
1
Finite State Ma
hine Based Optimization ofData Parallel Regular Domain ProblemsApplied in Low Level Image Pro
essing

F.J. Seinstra*, D. Koelma, and A.D. BagdanovIntelligent Sensory Information Systems,Fa
ulty of S
ien
e, University of Amsterdam,Kruislaan 403, 1098 SJ Amsterdam, The Netherlandsffjseins, koelma, andrewg�s
ien
e.uva.nl

*Corresponding author. FINAL

2Abstra
tA popular approa
h to providing non-experts in parallel
omputing with an easy-to-use programmingmodel, is to design a software library
onsisting of a set of pre-parallelized routines, and hide the intri
a
iesof parallelization behind the library's API. However, for regular domain problems (su
h as simple matrixmanipulations or low level image pro
essing appli
ations | in whi
h all elements in a regular subset of adense data �eld are a

essed in turn) speedup obtained with many su
h library-based parallelization tools isoften sub-optimal. This is be
ause inter-operation optimization (or: time-optimization of
ommuni
ationsteps a
ross library
alls) is generally not in
orporated in the library implementations.This paper presents a simple, eÆ
ient, �nite state ma
hine-based approa
h for
ommuni
ation min-imization of library-based data parallel regular domain problems. In the approa
h, referred to as lazyparallelization, a sequential program is parallelized automati
ally at run time by inserting
ommuni
ationprimitives and memory management operations whenever ne
essary. Apart from being simple and
heap,lazy parallelization guarantees to generate legal,
orre
t, and eÆ
ient parallel programs at all times.The e�e
tiveness of the approa
h is demonstrated by analyzing the performan
e
hara
teristi
s oftwo typi
al regular domain problems obtained from the �eld of low level image pro
essing. Experimentalresults show signi�
ant performan
e improvements over non-optimized parallel appli
ations. Moreover,obtained
ommuni
ation behavior is found to be optimal with respe
t to the abstra
tion level of messagepassing programs. KeywordsParallel pro
essing, data
ommuni
ations aspe
ts, optimization, image pro
essing software.I. Introdu
tionA parallelization tool based on a software library of pre-parallelized routines
an serve asa powerful programming aid to obtain high performan
e with relative ease. In the �eld oflow (pixel) level image pro
essing, for example, many su
h parallelization tools exist [10℄,[11℄, [13℄, [14℄, [21℄, [32℄, [33℄. Su
h tools, however, generally restri
t performan
e opti-mization to ea
h library operation in isolation, and ignore
ommuni
ation minimizationfor full appli
ations. For library implementations based on message passing primitivessigni�
ant performan
e gains
an be obtained, as it is often possible to remove manyredundant
ommuni
ation steps, and to
ombine multiple messages in a single transfer.Automati
 optimization of
ommuni
ation overhead is not easy. First, this is be
ausethe optimization strategy must be able to determine whi
h
ommuni
ation steps are es-sential, and whi
h
an be safely
ombined or removed. Also, it must guarantee that theFINAL

3resulting parallel
ode is (1) eÆ
ient , preferably
omparable to an optimal hand-
odedimplementation, (2) legal , su
h that the program is deterministi
 and
an never end indeadlo
k, and (3)
orre
t , su
h that it produ
es output identi
al to the original program.This paper presents a new and surprisingly simple strategy for
ommuni
ation minimiza-tion in library-based data parallel regular domain problems [22℄, whi
h adheres to all theserequirements. In the approa
h, a fully sequential program is parallelized automati
ally atrun time by inserting
ommuni
ation primitives and additional memory management op-erations whenever ne
essary. The approa
h, referred to as lazy parallelization, is based ona simple �nite state ma
hine (fsm) spe
i�
ation. One of two essential fsm ingredients isa set of states, ea
h
orresponding to a valid internal representation of a distributed datastru
ture at run time. The other is a set of state transition fun
tions, ea
h of whi
h de�neshow a valid data stru
ture representation is transformed into another valid representation.This paper indi
ates how the fsm spe
i�
ation is applied in the pro
ess of obtaining legal,
orre
t, and indeed eÆ
ient parallel
ode. Also, a
ompile-time extension is dis
ussed,whi
h is
apable of produ
ing the theoreti
ally fastest parallel version of a program.This paper is organized as follows. Se
tion II des
ribes the optimization problem. InSe
tion III the �nite state ma
hine spe
i�
ation is presented. Se
tion IV des
ribes the fsm-based approa
h of lazy parallelization, and brie
y presents a
ompile-time extension foradditional optimization. An evaluation of measurements obtained for two example regulardomain problems obtained from the �eld of low level image pro
essing is presented inSe
tion V. Se
tion VI dis
usses related work. Con
luding remarks are given in Se
tion VII.II. The Optimization ProblemThe main obje
tive in our resear
h is to build a library-based software ar
hite
turethat allows for fully sequential implementation of low level image pro
essing appli
ationsexe
uting in data parallel fashion [25℄, [26℄, [27℄, [29℄. All parallelization and optimizationissues are to be taken
are of by the ar
hite
ture itself, hidden from the user.A. Parallelizable Patterns in Regular Domain ProblemsFor reasons of software maintainability and reuse, all library operations are implementedon the basis of a de�nition of so-
alled parallelizable patterns found in typi
al regular do-FINAL

4main problems [29℄. Ea
h su
h pattern represents a generi
 des
ription of a
lass of se-quential algorithms with similar behavior in terms of data a

esses to array-like stru
tures.More spe
i�
ally: a parallelizable pattern represents a generi
 operation that takes zero ormore sour
e stru
tures as input and produ
es exa
tly one destination stru
ture as output.It
onsists of n independent tasks, where a task spe
i�es what data in any of the stru
turesmust be a
quired in order to update the value of a single data point in the destinationstru
ture. As su
h, prior to parallel exe
ution of a pattern, for all data stru
tures on allpro
essing units all data a

esses are known. As all a

esses are de�ned to be lo
al to thepro
essing unit exe
uting the algorithm, all non-lo
al data to be a

essed must be
ommu-ni
ated prior to exe
ution. Given the pre
ise de�nition of these data a

ess pattern types, adefault parallelization strategy with minimal
ommuni
ation overhead dire
tly follows forany operation that maps onto one of the prede�ned parallelizable patterns [29℄. Irrespe
-tive of the fo
us on low level image pro
essing, due to the generi
 nature of parallelizablepatterns this result naturally extends to other regular domain problems as well.B. Abstra
t Fun
tion Spe
i�
ationsAs stated, in our software ar
hite
ture all sequential image pro
essing fun
tionality isimplemented on the basis of parallelizable patterns. For these operations we introdu
ea shorthand notation, presented in Table I. It in
ludes (a.o.) unary and binary pixelCreate (OUT dst); //
reate global stru
tureDelete (OUT dst); // delete global stru
tureImport (OUT dst); // import global stru
ture from ext. devi
eExport (IN sr
); // export global stru
ture to ext. devi
eMemCopy (IN sr
, OUT dst); //
opy global stru
tureUnPixOp (IN sr
, OUT dst); // unary pixel operationBinPixOpV (IN sr
, OUT dst, IN arg); // binary pixel operation (ve
tor argument)BinPixOpI (IN sr
, OUT dst, IN arg); // binary pixel operation (image argument)Redu
eOp (IN sr
, OUT dst); // global redu
e operationNeighOp (IN sr
, OUT dst, IN ker); // generalized neighborhood operationGenConvOp (IN sr
, OUT dst, IN ker); // generalized
onvolutionRe
GConvOp (IN sr
, OUT dst, IN ker); // re
ursive generalized
onvolutionGeoMat (IN sr
, OUT dst); // geometri
 transform. (matrix-based)GeoRoi (IN sr
, OUT dst); // geometri
 transform. (region of interest)TABLE IAbstra
t fun
tions: sequential operation. FINAL

5CreatL
lPart (OUT ldst); //
reate non-overlapping stru
ture at all nodesCreatL
lFull (OUT ldst); //
reate fully overlapping stru
ture at all nodesDelL
l (OUT ldst); // delete lo
al stru
ture at all nodesBroad
ast (IN gsr
, OUT ldst); // send global stru
ture to all nodesS
atter (IN gsr
, OUT ldst); // divide global stru
ture among all nodesGather (IN lsr
, OUT gdst); // send ea
h node's lo
al stru
ture to rootGatherAll (INOUT lsr
, INOUT gdst); // send ea
h node's lo
al stru
ture to all nodesRedu
eOne (INOUT lsr
, OUT gdst); // global redu
e a
ross all nodes (result at root)Redu
eAll (INOUT lsr
, INOUT gdst); // global redu
e a
ross all nodes (result at all)TABLE IIAbstra
t fun
tions:
ommuni
ation.operations, (re
ursive) neighborhood operations, and geometri
 transformations.Shorthand notation for all required inter-pro
ess
ommuni
ation is presented in Table II,and
ontains the
ommon
olle
tive operations in MPI [17℄. The additional CreatL
lPart/Fulland DelL
l fun
tions
onstitute
reators and destru
tors for partial data stru
tures, ea
hresiding on a di�erent pro
essor at run time. Partial stru
tures are referred to as lo
al inthe presented parameter lists (lsr
 and ldst). The original stru
ture from whi
h the partialstru
tures are obtained is referred to as global (gsr
 and gdst). The importan
e of theseabstra
tions is that for any appli
ation implemented using our ar
hite
ture it is possibleto derive an abstra
t operation stream
omprising of fun
tions from Tables I and II alone.C. Default Algorithm ExpansionBe
ause all fun
tionality is implemented on the basis of parallelizable patterns,
onver-sion of any sequential appli
ation into an equivalent parallel program is straightforward.The
onversion pro
ess, referred to as default algorithm expansion, is illustrated in List-ing 1. The sequential program, shown on the left, �rst imports image A, whi
h is used asinput to a unary pixel operation. Subsequently, resulting image B is used as input to abinary pixel operation. Finally, resulting image C is exported, and all images are destroyed.The equivalent parallel program is shown on the right of Listing 1. First, a S
atteroperation is inserted before the UnPixOp
all. After the operation has �nished, the resultingpartial outputs are gathered to the single root node and all temporary partial stru
turesare destroyed. Subsequently, the images whi
h are passed as sour
e and argument to thebinary pixel operation are s
attered throughout the parallel system. The partial outputsFINAL

