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2Abstra
tA popular approa
h to providing non-experts in parallel 
omputing with an easy-to-use programmingmodel, is to design a software library 
onsisting of a set of pre-parallelized routines, and hide the intri
a
iesof parallelization behind the library's API. However, for regular domain problems (su
h as simple matrixmanipulations or low level image pro
essing appli
ations | in whi
h all elements in a regular subset of adense data �eld are a

essed in turn) speedup obtained with many su
h library-based parallelization tools isoften sub-optimal. This is be
ause inter-operation optimization (or: time-optimization of 
ommuni
ationsteps a
ross library 
alls) is generally not in
orporated in the library implementations.This paper presents a simple, eÆ
ient, �nite state ma
hine-based approa
h for 
ommuni
ation min-imization of library-based data parallel regular domain problems. In the approa
h, referred to as lazyparallelization, a sequential program is parallelized automati
ally at run time by inserting 
ommuni
ationprimitives and memory management operations whenever ne
essary. Apart from being simple and 
heap,lazy parallelization guarantees to generate legal, 
orre
t, and eÆ
ient parallel programs at all times.The e�e
tiveness of the approa
h is demonstrated by analyzing the performan
e 
hara
teristi
s oftwo typi
al regular domain problems obtained from the �eld of low level image pro
essing. Experimentalresults show signi�
ant performan
e improvements over non-optimized parallel appli
ations. Moreover,obtained 
ommuni
ation behavior is found to be optimal with respe
t to the abstra
tion level of messagepassing programs. KeywordsParallel pro
essing, data 
ommuni
ations aspe
ts, optimization, image pro
essing software.I. Introdu
tionA parallelization tool based on a software library of pre-parallelized routines 
an serve asa powerful programming aid to obtain high performan
e with relative ease. In the �eld oflow (pixel) level image pro
essing, for example, many su
h parallelization tools exist [10℄,[11℄, [13℄, [14℄, [21℄, [32℄, [33℄. Su
h tools, however, generally restri
t performan
e opti-mization to ea
h library operation in isolation, and ignore 
ommuni
ation minimizationfor full appli
ations. For library implementations based on message passing primitivessigni�
ant performan
e gains 
an be obtained, as it is often possible to remove manyredundant 
ommuni
ation steps, and to 
ombine multiple messages in a single transfer.Automati
 optimization of 
ommuni
ation overhead is not easy. First, this is be
ausethe optimization strategy must be able to determine whi
h 
ommuni
ation steps are es-sential, and whi
h 
an be safely 
ombined or removed. Also, it must guarantee that theFINAL



3resulting parallel 
ode is (1) eÆ
ient , preferably 
omparable to an optimal hand-
odedimplementation, (2) legal , su
h that the program is deterministi
 and 
an never end indeadlo
k, and (3) 
orre
t , su
h that it produ
es output identi
al to the original program.This paper presents a new and surprisingly simple strategy for 
ommuni
ation minimiza-tion in library-based data parallel regular domain problems [22℄, whi
h adheres to all theserequirements. In the approa
h, a fully sequential program is parallelized automati
ally atrun time by inserting 
ommuni
ation primitives and additional memory management op-erations whenever ne
essary. The approa
h, referred to as lazy parallelization, is based ona simple �nite state ma
hine (fsm) spe
i�
ation. One of two essential fsm ingredients isa set of states, ea
h 
orresponding to a valid internal representation of a distributed datastru
ture at run time. The other is a set of state transition fun
tions, ea
h of whi
h de�neshow a valid data stru
ture representation is transformed into another valid representation.This paper indi
ates how the fsm spe
i�
ation is applied in the pro
ess of obtaining legal,
orre
t, and indeed eÆ
ient parallel 
ode. Also, a 
ompile-time extension is dis
ussed,whi
h is 
apable of produ
ing the theoreti
ally fastest parallel version of a program.This paper is organized as follows. Se
tion II des
ribes the optimization problem. InSe
tion III the �nite state ma
hine spe
i�
ation is presented. Se
tion IV des
ribes the fsm-based approa
h of lazy parallelization, and brie
y presents a 
ompile-time extension foradditional optimization. An evaluation of measurements obtained for two example regulardomain problems obtained from the �eld of low level image pro
essing is presented inSe
tion V. Se
tion VI dis
usses related work. Con
luding remarks are given in Se
tion VII.II. The Optimization ProblemThe main obje
tive in our resear
h is to build a library-based software ar
hite
turethat allows for fully sequential implementation of low level image pro
essing appli
ationsexe
uting in data parallel fashion [25℄, [26℄, [27℄, [29℄. All parallelization and optimizationissues are to be taken 
are of by the ar
hite
ture itself, hidden from the user.A. Parallelizable Patterns in Regular Domain ProblemsFor reasons of software maintainability and reuse, all library operations are implementedon the basis of a de�nition of so-
alled parallelizable patterns found in typi
al regular do-FINAL



4main problems [29℄. Ea
h su
h pattern represents a generi
 des
ription of a 
lass of se-quential algorithms with similar behavior in terms of data a

esses to array-like stru
tures.More spe
i�
ally: a parallelizable pattern represents a generi
 operation that takes zero ormore sour
e stru
tures as input and produ
es exa
tly one destination stru
ture as output.It 
onsists of n independent tasks, where a task spe
i�es what data in any of the stru
turesmust be a
quired in order to update the value of a single data point in the destinationstru
ture. As su
h, prior to parallel exe
ution of a pattern, for all data stru
tures on allpro
essing units all data a

esses are known. As all a

esses are de�ned to be lo
al to thepro
essing unit exe
uting the algorithm, all non-lo
al data to be a

essed must be 
ommu-ni
ated prior to exe
ution. Given the pre
ise de�nition of these data a

ess pattern types, adefault parallelization strategy with minimal 
ommuni
ation overhead dire
tly follows forany operation that maps onto one of the prede�ned parallelizable patterns [29℄. Irrespe
-tive of the fo
us on low level image pro
essing, due to the generi
 nature of parallelizablepatterns this result naturally extends to other regular domain problems as well.B. Abstra
t Fun
tion Spe
i�
ationsAs stated, in our software ar
hite
ture all sequential image pro
essing fun
tionality isimplemented on the basis of parallelizable patterns. For these operations we introdu
ea shorthand notation, presented in Table I. It in
ludes (a.o.) unary and binary pixelCreate ( OUT dst ); // 
reate global stru
tureDelete ( OUT dst ); // delete global stru
tureImport ( OUT dst ); // import global stru
ture from ext. devi
eExport ( IN sr
 ); // export global stru
ture to ext. devi
eMemCopy ( IN sr
, OUT dst ); // 
opy global stru
tureUnPixOp ( IN sr
, OUT dst ); // unary pixel operationBinPixOpV ( IN sr
, OUT dst, IN arg ); // binary pixel operation (ve
tor argument)BinPixOpI ( IN sr
, OUT dst, IN arg ); // binary pixel operation (image argument)Redu
eOp ( IN sr
, OUT dst ); // global redu
e operationNeighOp ( IN sr
, OUT dst, IN ker ); // generalized neighborhood operationGenConvOp ( IN sr
, OUT dst, IN ker ); // generalized 
onvolutionRe
GConvOp ( IN sr
, OUT dst, IN ker ); // re
ursive generalized 
onvolutionGeoMat ( IN sr
, OUT dst ); // geometri
 transform. (matrix-based)GeoRoi ( IN sr
, OUT dst ); // geometri
 transform. (region of interest)TABLE IAbstra
t fun
tions: sequential operation. FINAL



