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Abstract

A popular approach to providing non-experts in parallel computing with an easy-to-use programming
model, is to design a software library consisting of a set of pre-parallelized routines, and hide the intricacies
of parallelization behind the library’s API. However, for regular domain problems (such as simple matrix
manipulations or low level image processing applications  in which all elements in a regular subset of a
dense data field are accessed in turn) speedup obtained with many such library-based parallelization tools is
often sub-optimal. This is because inter-operation optimization (or: time-optimization of communication
steps across library calls) is generally not incorporated in the library implementations.

This paper presents a simple, efficient, finite state machine-based approach for communication min-
imization of library-based data parallel regular domain problems. In the approach, referred to as lazy
parallelization, a sequential program is parallelized automatically at run time by inserting communication
primitives and memory management operations whenever necessary. Apart from being simple and cheap,
lazy parallelization guarantees to generate legal, correct, and efficient parallel programs at all times.

The effectiveness of the approach is demonstrated by analyzing the performance characteristics of
two typical regular domain problems obtained from the field of low level image processing. Experimental
results show significant performance improvements over non-optimized parallel applications. Moreover,
obtained communication behavior is found to be optimal with respect to the abstraction level of message

passing programs.
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I. INTRODUCTION

A parallelization tool based on a software library of pre-parallelized routines can serve as
a powerful programming aid to obtain high performance with relative ease. In the field of
low (pixel) level image processing, for example, many such parallelization tools exist [10],
[11], [13], [14], [21], [32], [33]. Such tools, however, generally restrict performance opti-
mization to each library operation in isolation, and ignore communication minimization
for full applications. For library implementations based on message passing primitives
significant performance gains can be obtained, as it is often possible to remove many
redundant communication steps, and to combine multiple messages in a single transfer.

Automatic optimization of communication overhead is not easy. First, this is because
the optimization strategy must be able to determine which communication steps are es-

sential, and which can be safely combined or removed. Also, it must guarantee that the
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resulting parallel code is (1) efficient, preferably comparable to an optimal hand-coded
implementation, (2) legal, such that the program is deterministic and can never end in
deadlock, and (3) correct, such that it produces output identical to the original program.
This paper presents a new and surprisingly simple strategy for communication minimiza-
tion in library-based data parallel regular domain problems [22], which adheres to all these
requirements. In the approach, a fully sequential program is parallelized automatically at
run time by inserting communication primitives and additional memory management op-
erations whenever necessary. The approach, referred to as lazy parallelization, is based on
a simple finite state machine (fsm) specification. One of two essential fsm ingredients is
a set of states, each corresponding to a valid internal representation of a distributed data
structure at run time. The other is a set of state transition functions, each of which defines
how a valid data structure representation is transformed into another valid representation.
This paper indicates how the fsm specification is applied in the process of obtaining legal,
correct, and indeed efficient parallel code. Also, a compile-time extension is discussed,
which is capable of producing the theoretically fastest parallel version of a program.
This paper is organized as follows. Section Il describes the optimization problem. In
Section III the finite state machine specification is presented. Section I'V describes the fsm-
based approach of lazy parallelization, and briefly presents a compile-time extension for
additional optimization. An evaluation of measurements obtained for two example regular
domain problems obtained from the field of low level image processing is presented in

Section V. Section VI discusses related work. Concluding remarks are given in Section VII.

II. THE OPTIMIZATION PROBLEM

The main objective in our research is to build a library-based software architecture
that allows for fully sequential implementation of low level image processing applications
executing in data parallel fashion [25], [26], [27], [29]. All parallelization and optimization

issues are to be taken care of by the architecture itself, hidden from the user.

A. Parallelizable Patterns in Reqular Domain Problems

For reasons of software maintainability and reuse, all library operations are implemented

on the basis of a definition of so-called parallelizable patterns found in typical regular do-
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main problems [29]. Each such pattern represents a generic description of a class of se-
quential algorithms with similar behavior in terms of data accesses to array-like structures.
More specifically: a parallelizable pattern represents a generic operation that takes zero or
more source structures as input and produces exactly one destination structure as output.
It consists of n independent tasks, where a task specifies what data in any of the structures
must be acquired in order to update the value of a single data point in the destination
structure. As such, prior to parallel execution of a pattern, for all data structures on all
processing units all data accesses are known. As all accesses are defined to be local to the
processing unit executing the algorithm, all non-local data to be accessed must be commu-
nicated prior to execution. Given the precise definition of these data access pattern types, a
default parallelization strategy with minimal communication overhead directly follows for
any operation that maps onto one of the predefined parallelizable patterns [29]. Irrespec-
tive of the focus on low level image processing, due to the generic nature of parallelizable

patterns this result naturally extends to other regular domain problems as well.

B. Abstract Function Specifications

As stated, in our software architecture all sequential image processing functionality is
implemented on the basis of parallelizable patterns. For these operations we introduce

a shorthand notation, presented in Table I. It includes (a.0.) unary and binary pixel

Create ( OUT dst ); // create global structure

Delete ( OUT dst ); // delete global structure

Import ( OUT dst ); // import global structure from ext. device

Export ( IN src); // export global structure to ext. device

MemCopy ( IN sre, OUT dst ); // copy global structure

UnPixOp ( IN sre, OUT dst ); // unary pixel operation

BinPixOpV ( IN src, OUT dst, IN arg ); // binary pixel operation (vector argument)

BinPixOpl ( IN stc, OUT dst, IN arg ); // binary pixel operation (image argument)

ReduceOp ( IN sre, OUT dst ); // global reduce operation

NeighOp ( IN stc, OUT dst, IN ker ); // generalized neighborhood operation

GenConvOp ( IN stc, OUT dst, IN ker ); // generalized convolution

RecGConvOp ( IN stc, OUT dst, IN ker ); // recursive generalized convolution

GeoMat ( IN sre, OUT  dst  ); // geometric transform. (matrix-based)

GeoRoi ( IN sre, OUT dst ); // geometric transform. (region of interest)
TABLE I

Abstract functions: sequential operation.
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CreatLclPart (1 OUT Idst  ); // create non-overlapping structure at all nodes
CreatLclFull ( OUT ldst  ); // create fully overlapping structure at all nodes
DelLcl ( ourt Idst  ); // delete local structure at all nodes

Broadcast ( IN gsre, OUT ldst ); // send global structure to all nodes

Scatter ( IN gsre, OUT ldst ); // divide global structure among all nodes
Gather ( IN Isre, OUT gdst ); // send each node’s local structure to root
GatherAll ( INOUT Isrc, INOUT gdst ); // send each node’s local structure to all nodes
ReduceOne ( INOUT 1Isrc, OUT gdst ); // global reduce across all nodes (result at root)
ReduceAll ( INOUT Isrc, INOUT gdst ); // global reduce across all nodes (result at all)

TABLE 11
Abstract functions: communication.

operations, (recursive) neighborhood operations, and geometric transformations.
Shorthand notation for all required inter-process communication is presented in Table II,
and contains the common collective operations in MPI [17]. The additional CreatLclPart/Full
and Dellcl functions constitute creators and destructors for partial data structures, each
residing on a different processor at run time. Partial structures are referred to as local in
the presented parameter lists (1src and 1dst). The original structure from which the partial
structures are obtained is referred to as global (gsrc and gdst). The importance of these
abstractions is that for any application implemented using our architecture it is possible

to derive an abstract operation stream comprising of functions from Tables I and II alone.