6Import(A); Import(A);UnPixOp(A, B); S
atter(A, lo
A);BinPixOpI(B, C, A); UnPixOp(lo
A, lo
B);Export(C); Gather(lo
B, B);Delete(A); DelL
l(lo
A);Delete(B); DelL
l(lo
B);Delete(C); S
atter(A, lo
A);S
atter(B, lo
B);BinPixOpI(lo
B, lo
C, lo
A);Gather(lo
C, C);DelL
l(lo
A);DelL
l(lo
B);DelL
l(lo
C);Export(C);Delete(A);Delete(B);Delete(C);(a) Sequential. (b) Parallel (default).Listing 1: Abstra
t sequential appli
ation (a) and equivalent parallel program after defaultalgorithm expansion (b).resulting from BinPixOp are gathered to the root, after whi
h all partial stru
tures aredeleted. From this point onward, the program is identi
al to the original sequential version.Default algorithm expansion always generates a legal and
orre
t parallel version of anysequential program implemented on the basis of parallelizable patterns. This is be
auseea
h abstra
t fun
tion
all in the sequential
ode is repla
ed by an equivalent sequen
e ofone or more (parallel) operations. The parallel
ode is not guaranteed to be time-optimal,however. Worse even, it
an be expe
ted to be slower than the original sequential program.Although other tools may have di�erent implementations, all library-based tools su�erfrom the very same problem | and for improved performan
e a solution is essential.D. The Problem: IneÆ
ien
ies from Default Algorithm ExpansionWhen
onsidering the parallel
ode of Listing 1(b), it is
lear that it
ontains severaloperations that
ould be removed without violating the program's
orre
tness or legality.First, image lo
A, used as sour
e stru
ture for the unary pixel operation, is removed byDelL
l and subsequently re
reated in the se
ond o

urren
e of the S
atter(A, lo
A)
all. Forimproved performan
e, both operations simply
ould be removed. The same holds for thesequen
e of instru
tions applied to the lo
B stru
ture pre
eding the BinPixOpI
all (i.e., Gatherfollowed by DelL
l and S
atter). Listing 2(b) presents the optimized program obtained afterremoving the redundant
ommuni
ation steps from the parallel
ode. The remainder of thisFINAL

7Import(A); Import(A);UnPixOp(A, B); S
atter(A, lo
A);BinPixOpI(B, C, A); UnPixOp(lo
A, lo
B);Export(C); BinPixOpI(lo
B, lo
C, lo
A);Delete(A); Gather(lo
C, C);Delete(B); DelL
l(lo
A);Delete(C); DelL
l(lo
B);DelL
l(lo
C);Export(C);Delete(A);Delete(B);Delete(C);(a) Sequential. (b) Parallel (optimized).Listing 2: Abstra
t sequential appli
ation (a) and equivalent parallel program after inter-operation optimization (b).paper indi
ates how exe
ution of su
h redundant operations
an be avoided automati
ally.III. Finite State Ma
hine DefinitionOur solution to the problem of redundant
ommuni
ation avoidan
e is based on a �nitestate ma
hine (fsm) spe
i�
ation. More spe
i�
ally, we restri
t ourselves to a deterministi
�nite a

epter (dfa) [9℄, de�ned by the quintuple M = (Q; �; Æ; q0; F), whereQ is a �nite set of internal states,� is a �nite set of symbols
alled the input alphabet ,Æ : Q� �! Q is a transition fun
tion,q0 2 Q is the initial state,F � Q is a set of �nal states.A. Data Stru
ture States and LifespanAs des
ribed in [29℄, for parallel exe
ution two types of data stru
ture representationsare used in our software ar
hite
ture: global stru
tures and lo
al (or partial) stru
tures.A global stru
ture always resides at a single pro
essing unit (the root), and
ontains alldata for the
omplete domain of the stru
ture it represents. Lo
al stru
tures, on the otherhand, are the result of a s
atter or broad
ast operation performed on a global stru
ture.There is a strong relationship between a global stru
ture and the set of derived lo
alstru
tures (or: distributed data stru
ture). Clearly, at any time either the global stru
-ture itself or its derived distributed stru
ture must
ontain all valid data. An abstra
tFINAL

8representation of this relationship is given by the triple q = (g; d; t), whereg 2 G is the state of the global stru
ture,d 2 D is the state of the derived distributed stru
ture,t 2 T is the distributed stru
ture's distribution type,and G = f none,
reated, valid, invalid g,D = f none, valid, invalid g,T = f none, partial, full, not-redu
ed g.In set G, none indi
ates that no spa
e has been allo
ated for the global stru
ture in themain memory of the root. Furthermore,
reated indi
ates that spa
e for the global stru
turehas been allo
ated by way of the Create fun
tion. In this state, the elements of the globalstru
ture do not
ontain values resulting from any
al
ulation (yet). Finally, valid indi
atesthat the global stru
ture
ontains up-to-date values for all stru
ture elements, and invalidindi
ates that at least one of the global stru
ture's elements may
ontain an in
orre
tvalue. For distributed stru
tures, the elements in set D are de�ned in a similar manner.The value
reated is not present in set D, however, simply be
ause we do not need it.In set T , none indi
ates that no distribution type information is available. In addition,partial indi
ates that the set of
onstituent lo
al stru
tures is the result of a S
atter opera-tion, while full indi
ates that the stru
tures are obtained in a Broad
ast operation. Finally,not-redu
ed indi
ates that all elements of the
onstituent lo
al stru
tures yet have to besubje
ted to an element-wise Redu
eOne or Redu
eAll operation (see also [29℄).The set R = G�D�T
ontains all possible representations of the relationship betweena global stru
ture and its derived distributed stru
ture. However, many of these possiblerepresentations
an not (or should not) o

ur. As an example, the representation q =(invalid, invalid, full) should not o

ur in a program, as neither the global stru
ture nor thedistributed stru
ture
ontains all
orre
t values.For the fsm, we have spe
i�ed a restri
ted set of valid internal states, based on therelationship between global and distributed stru
tures. It is de�ned byQ = f q0; q1; � � � ; q8 g � G�D � T , FINAL

9withq0 = (none, none, none), q3 = (invalid, none, none), q6 = (invalid, valid, partial),q1 = (
reated, none, none), q4 = (valid, valid, partial), q7 = (invalid, valid, full),q2 = (valid, none, none), q5 = (valid, valid, full), q8 = (invalid, invalid, not-redu
ed).State q0 is the empty state, and represents the state of the global-distributed stru
ture
ombination before its initial
reation and after its �nal destru
tion. State q1 represents thestate immediately after
reation of the global stru
ture. This is a spe
ial
ase of state q2, asthe global stru
ture also
ould be designated as valid. State q1 is still required, however, toavoid
ommuni
ation in
ase a distributed stru
ture is to be derived from a global stru
turein this state. State q2 indi
ates that a global stru
ture's elements
ontain all up-to-datevalues, while a derived distributed stru
ture is nonexistent. At �rst glan
e, q3 seems tobe a state that should never appear in a legal parallel program. However, this is thestate obtained after performing a DelL
l operation in
ase the global-distributed stru
ture
ombination is represented by states q6, q7, or q8. In states q4; q5; q6, and q7, the distributedstru
ture
ontains all
orre
t values, while the related global stru
ture is either
onsistentor in
onsistent with these values. Finally, state q8 o

urs in parallel redu
tion operations.As long as the required redu
tion has not been performed on the distributed stru
ture, all
onstituent lo
al stru
tures as well as the related global stru
ture remain invalid.At run time ea
h global-distributed stru
ture
ombination starts in the empty state q0.From this point onward ea
h state
an be rea
hed, depending on the operations performedon the stru
ture
ombination. Also, it is possible for
ertain states to be rea
hed multipletimes. The lifespan of a global-distributed stru
ture
ombination ends in
ase it returns tothe empty state q0. As su
h, state q0 serves as the initial state of our �nite state ma
hinede�nition, as well as the single element in the set of �nal states.B. State Transition Fun
tionsFor our purposes, the fsm input alphabet is formed by the operations of Tables I and II,with a
on
rete data stru
ture referen
e for ea
h formal parameter. Also, as the fsm isused to monitor state
hanges and lifespan of a single data stru
ture only, monitoring the
orre
tness and legality of a
omplete appli
ation involves multiple fsm's. This resultsin a parallel view of the states of all data stru
tures in an appli
ation: at any momentFINAL