5CreatL
lPart ( OUT ldst ); // 
reate non-overlapping stru
ture at all nodesCreatL
lFull ( OUT ldst ); // 
reate fully overlapping stru
ture at all nodesDelL
l ( OUT ldst ); // delete lo
al stru
ture at all nodesBroad
ast ( IN gsr
, OUT ldst ); // send global stru
ture to all nodesS
atter ( IN gsr
, OUT ldst ); // divide global stru
ture among all nodesGather ( IN lsr
, OUT gdst ); // send ea
h node's lo
al stru
ture to rootGatherAll ( INOUT lsr
, INOUT gdst ); // send ea
h node's lo
al stru
ture to all nodesRedu
eOne ( INOUT lsr
, OUT gdst ); // global redu
e a
ross all nodes (result at root)Redu
eAll ( INOUT lsr
, INOUT gdst ); // global redu
e a
ross all nodes (result at all)TABLE IIAbstra
t fun
tions: 
ommuni
ation.operations, (re
ursive) neighborhood operations, and geometri
 transformations.Shorthand notation for all required inter-pro
ess 
ommuni
ation is presented in Table II,and 
ontains the 
ommon 
olle
tive operations in MPI [17℄. The additional CreatL
lPart/Fulland DelL
l fun
tions 
onstitute 
reators and destru
tors for partial data stru
tures, ea
hresiding on a di�erent pro
essor at run time. Partial stru
tures are referred to as lo
al inthe presented parameter lists (lsr
 and ldst). The original stru
ture from whi
h the partialstru
tures are obtained is referred to as global (gsr
 and gdst). The importan
e of theseabstra
tions is that for any appli
ation implemented using our ar
hite
ture it is possibleto derive an abstra
t operation stream 
omprising of fun
tions from Tables I and II alone.C. Default Algorithm ExpansionBe
ause all fun
tionality is implemented on the basis of parallelizable patterns, 
onver-sion of any sequential appli
ation into an equivalent parallel program is straightforward.The 
onversion pro
ess, referred to as default algorithm expansion, is illustrated in List-ing 1. The sequential program, shown on the left, �rst imports image A, whi
h is used asinput to a unary pixel operation. Subsequently, resulting image B is used as input to abinary pixel operation. Finally, resulting image C is exported, and all images are destroyed.The equivalent parallel program is shown on the right of Listing 1. First, a S
atteroperation is inserted before the UnPixOp 
all. After the operation has �nished, the resultingpartial outputs are gathered to the single root node and all temporary partial stru
turesare destroyed. Subsequently, the images whi
h are passed as sour
e and argument to thebinary pixel operation are s
attered throughout the parallel system. The partial outputsFINAL



6Import( A ); Import( A);UnPixOp( A, B ); S
atter( A, lo
A );BinPixOpI( B, C, A ); UnPixOp( lo
A, lo
B );Export( C ); Gather( lo
B, B );Delete( A ); DelL
l( lo
A );Delete( B ); DelL
l( lo
B );Delete( C ); S
atter( A, lo
A );S
atter( B, lo
B );BinPixOpI( lo
B, lo
C, lo
A);Gather( lo
C, C );DelL
l( lo
A );DelL
l( lo
B );DelL
l( lo
C );Export( C );Delete( A );Delete( B );Delete( C );(a) Sequential. (b) Parallel (default).Listing 1: Abstra
t sequential appli
ation (a) and equivalent parallel program after defaultalgorithm expansion (b).resulting from BinPixOp are gathered to the root, after whi
h all partial stru
tures aredeleted. From this point onward, the program is identi
al to the original sequential version.Default algorithm expansion always generates a legal and 
orre
t parallel version of anysequential program implemented on the basis of parallelizable patterns. This is be
auseea
h abstra
t fun
tion 
all in the sequential 
ode is repla
ed by an equivalent sequen
e ofone or more (parallel) operations. The parallel 
ode is not guaranteed to be time-optimal,however. Worse even, it 
an be expe
ted to be slower than the original sequential program.Although other tools may have di�erent implementations, all library-based tools su�erfrom the very same problem | and for improved performan
e a solution is essential.D. The Problem: IneÆ
ien
ies from Default Algorithm ExpansionWhen 
onsidering the parallel 
ode of Listing 1(b), it is 
lear that it 
ontains severaloperations that 
ould be removed without violating the program's 
orre
tness or legality.First, image lo
A, used as sour
e stru
ture for the unary pixel operation, is removed byDelL
l and subsequently re
reated in the se
ond o

urren
e of the S
atter(A, lo
A) 
all. Forimproved performan
e, both operations simply 
ould be removed. The same holds for thesequen
e of instru
tions applied to the lo
B stru
ture pre
eding the BinPixOpI 
all (i.e., Gatherfollowed by DelL
l and S
atter). Listing 2(b) presents the optimized program obtained afterremoving the redundant 
ommuni
ation steps from the parallel 
ode. The remainder of thisFINAL



7Import( A ); Import( A );UnPixOp( A, B ); S
atter( A, lo
A );BinPixOpI( B, C, A ); UnPixOp( lo
A, lo
B );Export( C ); BinPixOpI( lo
B, lo
C, lo
A);Delete( A ); Gather( lo
C, C );Delete( B ); DelL
l( lo
A );Delete( C ); DelL
l( lo
B );DelL
l( lo
C );Export( C );Delete( A );Delete( B );Delete( C );(a) Sequential. (b) Parallel (optimized).Listing 2: Abstra
t sequential appli
ation (a) and equivalent parallel program after inter-operation optimization (b).paper indi
ates how exe
ution of su
h redundant operations 
an be avoided automati
ally.III. Finite State Ma
hine DefinitionOur solution to the problem of redundant 
ommuni
ation avoidan
e is based on a �nitestate ma
hine (fsm) spe
i�
ation. More spe
i�
ally, we restri
t ourselves to a deterministi
�nite a

epter (dfa) [9℄, de�ned by the quintuple M = (Q; �; Æ; q0; F ), whereQ is a �nite set of internal states,� is a �nite set of symbols 
alled the input alphabet ,Æ : Q� �! Q is a transition fun
tion,q0 2 Q is the initial state,F � Q is a set of �nal states.A. Data Stru
ture States and LifespanAs des
ribed in [29℄, for parallel exe
ution two types of data stru
ture representationsare used in our software ar
hite
ture: global stru
tures and lo
al (or partial) stru
tures.A global stru
ture always resides at a single pro
essing unit (the root), and 
ontains alldata for the 
omplete domain of the stru
ture it represents. Lo
al stru
tures, on the otherhand, are the result of a s
atter or broad
ast operation performed on a global stru
ture.There is a strong relationship between a global stru
ture and the set of derived lo
alstru
tures (or: distributed data stru
ture). Clearly, at any time either the global stru
-ture itself or its derived distributed stru
ture must 
ontain all valid data. An abstra
tFINAL



