy the following properties:� It must be acyclic.� It must only include edges between two reachable states.� For each reachable state, there must be a path from one of the

initial state to it.

Any relation that satisfies these conditions is a valid representation
of the reached states.

Note that if P (x; y) is any acyclic relation (graph) then9yP (x;y) + 9yP (y; x) = R(x). If P (x; y) is a tree we say
that P is a spanning tree.

We implement two incremental algorithms. The first choosesP to be the spanning tree that is obtained by retaining only one
of the many edges traversed to a reach a state from one of its
neighbors, during reachability computations. The second choosesP to be a spanning graph that is a subset of the transition relation.
Figure 5 shows the spanning tree, and the spanning graph for a
given transition structure. Thus, instead of storing the reachable
states 1;2; 3; 4; 5, we store the tree (1; 2); (2;3); (3; 4); (1;5), or
the graph (1; 2); (2; 3); (3;4); (1; 5); (5; 3).

Note that for these two representations, I(x) + 9yP (y; x) =R(x), also holds. Once the designer changes the system, the
current P (x;y) is modified using information about the changes
made to the system and this process is repeated as often as the
system changes.

4.1 Characterizing Incremental Changes
There are four different incremental changes to an instance of
reachability. Briefly, changes to the system may consist of 1)
addition or subtraction of edges to the transition relation, and 2)
addition or subtraction of states (and hence edges) to the state
space of the machine. Addition and subtraction of states can be
characterized in terms of edges. Removing a state from the state
space is equivalent (behaviorally) to removing all edges to the
state, thus making it unreachable. Similarly, if a state is added to
the state space, it is similar to making one of the unreachable states
in the state space reachable by adding edges.

Thus, we consider only two types of incremental change: ad-
dition and subtraction of edges. For each type we first deal with
a set of changes of the same type, and then we provide a general
incremental algorithm to handle a complex change with many in-
dividual types. The algorithms are given in terms of implicit BDD
operations.

Suppose the designer modifies the original transition relation T
to a new transition relation Tnew . Using Tnew and T , we create

two sets: sub and add. sub consists of all deleted transitions,
which were removed in Tnew and add consists of all transitions
added in Tnew . The exact computation of add and sub under
different methods for changing input, is described in [7].

4.2 Spanning Tree Incremental Algorithm
In this section we deal with an incremental algorithm, which
chooses P (x; y) to be a spanning tree that can generated during
the course of reachability computations.

4.2.1 Computing the spanning tree

The implicit reachability algorithm described in Section 3, begins
with a current set of the initial states of the FSM. At each stage
the set of states reachable in one step from the current set are
computed, and added to the current set. This set of states that
can be reached in one step is called the “image”. Computing the
image of the current set, involves computing the edges of the FSM
that begin at any state in the current set, and terminate at any state
of the FSM. This is part of a BFS traversal of the state transition
graph. During this BFS procedure we choose to select only one
of the many edges that terminate at a given state. This returns a
spanning tree graph that spans all the reachable states of this FSM.
In order to decide which edge to choose as the representative edge,
any selector function like “cproject” (defined in Section 2) may
be used. Thus the spanning tree is computed by the following
algorithm, where P (x; y) denotes the spanning tree, R(x) the set
of reachable states, and �0(x; y) is the initial spanning tree.

The following algorithm takes as input a starting spanning tree
(which can be the tree of edges from initial states), and returns a
spanning tree for the reachable states in the FSM.

Algorithm 4.2.1(T (x; y); �0(x; y))f(Q(x;y)) = cproject(R(x) � T (x; y) �R(y); y) +Q(x; y)
where R(x) = 9y(Q(y; x) +Q(x; y))P (x;y) = LFP (f(); �0(x;y))

return P (x;y)
As an example of this procedure consider the example in Figure 5

Lemma 4.1 Algorithm 4.2.1 is correct, i.e. it returns a spanning
tree of the state transition graph if �0(x; y) = cproject(I(x) �T (x; y) � I(y); y), i.e. the initial spanning tree, and I(x) is the set
of initial states.