10Æ(q0; (Create;�)) = q1, Æ(qi; (Delete;�)) = q0,Æ(q0; (Import;�)) = q2, Æ(qj; (Export;�)) = qj,with i 2 f1,2,3g; j 2 f1, 2, 4, 5g,Æ(q0; (op; q2)) = q2, Æ(q0; (op; q6)) = q6,Æ(q0; (op; q4)) = q6, Æ(q0; (op; q7)) = q7,Æ(q0; (op; q5)) = q7, Æ(qi; (op; q0)) = qi,with op 2 fMemCopy, UnPixOpg; i 2 f2, 4, 5, 6, 7g,Æ(q0; (op; q2; q2)) = q2, Æ(q2; (op; q0; q2)) = q2,Æ(q0; (op; q4; qi)) = q6, Æ(q4; (op; q0; qi)) = q4,Æ(q0; (op; q5; qi)) = q7, Æ(q5; (op; q0; qj)) = q5,Æ(q0; (op; q6; qi)) = q6, Æ(q6; (op; q0; qi)) = q6,Æ(q0; (op; q7; qi)) = q7, Æ(q7; (op; q0; qj)) = q7,with op 2 fBinPixOpV, NeighOp, GenConvOp, Re
GConvOpg,i 2 f5, 7g; j 2 f4, 5, 6, 7g,Æ(q0; (op; q2; q2)) = q2, Æ(q2; (op; q0; q2)) = q2,Æ(q0; (op; qi; qj)) = q6, Æ(qi; (op; q0; qj)) = qi,Æ(q0; (op; qk; ql)) = q7, Æ(qk; (op; q0; ql)) = qk,with op 2 fBinPixOpIg; i; j 2 f4, 6g; k; l 2 f5, 7g,Æ(q0; (Redu
eOp; q2)) = q2, Æ(q2; (Redu
eOp; q0)) = q2,Æ(q0; (Redu
eOp; qi)) = q8, Æ(qi; (Redu
eOp; q0)) = qi,Æ(q0; (Redu
eOp; qj)) = q7, Æ(qj; (Redu
eOp; q0)) = qj,with i 2 f4, 6g; j 2 f5, 7g,Æ(q0; (op; q2)) = q2, Æ(q2; (op; q0)) = q2,Æ(q0; (op; qi)) = q6, Æ(qi; (op; q0)) = qi,with op 2 fGeoMat, GeoRoig; i 2 f5, 7g.TABLE IIITransition fun
tions: image operations.during exe
ution, several stru
tures are 'alive' and their
ombined state is
aptured bytheir respe
tive fsm's. As the states of multiple stru
tures are not always independent ,we assume that ea
h fsm has a
omplete and up-to-date view of the states of all datastru
tures in an appli
ation. Also, by way of the de�ned set of state transition fun
tions,ea
h fsm in
orporates all knowledge regarding data stru
ture state dependen
ies. To thisend, the de�nition of state transition fun
tions as presented before is extended as follows:Æ : Q� �d ! Q, FINAL

11where �d is the input alphabet in whi
h ea
h fun
tion is annotated with a list of permittedstate dependen
ies for all additional stru
tures passed as parameter to that fun
tion (i.e.,those stru
tures for whi
h the
urrent fsm is not responsible). Here, we represent elementsin �d by a pair or triple, in whi
h the �rst
omponent is the name of the fun
tion, andthe remainder represents the (possibly empty) list of state dependen
ies. For example,Æ(q0; (BinPixOpV; q4; q5)) = q6 represents a state transition fun
tion for the output stru
tureprodu
ed by the BinPixOpV operation. This transition fun
tion
hanges the state of theoutput stru
ture from q0 to q6, while the sour
e and argument stru
tures are expe
ted tobe in states q4 and q5 respe
tively. It should be noted, that the knowledge obtained withthis parallel view also
an be
aptured in a single
ross-produ
t ma
hine, in whi
h ea
h dfasimulates, in parallel, the behavior of ea
h
omponent dfa [16℄. For simpli
ity, however,in the remainder of this paper we keep to the parallel view of simple state ma
hines.Table III presents the transition fun
tions for the image operations available in ourlibrary. In all
ases, initial state q0 refers to the state of the output stru
ture produ
edby any of the operations. As
an be seen, output stru
tures are the only stru
tures thata
tually move from one state to another. Input stru
tures and argument stru
tures never
hange state, as these are a

essed only, and never updated. All transitions that
ause astru
ture to be moved to state q1 or q2 always indi
ate sequential exe
ution using globalstru
tures. All other transitions refer to parallel exe
ution using distributed stru
tures.State transition fun
tions related to the additional
ommuni
ation fun
tionality, and thememory management of lo
al data stru
tures, are presented in Table IV. In all of these thelist of state dependen
ies is empty, as the fun
tions work on a single data stru
ture only.Æ(q1; (CreatL
lPart;�)) = q4, Æ(qi; (DelL
l;�)) = q2,Æ(q1; (CreatL
lFull;�)) = q5, Æ(qj; (DelL
l;�)) = q3,with i 2 f4, 5g; j 2 f6, 7, 8g,Æ(q2; (Broad
ast;�)) = q5, Æ(q8; (Redu
eOne;�)) = q2,Æ(q2; (S
atter;�)) = q4, Æ(q8; (Redu
eAll;�)) = q5,Æ(q6; (Gather;�)) = q4, Æ(q6; (GatherAll;�)) = q5,Æ(q7; (Gather;�)) = q5,TABLE IVTransition fun
tions:
ommuni
ation. FINAL

12

q
 1

q
 6

q
 7

q
 8

q
 2

q
 5

q
 4

q
 3

q
 0

Create

Delete

*3

ReduceOne

*2*1

Scatter

Broadcast

DelLocal

Delete Delete

GatherAll

DelLocal

Gather

DelLocal

Gather

DelLocal

ReduceAll

DelLocal

CreatLocalFull

CreatLocalPart

*4

*1, *2, *3, *4 = creation of datastructure by one of several image operationsFig. 1. Redu
ed state transition graph.Figure 1 presents a redu
ed state transition graph for the fsm. For better readability, it
ontains only those operations that
ause a stru
ture to move from one state to another.As su
h, the graph in
orporates the
omplete lifespan of a data stru
ture, and
oversany state a stru
ture
an rea
h at run time. Also, it is exa
tly these operations that areessential in the pro
ess of operation redundan
y avoidan
e as presented in Se
tion IV.A program is legal , if it is a

epted by all fsm's related to that program. In other words,in our ar
hite
ture a program is legal if (1) it
ontains fun
tion
alls from Tables I and IIonly, (2) it
ontains no data stru
ture state in
onsisten
ies, and (3) all stru
tures startas well as end in state q0. In
ase a user-provided sequential program is legal, defaultalgorithm expansion always generates a legal and
orre
t parallel program. This is be
auseea
h sequen
e of (parallel) operations that repla
es a sequential
all generates exa
tly thesame set of data stru
ture state transitions at all times. The following se
tion shows howthe presented fsm is used to obtain legal and
orre
t parallel
ode, whi
h is optimized inthat the exe
ution of any redundant
ommuni
ation operations is avoided. FINAL

13IV. Lazy ParallelizationIn the approa
h of lazy parallelization it is assumed that ea
h
ommuni
ation or mem-ory management operation inserted by default algorithm expansion is redundant, unlessproven otherwise. Stated di�erently, lazy parallelization
auses an inserted operation to beexe
uted only if its removal would introdu
e a data stru
ture state in
onsisten
y. Althoughthe method
an be applied on the
y at run time, for the moment we will present it as a
ompile time method. Con
eptually, lazy parallelization
onsists of the following steps:1. Apply the pro
ess of default algorithm expansion to the original sequential
ode.2. Remove all
ommuni
ation operations, as well as all operations for the
reation anddestru
tion of partial data stru
tures.3. Apply partial loop unrolling by extra
ting the
ode for the �rst iteration of ea
h loop,and pla
ing it in front of the
ode for the remaining loop iterations.4. Resolve data stru
ture state in
onsisten
ies by re-inserting operations removed in step 2.5. Undo the loop unrolling by
ollapsing ea
h separated loop into a single
ode blo
k.As stated, the parallel
ode obtained after the �rst step is legal, but non-optimal. Theoperation removal in the se
ond step, however, introdu
es many state in
onsisten
ies. Asdes
ribed below, these in
onsisten
ies are resolved in step four. Steps 3 and 5 are presentonly to expose all data stru
ture state in
onsisten
ies that
an possibly o

ur in a program.Listing 3 gives a
on
eptual example of lazy parallelization. The programs obtained inthe �rst three steps of the optimization pro
ess are straightforward, and will not be dis-
ussed. The re-insertion of
ode as applied in step 4 (see Listing 3(e)) is performed usingthe state transition fun
tions of Se
tion III-B (i.e., only those in the redu
ed state tran-sition graph of Figure 1). The Broad
ast(A, lo
A) operation in the �rst loop iteration isinserted be
ause the Import operation
auses its output stru
ture to be moved to state q2,while for parallel exe
ution the subsequent GeoMat operation requires its input stru
ture tobe in state q5 or q7 (see Table III). The only operation that provides a resolution to thisstate in
onsisten
y is Broad
ast, as it moves a data stru
ture from state q2 to q5. Similarly,Gather(lo
C, C) is inserted in the �rst loop iteration, as it moves C from q6 to q4, whi
his one of the allowed input states for the subsequent Export operation. The additionalre-insertions work in a similar manner, and all further interpretation is left to the reader.FINAL

