| ncremental Methods for FSM Traver sal

Gitanjali M. Swamy Robert K. Brayton Vigyan Singhal
Department of Electrical Engineering and Computer Sciences. Cadence Berkeley Labs
University of Californiaat Berkeley 1919 Addison St

Berkeley, CA 94720

Abstract

Computing the set of reachablestatesof afinite statemachine, isan
important component of many problems in the synthesis, and for-
mal verification of digital systems. Theprocessof designisusually
iterative, and the designer may modify and recompute information
many times, and reachability is called each time the designer mod-
ifies the system, because current methods for reachability analysis
arenot incremental. Unfortunately, the representation of the reach-
able states that is currently used [1] in synthesis and verification,
is inherently non-updatable. We solve this problem by present-
ing alternate ways to represent the reachable set, and incremental
algorithms that can update the new representation each time the
designer changesthe system. The incremental algorithms use the
reachable set computed at a previous iteration, and information
about the changesto the system to update it, rather than compute
the reachableset from the beginning. Thisresultsin computational
savings, as demonstrated by the results

1 Introduction

Reachability isan essential computation in both formal verification
[2] aswell assequential synthesis[3] & [4]. Givenadirected graph,
and a set of initial nodes in the graph, reachability computes the
set of nodes on some path from the initial nodes. A finite state
machine (or FSM) can be represented by a directed graph, which
is also called a state transition graph. Computing the reachable
states(nodes) of thisgraphisan essential computationin sequential
synthesisand formal verification, and can be doneby abreadthfirst
search (BFS) exploration of the state transition graph beginning at
theinitial states.

Unfortunately this computation explodes when the number of
statesin the finite state machine becomesvery large. Thisis often
called the state explosion problem. To overcome this problem, an
implicit representation called a binary decision diagram or BDD
[5], is sometimes used to represent all the required quantities. e.g.
thetransition relation, which implicitly representsthe FSM’s state
transition graph, and any set of states(initial, reachableetc.). When
BDD’sare used, the stepsin the BFStraversal of the state transition
graph, can be written as fixed point computations of propositional
formulae on the transition relation, initial states etc ([6]).

The process of design is incremental, and the designer may
modify the design many times. The current techniques for reach-
ability require that each time the designer modifiesthe design, the
set of reachable states must be re-computed from the beginning.
This results in unnecessary re-computation, which is particularly
cumbersomein light of the state explosion problem. Instead, it is
preferable if the set of reachable states can be updated incremen-
tally at each iteration of the design process.

This paper deals with the construction of such incremental al-
gorithms for reachability. The complete reachability analysis is
executed only once, and all successive changes are propagated
from the previousiteration. We note that knowing only the set of

Berkeley, CA 94704

1 2 3 1 2 3
— > : ————————
FSM1 VS S FSM2 ®_©
6 5 4
6 5 4

Figure 1: Reachability is non-incremental

reachable states obtained from the reachability computation is not
sufficient for updating the reachable set. This can be understood
by considering the two examplesin figure 1. Both have identical
reachable states, but if edge (2, 3) is deleted, then fsm1 has a
different set of reachable states from fsm2. This is due to the
presence or absence of edge (5, 4), and if no traversal information
is stored, then this cannot be determined without examining the
entire state space of the two FSM’s.

We overcome this problem by storing a reached state relation to
represent the reachable states, instead of the set of reached states.
The spanning tree, or graph that can be generated by any BFS
type procedure for reachability are valid reached state rel ations.
We update this relation after every change. For example, refer to
the FSM in figure 2. Usual reachability algorithms just store 0-1
reachableinformation, i.e. whether or not the stateisreachable. We
store the spanning tree of edges computed, during FSM traversal.
We use information about the changes made to the system, and the
original spanning graph of the reachable states, to compute a new
spanning tree, which representsthe new reachable states.

Thepaperisorganized asfollows: the basic definitionsaregiven
in section 2. Previous work is described in section 3. Section 4
describes how changes to the system are characterized, and two
incremental algorithms for reachability; how this information can
be computed, and updated in an implicit framework using BDD's.
We present some resultsin section 5. We present future directions
for thiswork in section 6.

For brevity, details of proofs of theorems have been omitted;
they may befound in [7].