C. Default Algorithm Ezxpansion

Because all functionality is implemented on the basis of parallelizable patterns, conver-
sion of any sequential application into an equivalent parallel program is straightforward.
The conversion process, referred to as default algorithm expansion, is illustrated in List-
ing 1. The sequential program, shown on the left, first imports image A, which is used as
input to a unary pixel operation. Subsequently, resulting image B is used as input to a
binary pixel operation. Finally, resulting image C is exported, and all images are destroyed.

The equivalent parallel program is shown on the right of Listing 1. First, a Scatter
operation is inserted before the UnPixOp call. After the operation has finished, the resulting
partial outputs are gathered to the single root node and all temporary partial structures
are destroyed. Subsequently, the images which are passed as source and argument to the

binary pixel operation are scattered throughout the parallel system. The partial outputs
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Tmport( A );
UnPixOp( A, B );

BinPixOpI( B, C, A );

Export( C );
Delete( A );
Delete( B );
Delete( C );

Tmport( A);
Scatter( A, locA );
UnPixOp( locA, locB );
Gather( locB, B );
DelLcl( locA );
DelLcl( locB );
Scatter( A, locA );

Scatter( B, locB );
BinPixOpI( locB, locC, locA);
Gather( locC, C );
DelLcl( locA );
Dell.cl( locB );
DelLcl( locC );
Export( C );
Delete( A );
Delete( B );
Delete( C );

(a) Sequential. (b) Parallel (default).

Listing 1: Abstract sequential application (a) and equivalent parallel program after default
algorithm expansion (b).

resulting from BinPixOp are gathered to the root, after which all partial structures are
deleted. From this point onward, the program is identical to the original sequential version.

Default algorithm expansion always generates a legal and correct parallel version of any
sequential program implemented on the basis of parallelizable patterns. This is because
each abstract function call in the sequential code is replaced by an equivalent sequence of
one or more (parallel) operations. The parallel code is not guaranteed to be time-optimal,
however. Worse even, it can be expected to be slower than the original sequential program.
Although other tools may have different implementations, all library-based tools suffer

from the very same problem  and for improved performance a solution is essential.

D. The Problem: Inefficiencies from Default Algorithm Expansion

When considering the parallel code of Listing 1(b), it is clear that it contains several
operations that could be removed without violating the program’s correctness or legality.
First, image locA, used as source structure for the unary pixel operation, is removed by
Dellcl and subsequently recreated in the second occurrence of the Scatter(A, locA) call. For
improved performance, both operations simply could be removed. The same holds for the
sequence of instructions applied to the locB structure preceding the BinPixOpl call (i.e., Gather
followed by DelLcl and Scatter). Listing 2(b) presents the optimized program obtained after

removing the redundant communication steps from the parallel code. The remainder of this
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Import( A ); Import( A );
UnPixOp( A, B ); Scatter( A, locA );
BinPixOpl( B, C, A ); UnPixOp( locA, locB );
Export( C ); BinPixOpl( loeB, locC, locA);
Delete( A ); Gather( locC, C );
Delete( B ); DelLcl( locA );
Delete( C ); DelLcl( locB );
DelLcl( locC );

Export( C );

Delete( A );

Delete( B );

Delete( C );

(a) Sequential. (b) Parallel (optimized).

Listing 2: Abstract sequential application (a) and equivalent parallel program after inter-
operation optimization (b).

paper indicates how execution of such redundant operations can be avoided automatically.

III. FINITE STATE MACHINE DEFINITION

Our solution to the problem of redundant communication avoidance is based on a finite
state machine (fsm) specification. More specifically, we restrict ourselves to a deterministic

finite accepter (dfa) [9], defined by the quintuple M = (Q, %, 0, gy, F), where
(Q is a finite set of internal states,
Y is a finite set of symbols called the input alphabet,
0:Q x X — Qis a transition function,
qo € Q is the initial state,

F C Q is a set of final states.
A. Data Structure States and Lifespan

As described in [29], for parallel execution two types of data structure representations
are used in our software architecture: global structures and local (or partial) structures.
A global structure always resides at a single processing unit (the root), and contains all
data for the complete domain of the structure it represents. Local structures, on the other
hand, are the result of a scatter or broadcast operation performed on a global structure.

There is a strong relationship between a global structure and the set of derived local
structures (or: distributed data structure). Clearly, at any time either the global struc-

ture itself or its derived distributed structure must contain all valid data. An abstract
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representation of this relationship is given by the triple ¢ = (g, d, t), where

g € G is the state of the global structure,
d € D is the state of the derived distributed structure,
t € T is the distributed structure’s distribution type,
and
G = { none, created, valid, invalid },
D = { none, valid, invalid },
T = { none, partial, full, not-reduced }.

In set (&, none indicates that no space has been allocated for the global structure in the
main memory of the root. Furthermore, created indicates that space for the global structure
has been allocated by way of the Create function. In this state, the elements of the global
structure do not contain values resulting from any calculation (yet). Finally, valid indicates
that the global structure contains up-to-date values for all structure elements, and invalid
indicates that at least one of the global structure’s elements may contain an incorrect
value. For distributed structures, the elements in set ID are defined in a similar manner.
The value created is not present in set D, however, simply because we do not need it.

In set T, none indicates that no distribution type information is available. In addition,
partial indicates that the set of constituent local structures is the result of a Scatter opera-
tion, while full indicates that the structures are obtained in a Broadcast operation. Finally,
not-reduced indicates that all elements of the constituent local structures yet have to be
subjected to an element-wise ReduceOne or ReduceAll operation (see also [29]).

The set R = G x D x T contains all possible representations of the relationship between
a global structure and its derived distributed structure. However, many of these possible
representations can not (or should not) occur. As an example, the representation ¢ =
(invalid, invalid, full) should not occur in a program, as neither the global structure nor the
distributed structure contains all correct values.

For the fsm, we have specified a restricted set of walid internal states, based on the

relationship between global and distributed structures. It is defined by

Q:{QO7 qiy, -, QS}CGXDXTa
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with

Jo — (none, none, none), (3 — (invalid, none, none), ¢ — (invalid, valid, partial),

q1 = (created, none, none), g4 = (valid, valid, partial), g7 = (invalid, valid, full),

@2 = (valid, none, none), g5 = (valid, valid, full), ¢s = (invalid, invalid, not-reduced).
State qq is the empty state, and represents the state of the global-distributed structure
combination before its initial creation and after its final destruction. State ¢; represents the
state immediately after creation of the global structure. This is a special case of state ¢, as
the global structure also could be designated as valid. State ¢; is still required, however, to
avoid communication in case a distributed structure is to be derived from a global structure
in this state. State ¢y indicates that a global structure’s elements contain all up-to-date
values, while a derived distributed structure is nonexistent. At first glance, g3 seems to
be a state that should never appear in a legal parallel program. However, this is the
state obtained after performing a DelLcl operation in case the global-distributed structure
combination is represented by states gg, q7, or gs. In states qu, ¢5, g, and g7, the distributed
structure contains all correct values, while the related global structure is either consistent
or inconsistent with these values. Finally, state ¢s occurs in parallel reduction operations.
As long as the required reduction has not been performed on the distributed structure, all
constituent local structures as well as the related global structure remain invalid.