14Import(A); Import(A);LOOP [1:N℄ LOOP [1:N℄GeoMat(A, B); Broad
ast(A, lo
A);GenConvOp(B, C, k); GeoMat(lo
A, lo
B);Export(C); Gather(lo
B, B);Delete(C); DelL
l(lo
B);Delete(B); DelL
l(lo
A);ENDLOOP S
atter(B, lo
B);Delete(A); GenConvOp(lo
B, lo
C, k);Gather(lo
C, C);DelL
l(lo
C);DelL
l(lo
B);Export(C);Delete(C);Delete(B);ENDLOOPDelete(A);(a) sequential
ode (b) after step 1Import(A); Import(A);LOOP [1:N℄ LOOP [1℄GeoMat(lo
A, lo
B); GeoMat(lo
A, lo
B);GenConvOp(lo
B, lo
C, k); GenConvOp(lo
B, lo
C, k);Export(C); Export(C);Delete(C); Delete(C);Delete(B); Delete(B);ENDLOOP ENDLOOPDelete(A); LOOP [2:N℄GeoMat(lo
A, lo
B);GenConvOp(lo
B, lo
C, k);Export(C);Delete(C);Delete(B);ENDLOOPDelete(A);(
) after step 2 (d) after step 3Import(A); Import(A);LOOP [1℄ LOOP [1:N℄Broad
ast(A, lo
A); IF [1℄ Broad
ast(A, lo
A);GeoMat(lo
A, lo
B); GeoMat(lo
A, lo
B);GenConvOp(lo
B, lo
C, k); GenConvOp(lo
B, lo
C, k);Gather(lo
C, C); Gather(lo
C, C);Export(C); Export(C);DelL
l(lo
C); DelL
l(lo
C);Delete(C); Delete(C);DelL
l(lo
B); DelL
l(lo
B);Delete(B); Delete(B);ENDLOOP ENDLOOPLOOP [2:N℄ DelL
l(lo
A);GeoMat(lo
A, lo
B); Delete(A);GenConvOp(lo
B, lo
C, k);Gather(lo
C, C);Export(C);DelL
l(lo
C);Delete(C);DelL
l(lo
B);Delete(B);ENDLOOPDelL
l(lo
A);Delete(A);(e) after step 4 (f) after step 5Listing 3: Example of optimization by lazy parallelization: (a) original
ode, (b) afterdefault algorithm expansion, (
) after removal of 'redundant' operations, (d) after partialloop unrolling, (e) after default operation re-insertion, (f) optimized parallel
ode afterloop re
ombination. FINAL

15A. Dis
ussionLazy parallelization produ
es legal and
orre
t parallel
ode at all times. This
anbe seen by
onsidering the allowed states for all stru
tures passed as parameters to theoperations in Table I, and the resulting states for the produ
ed output stru
tures. As su
h,ea
h operation has a set of allowed input states for ea
h parameter, one of whi
h is movedto a new output state. By exhaustion, it is easily shown that for ea
h possible outputstate, a �nite sequen
e of zero or more state transitions exists that moves a stru
ture fromthat output state to one state in ea
h set of allowed input states (see also [28℄).An important property of lazy parallelization is that it
an be applied on the
y at runtime (hen
e its name). As all data stru
ture states are known for ea
h operation, de
isionsregarding the exe
ution of ea
h
ommuni
ation step are deferred to as late as the a
tualmoment of exe
ution. Essentially, this means that all �ve steps as des
ribed above areredu
ed to a single step. This makes lazy parallelization very easy to implement, and highlyeÆ
ient (i.e., without measurable run time overhead). An additional advantage is that noprior knowledge regarding the behavior of loops and bran
hes is required . Finally, run-timeadaptation to data stru
ture sizes is easily integrated , by allowing
exibility in the appliednumber of pro
essing units (or even by temporarily residing to sequential exe
ution) [25℄.Although lazy parallelization produ
es very eÆ
ient parallel
ode, it is still non-optimal.First, this is be
ause it always applies the fastest
ommuni
ation step whenever messagetransfer is mandatory. This is a form of lo
al performan
e optimization, however, asit may be better to insert a
ombined message transfer to avoid further
ommuni
ationsteps at a later stage. Se
ondly, no knowledge is in
orporated regarding the performan
e
hara
teristi
s of the parallel ma
hine at hand [26℄, [29℄. To over
ome these problems,we have also implemented an extension to the presented approa
h, whi
h is
apable ofprodu
ing the (expe
ted) fastest parallel version of a sequential program at
ompile time.The extended approa
h relies on the
reation of an appli
ation state transition graph(ASTG), in
orporating all relevant performan
e optimization de
isions that
an be madeat run time. Ea
h de
ision is annotated with a
ost estimation, su
h that the fastestimplementation is represented by the
heapest bran
h in the graph. Drawba
k, however, isthat it is often
ostly to a
tually obtain the
heapest bran
h. See [25℄ for more information.FINAL

16B. Appli
abilityAlthough lazy parallelization was designed for data parallel imaging appli
ations, it hasa broader appli
ability. As stated in Se
tion II, the approa
h will work (and generally bee�e
tive) for all regular domain problems in whi
h the essential operations
an be expressedin terms of parallelizable patterns. One obvious example is the domain of linear algebraappli
ations. Clearly, for the approa
h to work in other appli
ation areas all referen
es toimage operations in the fsm spe
i�
ation should be altered, but this adaptation is onlymarginal. Also, the fa
t that operations in other areas may in
orporate di�erent dataa

ess pattern types does not
hallenge the validity of the proposed method in any way.Essentially, lazy parallelization is appli
able to irregular (even data driven) problems aswell. For the approa
h to work, however, it is essential to have knowledge regarding thedata a

ess pattern types of operations to obtain the required
ommuni
ation sets on the
y at run time. For irregular appli
ations this may not always be e�e
tive, espe
ially in
ases where nothing is known other than that n a

esses are to be performed within a setof m elements, with m � n. When most elements in the set of size m are non-lo
al, the
ommuni
ation set for ea
h pro
essor will be large. In su
h
ases the performan
e obtainedby lazy parallelization largely depends on the amount of overlap in the
ommuni
ation setsfor sequen
es of operations. The more overlap, the more
ommuni
ation
an be avoided.In the problem of avoiding redundant
ommuni
ation steps the reader may see a relationto similar problems in other resear
h areas. As a �rst example, there is an analogy to thegeneration of redundant instru
tions in the pro
ess of
ompilation. Here, a well-knownproblem is the avoidan
e of super
uous transfer of values between registers and (main)memory. As another example, there are similarities to
a
he
oheren
y problems in theavoidan
e of unne
essary updates of stale data. Solutions to problems of this kind (e.g.,peephole strategies for
ompilers, I/O address
he
king for
a
he a

esses, et
etera) allrequire (often
ostly) look-ahead strategies to obtain knowledge regarding data a

esses.Our solution to redundant
ommuni
ation avoidan
e is di�erent in that it does not re-quire any form of look-ahead at all. This property dire
tly follows from the knowledgeregarding data a

esses
ontained in the de�nition of parallelizable patterns. As su
h,our solution to the redundan
y problem does not easily transfer to the aforementionedFINAL

17problems in other resear
h areas. This is be
ause it is often unfeasible or even impossibleto in
orporate a priori knowledge regarding data a

esses in the general
ase. However,for
ertain domain-spe
i�
 problems our approa
h is still appli
able. It is possible, forexample, to use
ompiler annotations in parallel languages su
h as HPF to obtain parti
u-larly eÆ
ient parallel
ode for
ertain regular domain problems. Spe
ifying
ode segmentsas being implemented a

ording to parti
ular parallelizable patterns relieves the
ompilerof extensive dependen
y analysis, and allows for lazy parallelization to be in
orporated.Currently, this approa
h is being
onsidered for the SPAR parallel language [24℄, [31℄.V. Measurements and ValidationTo evaluate the approa
h of lazy parallelization, this se
tion des
ribes the implemen-tation and parallel exe
ution of two example image pro
essing appli
ations: (1) line de-te
tion, and (2) extra
tion of re
tangular size distributions from do
ument images. Thea
tual
ode is available at http://www.s
ien
e.uva.nl/~fjseins/ParHorusCode/.The two appli
ations have been tested on the 72-node Distributed ASCI Super
om-puter 2 (DAS-2) lo
ated at the Vrije Universiteit in Amsterdam [2℄. All nodes
onsist oftwo 1-Ghz Pentium-III CPUs, with 2 GByte of RAM, and are
onne
ted by a Myrinet-2000 network. At the time of measurement, the nodes ran the RedHat Linux 7.2 operatingsystem. Our software ar
hite
ture was
ompiled using g

 2.96 (at highest level of opti-mization) and linked with MPICH-GM, whi
h uses Myri
om's GM as its message passinglayer on Myrinet. As the DAS-2 system is heavily used for other resear
h proje
ts as well,measurement results are presented here for a system of up to 64 dual-CPU nodes only.A. Curvilinear Stru
ture Dete
tionAs dis
ussed in [8℄, the important problem of dete
ting lines and linear stru
tures inimages is solved by
onsidering the se
ond order dire
tional derivative in the gradientdire
tion, for ea
h possible line dire
tion. This is a
hieved by applying anisotropi
 Gaus-sian �lters, parameterized by orientation �, smoothing s
ale �u in the line dire
tion, anddi�erentiation s
ale �v perpendi
ular to the line, given byr00(x; y; �u; �v; �) = �u�v ���f�u;�v;�vv ��� 1b�u;�v;� ; FINAL