2 Dé€finitions

Definition 1 Finite State Machine: A finite state machine or
finite automaton M isa5-tuple (@, Z, I, T,) where

Q isafinite set of states

> isafinite set of input values

I" isa finite set of output values

T C @ xZxT x @ isthetransition relation

I isaset of initial or starting states of the machine.

T(q,0,v,t) = 1 meansthat from state ¢ € @ oninput o € Z,
thereisatransition to somestate ¢ € 2, while the outputis~ € I.

—© Or
@R
c@he v© O
Original Fsm 0-1 Reachable

Spanning tree

Spanning Graph

Figure 2: Different ways of storing the reachable states

Thusan FSM can berepresented by a state transition graph, whose
vertices are states, and edgesare labelled with elementsof (X x).

Since, we are only concerned with reachable behavior in this
paper, we will be using the transition relation after removing input
and output dependencies. Thiswill bereferredtoasT'(z, y), where
x and y are present state and next state variables respectively. Note
that T'(z, y) = o1 (z,y,0,7).

Path: A sequenceof states,r =r,...r;...,r € Q,isapath,
orrunof T'foraword o = (60...0i...),0 € X*,if ro € I and
fors > 0, Hle(T,‘, Oy Vi, 7“,‘+1) =1.

Definition 2 Reachable states: The set of reachable states is
denotedby R, ¢ € R if and onlyif thereis a path from someinitial
state go € I (the set of initial states) to q.

In general, let = represent the present state variables and y
represent the next state variables. T'(x, y) representsthe transition
relation, which defines a relationship between present states (=
variables) and next states (y variables) in the state transition graph,
irrespective of input and output, and T'(y,) represents the same
transition relation, with the caveat that the z and y variables are
interchanged (i.e. y used for present state). Let R(x) denote the
reachable states, and /(x) denote the initial states. In generdl,
since z, y are fixed (present, next state) variables over the state
space, any relation r(z, y), gives rise to anew relation r(y, =) by
interchanging the = and y variables.

Definition 3 Fixed point Let f(z) be a monotone (increasing or
decreasing) function, the fixedpoint £'P of f given I is given by
theset f*, where f(f*(I) = f*(1)) (refer to [8]).

If £ is monotonically increasing, then the fixed point is called the
least fixed point or LF' P, and if f is monotonically decreasing, it
is called the greatest fixed point or G F' P.
FP(f(),1

R=f(I)
if (R=1)

return R
else

return FP(f(), R)

Initial Set

Subset Final Superset Final

Intial Set

Final Set

LFP: Supply subset of final GFP: Supply superset of final

Figure 3: Fixed Points

@ Cproject(Tixy)y) 23
%@ o %& %

Figure 4: Using Cproject

For example the set of reachable states is computed as the
LFP(f(),1) of f(Q(x)) = Q(x) + 3,T(y,2) - Q(y), given
I(z) theinitial states.

Our incremental algorithms will use the following fact about
fixed points: any subset of the final answer that containstheinitial
set, returns the correct final answer to an LFP, when supplied to
any algorithm to compute it. Figure 3 illustrates this point. A
similar statement can be made about GFP computations, as shown
by Swamy, and Brayton [9].

Definition 4 Cproject Operator[10]: The cproject project op-
erator can be used to extract a tree subset graph of an
acyclic graph. The cproject operator is a selection opera-
tor, which when given a relation T'(z, y), and a reference ver-
tex a(y) = ai(y1),...,an(yn) inthey = y1,...,yn vari-
ables, F' = cproject(T(z,y),y) = {(=,y)|VaIy' s.t. y' =
closest vertex to a such that T(x,y’) = 1}.

Theinterested reader may refer to [10] for amore detailed descrip-
tion of the cproject operator. For example, the operation of cproject
isshown in Figure 4.

3 Previouswork

Computing the set of reachable states in the transition relation of
afinite state machineis equivalent to doing atraversal of the state
transition graph, beginning at the initial states. This traversal may
be breadth first, or depth first.

Touati et-al [6] Burch et-al [11], and Coudert et-al [1] inde-
pendently extended this concept to handle reachability in larger
systems, by using implicit methods. All quantities (transition rela-
tions, setsof statesetc.) arerepresentedby BDD’s (binary decision
diagrams), and the algorithm is represented by a fixed point com-
putation (refer to section 2).