8representation of this relationship is given by the triple q = (g; d; t), whereg 2 G is the state of the global stru
ture,d 2 D is the state of the derived distributed stru
ture,t 2 T is the distributed stru
ture's distribution type,and G = f none, 
reated, valid, invalid g,D = f none, valid, invalid g,T = f none, partial, full, not-redu
ed g.In set G, none indi
ates that no spa
e has been allo
ated for the global stru
ture in themain memory of the root. Furthermore, 
reated indi
ates that spa
e for the global stru
turehas been allo
ated by way of the Create fun
tion. In this state, the elements of the globalstru
ture do not 
ontain values resulting from any 
al
ulation (yet). Finally, valid indi
atesthat the global stru
ture 
ontains up-to-date values for all stru
ture elements, and invalidindi
ates that at least one of the global stru
ture's elements may 
ontain an in
orre
tvalue. For distributed stru
tures, the elements in set D are de�ned in a similar manner.The value 
reated is not present in set D, however, simply be
ause we do not need it.In set T , none indi
ates that no distribution type information is available. In addition,partial indi
ates that the set of 
onstituent lo
al stru
tures is the result of a S
atter opera-tion, while full indi
ates that the stru
tures are obtained in a Broad
ast operation. Finally,not-redu
ed indi
ates that all elements of the 
onstituent lo
al stru
tures yet have to besubje
ted to an element-wise Redu
eOne or Redu
eAll operation (see also [29℄).The set R = G�D�T 
ontains all possible representations of the relationship betweena global stru
ture and its derived distributed stru
ture. However, many of these possiblerepresentations 
an not (or should not) o

ur. As an example, the representation q =(invalid, invalid, full) should not o

ur in a program, as neither the global stru
ture nor thedistributed stru
ture 
ontains all 
orre
t values.For the fsm, we have spe
i�ed a restri
ted set of valid internal states, based on therelationship between global and distributed stru
tures. It is de�ned byQ = f q0; q1; � � � ; q8 g � G�D � T , FINAL



9withq0 = (none, none, none), q3 = (invalid, none, none), q6 = (invalid, valid, partial),q1 = (
reated, none, none), q4 = (valid, valid, partial), q7 = (invalid, valid, full),q2 = (valid, none, none), q5 = (valid, valid, full), q8 = (invalid, invalid, not-redu
ed).State q0 is the empty state, and represents the state of the global-distributed stru
ture
ombination before its initial 
reation and after its �nal destru
tion. State q1 represents thestate immediately after 
reation of the global stru
ture. This is a spe
ial 
ase of state q2, asthe global stru
ture also 
ould be designated as valid. State q1 is still required, however, toavoid 
ommuni
ation in 
ase a distributed stru
ture is to be derived from a global stru
turein this state. State q2 indi
ates that a global stru
ture's elements 
ontain all up-to-datevalues, while a derived distributed stru
ture is nonexistent. At �rst glan
e, q3 seems tobe a state that should never appear in a legal parallel program. However, this is thestate obtained after performing a DelL
l operation in 
ase the global-distributed stru
ture
ombination is represented by states q6, q7, or q8. In states q4; q5; q6, and q7, the distributedstru
ture 
ontains all 
orre
t values, while the related global stru
ture is either 
onsistentor in
onsistent with these values. Finally, state q8 o

urs in parallel redu
tion operations.As long as the required redu
tion has not been performed on the distributed stru
ture, all
onstituent lo
al stru
tures as well as the related global stru
ture remain invalid.At run time ea
h global-distributed stru
ture 
ombination starts in the empty state q0.From this point onward ea
h state 
an be rea
hed, depending on the operations performedon the stru
ture 
ombination. Also, it is possible for 
ertain states to be rea
hed multipletimes. The lifespan of a global-distributed stru
ture 
ombination ends in 
ase it returns tothe empty state q0. As su
h, state q0 serves as the initial state of our �nite state ma
hinede�nition, as well as the single element in the set of �nal states.B. State Transition Fun
tionsFor our purposes, the fsm input alphabet is formed by the operations of Tables I and II,with a 
on
rete data stru
ture referen
e for ea
h formal parameter. Also, as the fsm isused to monitor state 
hanges and lifespan of a single data stru
ture only, monitoring the
orre
tness and legality of a 
omplete appli
ation involves multiple fsm's. This resultsin a parallel view of the states of all data stru
tures in an appli
ation: at any momentFINAL



10Æ(q0; (Create;�)) = q1, Æ(qi; (Delete;�)) = q0,Æ(q0; (Import;�)) = q2, Æ(qj; (Export;�)) = qj,with i 2 f1,2,3g; j 2 f1, 2, 4, 5g,Æ(q0; (op; q2)) = q2, Æ(q0; (op; q6)) = q6,Æ(q0; (op; q4)) = q6, Æ(q0; (op; q7)) = q7,Æ(q0; (op; q5)) = q7, Æ(qi; (op; q0)) = qi,with op 2 fMemCopy, UnPixOpg; i 2 f2, 4, 5, 6, 7g,Æ(q0; (op; q2; q2)) = q2, Æ(q2; (op; q0; q2)) = q2,Æ(q0; (op; q4; qi)) = q6, Æ(q4; (op; q0; qi)) = q4,Æ(q0; (op; q5; qi)) = q7, Æ(q5; (op; q0; qj)) = q5,Æ(q0; (op; q6; qi)) = q6, Æ(q6; (op; q0; qi)) = q6,Æ(q0; (op; q7; qi)) = q7, Æ(q7; (op; q0; qj)) = q7,with op 2 fBinPixOpV, NeighOp, GenConvOp, Re
GConvOpg,i 2 f5, 7g; j 2 f4, 5, 6, 7g,Æ(q0; (op; q2; q2)) = q2, Æ(q2; (op; q0; q2)) = q2,Æ(q0; (op; qi; qj)) = q6, Æ(qi; (op; q0; qj)) = qi,Æ(q0; (op; qk; ql)) = q7, Æ(qk; (op; q0; ql)) = qk,with op 2 fBinPixOpIg; i; j 2 f4, 6g; k; l 2 f5, 7g,Æ(q0; (Redu
eOp; q2)) = q2, Æ(q2; (Redu
eOp; q0)) = q2,Æ(q0; (Redu
eOp; qi)) = q8, Æ(qi; (Redu
eOp; q0)) = qi,Æ(q0; (Redu
eOp; qj)) = q7, Æ(qj; (Redu
eOp; q0)) = qj,with i 2 f4, 6g; j 2 f5, 7g,Æ(q0; (op; q2)) = q2, Æ(q2; (op; q0)) = q2,Æ(q0; (op; qi)) = q6, Æ(qi; (op; q0)) = qi,with op 2 fGeoMat, GeoRoig; i 2 f5, 7g.TABLE IIITransition fun
tions: image operations.during exe
ution, several stru
tures are 'alive' and their 
ombined state is 
aptured bytheir respe
tive fsm's. As the states of multiple stru
tures are not always independent ,we assume that ea
h fsm has a 
omplete and up-to-date view of the states of all datastru
tures in an appli
ation. Also, by way of the de�ned set of state transition fun
tions,ea
h fsm in
orporates all knowledge regarding data stru
ture state dependen
ies. To thisend, the de�nition of state transition fun
tions as presented before is extended as follows:Æ : Q� �d ! Q, FINAL



11where �d is the input alphabet in whi
h ea
h fun
tion is annotated with a list of permittedstate dependen
ies for all additional stru
tures passed as parameter to that fun
tion (i.e.,those stru
tures for whi
h the 
urrent fsm is not responsible). Here, we represent elementsin �d by a pair or triple, in whi
h the �rst 
omponent is the name of the fun
tion, andthe remainder represents the (possibly empty) list of state dependen
ies. For example,Æ(q0; (BinPixOpV; q4; q5)) = q6 represents a state transition fun
tion for the output stru
tureprodu
ed by the BinPixOpV operation. This transition fun
tion 
hanges the state of theoutput stru
ture from q0 to q6, while the sour
e and argument stru
tures are expe
ted tobe in states q4 and q5 respe
tively. It should be noted, that the knowledge obtained withthis parallel view also 
an be 
aptured in a single 
ross-produ
t ma
hine, in whi
h ea
h dfasimulates, in parallel, the behavior of ea
h 
omponent dfa [16℄. For simpli
ity, however,in the remainder of this paper we keep to the parallel view of simple state ma
hines.Table III presents the transition fun
tions for the image operations available in ourlibrary. In all 
ases, initial state q0 refers to the state of the output stru
ture produ
edby any of the operations. As 
an be seen, output stru
tures are the only stru
tures thata
tually move from one state to another. Input stru
tures and argument stru
tures never
hange state, as these are a