18with b the line brightness. When the �lter is
orre
tly aligned with a line in the image,and �u; �v are optimally tuned to
apture the line, �lter response is maximal. Hen
e, theper pixel maximum line
ontrast over the �lter parameters yields line dete
tion:R(x; y) = arg max�u;�v ;� r00(x; y; �u; �v; �):A.1 Sequential ImplementationsThe anisotropi
 Gaussian �ltering problem
an be implemented sequentially in manydi�erent ways. First, for ea
h orientation � it is possible to
reate a new �lter based on�u and �v. Hen
e, a sequential implementation based on this approa
h (whi
h we refer toas Conv2D) implies full 2-dimensional
onvolution for ea
h �lter.The se
ond approa
h (referred to as ConvUV) is to de
ompose the anisotropi
 Gaussian�lter along the perpendi
ular axes u; v, and use bilinear interpolation to approximate theimage intensity at the �lter
oordinates. Although
omparable to the Conv2D approa
h,ConvUV is expe
ted to be faster due to a redu
ed number of a

esses to the image pixels.Pseudo
ode for the Conv2D and ConvUV algorithms is presented in Listing 4. Filteringis performed in the inner loop by either a full two-dimensional
onvolution (Conv2D) or bya separable �lter in the prin
iple axes dire
tions (ConvUV). On a state-of-the-art sequen-tial ma
hine either program may take from a few minutes up to several hours to
omplete,depending on the size of the input image and the extent of the
hosen parameter subspa
e.Consequently, for the dire
tional �ltering problem parallel exe
ution is highly desired.FOR all orientations � DOFOR all smoothing s
ales �u DOFOR all di�erentiation s
ales �v DOFiltIm1 = GenConvOp(OriginalIm, "fun
", �u, �v , 2, 0);FiltIm2 = GenConvOp(OriginalIm, "fun
", �u, �v , 0, 0);ContrastIm = BinPixOp(FiltIm1, "absdiv", FiltIm2);ContrastIm = BinPixOp(ContrastIm, "mul", �u � �v);ResultIm = BinPixOp(ResultIm, "max", ContrastIm);ODODODListing 4: Pseudo
ode for the Conv2D and ConvUV algorithms, with "fun
" either"gauss2D" or "gaussUV". FINAL

19A.2 Parallel Exe
utionExe
ution of the parallel versions of the algorithms obtained by default algorithm ex-pansion results in a huge amount of redundant
ommuni
ation overhead. This is be-
ause ea
h image operation in the inner loop of the program now exe
utes one or moreS
atter-Gather-pairs similar to those presented in the example
ode of Listing 1(b).In
ontrast, applying lazy parallelization to the two algorithms results in minimal
om-muni
ation overhead. In the �rst loop iteration OriginalIm is s
attered su
h that ea
hnode obtains a non-overlapping sli
e of the image's domain. Next, all subsequent opera-tions are performed in parallel, only requiring border ex
hange
ommuni
ation in the
on-volutions (note: this is due to a sequential library design
hoi
e, see [25℄). Finally, justbefore program termination, ResultIm is gathered to the root. In this manner,
ommuni
a-tion behavior is optimal with respe
t to the abstra
tion level of message passing programs.A.3 Performan
e EvaluationFrom the des
ription, it is
lear that the Conv2D algorithm is expe
ted to be theslowest sequential implementation, due to the ex
essive a

essing of image pixels in the2-dimensional
onvolution operations. Figure 2(a) shows that this expe
tation indeedis
on�rmed by the measurements obtained on a single CPU. Although Conv2D has aslightly better speedup
hara
teristi
 due to a better
omputation versus
ommuni
ation
Conv2D ConvUV Conv2D ConvUV

CPUs

24
32

16

4
8

2
1

41.265
40.944
43.050

Default Alg. Expansion

48
64

(s) (s) (s) (s)

Lazy Parallelization

(1 CPU
per node)

45.7248.016
11.927
23.765
47.462
93.824

185.889

7.318
9.576

13.939
18.464
27.527
54.025

107.470
213.358
425.115

6.035

47.407
60.158
79.847

124.169
185.889

36.851
38.164
42.730
48.022
55.399
82.781

133.273
237.450
425.115

3.325
4.149(a) 0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
pe

ed
up

Nr. of CPUs

linear(x)
Conv2D (lazy parallelization)
ConvUV (lazy parallelization)

Conv2D (default alg. expansion)
ConvUV (default alg. expansion)

(b)Fig. 2. (a) Performan
e and (b) speedup
hara
teristi
s for
omputing a typi
al orientation s
ale-spa
eat 5Æ angular resolution (i.e., 36 orientations) and 8 (�u; �v)
ombinations. S
ales
omputed are �u 2f3; 5; 7g and �v 2 f1; 2; 3g, ignoring the isotropi

ase �u;v = f3; 3g. Image size is 512�512 (4-byte)pixels. Results obtained using 1 CPU per dual node. FINAL

20
CPUs

Conv2D Conv2DConvUV ConvUV

54.447
61.984

59.649

75.084
65.595

101.974
149.575

48.148
45.025
50.529

(s)

53.610
59.169

(2 CPUs
(s) (s) (s)

Lazy Parallelization

per node)

Default Alg. Expansion

47.8849.737
14.150
27.802
54.801

109.710
217.366

128
96
64
48
32
16
8
4
2

7.363

57.032
69.378
96.134

148.766
256.425

1.875
2.553
3.464
4.460
6.313

12.297
24.550
50.233
99.587

4.062
5.294 (a) 0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
pe

ed
up

Nr. of CPUs

linear(x)
Conv2D (lazy parallelization)
ConvUV (lazy parallelization)

Conv2D (default alg. expansion)
ConvUV (default alg. expansion)

(b)Fig. 3. (a) Performan
e and (b) speedup
hara
teristi
s as in Figure 2. Results obtained using 2 CPUsper dual node.ratio, ConvUV always is the fastest implementation on any number of nodes.The speedup graph of Figure 2(b) shows the importan
e of the lazy parallelizationapproa
h. Speedup values obtained on 64 nodes are 58.1 and 55.9 for Conv2D and ConvUVrespe
tively, in
ase of lazy parallelization. These values drop to 11.5 and 4.5 in
ase ofthe original approa
h of default algorithm expansion.Figure 3 shows similar results for measurements obtained in
ase both CPUs on ea
hnode are used in the exe
ution. Even measurements for up to 128 CPUs deliver
lose tolinear speedup. In this situation, however, performan
e is slightly degraded by the fa
tthat two CPUs on a single node need to pass messages through the same
ommuni
ationport. Nonetheless, we
an
on
lude that the appli
ation of lazy parallelization enables oursoftware ar
hite
ture to produ
e highly eÆ
ient parallel
ode for these implementations.B. Re
tangular Size DistributionsAs dis
ussed in [1℄, re
tangular size distributions are an e�e
tive way to
hara
terize vi-sual similarities between do
ument images. Here, the verti
ally and horizontally alignedregions of varying aspe
t ratios in a do
ument image are
hara
terized using multivariate,re
tangular granulometries. A granulometry
an be thought of as a morphologi
al sieve,where obje
ts not
onforming to a parti
ular size and shape are removed at ea
h level ofthe sieving pro
ess. The re
tangular granulometry, 	x;y, of input image S is given by	x;y(S) = S Æ (yV � xH); FINAL

21where H and V are the horizontal and verti
al line segments of unit length
entered atthe origin, and x and y are independent s
ale parameters
ontrolling the width and heightof the re
tangle used for �ltering. Of most interest in des
ribing the visual appearan
eare the measurements taken on the �ltered images 	x;y(S). One useful measurementfor granulometries is the re
tangular size distribution. The re
tangular size distributionindu
ed by the granulometry G = f	x;yg on image S is given by:�G(x; y; S) = A(S)� A(x;y(S)))A(S) ;A(X) denoting the area of set X. As su
h, �G(x; y; S) is the probability that an arbitrarypixel in S is �ltered by a re
tangle of size x� y or smaller.B.1 Sequential ImplementationTo obtain parti
ularly eÆ
ient sequential
ode for generating re
tangular size distribu-tions, we have taken advantage of several properties of re
tangular granulometries andsize distributions. First, ea
h re
tangular �lter is de
omposed into 1-dimensional �lters,eliminating the need to �lter a do
ument by re
tangles of all sizes. Next, the need touse �lters in
reasing linearly in size is removed by applying linear distan
e transforms forhorizontal and verti
al dire
tions. These transforms are implemented by using re
ursive
al
ulateRe
tangularSizeDistribution(IMAGE inIm, INT w, INT h) fvertIm = verDist(inIm, 0);area = redu
eOp(inIm, "sum");FOR (y=0; y�h; y++) DOoy = (y/2h)*(inIm.height+1);vThreshIm = horDist(binPixOpC(vertIm, oy, "greaterthan"), 0);�ltered = -1;FOR (x=0; x�w; x++) DOIF (�ltered != 1.0) THENox = (x/2w)*(inIm.width+1);hThreshIm = binPixOpC(vThreshIm, ox, "lessequal");hThreshIm = binPixOpC(verDist(hThreshIm, MAXVAL), oy, "greaterthan");hThreshIm = binPixOpC(horDist(hThreshIm, MAXVAL), ox, "lessequal");�ltered = (area - redu
eOp(hThreshIm, "sum")) / area;FI... and save '�ltered' for
urrent x,y
ombination ...ODODgListing 5: Condensed pseudo
ode for fast
al
ulation of re
tangular size distributions;maximum size of
al
ulated �lters denoted by 'w' and 'h'. Fun
tions 'horDist' and 'verDist'perform horizontal and verti
al distan
e transforms, using re
ursive �lter-pairs. FINAL