At run time each global-distributed structure combination starts in the empty state ¢q.
From this point onward each state can be reached, depending on the operations performed
on the structure combination. Also, it is possible for certain states to be reached multiple
times. The lifespan of a global-distributed structure combination ends in case it returns to
the empty state ¢o. As such, state gy serves as the initial state of our finite state machine

definition, as well as the single element in the set of final states.

B. State Transition Functions

For our purposes, the fsm input alphabet is formed by the operations of Tables I and II,
with a concrete data structure reference for each formal parameter. Also, as the fsm is
used to monitor state changes and lifespan of a single data structure only, monitoring the
correctness and legality of a complete application involves multiple fsm’s. This results

in a parallel view of the states of all data structures in an application: at any moment
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5(q0, (Create, *)) = q, 5(q¢, (Delete, *)) = qo,
6(q07 (Import, 7)) = ({2, 5(qj7 (Export, 7)) = q]v
with ¢ € {1,23},7 € {1, 2, 4,5},

(qo; (op, 42)) = o, (qo; (op, 46)) = gs,
6(qo, (o, q4)) = gs, 6(qo; (op, g7)) = a1,
(qo, (op, 45)) = qr, (i (op, q0)) = )
with op € {MemCopy7 UnPixOp},i € {2, 4,5, 6, 7},
6((]07 (Op, g2, q2)) = ({2, 5((12: (Op, qo; qQ)) = {2,
6((]0, (Op, qa, qz)) = (s, 5((]4: (Op, qo; ql)) = {4,
5(Q07 (0p7 qs, %)) = (7, 5((]5: (Op, qdo; QJ)) = (s,
(5((]0, (Op, de, ql)) = (s, 6((]6: (Op, qo; ql)) = (e,
6(qo, (op, g7, 4i)) = a1, 6(gz, (op, qo, Qj)) =47,

with op € {BinPixOpV7 NeighOp, GenConvOp, RecGConvOp}7
i€{57},7€{4,56 7},

(qo, (op, @2, @2)) = qo, (g2, (op, Q0, @2)) = qo,
6((]07 (0p7 qi, q])) = (s, 5((]2’ (Op, qo; q])) = (q;,
(S(Q()a (Op, Gk, ql)) =47, 5(Qk: (Op, qo, q1)) = qk;

with op € {BinPixOp1},, 7 € {4,6},k,1 € {5, 7},

(5((]0, (ReduceOp, qg)) = (2, (5((]2, (R.educeOp, qo)) = (2,
5((]0, (ReduceOp, ql)) = (3, (5((],’, (R.educeOp, qo)) = (;,
(5((]0, (ReduceOp, Qj)) = g7, 5(%‘, (ReduceOp, qo)) = gy,
with i € {4,6},7 € {5, 7},

6((]07 (Op, QQ)) = ({2, 6((]2: (Op, qU)) = ({2,
5(%7 (op, Qz)) = gs, 5(% (Op, QO)) = 4i,
with op € {GeoMat, GeoRoi},i € {5, 7}.

TABLE III

Transition functions: image operations.

during execution, several structures are ’alive’ and their combined state is captured by

their respective fsm’s. As the states of multiple structures are not always independent,

we assume that each fsm has a complete and up-to-date view of the states of all data

structures in an application. Also, by way of the defined set of state transition functions,

each fsm incorporates all knowledge regarding data structure state dependencies. To this

end, the definition of state transition functions as presented before is extended as follows:

(SZQXE(I—)Q,
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where Y4 is the input alphabet in which each function is annotated with a list of permitted
state dependencies for all additional structures passed as parameter to that function (i.e.,
those structures for which the current fsm is not responsible). Here, we represent elements
in X; by a pair or triple, in which the first component is the name of the function, and
the remainder represents the (possibly empty) list of state dependencies. For example,
d(qo, (BinPixOpV, ¢4, ¢5)) = ¢g represents a state transition function for the output structure
produced by the BinPixOpV operation. This transition function changes the state of the
output structure from ¢y to gg, while the source and argument structures are expected to
be in states ¢4 and g5 respectively. It should be noted, that the knowledge obtained with
this parallel view also can be captured in a single cross-product machine, in which each dfa
simulates, in parallel, the behavior of each component dfa [16]. For simplicity, however,
in the remainder of this paper we keep to the parallel view of simple state machines.
Table IIT presents the transition functions for the image operations available in our
library. In all cases, initial state gy refers to the state of the output structure produced
by any of the operations. As can be seen, output structures are the only structures that
actually move from one state to another. Input structures and argument structures never
change state, as these are accessed only, and never updated. All transitions that cause a
structure to be moved to state ¢; or ¢, always indicate sequential execution using global
structures. All other transitions refer to parallel execution using distributed structures.
State transition functions related to the additional communication functionality, and the
memory management of local data structures, are presented in Table IV. In all of these the

list of state dependencies is empty, as the functions work on a single data structure only.

(S(Q], (CreatLClPart, *)) = (4, (S(q“ (Dechl7 *)) = (9,
3(¢q1, (CreatLelFull, —)) = g5,  0(g;, (DelLel, —)) = g3,
with i € {4,5},j € {6, 7, 8},

(S(QQ, (Broadcast, *)) = @5, (;(q& (ReduceOne, *)) = @9,

5((]2, (Scatter7 *)) = (4, 6((]8; (ReduceAll, *)) = (5,
(s, (Gather, —)) = qu, d(ge, (GatherAll, —)) = gs,
(S(Q7, (Gather, —)) = (s,

TABLE IV

Transition functions: communication.
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CreatL ocalPart

*1,*2,*3,*4 = creation of datastructure by one of several image operations

Fig. 1. Reduced state transition graph.

Figure 1 presents a reduced state transition graph for the fsm. For better readability, it
contains only those operations that cause a structure to move from one state to another.
As such, the graph incorporates the complete lifespan of a data structure, and covers
any state a structure can reach at run time. Also, it is exactly these operations that are
essential in the process of operation redundancy avoidance as presented in Section IV.