Algorithm 3(T'(z, y), I (z))
Q%)) =3, T(y,)Q(y) + Q)
R(z) = LFP(f,1(x))
return R(z)

Unfortunately, thisalgorithmis not incremental, and if the designer
modifiesthe system, the reachabl e states haveto be computed from

the beginning. In Swamy and Brayton [9], incremental algorithms
for methods of formal verification are described. Although reach-
ability isan essential part of any formal verification procedure, the
issue of how the reachability computation might be made incre-
mental is not discussed; we intend to address this issue here.

4 Incremental Algorithmsfor Reachability

Let R(x) is a set of reachable states in the system. We want to
use information about the changesto the system to incrementally
modify R(x). The potential for speedupisthat R(x) need not be
recomputed from the beginning; intermediate results can be used
to avoid unnecessary computations.

Unfortunately, as shownin Figure 1in section 1, just the old set
of reachable states is not sufficient the reachable set. However, the
traversal tree that is generated during the fsm traversal, or avariant
of it, may be used to update the reachable set. Thus, we overcome
the aforementioned problem by storing a variant of the traversal
tree that can be generated during reachability computations. We
call this variant the reached state relation (P(z, y)). This variant
must satisfy the following properties:

e |t must be acyclic.

¢ |t must only include edges between two reachable states.

e For eachreachablestate, there must be a path from one of the
initial stateto it.

Any relation that satisfiesthese conditionsis avalid representation
of the reached states.

Note that if P(z,y) is any acyclic relation (graph) then
A, P(z,y) + 3,P(y,z) = R(z). If P(z,y) is atree we say
that P isaspanning tree.

We implement two incremental algorithms. The first chooses
P to be the spanning tree that is obtained by retaining only one
of the many edges traversed to a reach a state from one of its
neighbors, during reachability computations. The second chooses
P to be a spanning graph that is a subset of the transition relation.
Figure 5 shows the spanning tree, and the spanning graph for a
given transition structure. Thus, instead of storing the reachable
states 1, 2, 3, 4, 5, we store the tree (1, 2), (2, 3), (3,4), (1,5), or
thegraph (1,2), (2,3), (3,4),(1,5),(5,3).

Note that for these two representations, I(z) + 3, P(y,z) =
R(z), also holds. Once the designer changes the system, the
current P(z,y) is modified using information about the changes
made to the system and this process is repeated as often as the
system changes.

41 Characterizing Incremental Changes

There are four different incremental changes to an instance of
reachability. Briefly, changes to the system may consist of 1)
addition or subtraction of edges to the transition relation, and 2)
addition or subtraction of states (and hence edges) to the state
space of the machine. Addition and subtraction of states can be
characterized in terms of edges. Removing a state from the state
space is equivalent (behaviorally) to removing all edges to the
state, thus making it unreachable. Similarly, if a state is added to
the state space, it is similar to making one of the unreachabl e states
in the state space reachable by adding edges.

Thus, we consider only two types of incremental change: ad-
dition and subtraction of edges. For each type we first deal with
aset of changesof the same type, and then we provide a general
incremental algorithm to handle a complex change with many in-
dividual types. The algorithms are given in terms of implicit BDD
operations.

Suppose the designer modifies the original transition relation 7'
to anew transition relation 7"¢*. Using 7"“* and T, we create

two sets: sub and add. sub consists of all deleted transitions,
which were removed in 77" and add consists of al transitions
added in 7. The exact computation of add and sub under
different methods for changinginput, is describedin [7].

4.2 Spanning Tree Incremental Algorithm

In this section we deal with an incremental agorithm, which
chooses P(z, y) to be a spanning tree that can generated during
the course of reachability computations.

4.2.1 Computing the spanningtree

The implicit reachability algorithm described in Section 3, begins
with a current set of the initial states of the FSM. At each stage
the set of states reachable in one step from the current set are
computed, and added to the current set. This set of states that
can be reached in one step is called the “image”. Computing the
image of the current set, involves computing the edges of the FSM
that begin at any state in the current set, and terminate at any state
of the FSM. This is part of a BFS traversal of the state transition
graph. During this BFS procedure we choose to select only one
of the many edges that terminate at a given state. This returns a
spanning tree graph that spansall the reachable states of this FSM.
In order to decide which edgeto choose asthe representative edge,
any selector function like “cproject” (defined in Section 2) may
be used. Thus the spanning tree is computed by the following
algorithm, where P(z, y) denotes the spanning tree, R(x) the set
of reachable states, and 7o(x, y) istheinitial spanning tree.