22forward/ba
kward �lter pairs. Lastly, the need to explore large,
at regions of the sizedistributions is eliminated by halting the �ltering for the
urrent �lter when its propertiesguarantee that the �ltered result will be identi
al.Pseudo
ode for the presented problem is given in Listing 5. It should be noted that theuse of re
ursive �lters results in a implementation whi
h is notoriously hard to parallelize(as is shown in the results provided in the remainder of this se
tion). A less eÆ
ientsequential solution would be to use sieving without de
omposition. This boils down to amorphologi
al s
ale-spa
e, and is
omparable to the appli
ation of Se
tion V-A.B.2 Parallel Exe
utionAs before, the sequential
ode of Listing 5 dire
tly
onstitutes a parallel program aswell. When applying default algorithm expansion for parallelization, the program su�ersfrom the same problem as the appli
ation des
ribed in Se
tion V-A: it results in exe
utionof many
ostly S
atter and Gather operations. Lazy parallelization avoids all su
h re-dundant
ommuni
ation steps automati
ally, and again results in optimal
ommuni
ationbehavior with respe
t to the abstra
tion level of message passing programs. In e�e
t,the input image is s
attered throughout the parallel system only on
e, and no additional
ommuni
ation steps are required for resolution of data stru
ture state in
onsisten
ies.It should be noted, however, that speedup
hara
teristi
s are not expe
ted to be as goodas those presented in Se
tion V-A. This is be
ause the applied re
ursive �lter operationsare hard to parallelize eÆ
iently. In our library we apply a fast two-step redistribution ofthe partitioned image data to always mat
h the horizontal and verti
al �ltering dire
tions.Although this approa
h does result in fast parallel exe
ution, we are aware of the fa
tthat additional optimizations are possible (su
h as the appli
ation of a multi-partitioningte
hnique [6℄). This part of the pre-parallelized
ode is not a�e
ted by lazy paralleliza-tion, however, as data redistribution plays no role in the introdu
tion or removal of datastru
ture state in
onsisten
ies.B.3 Performan
e EvaluationMeasurement results for the two generated parallel versions of the presented algorithmare given in Figure 4. It should be noted that these results represent a lower bound onFINAL

23
CPUs

’79x119’’39x59’’39x59’ ’79x119’

167.566
167.792
163.865
160.874
166.163
209.964
157.439

49.283
47.201
45.319

(1 CPU

174.986
183.054

Default Alg. Expansion

per node) (s) (s) (s) (s)

Lazy Parallelization

1

2.621
3.014
5.109

10.097
21.297
41.975

64
48
32
24
16
8
4
2

45.462
2.587

44.235
43.441
44.157
55.955
41.975

12.984
10.732
9.673
9.778

11.198
19.029
38.174
80.279

157.439

3.476
2.870 (a) 0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
pe

ed
up

Nr. of CPUs

linear(x)
79x119 (lazy parallelization)

39x59 (lazy parallelization)
79x119 (default alg. expansion)

39x59 (default alg. expansion)

(b)Fig. 4. (a) Performan
e and (b) speedup for
omputing re
tangular size distributions for do
ument imageof size 350�517 (2-byte) pixels. Maximum size of
al
ulated �lters either 39�59 or 79�119. Resultsobtained using 1 CPU per dual node. Note: speedup lines for either approa
h essentially
oin
ide.the obtainable speedup for this appli
ation, as the size of the input images was redu
edto 350�517 pixels only. As
an be seen in Figure 4(a), lazy parallelization results insigni�
ant performan
e gains for any applied number of pro
essors. In
ontrast, defaultalgorithm expansion behaves badly, and even results in a performan
e drop at all times.Figure 4(b) shows that the maximum number of nodes that
an be used e�e
tively forsu
h a small-sized input image is about 32. Even though lazy parallelization has resulted inthe removal of all redundant
ommuni
ation, the
ost of the
ommuni
ation steps appliedin the re
ursive �lter operations is signi�
ant in
ase the number of pro
essors be
omeslarge. Still, the di�eren
es in the exe
ution times for the two parallelization strategies areenormous, and
learly show the importan
e of redundant
ommuni
ation removal.
CPUs

’79x119’’39x59’ ’39x59’ ’79x119’

167.999
171.133
164.093

179.605

161.686
159.686

272.451

50.003
47.397
45.871

(2 CPUs

173.023
183.948

(s) (s) (s) (s)

Lazy Parallelization

per node)

Default Alg. Expansion

46.3584.536
3.627
3.578
5.933

12.066
28.040

128
96
64
48
32
16
8
4
2

5.008

43.969
43.163
43.330
48.145
74.211

33.589
26.295
17.839
16.375
13.267
13.122
21.898
45.055

104.443

9.207
7.769 (a) 0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
pe

ed
up

Nr. of CPUs

linear(x)
79x119 (lazy parallelization)

39x59 (lazy parallelization)
79x119 (default alg. expansion)

39x59 (default alg. expansion)

(b)Fig. 5. (a) Performan
e and (b) speedup as in Figure 4. Results obtained using 2 CPUs per dual node.Note: speedup lines for either approa
h essentially
oin
ide. FINAL

24
CPUs

’79x119’’39x59’’39x59’ ’79x119’

5278.840
5308.092
5452.276
5593.406
6412.121
6941.262
4589.818

1489.291
1454.710
1453.866

(1 CPU

5245.239
5340.271

Default Alg. Expansion

per node) (s) (s) (s) (s)

Lazy Parallelization

1

68.652
109.284
216.679
497.145
779.486

1263.277

64
48
32
24
16
8
4
2

1478.558
53.967

1505.077
1551.239
1749.873
1985.855
1263.277

100.792
134.180
197.962
253.647
393.763
781.175

1789.319
2821.391
4589.818

27.926
37.048 (a) 0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
pe

ed
up

Nr. of CPUs

linear(x)
79x119 (lazy parallelization)

39x59 (lazy parallelization)
79x119 (default alg. expansion)

39x59 (default alg. expansion)

(b)Fig. 6. (a) Performan
e and (b) speedup for
omputing re
tangular size distributions for do
ument imageof size 2325�3075 (2-byte) pixels. Maximum size of
al
ulated �lters either 39�59 or 79�119. Resultsobtained using 1 CPU per dual node. Note: speedup lines for either approa
h essentially
oin
ide.Figure 5 shows similar results in
ase both CPUs on ea
h node are used in the exe
ution.As ea
h dual node
an
ommuni
ate through one port only,
ommuni
ation overhead hasin
reased in
omparison to the results presented in Figure 4. As a result, the maximumnumber of pro
essors that
an be used e�e
tively is now redu
ed to only 16.Figure 6 shows that, for a mu
h more realisti
 input image of size 2325�3075 pixels,lazy parallelization still provides very good speedup
hara
teristi
s: 45.5 on 64 pro
es-sors | an eÆ
ien
y of 71.2%. As before, default algorithm expansion does not deliverany performan
e gains at all. Figure 7 shows similar results in
ase of using both CPUson ea
h node. Given these results, we
on
lude that lazy parallelization also generateseÆ
ient parallel
ode for the presented re
tangular size distribution extra
tion algorithm.
CPUs

’79x119’’39x59’ ’39x59’ ’79x119’

5227.423
5301.129
5357.002

7735.314

5691.093
6056.997

9009.303

1411.593
1453.676
1449.308

(2 CPUs

5196.682
5160.945

(s) (s) (s) (s)

Lazy Parallelization

per node)

Default Alg. Expansion

1470.20648.265
71.430

170.621
275.947
620.755

1038.741

128
96
64
48
32
16
8
4
2

35.155

1477.051
1574.845
1668.469
2110.848
2480.137

78.356
89.133

126.047
173.008
258.796
613.643
986.406

2278.433
3753.409

21.655
25.145 (a) 0

20

40

60

80

100

120

0 20 40 60 80 100 120

S
pe

ed
up

Nr. of CPUs

linear(x)
79x119 (lazy parallelization)

39x59 (lazy parallelization)
79x119 (default alg. expansion)

39x59 (default alg. expansion)

(b)Fig. 7. (a) Performan
e and (b) speedup as in Figure 6. Results obtained using 2 CPUs per dual node.Note: speedup lines for either approa
h essentially
oin
ide. FINAL