essed only, and never updated. All transitions that 
ause astru
ture to be moved to state q1 or q2 always indi
ate sequential exe
ution using globalstru
tures. All other transitions refer to parallel exe
ution using distributed stru
tures.State transition fun
tions related to the additional 
ommuni
ation fun
tionality, and thememory management of lo
al data stru
tures, are presented in Table IV. In all of these thelist of state dependen
ies is empty, as the fun
tions work on a single data stru
ture only.Æ(q1; (CreatL
lPart;�)) = q4, Æ(qi; (DelL
l;�)) = q2,Æ(q1; (CreatL
lFull;�)) = q5, Æ(qj; (DelL
l;�)) = q3,with i 2 f4, 5g; j 2 f6, 7, 8g,Æ(q2; (Broad
ast;�)) = q5, Æ(q8; (Redu
eOne;�)) = q2,Æ(q2; (S
atter;�)) = q4, Æ(q8; (Redu
eAll;�)) = q5,Æ(q6; (Gather;�)) = q4, Æ(q6; (GatherAll;�)) = q5,Æ(q7; (Gather;�)) = q5,TABLE IVTransition fun
tions: 
ommuni
ation. FINAL
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*1, *2, *3, *4 = creation of datastructure by one of several image operationsFig. 1. Redu
ed state transition graph.Figure 1 presents a redu
ed state transition graph for the fsm. For better readability, it
ontains only those operations that 
ause a stru
ture to move from one state to another.As su
h, the graph in
orporates the 
omplete lifespan of a data stru
ture, and 
oversany state a stru
ture 
an rea
h at run time. Also, it is exa
tly these operations that areessential in the pro
ess of operation redundan
y avoidan
e as presented in Se
tion IV.A program is legal , if it is a

epted by all fsm's related to that program. In other words,in our ar
hite
ture a program is legal if (1) it 
ontains fun
tion 
alls from Tables I and IIonly, (2) it 
ontains no data stru
ture state in
onsisten
ies, and (3) all stru
tures startas well as end in state q0. In 
ase a user-provided sequential program is legal, defaultalgorithm expansion always generates a legal and 
orre
t parallel program. This is be
auseea
h sequen
e of (parallel) operations that repla
es a sequential 
all generates exa
tly thesame set of data stru
ture state transitions at all times. The following se
tion shows howthe presented fsm is used to obtain legal and 
orre
t parallel 
ode, whi
h is optimized inthat the exe
ution of any redundant 
ommuni
ation operations is avoided. FINAL



13IV. Lazy ParallelizationIn the approa
h of lazy parallelization it is assumed that ea
h 
ommuni
ation or mem-ory management operation inserted by default algorithm expansion is redundant, unlessproven otherwise. Stated di�erently, lazy parallelization 
auses an inserted operation to beexe
uted only if its removal would introdu
e a data stru
ture state in
onsisten
y. Althoughthe method 
an be applied on the 
y at run time, for the moment we will present it as a
ompile time method. Con
eptually, lazy parallelization 
onsists of the following steps:1. Apply the pro
ess of default algorithm expansion to the original sequential 
ode.2. Remove all 
ommuni
ation operations, as well as all operations for the 
reation anddestru
tion of partial data stru
tures.3. Apply partial loop unrolling by extra
ting the 
ode for the �rst iteration of ea
h loop,and pla
ing it in front of the 
ode for the remaining loop iterations.4. Resolve data stru
ture state in
onsisten
ies by re-inserting operations removed in step 2.5. Undo the loop unrolling by 
ollapsing ea
h separated loop into a single 
ode blo
k.As stated, the parallel 
ode obtained after the �rst step is legal, but non-optimal. Theoperation removal in the se
ond step, however, introdu
es many state in
onsisten
ies. Asdes
ribed below, these in
onsisten
ies are resolved in step four. Steps 3 and 5 are presentonly to expose all data stru
ture state in
onsisten
ies that 
an possibly o

ur in a program.Listing 3 gives a 
on
eptual example of lazy parallelization. The programs obtained inthe �rst three steps of the optimization pro
ess are straightforward, and will not be dis-
ussed. The re-insertion of 
ode as applied in step 4 (see Listing 3(e)) is performed usingthe state transition fun
tions of Se
tion III-B (i.e., only those in the redu
ed state tran-sition graph of Figure 1). The Broad
ast( A, lo
A ) operation in the �rst loop iteration isinserted be
ause the Import operation 
auses its output stru
ture to be moved to state q2,while for parallel exe
ution the subsequent GeoMat operation requires its input stru
ture tobe in state q5 or q7 (see Table III). The only operation that provides a resolution to thisstate in
onsisten
y is Broad
ast, as it moves a data stru
ture from state q2 to q5. Similarly,Gather( lo
C, C ) is inserted in the �rst loop iteration, as it moves C from q6 to q4, whi
his one of the allowed input states for the subsequent Export operation. The additionalre-insertions work in a similar manner, and all further interpretation is left to the reader.FINAL



14Import( A ); Import( A );LOOP [1:N℄ LOOP [1:N℄GeoMat( A, B ); Broad
ast( A, lo
A );GenConvOp( B, C, k ); GeoMat( lo
A, lo
B );Export( C ); Gather( lo
B, B );Delete( C ); DelL
l( lo
B );Delete( B ); DelL
l( lo
A );ENDLOOP S
atter( B, lo
B );Delete( A ); GenConvOp( lo
B, lo
C, k );Gather( lo
C, C );DelL
l( lo
C );DelL
l( lo
B );Export( C );Delete( C );Delete( B );ENDLOOPDelete( A );(a) sequential 
ode (b) after step 1Import( A ); Import( A );LOOP [1:N℄ LOOP [1℄GeoMat( lo
A, lo
B ); GeoMat( lo
A, lo
B );GenConvOp( lo
B, lo
C, k ); GenConvOp( lo
B, lo
C, k );Export( C ); Export( C );Delete( C ); Delete( C );Delete( B ); Delete( B );ENDLOOP ENDLOOPDelete( A ); LOOP [2:N℄GeoMat( lo
A, lo
B );GenConvOp( lo
B, lo
C, k );Export( C );Delete( C );Delete( B );ENDLOOPDelete( A );(
) after step 2 (d) after step 3Import( A ); Import( A );LOOP [1℄ LOOP [1:N℄Broad
ast( A, lo
A ); IF [1℄ Broad
ast( A, lo
A);GeoMat( lo
A, lo
B ); GeoMat( lo
A, lo
B );GenConvOp( lo
B, lo
C, k ); GenConvOp( lo
B, lo
C, k );Gather( lo
C, C ); Gather( lo
C, C );Export( C ); Export( C );DelL
l( lo
C ); DelL
l( lo
C );Delete( C ); Delete( C );DelL
l( lo
B ); DelL
l( lo
B );Delete( B ); Delete( B );ENDLOOP ENDLOOPLOOP [2:N℄ DelL
l( lo
A );GeoMat( lo
A, lo
B ); Delete( A );GenConvOp( lo
B, lo
C, k );Gather( lo
C, C );Export( C );DelL
l( lo
C );Delete( C );DelL
l( lo
B );Delete( B );ENDLOOPDelL
l( lo
A );Delete( A );(e) after step 4 (f) after step 5Listing 3: Example of optimization by lazy parallelization: (a) original 
ode, (b) afterdefault algorithm expansion, (
) after removal of 'redundant' operations, (d) after partialloop unrolling, (e) after default operation re-insertion, (f) optimized parallel 
ode afterloop re
ombination. FINAL