A program is legal, if it is accepted by all fsm’s related to that program. In other words,
in our architecture a program is legal if (1) it contains function calls from Tables I and II
only, (2) it contains no data structure state inconsistencies, and (3) all structures start
as well as end in state gyg. In case a user-provided sequential program is legal, default
algorithm expansion always generates a legal and correct parallel program. This is because
each sequence of (parallel) operations that replaces a sequential call generates exactly the
same set of data structure state transitions at all times. The following section shows how
the presented fsm is used to obtain legal and correct parallel code, which is optimized in

that the execution of any redundant communication operations is avoided.
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IV. LAzy PARALLELIZATION

In the approach of lazy parallelization it is assumed that each communication or mem-
ory management operation inserted by default algorithm expansion is redundant, unless
proven otherwise. Stated differently, lazy parallelization causes an inserted operation to be
executed only if its removal would introduce a data structure state inconsistency. Although
the method can be applied on the fly at run time, for the moment we will present it as a
compile time method. Conceptually, lazy parallelization consists of the following steps:
1. Apply the process of default algorithm expansion to the original sequential code.

2. Remove all communication operations, as well as all operations for the creation and
destruction of partial data structures.

3. Apply partial loop unrolling by extracting the code for the first iteration of each loop,
and placing it in front of the code for the remaining loop iterations.

4. Resolve data structure state inconsistencies by re-inserting operations removed in step 2.
5. Undo the loop unrolling by collapsing each separated loop into a single code block.

As stated, the parallel code obtained after the first step is legal, but non-optimal. The
operation removal in the second step, however, introduces many state inconsistencies. As
described below, these inconsistencies are resolved in step four. Steps 3 and 5 are present
only to expose all data structure state inconsistencies that can possibly occur in a program.

Listing 3 gives a conceptual example of lazy parallelization. The programs obtained in
the first three steps of the optimization process are straightforward, and will not be dis-
cussed. The re-insertion of code as applied in step 4 (see Listing 3(e)) is performed using
the state transition functions of Section I1I-B (i.e., only those in the reduced state tran-
sition graph of Figure 1). The Broadcast( A, locA ) operation in the first loop iteration is
inserted because the Import operation causes its output structure to be moved to state ¢o,
while for parallel execution the subsequent GeoMat operation requires its input structure to
be in state g5 or g; (see Table IIT). The only operation that provides a resolution to this
state inconsistency is Broadcast, as it moves a data structure from state ¢y to ¢5. Similarly,
Gather( locC, C ) is inserted in the first loop iteration, as it moves C from ¢4 to g4, which
is one of the allowed input states for the subsequent Export operation. The additional

re-insertions work in a similar manner, and all further interpretation is left to the reader.
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Import( A ); Import( A );

LLOOP [1:N] LOOP [1:N]
GeoMat( A, B ); Broadcast( A, locA );
GenConvOp( B, C, k ); GeoMat( locA, locB );
Export( C ); Gather( locB, B );
Delete( C ); DelLcl( locB );
Delete( B ); DelLcl( locA );

ENDLOOP Scatter( B, locB );

Delete( A ); GenConvOp( locB, locC, k );

Gather( locC, C );
DelLcl( locC );
DelLcl( locB );
Export( C );
Delete( C );

Delete( B );
ENDLOOP
Delete( A );
(a) sequential code (b) after step 1
Import( A ); Import( A );
LOOP [1:N] LOOP [1]
GeoMat( locA, locB ); GeoMat( locA, lTocB );
GenConvOp( locB, locC, k ); GenConvOp( locB, locC, k );
Export( C ); Export( C );
Delete( C ); Delete( C );
Delete( B ); Delete( B );
ENDLOOP ENDLOOP
Delete( A ); LOOP [2:N]

GeoMat( locA, locB );
GenConvOp( locB, locC, k );

Export( C );
Delete( C );
Delete( B );
ENDLOOP
Delete( A );
(c) after step 2 (d) after step 3
Import( A ); Import( A );
LOOP [1] LOOP [1:N]
Broadcast( A, locA ); IF [1] Broadcast( A, locA);
GeoMat( locA, locB ); GeoMat( locA, locB );
GenConvOp( locB, locC, k ); GenConvOp( locB, locC, k );
Gather( locC, C ); Gather( locC, C );
Export( C ); Export( C );
DelLcl( locC ); DelLcl( locC );
Delete( C ); Delete( C );
DelLcl( locB ); DelLcl( locB );
Delete( B ); Delete( B );
ENDLOOP ENDLOOP
LOOP [2:N] DelLcl( locA );
GeoMat( locA, locB ); Delete( A );
GenConvOp( locB, locC, k );
Gather( locC, C );
Export( C );
DelLcl( locC );
Delete( C );
DelLcl( locB );
Delete( B );
ENDLOOP
DelLcl( locA );
Delete( A );
(e) after step 4 (f) after step 5

Listing 3: FEzample of optimization by lazy parallelization: (a) original code, (b) after
default algorithm expansion, (c¢) after removal of ’redundant’ operations, (d) after partial
loop unrolling, (e) after default operation re-insertion, (f) optimized parallel code after
loop recombination.
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A. Discussion

Lazy parallelization produces legal and correct parallel code at all times. This can
be seen by considering the allowed states for all structures passed as parameters to the
operations in Table I, and the resulting states for the produced output structures. As such,
each operation has a set of allowed input states for each parameter, one of which is moved
to a new output state. By exhaustion, it is easily shown that for each possible output
state, a finite sequence of zero or more state transitions exists that moves a structure from
that output state to one state in each set of allowed input states (see also [28]).

An important property of lazy parallelization is that it can be applied on the fly at run
time (hence its name). As all data structure states are known for each operation, decisions
regarding the execution of each communication step are deferred to as late as the actual
moment of execution. Essentially, this means that all five steps as described above are
reduced to a single step. This makes lazy parallelization very easy to implement, and highly
efficient (i.e., without measurable run time overhead). An additional advantage is that no
prior knowledge regarding the behavior of loops and branches is required. Finally, run-time
adaptation to data structure sizes is easily integrated, by allowing flexibility in the applied
number of processing units (or even by temporarily residing to sequential execution) [25].

Although lazy parallelization produces very efficient parallel code, it is still non-optimal.
First, this is because it always applies the fastest communication step whenever message
transfer is mandatory. This is a form of local performance optimization, however, as
it may be better to insert a combined message transfer to avoid further communication
steps at a later stage. Secondly, no knowledge is incorporated regarding the performance
characteristics of the parallel machine at hand [26], [29]. To overcome these problems,
we have also implemented an extension to the presented approach, which is capable of
producing the (expected) fastest parallel version of a sequential program at compile time.
The extended approach relies on the creation of an application state transition graph
(ASTG), incorporating all relevant performance optimization decisions that can be made
at run time. Each decision is annotated with a cost estimation, such that the fastest
implementation is represented by the cheapest branch in the graph. Drawback, however, is

that it is often costly to actually obtain the cheapest branch. See [25] for more information.
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B. Applicability

Although lazy parallelization was designed for data parallel imaging applications, it has
a broader applicability. As stated in Section II, the approach will work (and generally be
effective) for all regular domain problems in which the essential operations can be expressed
in terms of parallelizable patterns. One obvious example is the domain of linear algebra
applications. Clearly, for the approach to work in other application areas all references to
image operations in the fsm specification should be altered, but this adaptation is only
marginal. Also, the fact that operations in other areas may incorporate different data
access pattern types does not challenge the validity of the proposed method in any way.

