
Efficient BDD Algorithms for FSM Synthesis and Verification

Rajeev K. Ranjan� Adnan Azizy Robert K. Brayton Bernard Plessier Carl Pixley
Department of Electrical Engg. and Computer Sc. Motorola Inc., MD OE321

University of California at Berkeley 6501 Wm Cannon Drive West
Berkeley, CA 94720 Austin, TX 78735

Abstract

We describe a set of BDD based algorithms for efficient FSM
synthesis and verification. We establish that the core compu-
tation in both synthesis and verification is forming the image
and pre-image of sets of states under the transition relation
characterizing the design. To make these steps as efficient
as possible, we address BDD variable ordering, use of parti-
tioned transition relations, and use of clustering. We provide
an integrated set of algorithms and give references and com-
parisons with previous work. We report experimental results
on a series of seven industrial examples containing from 28
to 172 binary valued latches.

1 Introduction

The advent of modern VLSI CAD tools has radically changed
the process of designing digital systems. The first CAD tools
automated the final stages of design, such as placement and
routing. As the low level steps became better understood, the
focus shifted to the higher stages. In particular logic synthe-
sis, the science of optimizing designs (for various measures
such as area, speed, or power) specified at the gate level,
has shifted to the forefront of CAD research. Another area
rapidly gaining importance is design verification, the study
of systematic methods for formally proving the correctness
of designs.

Currently, a major area of research in logic synthesis is
the automatic optimization of sequential hardware, i.e. fi-
nite state machines (FSM’s) described as a netlist of gates
and latches. This includes exploiting sequential don’t cares,
state minimization, FSM equivalence checking, and sequen-
tial ATPG [6, 15, 17, 20].

Formal design verification is a term given to the process
of mathematically proving that a system possesses a given
set of properties. Two popular paradigms for automated ver-
ification are language containment and model checking. In�Supported by Motorola GrantySupported by SRC 93-DC-008

language containment, the property is specified as a set of ac-
ceptable output traces; verification consists of checking that
the set of traces generated by the system is contained in the
set of acceptable traces. In model checking, the property
is a formula from a temporal logic; verification consists of
checking that the system models the formula.

Both sequential synthesis and formal verification algo-
rithms typically proceed by traversing the state transition
graph (STG) of the design. Since large designs invariably
consist of a set of interacting components, the number of
states in the design is the product of the number of states
in each component. This combinatorial blow up explosion
is referred to as state explosion. [9] pioneered the use of
Binary Decision Diagrams (BDD’s) to implicitly manipu-
late the product state space in the context of implementa-
tion verification. Since then BDD’s have been extended to
manipulate transition systems in the area of design verifica-
tion [2, 5, 7, 10, 12]. However, the size of BDD’s arising
in synthesis and verification computations continues to be a
bottleneck.

In this paper we argue that the core computations in syn-
thesis and verification are that of taking a given set of states
and finding all states which can reach/be reached the given
set in one step. These operations are referred to as the image
and pre-image; our major contribution in this paper is an in-
tegrated set of BDD algorithms that perform this operation as
efficiently as possible. Specifically, we address the following:� BDD variable ordering techniques� Use of clustering, i.e. partitioning the design into

tractable components� Ordering of the clusters, i.e. finding a sequence in which
to process the clusters

We give reference and comparisons to past work with the
details of these techniques. One salient feature of our algo-
rithms is that they are completely automatic. The methods
are interdependent and can be used together in various com-
binations. We report experimental results on a benchmark of
seven relatively large industrial designs.

o2

o1 o3

y1 x1x2y2y3 x3

i1i2i3

Figure 1: Gates + Latches = Sequential Network

The remainder of this paper is structured as follows. Sec-
tion 2 reviews the basic definitions and terminology. In Sec-
tion 3 we describe for each algorithm the underlying theory
and discuss the experimental results. We comment on the im-
plications of our results and indicate avenues for future work
in Section 4.

2 Definitions and Terminology

We now make the notion of a finite state machine and our
model for sequential hardware precise. We also describe the
representation of FSM’s using BDD’s.

Definition 1 A Finite State Machine (FSM)M is a quintuple,(Q; I;O; �; �), whereQ is the set of states, I is the set of input
values, O is the set of output values, � is the output function,
and � is the next state function. The output function � is a
completely-specified function with domain (Q�I) and rangeO. The next state function is a completely-specified function
with domain (Q� I) and range Q.