15A. Dis
ussionLazy parallelization produ
es legal and 
orre
t parallel 
ode at all times. This 
anbe seen by 
onsidering the allowed states for all stru
tures passed as parameters to theoperations in Table I, and the resulting states for the produ
ed output stru
tures. As su
h,ea
h operation has a set of allowed input states for ea
h parameter, one of whi
h is movedto a new output state. By exhaustion, it is easily shown that for ea
h possible outputstate, a �nite sequen
e of zero or more state transitions exists that moves a stru
ture fromthat output state to one state in ea
h set of allowed input states (see also [28℄).An important property of lazy parallelization is that it 
an be applied on the 
y at runtime (hen
e its name). As all data stru
ture states are known for ea
h operation, de
isionsregarding the exe
ution of ea
h 
ommuni
ation step are deferred to as late as the a
tualmoment of exe
ution. Essentially, this means that all �ve steps as des
ribed above areredu
ed to a single step. This makes lazy parallelization very easy to implement, and highlyeÆ
ient (i.e., without measurable run time overhead). An additional advantage is that noprior knowledge regarding the behavior of loops and bran
hes is required . Finally, run-timeadaptation to data stru
ture sizes is easily integrated , by allowing 
exibility in the appliednumber of pro
essing units (or even by temporarily residing to sequential exe
ution) [25℄.Although lazy parallelization produ
es very eÆ
ient parallel 
ode, it is still non-optimal.First, this is be
ause it always applies the fastest 
ommuni
ation step whenever messagetransfer is mandatory. This is a form of lo
al performan
e optimization, however, asit may be better to insert a 
ombined message transfer to avoid further 
ommuni
ationsteps at a later stage. Se
ondly, no knowledge is in
orporated regarding the performan
e
hara
teristi
s of the parallel ma
hine at hand [26℄, [29℄. To over
ome these problems,we have also implemented an extension to the presented approa
h, whi
h is 
apable ofprodu
ing the (expe
ted) fastest parallel version of a sequential program at 
ompile time.The extended approa
h relies on the 
reation of an appli
ation state transition graph(ASTG), in
orporating all relevant performan
e optimization de
isions that 
an be madeat run time. Ea
h de
ision is annotated with a 
ost estimation, su
h that the fastestimplementation is represented by the 
heapest bran
h in the graph. Drawba
k, however, isthat it is often 
ostly to a
tually obtain the 
heapest bran
h. See [25℄ for more information.FINAL



16B. Appli
abilityAlthough lazy parallelization was designed for data parallel imaging appli
ations, it hasa broader appli
ability. As stated in Se
tion II, the approa
h will work (and generally bee�e
tive) for all regular domain problems in whi
h the essential operations 
an be expressedin terms of parallelizable patterns. One obvious example is the domain of linear algebraappli
ations. Clearly, for the approa
h to work in other appli
ation areas all referen
es toimage operations in the fsm spe
i�
ation should be altered, but this adaptation is onlymarginal. Also, the fa
t that operations in other areas may in
orporate di�erent dataa

ess pattern types does not 
hallenge the validity of the proposed method in any way.Essentially, lazy parallelization is appli
able to irregular (even data driven) problems aswell. For the approa
h to work, however, it is essential to have knowledge regarding thedata a

ess pattern types of operations to obtain the required 
ommuni
ation sets on the
y at run time. For irregular appli
ations this may not always be e�e
tive, espe
ially in
ases where nothing is known other than that n a

esses are to be performed within a setof m elements, with m � n. When most elements in the set of size m are non-lo
al, the
ommuni
ation set for ea
h pro
essor will be large. In su
h 
ases the performan
e obtainedby lazy parallelization largely depends on the amount of overlap in the 
ommuni
ation setsfor sequen
es of operations. The more overlap, the more 
ommuni
ation 
an be avoided.In the problem of avoiding redundant 
ommuni
ation steps the reader may see a relationto similar problems in other resear
h areas. As a �rst example, there is an analogy to thegeneration of redundant instru
tions in the pro
ess of 
ompilation. Here, a well-knownproblem is the avoidan
e of super
uous transfer of values between registers and (main)memory. As another example, there are similarities to 
a
he 
oheren
y problems in theavoidan
e of unne
essary updates of stale data. Solutions to problems of this kind (e.g.,peephole strategies for 
ompilers, I/O address 
he
king for 
a
he a

esses, et
etera) allrequire (often 
ostly) look-ahead strategies to obtain knowledge regarding data a

esses.Our solution to redundant 
ommuni
ation avoidan
e is di�erent in that it does not re-quire any form of look-ahead at all. This property dire
tly follows from the knowledgeregarding data a

esses 
ontained in the de�nition of parallelizable patterns. As su
h,our solution to the redundan
y problem does not easily transfer to the aforementionedFINAL



17problems in other resear
h areas. This is be
ause it is often unfeasible or even impossibleto in
orporate a priori knowledge regarding data a

esses in the general 
ase. However,for 
ertain domain-spe
i�
 problems our approa
h is still appli
able. It is possible, forexample, to use 
ompiler annotations in parallel languages su
h as HPF to obtain parti
u-larly eÆ
ient parallel 
ode for 
ertain regular domain problems. Spe
ifying 
ode segmentsas being implemented a

ording to parti
ular parallelizable patterns relieves the 
ompilerof extensive dependen
y analysis, and allows for lazy parallelization to be in
orporated.Currently, this approa
h is being 
onsidered for the SPAR parallel language [24℄, [31℄.V. Measurements and ValidationTo evaluate the approa
h of lazy parallelization, this se
tion des
ribes the implemen-tation and parallel exe
ution of two example image pro
essing appli
ations: (1) line de-te
tion, and (2) extra
tion of re
tangular size distributions from do
ument images. Thea
tual 
ode is available at http://www.s
ien
e.uva.nl/~fjseins/ParHorusCode/.The two appli
ations have been tested on the 72-node Distributed ASCI Super
om-puter 2 (DAS-2) lo
ated at the Vrije Universiteit in Amsterdam [2℄. All nodes 
onsist oftwo 1-Ghz Pentium-III CPUs, with 2 GByte of RAM, and are 
onne
ted by a Myrinet-2000 network. At the time of measurement, the nodes ran the RedHat Linux 7.2 operatingsystem. Our software ar
hite
ture was 
ompiled using g

 2.96 (at highest level of opti-mization) and linked with MPICH-GM, whi
h uses Myri
om's GM as its message passinglayer on Myrinet. As the DAS-2 system is heavily used for other resear
h proje
ts as well,measurement results are presented here for a system of up to 64 dual-CPU nodes only.A. Curvilinear Stru
ture Dete
tionAs dis
ussed in [8℄, the important problem of dete
ting lines and linear stru
tures inimages is solved by 
onsidering the se
ond order dire
tional derivative in the gradientdire
tion, for ea
h possible line dire
tion. This is a
hieved by applying anisotropi
 Gaus-sian �lters, parameterized by orientation �, smoothing s
ale �u in the line dire
tion, anddi�erentiation s
ale �v perpendi
ular to the line, given byr00(x; y; �u; �v; �) = �u�v ���f�u;�v;�vv ��� 1b�u;�v;� ; FINAL