Essentially, lazy parallelization is applicable to irregular (even data driven) problems as
well. For the approach to work, however, it is essential to have knowledge regarding the
data access pattern types of operations to obtain the required communication sets on the
fly at run time. For irregular applications this may not always be effective, especially in
cases where nothing is known other than that n accesses are to be performed within a set
of m elements, with m > n. When most elements in the set of size m are non-local, the
communication set for each processor will be large. In such cases the performance obtained
by lazy parallelization largely depends on the amount of overlap in the communication sets
for sequences of operations. The more overlap, the more communication can be avoided.

In the problem of avoiding redundant communication steps the reader may see a relation
to similar problems in other research areas. As a first example, there is an analogy to the
generation of redundant instructions in the process of compilation. Here, a well-known
problem is the avoidance of superfluous transfer of values between registers and (main)
memory. As another example, there are similarities to cache coherency problems in the
avoidance of unnecessary updates of stale data. Solutions to problems of this kind (e.g.,
peephole strategies for compilers, 1/O address checking for cache accesses, etcetera) all
require (often costly) look-ahead strategies to obtain knowledge regarding data accesses.
Our solution to redundant communication avoidance is different in that it does not re-
quire any form of look-ahead at all. This property directly follows from the knowledge
regarding data accesses contained in the definition of parallelizable patterns. As such,

our solution to the redundancy problem does not easily transfer to the aforementioned
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problems in other research areas. This is because it is often unfeasible or even impossible
to incorporate a priori knowledge regarding data accesses in the general case. However,
for certain domain-specific problems our approach is still applicable. It is possible, for
example, to use compiler annotations in parallel languages such as HPF to obtain particu-
larly efficient parallel code for certain regular domain problems. Specifying code segments
as being implemented according to particular parallelizable patterns relieves the compiler
of extensive dependency analysis, and allows for lazy parallelization to be incorporated.

Currently, this approach is being considered for the SPAR parallel language [24], [31].

V. MEASUREMENTS AND VALIDATION

To evaluate the approach of lazy parallelization, this section describes the implemen-
tation and parallel execution of two example image processing applications: (1) line de-
tection, and (2) extraction of rectangular size distributions from document images. The
actual code is available at http://www.science.uva.nl/"fjseins/ParHorusCode/.

The two applications have been tested on the 72-node Distributed ASCI Supercom-
puter 2 (DAS-2) located at the Vrije Universiteit in Amsterdam [2]. All nodes consist of
two 1-Ghz Pentium-III CPUs, with 2 GByte of RAM, and are connected by a Myrinet-
2000 network. At the time of measurement, the nodes ran the RedHat Linux 7.2 operating
system. Our software architecture was compiled using gcc 2.96 (at highest level of opti-
mization) and linked with MPICH-GM, which uses Myricom’s GM as its message passing
layer on Myrinet. As the DAS-2 system is heavily used for other research projects as well,

measurement results are presented here for a system of up to 64 dual-CPU nodes only.

A. Curvilinear Structure Detection

As discussed in [8], the important problem of detecting lines and linear structures in
images is solved by considering the second order directional derivative in the gradient
direction, for each possible line direction. This is achieved by applying anisotropic Gaus-
sian filters, parameterized by orientation #, smoothing scale o, in the line direction, and

differentiation scale o, perpendicular to the line, given by
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with b the line brightness. When the filter is correctly aligned with a line in the image,
and o,, 0, are optimally tuned to capture the line, filter response is maximal. Hence, the
per pixel maximum line contrast over the filter parameters yields line detection:

R(z,y) = arg max 7" (z,y, 04, 0,,0).

O 00,0
A.1 Sequential Implementations

The anisotropic Gaussian filtering problem can be implemented sequentially in many
different ways. First, for each orientation 6 it is possible to create a new filter based on
o, and o,. Hence, a sequential implementation based on this approach (which we refer to
as Conv2D) implies full 2-dimensional convolution for each filter.

The second approach (referred to as ConvUV) is to decompose the anisotropic Gaussian
filter along the perpendicular axes u, v, and use bilinear interpolation to approximate the
image intensity at the filter coordinates. Although comparable to the Conv2D approach,
ConvUV is expected to be faster due to a reduced number of accesses to the image pixels.

Pseudo code for the C'onv2D and ConvUV algorithms is presented in Listing 4. Filtering
is performed in the inner loop by either a full two-dimensional convolution (Conv2D) or by
a separable filter in the principle axes directions (ConvUV). On a state-of-the-art sequen-
tial machine either program may take from a few minutes up to several hours to complete,
depending on the size of the input image and the extent of the chosen parameter subspace.

Consequently, for the directional filtering problem parallel execution is highly desired.

FOR all orientations § DO
FOR all smoothing scales o, DO
FOR all differentiation scales o, DO
FiltIm1 = GenConvOp(Originallm, ”func”, oy, oy , 2, 0);
FiltIm2 = GenConvOp(Originallm, ”func”, oy, oy , 0, 0);
ContrastIm = BinPixOp(FiltIm1, ”absdiv”, FiltIm?2);
ContrastIm = BinPixOp(ContrastIm, "mul”, o, X oy);
ResultIm = BinPixOp(ResultIm, ?max”, ContrastIm);
oD
OD
OD

Listing 4: Pseudo code for the Conv2D and ConvUV algorithms, with "func" either
"gauss2D" or "gaussUV".
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A .2 Parallel Execution

Execution of the parallel versions of the algorithms obtained by default algorithm ex-
pansion results in a huge amount of redundant communication overhead. This is be-
cause each image operation in the inner loop of the program now executes one or more
Scatter-Gather-pairs similar to those presented in the example code of Listing 1(b).

In contrast, applying lazy parallelization to the two algorithms results in minimal com-
munication overhead. In the first loop iteration OriginalIm is scattered such that each
node obtains a non-overlapping slice of the image’s domain. Next, all subsequent opera-
tions are performed in parallel, only requiring border exchange communication in the con-
volutions (note: this is due to a sequential library design choice, see [25]). Finally, just
before program termination, ResultImis gathered to the root. In this manner, communica-

tion behavior is optimal with respect to the abstraction level of message passing programs.