The following algorithm takes as input a starting spanning tree
(which can be the tree of edges from initial states), and returns a
spanning tree for the reachable statesin the FSM.

Algorithm 4.2.1(T(x, y), 7o(, y)) _
f(Q(z,y)) = cproject(R(x) - T(x,y) - R(y),y) + Q(z,y)
where R(z) = 3,(Q(y, z) + Q(z,y))

P(z,y) = LEP(f(), 7o(z,y))
return P(z,y)

As an example of this procedure consider the example in Figure 5

Lemma4.1 Algorithm4.2.1 is correct, i.e. it returnsa spanning
tree of the state transition graph if 7o(z, y) = cproject(I(x) -
T(z,y)-1(y),y), i.e theinitial spanningtree, and I(z) isthe set
of initial states.

A stronger statement about this algorithm for the spanning tree,
can be stated as follows:

Theorem 4.2 TheAlgorithm4.2.1returnsa correctspanningtree,
if 7o is any subset of the spanning tree that includes all the initial
states.

4.2.2 Addition of Edges

If the only changesto the system consist of the addition of edgesto
the transition relation, then the new spanning tree is a superset of
the current spanning tree. Note that adding edgesto the transition
relation can never make a reachable state unreachable and hence
can never remove a state (representative edges) from the spanning
graph. Hence the new spanning tree must be a superset of the
current spanning tree. The following lemma summarizesthis:

Lemma 4.3 If the only change to the system consists of the addi-
tion of edgestothetransitionrelation, then P(z, y) C P (z, y).

®
9@<® @

& D

Original Fsm

@ @
Spanning tree (SP)

Figure 5: Computing the Spanning Tree P(z, y)

4.2.3 Deletion of Edges

If edges that do not belong to the spanning tree are deleted from
the transition relation, they do not affect the spanning tree, and
it remains the same. However, if these edges do belong to the
spanning tree, then potentially every (eventual) successor edge of
each deleted edge may be removed from the spanning tree. After
the removal of these edges, we may be left with a proper subset
of the spanning tree. This is the starting point for the iterative
reachability Algorithm 4.2.1.

Let sub(z, y) denote the edges that are deleted from the tran-
sition relation, and P*(x,y) denote the spanning tree minus
sub(z, y) and all its successors. P (z,y) may be computed as
the greatest fixed point of P* (x,y) - (3, P* (y,) + I(x)), given
P(z,y) — sub(z, y); i.e. by iteratively deleting all states that have
no predecessors. Thisnotionisformalized in thefollowing lemma:

Lemma4.4 Iftheonly changeto thesystemconsistsof thesubtrac-
tion of edgesfromthetransitionrelation, f(Q(z,y)) = (Q(z, y) -
(3yQ(y, 2) + I(x))), and P*(a,y) = GFP(f(),(P(z,y) -
sub(z,y))) C P™(z,y).

424 Incremental Spanning Tree P Algorithm

A general change consists of both the addition, and subtraction
of edges. Let 7"“" denote the new transition relation that is
obtained by adding, and subtracting the requisite edges from the
transition relation, and P"“* be the corresponding spanning tree.
Lemmas4.3 and 4.4 can be combined to give the following lemma.

Lemma4.5 For any general

the system, f(Q(z, y)) = (Q(=,y) - (3,Q(y,
P*(r,y) = GFP(f.P(x,y)) C P""(x.y).

change to
v) + I(x))), and

Notethat thislemma, in conjunctionwith Theorem 4.2 can be used
to compute a new spanning tree via the following algorithm,

Algorithm 4.2.4

7% (z,y) = T(z,y) + add(z,y) — sub(z, y)

f(Qx,y) = (@, y) - (3,Q(y, =) + I(x)))
Pt(x,y) = GFP(f,(P(z,y) — sub(x,y))
return Algorithm 4.2.1(T"% (2, y), P (=,), I(2))

~—

Here P(z,y) denotes the spanning tree before the change, 7
is the new transition relation, and I(x) the initial set of states. In
order to demonstrate this algorithm conS| ider Figure 6.