18with b the line brightness. When the �lter is 
orre
tly aligned with a line in the image,and �u; �v are optimally tuned to 
apture the line, �lter response is maximal. Hen
e, theper pixel maximum line 
ontrast over the �lter parameters yields line dete
tion:R(x; y) = arg max�u;�v ;� r00(x; y; �u; �v; �):A.1 Sequential ImplementationsThe anisotropi
 Gaussian �ltering problem 
an be implemented sequentially in manydi�erent ways. First, for ea
h orientation � it is possible to 
reate a new �lter based on�u and �v. Hen
e, a sequential implementation based on this approa
h (whi
h we refer toas Conv2D) implies full 2-dimensional 
onvolution for ea
h �lter.The se
ond approa
h (referred to as ConvUV ) is to de
ompose the anisotropi
 Gaussian�lter along the perpendi
ular axes u; v, and use bilinear interpolation to approximate theimage intensity at the �lter 
oordinates. Although 
omparable to the Conv2D approa
h,ConvUV is expe
ted to be faster due to a redu
ed number of a

esses to the image pixels.Pseudo 
ode for the Conv2D and ConvUV algorithms is presented in Listing 4. Filteringis performed in the inner loop by either a full two-dimensional 
onvolution (Conv2D) or bya separable �lter in the prin
iple axes dire
tions (ConvUV ). On a state-of-the-art sequen-tial ma
hine either program may take from a few minutes up to several hours to 
omplete,depending on the size of the input image and the extent of the 
hosen parameter subspa
e.Consequently, for the dire
tional �ltering problem parallel exe
ution is highly desired.FOR all orientations � DOFOR all smoothing s
ales �u DOFOR all di�erentiation s
ales �v DOFiltIm1 = GenConvOp(OriginalIm, "fun
", �u, �v , 2, 0);FiltIm2 = GenConvOp(OriginalIm, "fun
", �u, �v , 0, 0);ContrastIm = BinPixOp(FiltIm1, "absdiv", FiltIm2);ContrastIm = BinPixOp(ContrastIm, "mul", �u � �v);ResultIm = BinPixOp(ResultIm, "max", ContrastIm);ODODODListing 4: Pseudo 
ode for the Conv2D and ConvUV algorithms, with "fun
" either"gauss2D" or "gaussUV". FINAL



19A.2 Parallel Exe
utionExe
ution of the parallel versions of the algorithms obtained by default algorithm ex-pansion results in a huge amount of redundant 
ommuni
ation overhead. This is be-
ause ea
h image operation in the inner loop of the program now exe
utes one or moreS
atter-Gather-pairs similar to those presented in the example 
ode of Listing 1(b).In 
ontrast, applying lazy parallelization to the two algorithms results in minimal 
om-muni
ation overhead. In the �rst loop iteration OriginalIm is s
attered su
h that ea
hnode obtains a non-overlapping sli
e of the image's domain. Next, all subsequent opera-tions are performed in parallel, only requiring border ex
hange 
ommuni
ation in the 
on-volutions (note: this is due to a sequential library design 
hoi
e, see [25℄). Finally, justbefore program termination, ResultIm is gathered to the root. In this manner, 
ommuni
a-tion behavior is optimal with respe
t to the abstra
tion level of message passing programs.A.3 Performan
e EvaluationFrom the des
ription, it is 
lear that the Conv2D algorithm is expe
ted to be theslowest sequential implementation, due to the ex
essive a

essing of image pixels in the2-dimensional 
onvolution operations. Figure 2(a) shows that this expe
tation indeedis 
on�rmed by the measurements obtained on a single CPU. Although Conv2D has aslightly better speedup 
hara
teristi
 due to a better 
omputation versus 
ommuni
ation
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(b)Fig. 2. (a) Performan
e and (b) speedup 
hara
teristi
s for 
omputing a typi
al orientation s
ale-spa
eat 5Æ angular resolution (i.e., 36 orientations) and 8 (�u; �v) 
ombinations. S
ales 
omputed are �u 2f3; 5; 7g and �v 2 f1; 2; 3g, ignoring the isotropi
 
ase �u;v = f3; 3g. Image size is 512�512 (4-byte)pixels. Results obtained using 1 CPU per dual node. FINAL



20
# CPUs

Conv2D Conv2DConvUV ConvUV

54.447
61.984

59.649

75.084
65.595

101.974
149.575

48.148
45.025
50.529

(s)

53.610
59.169

(2 CPUs
(s) (s) (s)

Lazy Parallelization

per node)

Default Alg. Expansion

47.8849.737
14.150
27.802
54.801

109.710
217.366

128
96
64
48
32
16
8
4
2

7.363

57.032
69.378
96.134

148.766
256.425

1.875
2.553
3.464
4.460
6.313

12.297
24.550
50.233
99.587

4.062
5.294 (a) 0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
pe

ed
up

Nr. of CPUs

linear(x)
Conv2D (lazy parallelization)
ConvUV (lazy parallelization)

Conv2D (default alg. expansion)
ConvUV (default alg. expansion)

(b)Fig. 3. (a) Performan
e and (b) speedup 
hara
teristi
s as in Figure 2. Results obtained using 2 CPUsper dual node.ratio, ConvUV always is the fastest implementation on any number of nodes.The speedup graph of Figure 2(b) shows the importan
e of the lazy parallelizationapproa
h. Speedup values obtained on 64 nodes are 58.1 and 55.9 for Conv2D and ConvUVrespe
tively, in 
ase of lazy parallelization. These values drop to 11.5 and 4.5 in 
ase ofthe original approa
h of default algorithm expansion.Figure 3 shows similar results for measurements obtained in 
ase both CPUs on ea
hnode are used in the exe
ution. Even measurements for up to 128 CPUs deliver 
lose tolinear speedup. In this situation, however, performan
e is slightly degraded by the fa
tthat two CPUs on a single node need to pass messages through the same 
ommuni
ationport. Nonetheless, we 
an 
on
lude that the appli
ation of lazy parallelization enables oursoftware ar
hite
ture to produ
e highly eÆ
ient parallel 
ode for these implementations.B. Re
tangular Size DistributionsAs dis
ussed in [1℄, re
tangular size distributions are an e�e
tive way to 
hara
terize vi-sual similarities between do
ument images. Here, the verti
ally and horizontally alignedregions of varying aspe
t ratios in a do
ument image are 
hara
terized using multivariate,re
tangular granulometries. A granulometry 
an be thought of as a morphologi
al sieve,where obje
ts not 
onforming to a parti
ular size and shape are removed at ea
h level ofthe sieving pro
ess. The re
tangular granulometry, 	x;y, of input image S is given by	x;y(S) = S Æ (yV � xH); FINAL



21where H and V are the horizontal and verti
al line segments of unit length 
entered atthe origin, and x and y are independent s
ale parameters 
ontrolling the width and heightof the re
tangle used for �ltering. Of most interest in des
ribing the visual appearan
eare the measurements taken on the �ltered images 	x;y(S). One useful measurementfor granulometries is the re
tangular size distribution. The re
tangular size distributionindu
ed by the granulometry G = f	x;yg on image S is given by:�G(x; y; S) = A(S)� A(	x;y(S)))A(S) ;A(X) denoting the area of set X. As su
h, �G(x; y; S) is the probability that an arbitrarypixel in S is �ltered by a re
tangle of size x� y or smaller.B.1 Sequential ImplementationTo obtain parti
ularly eÆ
ient sequential 
ode for generating re
tangular size distribu-tions, we have taken advantage of several properties of re
tangular granulometries andsize distributions. First, ea
h re
tangular �lter is de
omposed into 1-dimensional �lters,eliminating the need to �lter a do
ument by re
tangles of all sizes. Next, the need touse �lters in
reasing linearly in size is removed by applying linear distan
e transforms forhorizontal and verti
al dire
tions. These transforms are implemented by using re
ursive
al
ulateRe
tangularSizeDistribution(IMAGE inIm, INT w, INT h) fvertIm = verDist(inIm, 0);area = redu
eOp(inIm, "sum");FOR (y=0; y�h; y++) DOoy = (y/2h)*(inIm.height+1);vThreshIm = horDist(binPixOpC(vertIm, oy, "greaterthan"), 0);�ltered = -1;FOR (x=0; x�w; x++) DOIF (�ltered != 1.0) THENox = (x/2w)*(inIm.width+1);hThreshIm = binPixOpC(vThreshIm, ox, "lessequal");hThreshIm = binPixOpC(verDist(hThreshIm, MAXVAL), oy, "greaterthan");hThreshIm = binPixOpC(horDist(hThreshIm, MAXVAL), ox, "lessequal");�ltered = (area - redu
eOp(hThreshIm, "sum")) / area;FI... and save '�ltered' for 
urrent x,y 
ombination ...ODODgListing 5: Condensed pseudo 
ode for fast 
al
ulation of re
tangular size distributions;maximum size of 
al
ulated �lters denoted by 'w' and 'h'. Fun
tions 'horDist' and 'verDist'perform horizontal and verti
al distan
e transforms, using re
ursive �lter-pairs. FINAL