A.3 Performance Evaluation

From the description, it is clear that the Conv2D algorithm is expected to be the
slowest sequential implementation, due to the excessive accessing of image pixels in the
2-dimensional convolution operations. Figure 2(a) shows that this expectation indeed
is confirmed by the measurements obtained on a single CPU. Although Conv2D has a

slightly better speedup characteristic due to a better computation versus communication

# CPUs Lazy Parallelization | Default Alg. Expansion % Conv2D (lazy paranel;ggi%grfg -
ConvUV (lazy parallelization) -+-
(1CcrPU 50 + Conv2D (gegau:; a:g. expansion) :
per node) | Conv2D (s) | ConvUV(s) | Conv2D (s) | ConvUV(s) ConvUlV {default alg. expansion) »
40 +
1 425.115 185.889 425,115 185.889 E
2 213.358 93.824 237.450 124.169 § 30 | &
4 107.470 47.462 133.273 79.847 i
8 54.025 23.765 82.781 60.158 20 L ~
16 27.527 11.927 55.399 47.407 A
24 18.464 8.016 48.022 45.724 10 | . s ® 3
32 13.939 6.035 42.730 43.050 o L B e D
48 9576 4.149 38.164 40.944 ol . ‘ ‘ ‘ ‘ ‘
64 7.318 3325 36.851 41.265 0 oo e s 6o
(a) (b)

Fig. 2. (a) Performance and (b) speedup characteristics for computing a typical orientation scale-space
at 5° angular resolution (i.e., 36 orientations) and 8 (oy,0,) combinations. Scales computed are o, €
{3,5,7} and o, € {1,2,3}, ignoring the isotropic case o, = {3,3}. Image size is 512x512 (4-byte)
pizels. Results obtained using 1 CPU per dual node.
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. . 120 linear(x) —
#CPUs Lazy Parallelization | Default Alg. Expansion Conv2D (lazy parallelization) —-—
ConvUV (lazy parallelization) -+-
(2CPUs 100 + Conv2D (default alg. expansion) =
per node) | Conv2D (s) | ConvUV(s) | Conv2D (s) | ConvUV(s) )
80 | o
2 217.366 99.587 256.425 149.575 g o
4 109.710 50.233 148.766 101.974 § 60 I
8 54.801 24.550 96.134 75.084 n
16 27.802 12.297 69.378 65.595 40 b
32 14.150 6.313 57.032 61.984
48 9.737 4.460 47.884 54.447 20 b
64 7.363 3.464 50.529 59.649 . . s s o
96 5.204 2553 45.025 53.610 o lefFoere \ RS i
20 40 60 80 100 120
128 4.062 1.875 48.148 59.169 NI. of CPUs
(a) (b)
Fig. 3. (a) Performance and (b) speedup characteristics as in Figure 2. Results obtained using 2 CPUs

per dual node.

ratio, ConvUV always is the fastest implementation on any number of nodes.

The speedup graph of Figure 2(b) shows the importance of the lazy parallelization
approach. Speedup values obtained on 64 nodes are 58.1 and 55.9 for Conv2D and ConvUV
respectively, in case of lazy parallelization. These values drop to 11.5 and 4.5 in case of
the original approach of default algorithm expansion.

Figure 3 shows similar results for measurements obtained in case both CPUs on each
node are used in the execution. Even measurements for up to 128 CPUs deliver close to
linear speedup. In this situation, however, performance is slightly degraded by the fact
that two CPUs on a single node need to pass messages through the same communication
port. Nonetheless, we can conclude that the application of lazy parallelization enables our

software architecture to produce highly efficient parallel code for these implementations.

B. Rectangular Size Distributions

As discussed in [1], rectangular size distributions are an effective way to characterize vi-
sual similarities between document images. Here, the vertically and horizontally aligned
regions of varying aspect ratios in a document image are characterized using multivariate,
rectangular granulometries. A granulometry can be thought of as a morphological sieve,
where objects not conforming to a particular size and shape are removed at each level of

the sieving process. The rectangular granulometry, ¥, ,, of input image S is given by

\Ifmyy(S) =So(yVazH),
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where H and V are the horizontal and vertical line segments of unit length centered at
the origin, and x and y are independent scale parameters controlling the width and height
of the rectangle used for filtering. Of most interest in describing the visual appearance
are the measurements taken on the filtered images ¥, ,(S). One useful measurement
for granulometries is the rectangular size distribution. The rectangular size distribution
induced by the granulometry G = {¥, ,} on image S is given by:

A(S) — A(9,,(5)))
A(S) ’

A(X) denoting the area of set X. As such, ®¢(z,y, S) is the probability that an arbitrary

q)G(nyJS) -

pixel in S is filtered by a rectangle of size x x y or smaller.

B.1 Sequential Implementation

To obtain particularly efficient sequential code for generating rectangular size distribu-
tions, we have taken advantage of several properties of rectangular granulometries and
size distributions. First, each rectangular filter is decomposed into 1-dimensional filters,
eliminating the need to filter a document by rectangles of all sizes. Next, the need to
use filters increasing linearly in size is removed by applying linear distance transforms for

horizontal and vertical directions. These transforms are implemented by using recursive

calculateRectangularSizeDistribution(IMAGE inIm, INT w, INT h) {
vertIm = verDist(inIm, 0);
area = reduceOp(inlm, ”sum”);
FOR. (y=0; y<h; y++) DO
oy = (y/2h)*(inIm.height+1);
vThreshIm = horDist(binPixOpC(vertIm, oy, ” greaterthan”), 0);
filtered = -1;
FOR (x=0; x<w; x++) DO
IF (filtered 1= 1.0) THEN
ox = (x/2w)*(inIm.width+1);
hThreshIm = binPixOpC(vThreshIm, ox, ”lessequal”);
hThreshIm = binPixOpC(verDist(hThreshIm, MAXVAL), oy, ”greaterthan”);
hThreshIm = binPixOpC(horDist(hThreshIm, MAXVAL), ox, ”lessequal”);
filtered = (area - reduceOp(hThreshIm, "sum”)) / area;
FI
. and save filtered’ for current x,y combination ...
OD
OD

}

Listing 5: Condensed pseudo code for fast calculation of rectangular size distributions;
mazimum size of calculated filters denoted by 'w” and °h’. Functions horDist’ and "verDist’
perform horizontal and vertical distance transforms, using recursive filter-pairs.
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forward /backward filter pairs. Lastly, the need to explore large, flat regions of the size
distributions is eliminated by halting the filtering for the current filter when its properties
guarantee that the filtered result will be identical.

Pseudo code for the presented problem is given in Listing 5. It should be noted that the
use of recursive filters results in a implementation which is notoriously hard to parallelize
(as is shown in the results provided in the remainder of this section). A less efficient
sequential solution would be to use sieving without decomposition. This boils down to a

morphological scale-space, and is comparable to the application of Section V-A.

B.2 Parallel Execution

As before, the sequential code of Listing 5 directly constitutes a parallel program as
well. When applying default algorithm expansion for parallelization, the program suffers
from the same problem as the application described in Section V-A: it results in execution
of many costly Scatter and Gather operations. Lazy parallelization avoids all such re-
dundant communication steps automatically, and again results in optimal communication
behavior with respect to the abstraction level of message passing programs. In effect,
the input image is scattered throughout the parallel system only once, and no additional
communication steps are required for resolution of data structure state inconsistencies.

It should be noted, however, that speedup characteristics are not expected to be as good
as those presented in Section V-A. This is because the applied recursive filter operations
are hard to parallelize efficiently. In our library we apply a fast two-step redistribution of
the partitioned image data to always match the horizontal and vertical filtering directions.
Although this approach does result in fast parallel execution, we are aware of the fact
that additional optimizations are possible (such as the application of a multi-partitioning
technique [6]). This part of the pre-parallelized code is not affected by lazy paralleliza-
tion, however, as data redistribution plays no role in the introduction or removal of data

structure state inconsistencies.