A stronger statement about this algorithm for the spanning tree,
can be stated as follows:

Theorem 4.2 The Algorithm 4.2.1 returns a correctspanning tree,
if �0 is any subset of the spanning tree that includes all the initial
states .

4.2.2 Addition of Edges

If the only changes to the system consist of the addition of edges to
the transition relation, then the new spanning tree is a superset of
the current spanning tree. Note that adding edges to the transition
relation can never make a reachable state unreachable and hence
can never remove a state (representative edges) from the spanning
graph. Hence the new spanning tree must be a superset of the
current spanning tree. The following lemma summarizes this:

Lemma 4.3 If the only change to the system consists of the addi-
tion of edges to the transition relation, thenP (x;y) � Pnew(x; y).

2 3

4

76

5

1 1

2 3

4

5

6 7

11

2 3

4

5

6 7

1

2 3

4

5

6 7

Original Fsm

Spanning tree (SP)

Figure 5: Computing the Spanning Tree P (x;y)
4.2.3 Deletion of Edges

If edges that do not belong to the spanning tree are deleted from
the transition relation, they do not affect the spanning tree, and
it remains the same. However, if these edges do belong to the
spanning tree, then potentially every (eventual) successor edge of
each deleted edge may be removed from the spanning tree. After
the removal of these edges, we may be left with a proper subset
of the spanning tree. This is the starting point for the iterative
reachability Algorithm 4.2.1.

Let sub(x; y) denote the edges that are deleted from the tran-
sition relation, and P+(x;y) denote the spanning tree minussub(x; y) and all its successors. P+(x; y) may be computed as
the greatest fixed point of P+(x;y) � (9yP+(y; x) + I(x)), givenP (x;y)� sub(x; y); i.e. by iteratively deleting all states that have
no predecessors. This notion is formalized in the following lemma:

Lemma 4.4 If the only change to the system consists of the subtrac-
tion of edges from the transition relation, f(Q(x; y)) = (Q(x; y) �(9yQ(y; x) + I(x))), and P+(x; y) = GFP (f(); (P (x;y) �sub(x; y))) � Pnew(x;y).
4.2.4 Incremental Spanning Tree P Algorithm

A general change consists of both the addition, and subtraction
of edges. Let Tnew denote the new transition relation that is
obtained by adding, and subtracting the requisite edges from the
transition relation, and Pnew be the corresponding spanning tree.
Lemmas 4.3 and 4.4 can be combined to give the following lemma.

Lemma 4.5 For any general change to
the system,f(Q(x;y)) = (Q(x; y) � (9yQ(y; x) + I(x))), andP+(x; y) = GFP (f;P (x; y)) � Pnew(x; y).
Note that this lemma, in conjunction with Theorem 4.2 can be used
to compute a new spanning tree via the following algorithm,

Algorithm 4.2.4Tnew(x; y) = T (x; y) + add(x;y)� sub(x; y)

f(Q(x;y)) = (Q(x; y) � (9yQ(y; x) + I(x)))P+(x; y) = GFP (f; (P (x; y)� sub(x; y))
return Algorithm 4.2.1(Tnew(x;y); P+(x; y); I(x))

Here P (x;y) denotes the spanning tree before the change, Tnew
is the new transition relation, and I(x) the initial set of states. In
order to demonstrate this algorithm consider Figure 6.

6

5 5

1

2 3

4

5

1

2 3

4

5

6 7

1

2 3

4 1

2 3

4

76 7

7

Original Fsm Old spanning tree

New spanning tree After removing sucessors of {2,3} from tree
{4,5} not on tree; no effect