22forward/ba
kward �lter pairs. Lastly, the need to explore large, 
at regions of the sizedistributions is eliminated by halting the �ltering for the 
urrent �lter when its propertiesguarantee that the �ltered result will be identi
al.Pseudo 
ode for the presented problem is given in Listing 5. It should be noted that theuse of re
ursive �lters results in a implementation whi
h is notoriously hard to parallelize(as is shown in the results provided in the remainder of this se
tion). A less eÆ
ientsequential solution would be to use sieving without de
omposition. This boils down to amorphologi
al s
ale-spa
e, and is 
omparable to the appli
ation of Se
tion V-A.B.2 Parallel Exe
utionAs before, the sequential 
ode of Listing 5 dire
tly 
onstitutes a parallel program aswell. When applying default algorithm expansion for parallelization, the program su�ersfrom the same problem as the appli
ation des
ribed in Se
tion V-A: it results in exe
utionof many 
ostly S
atter and Gather operations. Lazy parallelization avoids all su
h re-dundant 
ommuni
ation steps automati
ally, and again results in optimal 
ommuni
ationbehavior with respe
t to the abstra
tion level of message passing programs. In e�e
t,the input image is s
attered throughout the parallel system only on
e, and no additional
ommuni
ation steps are required for resolution of data stru
ture state in
onsisten
ies.It should be noted, however, that speedup 
hara
teristi
s are not expe
ted to be as goodas those presented in Se
tion V-A. This is be
ause the applied re
ursive �lter operationsare hard to parallelize eÆ
iently. In our library we apply a fast two-step redistribution ofthe partitioned image data to always mat
h the horizontal and verti
al �ltering dire
tions.Although this approa
h does result in fast parallel exe
ution, we are aware of the fa
tthat additional optimizations are possible (su
h as the appli
ation of a multi-partitioningte
hnique [6℄). This part of the pre-parallelized 
ode is not a�e
ted by lazy paralleliza-tion, however, as data redistribution plays no role in the introdu
tion or removal of datastru
ture state in
onsisten
ies.B.3 Performan
e EvaluationMeasurement results for the two generated parallel versions of the presented algorithmare given in Figure 4. It should be noted that these results represent a lower bound onFINAL
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# CPUs
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(b)Fig. 4. (a) Performan
e and (b) speedup for 
omputing re
tangular size distributions for do
ument imageof size 350�517 (2-byte) pixels. Maximum size of 
al
ulated �lters either 39�59 or 79�119. Resultsobtained using 1 CPU per dual node. Note: speedup lines for either approa
h essentially 
oin
ide.the obtainable speedup for this appli
ation, as the size of the input images was redu
edto 350�517 pixels only. As 
an be seen in Figure 4(a), lazy parallelization results insigni�
ant performan
e gains for any applied number of pro
essors. In 
ontrast, defaultalgorithm expansion behaves badly, and even results in a performan
e drop at all times.Figure 4(b) shows that the maximum number of nodes that 
an be used e�e
tively forsu
h a small-sized input image is about 32. Even though lazy parallelization has resulted inthe removal of all redundant 
ommuni
ation, the 
ost of the 
ommuni
ation steps appliedin the re
ursive �lter operations is signi�
ant in 
ase the number of pro
essors be
omeslarge. Still, the di�eren
es in the exe
ution times for the two parallelization strategies areenormous, and 
learly show the importan
e of redundant 
ommuni
ation removal.
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al
ulated �lters either 39�59 or 79�119. Resultsobtained using 1 CPU per dual node. Note: speedup lines for either approa
h essentially 
oin
ide.Figure 5 shows similar results in 
ase both CPUs on ea
h node are used in the exe
ution.As ea
h dual node 
an 
ommuni
ate through one port only, 
ommuni
ation overhead hasin
reased in 
omparison to the results presented in Figure 4. As a result, the maximumnumber of pro
essors that 
an be used e�e
tively is now redu
ed to only 16.Figure 6 shows that, for a mu
h more realisti
 input image of size 2325�3075 pixels,lazy parallelization still provides very good speedup 
hara
teristi
s: 45.5 on 64 pro
es-sors | an eÆ
ien
y of 71.2%. As before, default algorithm expansion does not deliverany performan
e gains at all. Figure 7 shows similar results in 
ase of using both CPUson ea
h node. Given these results, we 
on
lude that lazy parallelization also generateseÆ
ient parallel 
ode for the presented re
tangular size distribution extra
tion algorithm.
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25C. Performan
e Comparison with Related ToolsIn [27℄ we have made a performan
e 
omparison between our software ar
hite
ture andseveral related tools des
ribed in the literature. The 
omparison is based on a well-knownstereo vision appli
ation whi
h | in its parallel behavior | is 
omparable to the linedete
tion appli
ation of Se
tion V-A. The following brie
y presents the main results.First, a 
omparison is made with results obtained for the stereo vision appli
ation writ-ten in a spe
ialized parallel programming language (SPAR [24℄), whi
h was exe
uted onthe same parallel ma
hine as used in the above evaluation. Also, the 
odes generated bythe SPAR front-end and that of our own ar
hite
ture were 
ompiled in an identi
al man-ner. Measurements showed our ar
hite
ture to provide superior sequential performan
e ofabout a fa
tor 5, and better speedup | 
learly indi
ating that the overhead from our lazyparallelization approa
h is mu
h smaller than that of the SPAR run time system.Se
ond, a 
omparison is made with results obtained for an implementation in the Adaptparallel image pro
essing language [34℄. A true 
omparison with this work turned out todiÆ
ult, however, as the results were obtained on a signi�
antly di�erent ma
hine (i.e., a
olle
tion of iWarp pro
essors, with a better potential for obtaining high speedup than ourDAS 
luster). Even so, our software ar
hite
ture showed superior performan
e (of abouta fa
tor 2) with 
omparable speedup 
hara
teristi
s over a large range of pro
essors.Most interesting, however, is the 
omparison with Easy-PIPE [20℄, a library-based soft-ware environment for parallel image pro
essing similar to ours. The most distin
tive fea-ture of this ar
hite
ture is that it in
orporates a me
hanism for 
ombining data and taskparallelism. Also, Easy-PIPE does not shield all parallelism from the appli
ation pro-grammer. As a 
onsequen
e from these di�eren
es, Easy-PIPE has the potential of out-performing our ar
hite
ture, whi
h is fully user transparent, and stri
tly data parallel.However, performan
e and speedup 
hara
teristi
s for the stereo vision appli
ation ob-tained on the very same DAS 
luster show that our implementations far better exploit theavailable parallelism than Easy-PIPE . Part of the di�eren
e is a

ounted for by the fa
tthat Easy-PIPE does not in
orporate an expli
it inter-operation optimization me
hanismfor removal of redundant 
ommuni
ation. In addition, the run time parallelization over-head of Easy-PIPE turned out to be mu
h higher than that of our software ar
hite
ture.FINAL