B.3 Performance Evaluation

Measurement results for the two generated parallel versions of the presented algorithm

are given in Figure 4. It should be noted that these results represent a lower bound on
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# CPUs Lazy Parallelization | Default Alg. Expansion % 79x119 (lazy paranelfggi%gﬁ; -
39x59 (lazy parallelization) -+
(1CPU 50 + 79x119 (ge;au:g a:g. expansion) :
pernode) | '39x59' (9 |'79x119'(s) | '39x59' (5) |'79x119' (8) 39x59 (default lg. expansion)
40 t
1 41.975 157.439 41.975 157.439 g
2 21.297 80.279 55.955 209.964 §_ 30 |
4 10.097 38.174 44.157 166.163 oz
8 5.109 19.029 43.441 160.874 20 |
16 3.014 11.198 44.235 163.865 A
24 2.621 9.778 45.462 167.792 10 " T
32 2.587 9.673 45.319 167.566
48 2.870 10.732 47.201 174.986 0 : : : : . ;
64 3.476 12.984 49283 | 183.054 o 20 0ol 0 e
(a) (b)

Fig. 4. (a) Performance and (b) speedup for computing rectangular size distributions for document image
of size 350x 517 (2-byte) pizels. Mazimum size of calculated filters either 39x59 or 79x119. Results
obtained using 1 CPU per dual node. Note: speedup lines for either approach essentially coincide.
the obtainable speedup for this application, as the size of the input images was reduced
to 350x517 pixels only. As can be seen in Figure 4(a), lazy parallelization results in
significant performance gains for any applied number of processors. In contrast, default
algorithm expansion behaves badly, and even results in a performance drop at all times.
Figure 4(b) shows that the maximum number of nodes that can be used effectively for
such a small-sized input image is about 32. Even though lazy parallelization has resulted in
the removal of all redundant communication, the cost of the communication steps applied
in the recursive filter operations is significant in case the number of processors becomes
large. Still, the differences in the execution times for the two parallelization strategies are

enormous, and clearly show the importance of redundant communication removal.

120 r linear(x) —

#CPUs Lazy Parallelization | Default Alg. Expansion 79x119 (lazy parallelization) —-—
39x59 (lazy parallelization) -+
(2 CPUs 100 + 79x119 (ge;au:g a:g. expansion) :
pernode) | '39x59' (3 | '79x119'(9) | '39x59' (5 |'79x119 () 39x59 (default lg. expansion)
80
2 28.040 104.443 74.211 272.451 s
4 12.066 45.055 48.145 179.605 § 6ol
8 5.933 21.898 43.330 159.686 2
16 3578 13.122 43.163 161.686 0l
32 3.627 13.267 43.969 164.093
48 4536 16.375 46.358 171.133 20|
64 5.008 17.839 45.871 167.999 A
% 7.769 26.295 47397 | 173.023 0 M——
128 9.207 33.589 50.003 | 183.948 0 20 40 B0 S0 w0 10
(a) (b)

Fig. 5. (a) Performance and (b) speedup as in Figure /. Results obtained using 2 CPUs per dual node.
Note: speedup lines for either approach essentially coincide.
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# CPUs Lazy Parallelization | Default Alg. Expansion % 79x119 (lazy paranelfggi%gﬁ; -
39x59 (lazy parallelization) -+
(1CPU 50 + 79x119 (ge;au:g a:g. expansion) :
pernode) | '39x59' (9 |'79x119'(s) | '39x59' (5) |'79x119' (8) 39x59 (default lg. expansion)
40 t
1 1263277 | 4589.818 | 1263277 | 4589.818 E -
2 779.486 | 2821391 | 1985.855 | 6941.262 § 30! 7
4 497.145 | 1789.319 | 1749.873 | 6412121 Z 7
8 216.679 781175 | 1551239 | 5593.406 20 o
16 109.284 393.763 | 1505.077 | 5452.276 e
24 68.652 253.647 | 1478558 | 5308.092 10| i
3?2 53.967 197.962 | 1453.866 | 5278.840 e
48 37.048 134180 | 1454710 | 5245.239 0 fe—e : : : : :
64 27.926 100.792 | 1489.291 | 5340.271 T
(a) (b)

Fig. 6. (a) Performance and (b) speedup for computing rectangular size distributions for document image
of size 2325x 3075 (2-byte) pizels. Maximum size of calculated filters either 39x59 or 79x119. Results
obtained using 1 CPU per dual node. Note: speedup lines for either approach essentially coincide.

Figure 5 shows similar results in case both CPUs on each node are used in the execution.
As each dual node can communicate through one port only, communication overhead has
increased in comparison to the results presented in Figure 4. As a result, the maximum
number of processors that can be used effectively is now reduced to only 16.

Figure 6 shows that, for a much more realistic input image of size 2325x3075 pixels,
lazy parallelization still provides very good speedup characteristics: 45.5 on 64 proces-
sors an efficiency of 71.2%. As before, default algorithm expansion does not deliver
any performance gains at all. Figure 7 shows similar results in case of using both CPUs
on each node. Given these results, we conclude that lazy parallelization also generates

efficient parallel code for the presented rectangular size distribution extraction algorithm.

# CPUs Lazy Parallelization | Default Alg. Expansion 120 79x119 (lazy paranelfggi%gﬁ; -
39x59 (lazy parallelization) -+
(2 CPUs 100 | 79x119 (ge;au:g a:g. expansion) :
pernode) | '39x59' (3 | '79x119'(9) | '39x59' (3 |'79x119 () 39x59 (default lg. expansion)
80 |-
2 1038.741 3753.409 2480.137 9009.303 _§
4 620.755 2278.433 2110.848 7735.314 %’_ 60 L
8 275.947 986.406 1668.469 6056.997 n e
16 170.621 613.643 1574.845 5691.093 40 - P
32 71.430 258.796 1477.051 5357.002 -
48 48.265 173.008 1470.206 5301.129 20 b P -
64 35.155 126.047 1449.308 5227.423 .‘,/"'
96 25.145 89.133 1453.676 5196.682 o
128 21.655 78356 | 1411593 | 5160.945 2040 B0 e w1
(a) (b)

Fig. 7. (a) Performance and (b) speedup as in Figure 6. Results obtained using 2 CPUs per dual node.
Note: speedup lines for either approach essentially coincide.
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C. Performance Comparison with Related Tools

In [27] we have made a performance comparison between our software architecture and
several related tools described in the literature. The comparison is based on a well-known
stereo vision application which — in its parallel behavior — is comparable to the line
detection application of Section V-A. The following briefly presents the main results.

First, a comparison is made with results obtained for the stereo vision application writ-
ten in a specialized parallel programming language (SPAR [24]), which was executed on
the same parallel machine as used in the above evaluation. Also, the codes generated by
the SPAR front-end and that of our own architecture were compiled in an identical man-
ner. Measurements showed our architecture to provide superior sequential performance of
about a factor 5, and better speedup — clearly indicating that the overhead from our lazy
parallelization approach is much smaller than that of the SPAR run time system.