25C. Performan
e Comparison with Related ToolsIn [27℄ we have made a performan
e
omparison between our software ar
hite
ture andseveral related tools des
ribed in the literature. The
omparison is based on a well-knownstereo vision appli
ation whi
h | in its parallel behavior | is
omparable to the linedete
tion appli
ation of Se
tion V-A. The following brie
y presents the main results.First, a
omparison is made with results obtained for the stereo vision appli
ation writ-ten in a spe
ialized parallel programming language (SPAR [24℄), whi
h was exe
uted onthe same parallel ma
hine as used in the above evaluation. Also, the
odes generated bythe SPAR front-end and that of our own ar
hite
ture were
ompiled in an identi
al man-ner. Measurements showed our ar
hite
ture to provide superior sequential performan
e ofabout a fa
tor 5, and better speedup |
learly indi
ating that the overhead from our lazyparallelization approa
h is mu
h smaller than that of the SPAR run time system.Se
ond, a
omparison is made with results obtained for an implementation in the Adaptparallel image pro
essing language [34℄. A true
omparison with this work turned out todiÆ
ult, however, as the results were obtained on a signi�
antly di�erent ma
hine (i.e., a
olle
tion of iWarp pro
essors, with a better potential for obtaining high speedup than ourDAS
luster). Even so, our software ar
hite
ture showed superior performan
e (of abouta fa
tor 2) with
omparable speedup
hara
teristi
s over a large range of pro
essors.Most interesting, however, is the
omparison with Easy-PIPE [20℄, a library-based soft-ware environment for parallel image pro
essing similar to ours. The most distin
tive fea-ture of this ar
hite
ture is that it in
orporates a me
hanism for
ombining data and taskparallelism. Also, Easy-PIPE does not shield all parallelism from the appli
ation pro-grammer. As a
onsequen
e from these di�eren
es, Easy-PIPE has the potential of out-performing our ar
hite
ture, whi
h is fully user transparent, and stri
tly data parallel.However, performan
e and speedup
hara
teristi
s for the stereo vision appli
ation ob-tained on the very same DAS
luster show that our implementations far better exploit theavailable parallelism than Easy-PIPE . Part of the di�eren
e is a

ounted for by the fa
tthat Easy-PIPE does not in
orporate an expli
it inter-operation optimization me
hanismfor removal of redundant
ommuni
ation. In addition, the run time parallelization over-head of Easy-PIPE turned out to be mu
h higher than that of our software ar
hite
ture.FINAL

26VI. Related WorkFor obtaining eÆ
ient library-based parallel image pro
essing appli
ations, the impor-tan
e of inter-operation optimization has been a
knowledged before. Morrow et al. [19℄des
ribe an environment for data parallel image pro
essing similar to ours. One of theimportant features of this environment is its self-optimizing
lass library , whi
h is ex-tended automati
ally with optimized parallel operations. During program exe
ution, asyntax graph is
onstru
ted for ea
h statement in the program, and evaluated only whenan assignment operator is met. At �rst exe
ution of a program, ea
h syntax graph istraversed, and an instru
tion stream is generated and exe
uted. In addition, any syntaxgraph for
ombinations of primitive instru
tions is written out for later
onsideration byan o�-line optimizer. On subsequent runs of the program a
he
k is made to de
ide if anoptimized routine is available for a given sequen
e of library
alls. In
omparison with lazyparallelization, this optimization approa
h has several drawba
ks. First, the optimizationpro
ess is performed at
ompile-time only, and has inherent problems with data-dependent
onditionals and loop
onstru
ts. Next, optimized performan
e is obtained only for runsfollowing the initial exe
ution of a program. Finally, the approa
h may guarantee optimalperforman
e of sequen
es of library routines, but not ne
essarily of
omplete programs. Itshould be noted that the approa
h of Lee et al. [15℄ is quite similar to that of Morrow et al.;as a
onsequen
e it su�ers from the very same problems as well.A related approa
h to obtaining eÆ
ient
ode for library-based s
ienti�
 appli
ations isthe
on
ept of Teles
oping Languages introdu
ed by Kennedy et al. [12℄. In this approa
h,high performan
e for full appli
ations is a
hieved by exhaustively analyzing and pre
om-piling a given library | whi
h is annotated with domain-spe
i�
 optimizations that shouldnot be dis
overed unaided | to produ
e a pro
essor that re
ognizes and optimizes libraryoperations as primitives in a domain-spe
i�
 language. The goal of pre
ompilation is tospe
ialize di�erent versions of ea
h library routine for sets of
onditions that hold whenthe routine is invoked. The entire set of spe
ialized routines is
olle
ted in a database thatpermits eÆ
ient
ode sele
tion and inlining when full appli
ations are
ompiled. Althoughmany other forms of optimization are in
orporated (a.o.: self-tuning for portability, whi
his
omparable to our ASTG-approa
h referred to in Se
tion IV-A), of most relevan
e to thisFINAL

27paper is the fa
t that the Teles
oping Languages approa
h also
onsiders
ombinations oflibrary operations on data stru
tures for multiple distribution types. In
omparison to lazyparallelization, however, the presented approa
h has several disadvantages. First, as inthe approa
h of Morrow et al. des
ribed above, optimization is performed at
ompile-timeonly, resulting in diÆ
ulties with data-dependent
onditionals and loops. Moreover, therequired pre
ompilation
an be extremely time-
onsuming, and results in a large databaseof operations from whi
h only a few routines will generally be invoked at run time. Also,to be able to deal with di�erent shapes and sizes of data stru
tures (whi
h generally re-main unknown until run time), the database of alternative implementations is extendedeven further. Although it has not been emphasized so mu
h before, lazy parallelization
an easily deal with this problem by remaining
exible in the number of nodes to be used,and by allowing for run time sele
tion of a single state transition from a set of multiplealternatives, depending on a stru
ture's size and shape. As indi
ated in [25℄, this solutionhas been integrated
leanly and elegantly, and without measurable run time overhead.To our knowledge, usage of fsm spe
i�
ations is new in the �eld of library-based par-allelization tools. Moreover, the appli
ation of an fsm de�nition seems not to have been
onsidered at all in the �eld of parallel image pro
essing. In related resear
h areas ofparallel
omputation, however, fsm de�nitions have been applied before. For example,Chatterjee et al. [4℄ apply a �nite state ma
hine for the generation of optimal
ommu-ni
ation sets in distributed-memory implementations of data-parallel languages su
h asHPF. As in our
ase, results indi
ate that the fsm approa
h requires very little run timeoverhead. For ad-ho
 optimization of spe
i�
 algorithms and appli
ations fsm de�nitionshave been applied su

essfully as well [5℄, [18℄.Interestingly, our approa
h to �nding optimal performan
e of operations as well as
omplete appli
ations is related to several proje
ts in other domains. The SPIRALproje
t [23℄, [30℄, for example, is aimed at the design of a system to generate eÆ
ientlibraries for digital signal pro
essing algorithms. SPIRAL generates eÆ
ient implementa-tions of algorithms expressed in a domain-spe
i�
 language,
alled SPL, by a systemati
sear
h through the spa
e of possible implementations. Other e�orts in automati
ally gen-erating eÆ
ient implementations of programs in
lude FFTW [7℄ for adaptively generatingFINAL

28time-optimal FFT algorithms, and the ATLAS proje
t [35℄ for deriving eÆ
ient imple-mentations of basi
 linear algebra routines.Finally, our work shares
ommon goals with that of Baumgartner et. al. [3℄, in thesear
h of an optimal data partitioning strategy with minimal
ommuni
ation overhead forappli
ations in the �eld of quantum
hemistry and physi
s. As in our extended approa
hnot dis
ussed here, an operator tree is generated, in whi
h multiple data partitioning and
ommuni
ation strategies are in
orporated. This approa
h is also entirely stati
, however,and in
ludes no possibility for partial optimization performed at run time.VII. Con
lusionsIn this paper we have presented a �nite state ma
hine based approa
h for
ommuni
ationminimization of data parallel regular domain problems. The approa
h, referred to aslazy parallelization,
onsiders a sequential program, whi
h is parallelized automati
ally byinserting
ommuni
ation operations and lo
al memory management operations wheneverne
essary. The approa
h always generates a legal,
orre
t, and eÆ
ient parallel versionof any sequential program implemented on the basis of so-
alled parallelizable patterns,where ea
h su
h pattern represents a generi
 des
ription of a
lass of sequential algorithmswith similar behavior in terms of data a

esses to array-like stru
tures.The main advantage of the optimization approa
h is that it
an be applied on the
y atrun time. As all required data a

esses are de�ned for ea
h operation, de
isions regardinginter-pro
ess
ommuni
ation
an be deferred to the a
tual moment of intended exe
ution.As su
h, lazy parallelization is very easy to implement, and performs without measurablerun-time overhead. In
omparison with other methods des
ribed in the literature, lazyparallelization requires no prior knowledge regarding the behavior of loops and bran
hes,and run-time adaptation to data stru
ture shapes and sizes is easily integrated [25℄.In
on
lusion, lazy parallelization on the basis of a �nite state ma
hine spe
i�
ationhas proven to
onstitute a surprisingly simple, yet e�e
tive method for global optimiza-tion of data parallel regular domain problems. Essentially, the simpli
ity stems from theknowledge
ontained in the de�nition of parallelizable patterns, and from the high levelabstra
tions in
orporated in the �nite state ma
hine de�nition. Consequently, we feelthat the appli
ability of the approa
h extends beyond the domain of library-based lowFINAL