A

Origina Fsm Old spanning tree
Edge{2,3} and {4,5} deleted,
Edge{5,6} added
@ ©

A

P

M\@@

® @ ® O
After removing sucessors of {2,3} from tree New spanning tree

{4,5} not on tree; no effect

Figure 6: Updating the Spanning Tree P(z, y)

4.3 Incremental Spanning Graph Algorithm

Since the computation of the spanning tree is somewhat compli-
cated, a variant of this procedure, which computes a spanning
graph rather than a tree may also be used. The basic procedure is
the same; however this procedure does not use the cproject selec-
tor, as it does not require a tree. The computation of this graph
P'(z,y) C T(z,y) is given by the following algorithm, where

mo(z,y) = () - T(z,y) - 1(y):

where R(z) = 3,
P'(z,y) = LFP(f(), 70(,y))
return P'(z,y)

4.3.1 Addition of Edges

All conclusionsthat were made for a spanning tree in the previous
section, also hold for the spanning graph. Hence Lemma 4.3 also
holdsfor the graph P'(z, y).

4.3.2 Deletion of Edges

If edgesthat do not belong to the spanning graph are deleted from
the transition relation, they do not affect the spanning graph, and
it remains the same. However, if these edges do belong to the
spanning graph, then potentially every (eventual) successor edge
of each deleted edge may be removed from the spanning graph.
Note that any successor that has another predecessor doesnot need
to be removed. After the removal of these edges, we may be left

with a proper subset of the spanning graph. This is the starting
point for the iterative reachability Algorithm 4.3. This set can also
be computed by using lemma 4.6, i.e. retaining states that have
predecessors.

Lemma4.6 Iftheonly changeto thesystemconsistsof thesubtrac-
tion of edgesfromthetransitionrelation, f(Q(z,y)) = (Q(z, y) -
(3,Q(y,) + I(x))), and P*(,y) = GFP(f(),(P(z,y) —
sub(z,y))) C P™(z,y).

4.3.3 Incremental Spanning Graph P’ Algorithm

A general change consists of both the addition, and subtraction
of edges. Let 7™¢" denote the new transition relation that is
obtained by adding, and subtracting the requisite edges from the
transition relation, and P'"** bethe corresponding spanning graph
is computed via the following algorithm,

Algorithm 4.3.3
7% (z,y) = T(z,y) + add(z,y) — sub(z,
f(Q(z,) = (Qz,y) - (F,Q(y, v) + [(z))
Pt (z,y) = GFP(f,(P'(z,y) — sub(x,y)))
return Algorithm 4.3(T"<* (z, y), P'* (x, y))

y)
)

Here P'(x, y) denotesthe spanning graph before the change, 77
isthe new transition relation, and I (=) theinitial set of states.

4.4 ExtendingIncremental FSM Traversal to Par-
tial Products Heuristics

All the methods described in the previous section have theintrinsic
flaw that they require building the monolithic transition relation
associated with the product machine. However, this is not neces-
sary for traversal; in fact building and manipulating the monolithic
product transition relation isamore time-consuming and expensive
method of fsm traversal. In practise, traversal may be done using
the partial product heuristics, as described in [6], [12] [13], and
[14]. Thus, traversal requires computing the fixed point of

f(Q) = Qz)+4Q(x)

3Q(z) (FeiT1(z, y1,1) .
R(z) = LFP(f(Q),1(2))

(2, yn, 1) - Q(2))yen

where3; (T1(z, y1,1)-To(z, y2,4) . .. Tn(z, yn, 1) = Tz, y)), the
product transition relation. However, it has been shown that it is
much more efficient to find efficient methods for computing the
result (@) from the previous expression, rather than forming
the product transition relation. This can be extended in order
to compute the reached state relation. In this section, we will
describe how the reached state relation (we will only be describing
the spanning graph representation) can be computed using partial
products heuristics. We will rely on the the methods of [13] to
efficiently compute an expression of the form (3. ; (T1(z, y1, 1) -
To(z,y2,1) ... Tn(x, yn, 1)) - Q(x)) Thusalgorithms4.3and 4.3.3
can bere-written in the partial product context as:

Algorithm 4.4.1(T(z, y), 7o(z, y))
f(Q(z,y) = Q(z,y) +6Q(z,y) _
0Q(x,y) = (FiTa(z,y1,1) ... Tn(z, yn, 1) - R(z)) - R(y)
P(z,y) = LEP(f(), 7o(z,y))
return Pz, y)

Ratios of Ir to N tal Time
350 T T T T T

300 | i "EQUAL" -
250
200

150

Time Ratios (%)

50 [

f \ w

o . 4 . i W

s27 5298 s344 s400 526 s641 s713 s820 gigamax tic sbc
Examples

IncrementalTime
Non—IncrementalTime x 100

Figure 7:

Algorithm 4.4.2
7% (x,y) = T(z, y) + add(z, y) — sub(z,y
[(Q(z,y)) = (Q(z,y) - (FoQ(2,Y)y s + [(3)))
P'*(z,y) = LFP(f,(P'(2,y) — sub(z, y)))
return Algorithm 4.4.1(T"% (z,y), P't (2, y))

For adeterministic transition system, the spanning graph, which is
a subset of the transition relation is also deterministic, and hence
Q(l‘, i7 y) = Ql('r7 i7 yl) : QZ(-T7 i7 yZ) e Qn(-r7 i7 yn) The ex-
pressions R(z) = 3;,:Q1(x, 4, y1) - Q2(x,1,y2) ... Qn(x, 1, yn),
and s Q(z,y) = ((F:(Ta(z, y1,1) - To(x, y2,4) ... Tn(x, yn, 1) -
R(z))) are both of the form required by the heuristic algorithms
of [13]. A similar extension can be made to compute the quantifi-
cation operation used for the deletion of edges.

5 Resultsand Conclusions

We haveimplemented the algorithms describedin the previous sec-
tions, in the HSIS [15] environment, and tested these on some IS
CAS 89 and miscellaneousbenchmarks. Thefollowing graphsand
table(Figure 7, Figure 8 and Table 1) summarize the results. The
basic algorithm was run once, and then random changesconsisting
of addition and subtractions of sets of edges, were made. After
these changes were made, both incremental and non-incremental
algorithms were run on the new input. This processwas repeated.
The actual set of edgesthat are added, and subtracted is randomly
chosen. The N R algorithm refered to Algorithm 3 reported in
section 3, I RT refers to Algorithm 4.2.4, T RG refers to Algo-
rithm 4.3.3, and PI RG refers to algorithm 4.4.2. All successive
incremental changes were made directly to the system within the
HSIS environment. Figure 7 plots the percentage ratio for in-
cremental time to non incremental time for some representative
examples; thisisplotted for each separate method. Thethreeratios
presented are IRG to NR, IRT to NR, and PIRG to PNR. Notice
that most of the points lie below the EQUAL (100 percent) line,
indicating that the incremental algorithm took lesstime. Only the
partial product methods were able to handle larger examples, and
examplestlc, gigamax, sbc etc. only report partial product times.
Figure 8 presents the average ratio of the depth (number of itera-
tions to fixedpoint within the algorithm) taken by the incremental
algorithm as compared to the non-incremental algorithminasingle
run of both algorithms. Noticethat sincethisratio isalwayssmaller
than 1, the incremental algorithm always takes fewer iterations to
reach afixed point. Table 1 reportsthe exact timesover 3 changeit-
erations taken by the incremental (partial product implementation)
graph algorithm as compared to the non-incremental. The results

Ratio depth (iterations to fixed point) of Incremental to Non-Incremental
T T T T T T T

T
"DEPTH" -—

Number of Iterations to Fixedpoint Ratio

s$820 gigamax tic sbc

o ¢ .
s27 s298 s344 s400 $526 s641 s713
Examples

IncrementalDepth
Non—IncrementalDepth

Figure 8:

Total Time (sec)
Example | Incremental | Non-Incremental
PIRG PNR
s27 0.01 0.01
s298 0.03 2.26
s344 2.76 1.80
400 172 12,57
s526 3.6 7.44
s641 6.07 9.06
s713 5.78 8.85
s820 0.12 0.16
gigamax 4.07 6.11
tic 0.09 053
shc 1109.78 1363.86

Table 1: Time taken for 3 design iterations

show that the incremental algorithm can be much faster than the
non-incremental algorithm. The gains come from the fewer num-
ber of iterations to fixedpoint within each algorithm, and figure 8
shows that this is indeed the case. It is important to note that
the incremental algorithm may actually take more time than the
non-incremental algorithm for certain changes.