Second, a comparison is made with results obtained for an implementation in the Adapt
parallel image processing language [34]. A true comparison with this work turned out to
difficult, however, as the results were obtained on a significantly different machine (i.e., a
collection of iWarp processors, with a better potential for obtaining high speedup than our
DAS cluster). Even so, our software architecture showed superior performance (of about
a factor 2) with comparable speedup characteristics over a large range of processors.

Most interesting, however, is the comparison with Easy-PIPE [20], a library-based soft-
ware environment for parallel image processing similar to ours. The most distinctive fea-
ture of this architecture is that it incorporates a mechanism for combining data and task
parallelism. Also, Fasy-PIPE does not shield all parallelism from the application pro-
grammer. As a consequence from these differences, Fasy-PIPE has the potential of out-
performing our architecture, which is fully user transparent, and strictly data parallel.
However, performance and speedup characteristics for the stereo vision application ob-
tained on the very same DAS cluster show that our implementations far better exploit the
available parallelism than Fasy-PIPE. Part of the difference is accounted for by the fact
that Fasy-PIPE does not incorporate an explicit inter-operation optimization mechanism
for removal of redundant communication. In addition, the run time parallelization over-

head of Fasy-PIPFE turned out to be much higher than that of our software architecture.
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VI. RELATED WORK

For obtaining efficient library-based parallel image processing applications, the impor-
tance of inter-operation optimization has been acknowledged before. Morrow et al. [19]
describe an environment for data parallel image processing similar to ours. One of the
important features of this environment is its self-optimizing class library, which is ex-
tended automatically with optimized parallel operations. During program execution, a
syntax graph is constructed for each statement in the program, and evaluated only when
an assignment operator is met. At first execution of a program, each syntax graph is
traversed, and an instruction stream is generated and executed. In addition, any syntax
graph for combinations of primitive instructions is written out for later consideration by
an off-line optimizer. On subsequent runs of the program a check is made to decide if an
optimized routine is available for a given sequence of library calls. In comparison with lazy
parallelization, this optimization approach has several drawbacks. First, the optimization
process is performed at compile-time only, and has inherent problems with data-dependent
conditionals and loop constructs. Next, optimized performance is obtained only for runs
following the initial execution of a program. Finally, the approach may guarantee optimal
performance of sequences of library routines, but not necessarily of complete programs. It
should be noted that the approach of Lee et al. [15] is quite similar to that of Morrow et al.;
as a consequence it suffers from the very same problems as well.

A related approach to obtaining efficient code for library-based scientific applications is
the concept of Telescoping Languages introduced by Kennedy et al. [12]. In this approach,
high performance for full applications is achieved by exhaustively analyzing and precom-
piling a given library — which is annotated with domain-specific optimizations that should
not be discovered unaided  to produce a processor that recognizes and optimizes library
operations as primitives in a domain-specific language. The goal of precompilation is to
specialize different versions of each library routine for sets of conditions that hold when
the routine is invoked. The entire set of specialized routines is collected in a database that
permits efficient code selection and inlining when full applications are compiled. Although
many other forms of optimization are incorporated (a.o.: self-tuning for portability, which

is comparable to our ASTG-approach referred to in Section IV-A), of most relevance to this
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paper is the fact that the Telescoping Languages approach also considers combinations of
library operations on data structures for multiple distribution types. In comparison to lazy
parallelization, however, the presented approach has several disadvantages. First, as in
the approach of Morrow et al. described above, optimization is performed at compile-time
only, resulting in difficulties with data-dependent conditionals and loops. Moreover, the
required precompilation can be extremely time-consuming, and results in a large database
of operations from which only a few routines will generally be invoked at run time. Also,
to be able to deal with different shapes and sizes of data structures (which generally re-
main unknown until run time), the database of alternative implementations is extended
even further. Although it has not been emphasized so much before, lazy parallelization
can easily deal with this problem by remaining flexible in the number of nodes to be used,
and by allowing for run time selection of a single state transition from a set of multiple
alternatives, depending on a structure’s size and shape. As indicated in [25], this solution
has been integrated cleanly and elegantly, and without measurable run time overhead.

To our knowledge, usage of fsm specifications is new in the field of library-based par-
allelization tools. Moreover, the application of an fsm definition seems not to have been
considered at all in the field of parallel image processing. In related research areas of
parallel computation, however, fsm definitions have been applied before. For example,
Chatterjee et al. [4] apply a finite state machine for the generation of optimal commu-
nication sets in distributed-memory implementations of data-parallel languages such as
HPF. As in our case, results indicate that the fsm approach requires very little run time
overhead. For ad-hoc optimization of specific algorithms and applications fsm definitions
have been applied successfully as well [5], [18].

Interestingly, our approach to finding optimal performance of operations as well as
complete applications is related to several projects in other domains. The SPIRAL
project [23], [30], for example, is aimed at the design of a system to generate efficient
libraries for digital signal processing algorithms. SPIRAL generates efficient implementa-
tions of algorithms expressed in a domain-specific language, called SPL, by a systematic
search through the space of possible implementations. Other efforts in automatically gen-

erating efficient implementations of programs include FFTW [7] for adaptively generating
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time-optimal FFT algorithms, and the ATLAS project [35] for deriving efficient imple-
mentations of basic linear algebra routines.

Finally, our work shares common goals with that of Baumgartner et. al. [3], in the
search of an optimal data partitioning strategy with minimal communication overhead for
applications in the field of quantum chemistry and physics. As in our extended approach
not discussed here, an operator tree is generated, in which multiple data partitioning and
communication strategies are incorporated. This approach is also entirely static, however,

and includes no possibility for partial optimization performed at run time.

VII. CONCLUSIONS

In this paper we have presented a finite state machine based approach for communication
minimization of data parallel regular domain problems. The approach, referred to as
lazy parallelization, considers a sequential program, which is parallelized automatically by
inserting communication operations and local memory management operations whenever
necessary. The approach always generates a legal, correct, and efficient parallel version
of any sequential program implemented on the basis of so-called parallelizable patterns,
where each such pattern represents a generic description of a class of sequential algorithms
with similar behavior in terms of data accesses to array-like structures.

The main advantage of the optimization approach is that it can be applied on the fly at
run time. As all required data accesses are defined for each operation, decisions regarding
inter-process communication can be deferred to the actual moment of intended execution.
As such, lazy parallelization is very easy to implement, and performs without measurable
run-time overhead. In comparison with other methods described in the literature, lazy
parallelization requires no prior knowledge regarding the behavior of loops and branches,
and run-time adaptation to data structure shapes and sizes is easily integrated [25].

In conclusion, lazy parallelization on the basis of a finite state machine specification
has proven to constitute a surprisingly simple, yet effective method for global optimiza-
tion of data parallel regular domain problems. Essentially, the simplicity stems from the
knowledge contained in the definition of parallelizable patterns, and from the high level
abstractions incorporated in the finite state machine definition. Consequently, we feel

that the applicability of the approach extends beyond the domain of library-based low
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level image processing applications. This is particulary true for the domains of signal pro-

cessing and linear algebra applications, which include similar patterns of communication

and calculation.
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