29level image pro
essing appli
ations. This is parti
ulary true for the domains of signal pro-
essing and linear algebra appli
ations, whi
h in
lude similar patterns of
ommuni
ationand
al
ulation. Referen
es[1℄ A.D. Bagdanov and M. Worring. Multi-s
ale Do
ument Des
ription using Re
tangular Granulometries. InDo
ument Analysis Systems V, LNCS 2423, pages 445{456, August 2002.[2℄ H.E. Bal et al. The Distributed ASCI Super
omputer Proje
t. Operating Systems Review, 34(4):76{96,O
tober 2000.[3℄ G. Baumgartner et al. A High-Level Approa
h to Synthesis of High-Performan
e Codes for Quantum Chem-istry. In Pro
eedings of the 2002 ACM/IEEE Conferen
e on Super
omputing, pages 1{10, Baltimore, Mary-land, USA, November 2002.[4℄ S. Chatterjee, J. Gilbert, F. Long, R. S
hreiber, and S. Teng. Generating Lo
al Addresses and Communi
ationSets for Data Parallel Programs. Journal of Parallel and Distributed Computing, 26(1):72{84, April 1995.[5℄ J.M. Constantin, M.W. Berry, and B.T. Vander Zanden. Parallelization of the Hoshen-Kopelman AlgorithmUsing a Finite State Ma
hine. International Journal of Super
omputer Appli
ations and High Performan
eComputing, 11(1):31{45, Spring 1997.[6℄ A. Darte, D. Chavarr��a-Miranda, R. Fowler, and J. Mellor-Crummey. Generalized Multipartitioning for Multi-dimensional Arrays. In Pro
eedings of the 16th International Parallel & Distributed Pro
essing Symposium,Fort Lauderdale, Florida, USA, April 2002.[7℄ M. Frigo and S.G. Johnson. FFTW: An Adaptive Software Ar
hite
ture for the FFT. In Pro
. InternationalConferen
e on A
ousti
s, Spee
h, and Signal Pro
essing, pages 1381{1384, Seattle, USA, May 1998.[8℄ J.M. Geusebroek, A.W.M. Smeulders, and H. Geerts. A Minimum Cost Approa
h for Segmenting Networksof Lines. Int. Journal of Computer Vision, 43(2):99{111, July 2001.[9℄ J.E. Hop
roft, R. Motwani, and J.D. Ullman. Introdu
tion to Automata Theory, Languages, and Computation(2nd Edition). Addison Wesley, 2000.[10℄ L.H. Jamieson, E.J. Delp, C.-C. Wang, J. Li, and F.J. Weil. A Software Environment for Parallel ComputerVision. IEEE Computer, 25(2):73{75, February 1992.[11℄ Z. Juhasz and D. Crookes. A PVM Implementation of a Portable Parallel Image Pro
essing Library. InPro
eedings of EuroPVM'96, pages 188{196, Muni
h, Germany, O
tober 1996.[12℄ K. Kennedy et al. Teles
oping Languages: A Strategy for Automati
 Generation of S
ienti�
 Problem-SolvingSystems from Annotated Libraries. Journal of Parallel and Distributed Computing, 61:1803{1826, 2001.[13℄ D. Koelma, P.P. Jonker, and H.J. Sips. A Software Ar
hite
ture for Appli
ation Driven High Performan
eImage Pro
essing. In Parallel and Distributed Methods for Image Pro
essing, Pro
eedings of SPIE, volume3166, pages 340{351, San Diego, California, USA, July 1997.[14℄ C. Lee and M. Hamdi. Parallel Image Pro
essing Appli
ations on a Network of Workstations. ParallelComputing, 21(1):137{160, January 1995.[15℄ C. Lee, Y.-F. Wang, and T. Yang. Global Optimization for Mapping Parallel Image Pro
essing Tasks onDistributed Memory Ma
hines. Journal of Parallel and Distributed Computing, 45(1):29{45, August 1997.[16℄ P. Maurer. Logi
 Simulation Using Networks of State Ma
hines. In Pro
eedings of Design, Automation andTest in Europe Conferen
e 2000 (DATE 2000), pages 674{678, Paris, Fran
e, Mar
h 2000. FINAL

30[17℄ Message Passing Interfa
e Forum. MPI: A Message-Passing Interfa
e Standard (version 1.1). Te
hni
al report,University of Tennessee, Knoxville, Tennessee, June 1995. Available at http://www.mpi-forum.org.[18℄ D. Mili
ev and Z. Jovanovi
. A Finite State Ma
hine Based Formal Model of Software Pipelined Loops withConditions. International Journal of Computer Resear
h, 10(1):11{20, 2001.[19℄ P.J. Morrow, D. Crookes, J. Brown, G. M
Aleese, D. Roantree, and I. Spen
e. EÆ
ient Implementationof a Portable Parallel Programming Model for Image Pro
essing. Con
urren
y: Pra
ti
e and Experien
e,11:671{685, September 1999.[20℄ C. Ni
oles
u and P. Jonker. EASY-PIPE - An Easy to Use Parallel Image Pro
essing Environment Based onAlgorithmi
 Skeletons. In Pro
eedings of the 15th International Parallel & Distributed Pro
essing Symposium,San Fran
is
o, California, USA, April 2001.[21℄ C. Ni
oles
u and P. Jonker. A Data and Task Parallel Image Pro
essing Environment. Parallel Computing,28(7{8):945{965, August 2002.[22℄ M. Prieto, I.M. Llorente, and F. Tirado. Data Lo
ality Exploitation in the De
omposition of Regular DomainProblems. IEEE Transa
tions on Parallel and Distributed Systems, 11(11):1141{1149, November 2000.[23℄ M. P�us
hel, B. Singer, M. Veloso, and J. Moura. Fast Automati
 Generation of DSP Algorithms. In Pro
eed-ings of the International Conferen
e on Computational S
ien
e, LNCS 2073, pages 97{106, 2001.[24℄ C. van Reeuwijk, A.J.C. van Gemund, and H.J. Sips. Spar: A Programming Language for Semi-Automati
Compilation of Parallel Programs. Con
urren
y: Pra
ti
e and Experien
e, 9(11):1193{1205, November 1997.[25℄ F.J. Seinstra. User Transparent Parallel Image Pro
essing. PhD thesis, Intelligent Sensory InformationSystems, Fa
ulty of S
ien
e, University of Amsterdam, The Netherlands, May 2003.[26℄ F.J. Seinstra and D. Koelma. P-3PC: A Point-to-Point Communi
ation Model for Automati
 and Opti-mal De
omposition of Regular Domain Problems. IEEE Transa
tions on Parallel and Distributed Systems,13(7):758{768, July 2002.[27℄ F.J. Seinstra and D. Koelma. User Transparen
y: A Fully Sequential Programming Model for EÆ
ient DataParallel Image Pro
essing. Con
urren
y and Computation: Pra
t. Exper., 16(6):611{644, May 2004.[28℄ F.J. Seinstra, D. Koelma, and A.D. Bagdanov. On the Corre
tness of Lazy Parallelization. Te
hni
al ReportSeries, Vol. 2004-01, Intelligent Sensory Information Systems, Fa
ulty of S
ien
e, University of Amsterdam,The Netherlands, Mar
h 2004.[29℄ F.J. Seinstra, D. Koelma, and J.M. Geusebroek. A Software Ar
hite
ture for User Transparent Parallel ImagePro
essing. Parallel Computing, 28(7{8):967{993, August 2002.[30℄ B. Singer and M. Veloso. Learning to Constru
t Fast Signal Pro
essing Implementations. Journal of Ma
hineLearning Resear
h, 3:887{919, De
ember 2002.[31℄ C. Soviany. Embedding Data and Task Parallelism in Image Pro
essing Appli
ations. PhD thesis, DelftUniversity of Te
hnology, The Netherlands, May 2003.[32℄ J.M. Squyres, A. Lumsdaine, and R.L. Stevenson. A Toolkit for Parallel Image Pro
essing. In Parallel andDistributed Methods for Image Pro
essing II, Pro
. SPIE, volume 3452, San Diego, USA, July 1998.[33℄ R. Tanigu
hi et al. Software Platform for Parallel Image Pro
essing and Computer Vision. In Parallel andDistributed Methods for Image Pro
essing, Pro
. SPIE, volume 3166, pages 2{10, San Diego, USA, July 1997.[34℄ J.A. Webb. Implementation and Performan
e of Fast Parallel Multi-Baseline Stereo Vision. In Pro
eedingsof the 1993 DARPA Image Understanding Workshop, pages 1005{1010, April 1993.[35℄ R.C. Whaley, A. Petitet, and J.J. Dongarra. Automated Empiri
al Optimization of Software and the ATLASProje
t. Parallel Computing, 27(1{2):3{25, January 2001. FINAL

Frank Seinstra re
eived the MS degree in Computer S
ien
e from the Vrije Universiteit in Amsterdam in 1996,and the PhD degree in Computer S
ien
e from the University of Amsterdam in 2003. The subje
t of his PhDthesis is "User Transparent Parallel Image Pro
essing". His resear
h interests in
lude parallel and distributedprogramming, automati
 parallelization, performan
e modeling, and s
heduling, espe
ially in the appli
ation areaof image and video pro
essing.
Dennis Koelma re
eived the MS and PhD degrees in Computer S
ien
e from the University of Amsterdam in1989 and 1996, respe
tively. The subje
t of his PhD thesis is "A Software Environment for Image Interpretation".Currently, he is working on Horus: a software ar
hite
ture for resear
h in a

essing the
ontent of digital images.His resear
h interests in
lude image and video pro
essing, software ar
hite
tures, parallel programming, databases,graphi
al user interfa
es, and image information systems.
Andrew Bagdanov re
eived the BS and MS degrees in Mathemati
s and Computer S
ien
e from the Universityof Nevada, Las Vegas, where he was a member of the Information S
ien
e Resear
h Institute. He is
urrently�nishing his PhD thesis in Computer S
ien
e (title: "Style Chara
terization of Ma
hine Printed Texts") at theUniversity of Amsterdam. His resear
h interests in
lude do
ument understanding, pattern re
ognition, imagepro
essing, and fun
tional programming languages.