6

Edge {2,3} and {4,5} deleted,

Edge {5,6} added

Figure 6: Updating the Spanning Tree P (x;y)
4.3 Incremental Spanning Graph Algorithm
Since the computation of the spanning tree is somewhat compli-
cated, a variant of this procedure, which computes a spanning
graph rather than a tree may also be used. The basic procedure is
the same; however this procedure does not use the cproject selec-
tor, as it does not require a tree. The computation of this graphP 0(x; y) � T (x; y) is given by the following algorithm, where�0(x; y) = I(x) � T (x; y) � I(y):
Algorithm 4.3(T (x; y); �0(x; y))f(Q(x;y)) = (R(x) � T (x; y) �R(y)) +Q(x; y)

where R(x) = 9y(Q(y; x) +Q(x; y))P 0(x;y) = LFP (f(); �0(x;y))
return P 0(x; y)

4.3.1 Addition of Edges

All conclusions that were made for a spanning tree in the previous
section, also hold for the spanning graph. Hence Lemma 4.3 also
holds for the graph P 0(x;y).
4.3.2 Deletion of Edges

If edges that do not belong to the spanning graph are deleted from
the transition relation, they do not affect the spanning graph, and
it remains the same. However, if these edges do belong to the
spanning graph, then potentially every (eventual) successor edge
of each deleted edge may be removed from the spanning graph.
Note that any successor that has another predecessor does not need
to be removed. After the removal of these edges, we may be left

with a proper subset of the spanning graph. This is the starting
point for the iterative reachability Algorithm 4.3. This set can also
be computed by using lemma 4.6, i.e. retaining states that have
predecessors.

Lemma 4.6 If the only change to the system consists of the subtrac-
tion of edges from the transition relation, f(Q(x; y)) = (Q(x; y) �(9yQ(y; x) + I(x))), and P+(x; y) = GFP (f(); (P (x;y) �sub(x; y))) � Pnew(x;y).
4.3.3 Incremental Spanning Graph P 0 Algorithm

A general change consists of both the addition, and subtraction
of edges. Let Tnew denote the new transition relation that is
obtained by adding, and subtracting the requisite edges from the
transition relation, andP 0new be the correspondingspanning graph
is computed via the following algorithm,

Algorithm 4.3.3Tnew(x; y) = T (x; y) + add(x;y)� sub(x; y)f(Q(x; y)) = (Q(x; y) � (9yQ(y; x) + I(x)))P 0+(x;y) = GFP (f; (P 0(x; y)� sub(x; y)))
return Algorithm 4.3(Tnew(x; y); P 0+(x; y))

HereP 0(x; y) denotes the spanning graph before the change,Tnew
is the new transition relation, and I(x) the initial set of states.

4.4 Extending Incremental FSM Traversal to Par-
tial Products Heuristics

All the methods described in the previous section have the intrinsic
flaw that they require building the monolithic transition relation
associated with the product machine. However, this is not neces-
sary for traversal; in fact building and manipulating the monolithic
product transition relation is a more time-consuming and expensive
method of fsm traversal. In practise, traversal may be done using
the partial product heuristics, as described in [6], [12] [13], and
[14]. Thus, traversal requires computing the fixed point off(Q) = Q(x) + �Q(x)�Q(x) = (9x;iT1(x; y1; i) : : : Tn(x;yn; i) �Q(x))y xR(x) = LFP (f(Q); I(x))
where9i(T1(x; y1; i)�T2(x; y2; i) : : : Tn(x; yn; i) = T (x; y)), the
product transition relation. However, it has been shown that it is
much more efficient to find efficient methods for computing the
result f(Q) from the previous expression, rather than forming
the product transition relation. This can be extended in order
to compute the reached state relation. In this section, we will
describe how the reached state relation (we will only be describing
the spanning graph representation) can be computed using partial
products heuristics. We will rely on the the methods of [13] to
efficiently compute an expression of the form (9x;i(T1(x; y1; i) �T2(x; y2; i) : : : Tn(x; yn; i)) �Q(x)) Thus algorithms 4.3 and 4.3.3
can be re-written in the partial product context as:

Algorithm 4.4.1(T (x; y); �0(x;y))f(Q(x; y)) = Q(x; y) + �Q(x; y)�Q(x; y) = (9iT1(x; y1; i) : : : Tn(x; yn; i) �R(x)) �R(y)R(x) = 9xQ(x; y)y xP (x; y) = LFP (f(); �0(x; y))
return P (x; y)