26VI. Related WorkFor obtaining eÆ
ient library-based parallel image pro
essing appli
ations, the impor-tan
e of inter-operation optimization has been a
knowledged before. Morrow et al. [19℄des
ribe an environment for data parallel image pro
essing similar to ours. One of theimportant features of this environment is its self-optimizing 
lass library , whi
h is ex-tended automati
ally with optimized parallel operations. During program exe
ution, asyntax graph is 
onstru
ted for ea
h statement in the program, and evaluated only whenan assignment operator is met. At �rst exe
ution of a program, ea
h syntax graph istraversed, and an instru
tion stream is generated and exe
uted. In addition, any syntaxgraph for 
ombinations of primitive instru
tions is written out for later 
onsideration byan o�-line optimizer. On subsequent runs of the program a 
he
k is made to de
ide if anoptimized routine is available for a given sequen
e of library 
alls. In 
omparison with lazyparallelization, this optimization approa
h has several drawba
ks. First, the optimizationpro
ess is performed at 
ompile-time only, and has inherent problems with data-dependent
onditionals and loop 
onstru
ts. Next, optimized performan
e is obtained only for runsfollowing the initial exe
ution of a program. Finally, the approa
h may guarantee optimalperforman
e of sequen
es of library routines, but not ne
essarily of 
omplete programs. Itshould be noted that the approa
h of Lee et al. [15℄ is quite similar to that of Morrow et al.;as a 
onsequen
e it su�ers from the very same problems as well.A related approa
h to obtaining eÆ
ient 
ode for library-based s
ienti�
 appli
ations isthe 
on
ept of Teles
oping Languages introdu
ed by Kennedy et al. [12℄. In this approa
h,high performan
e for full appli
ations is a
hieved by exhaustively analyzing and pre
om-piling a given library | whi
h is annotated with domain-spe
i�
 optimizations that shouldnot be dis
overed unaided | to produ
e a pro
essor that re
ognizes and optimizes libraryoperations as primitives in a domain-spe
i�
 language. The goal of pre
ompilation is tospe
ialize di�erent versions of ea
h library routine for sets of 
onditions that hold whenthe routine is invoked. The entire set of spe
ialized routines is 
olle
ted in a database thatpermits eÆ
ient 
ode sele
tion and inlining when full appli
ations are 
ompiled. Althoughmany other forms of optimization are in
orporated (a.o.: self-tuning for portability, whi
his 
omparable to our ASTG-approa
h referred to in Se
tion IV-A), of most relevan
e to thisFINAL



27paper is the fa
t that the Teles
oping Languages approa
h also 
onsiders 
ombinations oflibrary operations on data stru
tures for multiple distribution types. In 
omparison to lazyparallelization, however, the presented approa
h has several disadvantages. First, as inthe approa
h of Morrow et al. des
ribed above, optimization is performed at 
ompile-timeonly, resulting in diÆ
ulties with data-dependent 
onditionals and loops. Moreover, therequired pre
ompilation 
an be extremely time-
onsuming, and results in a large databaseof operations from whi
h only a few routines will generally be invoked at run time. Also,to be able to deal with di�erent shapes and sizes of data stru
tures (whi
h generally re-main unknown until run time), the database of alternative implementations is extendedeven further. Although it has not been emphasized so mu
h before, lazy parallelization
an easily deal with this problem by remaining 
exible in the number of nodes to be used,and by allowing for run time sele
tion of a single state transition from a set of multiplealternatives, depending on a stru
ture's size and shape. As indi
ated in [25℄, this solutionhas been integrated 
leanly and elegantly, and without measurable run time overhead.To our knowledge, usage of fsm spe
i�
ations is new in the �eld of library-based par-allelization tools. Moreover, the appli
ation of an fsm de�nition seems not to have been
onsidered at all in the �eld of parallel image pro
essing. In related resear
h areas ofparallel 
omputation, however, fsm de�nitions have been applied before. For example,Chatterjee et al. [4℄ apply a �nite state ma
hine for the generation of optimal 
ommu-ni
ation sets in distributed-memory implementations of data-parallel languages su
h asHPF. As in our 
ase, results indi
ate that the fsm approa
h requires very little run timeoverhead. For ad-ho
 optimization of spe
i�
 algorithms and appli
ations fsm de�nitionshave been applied su

essfully as well [5℄, [18℄.Interestingly, our approa
h to �nding optimal performan
e of operations as well as
omplete appli
ations is related to several proje
ts in other domains. The SPIRALproje
t [23℄, [30℄, for example, is aimed at the design of a system to generate eÆ
ientlibraries for digital signal pro
essing algorithms. SPIRAL generates eÆ
ient implementa-tions of algorithms expressed in a domain-spe
i�
 language, 
alled SPL, by a systemati
sear
h through the spa
e of possible implementations. Other e�orts in automati
ally gen-erating eÆ
ient implementations of programs in
lude FFTW [7℄ for adaptively generatingFINAL



28time-optimal FFT algorithms, and the ATLAS proje
t [35℄ for deriving eÆ
ient imple-mentations of basi
 linear algebra routines.Finally, our work shares 
ommon goals with that of Baumgartner et. al. [3℄, in thesear
h of an optimal data partitioning strategy with minimal 
ommuni
ation overhead forappli
ations in the �eld of quantum 
hemistry and physi
s. As in our extended approa
hnot dis
ussed here, an operator tree is generated, in whi
h multiple data partitioning and
ommuni
ation strategies are in
orporated. This approa
h is also entirely stati
, however,and in
ludes no possibility for partial optimization performed at run time.VII. Con
lusionsIn this paper we have presented a �nite state ma
hine based approa
h for 
ommuni
ationminimization of data parallel regular domain problems. The approa
h, referred to aslazy parallelization, 
onsiders a sequential program, whi
h is parallelized automati
ally byinserting 
ommuni
ation operations and lo
al memory management operations wheneverne
essary. The approa
h always generates a legal, 
orre
t, and eÆ
ient parallel versionof any sequential program implemented on the basis of so-
alled parallelizable patterns,where ea
h su
h pattern represents a generi
 des
ription of a 
lass of sequential algorithmswith similar behavior in terms of data a

esses to array-like stru
tures.The main advantage of the optimization approa
h is that it 
an be applied on the 
y atrun time. As all required data a

esses are de�ned for ea
h operation, de
isions regardinginter-pro
ess 
ommuni
ation 
an be deferred to the a
tual moment of intended exe
ution.As su
h, lazy parallelization is very easy to implement, and performs without measurablerun-time overhead. In 
omparison with other methods des
ribed in the literature, lazyparallelization requires no prior knowledge regarding the behavior of loops and bran
hes,and run-time adaptation to data stru
ture shapes and sizes is easily integrated [25℄.In 
on
lusion, lazy parallelization on the basis of a �nite state ma
hine spe
i�
ationhas proven to 
onstitute a surprisingly simple, yet e�e
tive method for global optimiza-tion of data parallel regular domain problems. Essentially, the simpli
ity stems from theknowledge 
ontained in the de�nition of parallelizable patterns, and from the high levelabstra
tions in
orporated in the �nite state ma
hine de�nition. Consequently, we feelthat the appli
ability of the approa
h extends beyond the domain of library-based lowFINAL



29level image pro
essing appli
ations. This is parti
ulary true for the domains of signal pro-
essing and linear algebra appli
ations, whi
h in
lude similar patterns of 
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