6 Futuredirections

We have described and implemented incremental algorithms for
reachability. Currently we are in the process of refining our im-
plementation to run it on larger and more complex circuits, by
storing the spanning graph as components rather than a single en-
tity. This would also attempt to solve the memory requirement
problem created because these methods store more information.

Wealsointend to try using our methodsto computethe reachable
set of hard examples, where the normal reachability computation
might blow up, by successively refining the input.

We also plan to examine real design changesto come up with a
more realistic way of inducing changesto the system.

We are planning to use our incremental algorithms to create
more efficient verification and synthesis methods.

References

[1] O. Coudert and J. C. Madre, “A Unified Framework for the
Formal Verification of Sequential Circuits,” in Proc. Intl.
Conf. on Computer-Aided Design, pp. 126—129, Nov. 1990.

(2]

(3]

[4]

(5]

6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

H. Touati, R. K. Brayton, and R. P. Kurshan, “ Checking Lan-
guage Containment using BDDs,” in Proc. of Intl. Workshop
on Formal Methodsin VLS Design, (Miami, FL), Jan. 1990.

E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli, “ Sequential Cir-
cuit Design Using Synthesisand Optimization,” in Proc. Intl.
Conf. on Computer Design, pp. 328-333, Oct. 1992.

H. Cho, G. D. Hachtel, and F. Somenzi, “ Redundancy |denti-
fication and Removal Based on Implicit State Enumeration,”
in Proc. Intl. Conf. on Computer Design, pp. 77-80, Oct.
1991.

R. Bryant, “ Graph-based Algorithms for Boolean Function
Manipulation,” |EEE Trans. Computers, vol. C-35, pp. 677—
691, Aug. 1986.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “Implicit State Enumeration of Fi-
nite State Machines using BDD's,” in Proc. Intl. Conf. on
Computer-Aided Design, pp. 130—133, Nov. 1990.

G. M. Swamy, V. Singhal, and R. K. Brayton, “Incremental
methods for Fsm Traversal,” Tech. Rep. UCB/ERL M95/,
Electronics Research Lab, Univ. of California, Berkeley, CA
94720, 1995.

E. A. Emerson, “ Temporal and Modal Logic,” in Formal Mod-
elsand Semantics (J. van Leeuwen, ed.), vol. B of Handbook
of Theoretical Computer Science, pp. 996-1072, Elsevier
Science, 1990.

G. M. Swamy and R. K. Brayton, “Incremental Formal De-
sign Verification,” in Proc. Intl. Conf. on Computer-Aided
Design, pp. 458-465, Nov. 1994.

B. Lin and F. Somenzi, “Minimization of Symbolic Re-
lations,” in Proc. Intl. Conf. on Computer-Aided Design,
pp. 8891, Nov. 1990.

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill,
“Symbolic Model Checking: 10%° Statesand Beyond,” Infor-
mation and Computation, vol. 98, no. 2, pp. 142-170, 1992.

J. Burch, E. Clarke, and D. E. Long, “Representing Circuits
More Efficiently in Symbolic Model Checking,” in Proc. of
the Design Automation Conf., June 1991.

R.K.Ranjan, A. Aziz, R. K. Brayton, B. Plessier, and C. Pix-
ley, “ Efficient formal design verification datastructureand al-
gorithms,” in Proc. Intl. Workshopon Logic Synthesis, (Tahoe
City, CA), May 1995.

R. Hojati, S. Krishnan, and R. K. Brayton, “Heuristic Algo-
rithmsfor Early Quantification and Partial Product Minimiza-
tion,” Tech. Rep. UCB/ERL M94/11, Electronics Research
Lab, Univ. of California, Berkeley, CA 94720, 1994.

R.Braytonetal., “HSIS: A BDD-Based Environment for For-
mal Verification,” in Proc. of the Design Automation Conf.,
pp. 454-459, June 1994.