0

50

100

150

200

250

300

350

s27 s298 s344 s400 s526 s641 s713 s820 gigamax tlc sbc

T
im

e
R

at
io

s
(%

)

Examples

Percentage Ratios of Incremental to Non-Incremental Time

"ISG_NR"
"IST_NR"

"PIRG_PNR"
"EQUAL"

Figure 7: IncrementalT imeNon�IncrementalT ime � 100

Algorithm 4.4.2Tnew(x; y) = T (x; y) + add(x; y)� sub(x; y)f(Q(x;y)) = (Q(x; y) � (9xQ(x; y)y x + I(x)))P 0+(x; y) = LFP (f; (P 0(x;y)� sub(x; y)))
return Algorithm 4.4.1(Tnew(x;y); P 0+(x; y))

For a deterministic transition system, the spanning graph, which is
a subset of the transition relation is also deterministic, and henceQ(x; i; y) = Q1(x; i; y1) � Q2(x; i; y2) : : :Qn(x; i; yn). The ex-
pressions R(x) = 9x;iQ1(x; i; y1) �Q2(x; i; y2) : : :Qn(x; i; yn),
and � Q(x; y) = ((9i(T1(x; y1; i) � T2(x; y2; i) : : : Tn(x;yn; i) �R(x))) are both of the form required by the heuristic algorithms
of [13]. A similar extension can be made to compute the quantifi-
cation operation used for the deletion of edges.

5 Results and Conclusions
We have implemented the algorithms described in the previous sec-
tions, in the HSIS [15] environment, and tested these on some IS-
CAS 89 and miscellaneous benchmarks. The following graphs and
table(Figure 7, Figure 8 and Table 1) summarize the results. The
basic algorithm was run once, and then random changes consisting
of addition and subtractions of sets of edges, were made. After
these changes were made, both incremental and non-incremental
algorithms were run on the new input. This process was repeated.
The actual set of edges that are added, and subtracted is randomly
chosen. The NR algorithm refered to Algorithm 3 reported in
section 3, IRT refers to Algorithm 4.2.4, IRG refers to Algo-
rithm 4.3.3, and PIRG refers to algorithm 4.4.2. All successive
incremental changes were made directly to the system within the
HSIS environment. Figure 7 plots the percentage ratio for in-
cremental time to non incremental time for some representative
examples; this is plotted for each separate method. The three ratios
presented are IRG to NR, IRT to NR, and PIRG to PNR. Notice
that most of the points lie below the EQUAL (100 percent) line,
indicating that the incremental algorithm took less time. Only the
partial product methods were able to handle larger examples, and
examples tlc, gigamax, sbc etc. only report partial product times.
Figure 8 presents the average ratio of the depth (number of itera-
tions to fixedpoint within the algorithm) taken by the incremental
algorithm as compared to the non-incremental algorithm in a single
run of both algorithms. Notice that since this ratio is always smaller
than 1, the incremental algorithm always takes fewer iterations to
reach a fixed point. Table 1 reports the exact times over 3 change it-
erations taken by the incremental (partial product implementation)
graph algorithm as compared to the non-incremental. The results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

s27 s298 s344 s400 s526 s641 s713 s820 gigamax tlc sbc

N
um

be
r

of
 It

er
at

io
ns

 to
 F

ix
ed

po
in

t R
at

io

Examples

Ratio depth (iterations to fixed point) of Incremental to Non-Incremental

"DEPTH"

Figure 8: IncrementalDepthNon�IncrementalDepth
Total Time (sec)

Example Incremental Non-Incremental
PIRG PNR

s27 0.01 0.01
s298 0.03 2.26
s344 2.76 1.80
s400 1.72 12.57
s526 3.6 7.44
s641 6.07 9.06
s713 5.78 8.85
s820 0.12 0.16

gigamax 4.07 6.11
tlc 0.09 0.53

sbc 1109.78 1363.86

Table 1: Time taken for 3 design iterations

show that the incremental algorithm can be much faster than the
non-incremental algorithm. The gains come from the fewer num-
ber of iterations to fixedpoint within each algorithm, and figure 8
shows that this is indeed the case. It is important to note that
the incremental algorithm may actually take more time than the
non-incremental algorithm for certain changes.

6 Future directions
We have described and implemented incremental algorithms for
reachability. Currently we are in the process of refining our im-
plementation to run it on larger and more complex circuits, by
storing the spanning graph as components rather than a single en-
tity. This would also attempt to solve the memory requirement
problem created because these methods store more information.

We also intend to try using our methods to compute the reachable
set of hard examples, where the normal reachability computation
might blow up, by successively refining the input.

We also plan to examine real design changes to come up with a
more realistic way of inducing changes to the system.

We are planning to use our incremental algorithms to create
more efficient verification and synthesis methods.

References
[1] O. Coudert and J. C. Madre, “A Unified Framework for the

Formal Verification of Sequential Circuits,” in Proc. Intl.
Conf. on Computer-Aided Design, pp. 126–129, Nov. 1990.

[2] H. Touati, R. K. Brayton, and R. P. Kurshan, “Checking Lan-
guage Containment using BDDs,” in Proc. of Intl. Workshop
on Formal Methods in VLSI Design, (Miami, FL), Jan. 1990.

[3] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli, “Sequential Cir-
cuit Design Using Synthesis and Optimization,” in Proc. Intl.
Conf. on Computer Design, pp. 328–333, Oct. 1992.

[4] H. Cho, G. D. Hachtel, and F. Somenzi, “Redundancy Identi-
fication and Removal Based on Implicit State Enumeration,”
in Proc. Intl. Conf. on Computer Design, pp. 77–80, Oct.
1991.

[5] R. Bryant, “Graph-based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. C-35, pp. 677–
691, Aug. 1986.

[6] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “Implicit State Enumeration of Fi-
nite State Machines using BDD’s,” in Proc. Intl. Conf. on
Computer-Aided Design, pp. 130–133, Nov. 1990.

[7] G. M. Swamy, V. Singhal, and R. K. Brayton, “Incremental
methods for Fsm Traversal,” Tech. Rep. UCB/ERL M95/,
Electronics Research Lab, Univ. of California, Berkeley, CA
94720, 1995.

[8] E. A. Emerson, “Temporal and Modal Logic,” in Formal Mod-
els and Semantics (J. van Leeuwen, ed.), vol. B of Handbook
of Theoretical Computer Science, pp. 996–1072, Elsevier
Science, 1990.

[9] G. M. Swamy and R. K. Brayton, “Incremental Formal De-
sign Verification,” in Proc. Intl. Conf. on Computer-Aided
Design, pp. 458–465, Nov. 1994.

[10] B. Lin and F. Somenzi, “Minimization of Symbolic Re-
lations,” in Proc. Intl. Conf. on Computer-Aided Design,
pp. 88–91, Nov. 1990.

[11] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill,
“Symbolic Model Checking: 1020 States and Beyond,” Infor-
mation and Computation, vol. 98, no. 2, pp. 142–170, 1992.

[12] J. Burch, E. Clarke, and D. E. Long, “Representing Circuits
More Efficiently in Symbolic Model Checking,” in Proc. of
the Design Automation Conf., June 1991.

[13] R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier, and C. Pix-
ley, “Efficient formal design verification data structure and al-
gorithms,” in Proc. Intl. Workshopon Logic Synthesis, (Tahoe
City, CA), May 1995.

[14] R. Hojati, S. Krishnan, and R. K. Brayton, “Heuristic Algo-
rithms for Early Quantification and Partial Product Minimiza-
tion,” Tech. Rep. UCB/ERL M94/11, Electronics Research
Lab, Univ. of California, Berkeley, CA 94720, 1994.

[15] R. Brayton et al., “HSIS: A BDD-Based Environment for For-
mal Verification,” in Proc. of the Design Automation Conf.,
pp. 454–459, June 1994.