Given a FSM (Q; I;O; �; �), its transition relation is the
function T : S � I � S �! f0; 1g ; T(x; i; y) = 1 $y = �(x; i). A set of states A � Q can be associated to its
characteristic function A : Q! f0; 1g ; A(x) = 1 $ x 2A

A hardware design D consists of a set of interconnected
latches and gates, as illustrated in Figure 1. For the purposes
of this paper, a design with n latches, m output wires and t
input wires is characterized by an associated FSM with state
space QD = f0; 1gn, input space I = f0; 1gt, and output
space O = f0; 1gm; the next state and output functions are
defined by the corresponding logic. Note that each latch k has
its own next state function �k : f0; 1gn � f0; 1gt ! f0; 1g.

We will routinely refer to the states in QD as the states
of the design. In the sequel, all FSM’s will be assumed to
be derived from hardware designs; we will use ~i to denote

the input vector, ~x the present state vector, and ~y the next
state vector. Define the transition relation of latch k to be the
function Tk(~x;~i; yk) = 1 $ �k(~x;~i) = yk. Then for an
FSM on n latches, the transition relation can be factored as
follows: T(~x;~i; ~y) = nYk=1

T(~x;~i; yk) (1)

It is routine to encode the FSM transition relation T, the
transition relation of the individual latches Tk, as well as
state sets A using BDD’s. This approach has the advan-
tage of compactly representing a large number of commonly
encountered functions, thus combating state explosion. Fur-
thermore, operations such as tautology checking, negation,
conjunction, and existential quantification can be efficiently
performed using BDD’s.

Definition 2 Given an FSM with transition relation T , and
a set of states A, the image of A is the set of states with
characteristic function Img(~y) = (9~x;~i) [T(~x;~i; ~y) � A(~x)];
the pre-image of A is the set of states with characteristic
function Pre(~x) = (9~y;~i) [T(~x;~i; ~y) �A(~y)].

In [18] we provide a partial survey of the synthesis and
verification algorithms that are built using the image and pre-
image operations. These include computing local observ-
ability don’t cares in combinational circuits, reached state
computation, equivalent state computation, FSM equivalence
checking, sequential ATPG, computing paths to fair cycles,
and CTL model checking.

Reached state computation is the process of taking a des-
ignated initial state, and finding all states reachable from this
state, i.e. all states sr such that there is a sequence of inputs
which lead the FSM into sr from the initial state. Math-
ematically, this is performed by the following fixed point
calculation:A0(~x) = Init(~x)Ak+1(~y) = Ak(~y) + (9~x;~i) [T(~x;~i; ~y) �Ak(~x)]
where Init is the characteristic function of the set consisting
of the initial state. The limit of the Ak’s is the characteristic
function of the reached state set. Clearly, the core computa-
tion is an image computation.
Remark: Non-determinism is often used to describe ab-
stracted systems (where a complex component has been re-
placed by a simpler one whose behavior contains the behavior
of the original system), or under-specified systems (where de-
cisions related to the actually implementation have not been
made). Non-determinism can easily be modelled by adding
new unconstrained inputs to get an equivalent deterministic
FSM; furthermore, this can be done automatically. In [18]

2

we show that determining the least number of inputs to “de-
terminize” non deterministic behavior is NP–complete, and
describe a heuristic solution to this problem. The upshot is
that there is no loss of generality in restricting our attention
to deterministic systems.

3 Algorithms

In this section we present various BDD based algorithms to
efficiently perform the core computations. In Section 3.1,
techniques are discussed to achieve good BDD variable or-
derings. Section 3.2 presents the use of clustered transition
relations. The approach used for ordering the clusters is de-
tailed in Section 3.3.

To illustrate the effectiveness of these algorithms and to
contrast them with some previous approaches, we use a set of
seven benchmark examples. We perform reachability analy-
sis on these examples (Table 1) to demonstrate the effective-
ness of the algorithms for the image computations. Prelimi-
nary experiments indicate that these algorithms are efficient
for inverse image computations as well. We will report a
complete set of the results on inverse image computations in
the final version of the work.

All examples were run on a DEC5900/260 workstation
with 400MBytes memory. A limit of 10000 seconds of CPU
time and 400MBytes of data size were used while running
the experiments.

3.1 Ordering of BDD variables

As mentioned earlier, our symbolic verification algorithms
use BDDs as the underlying data structure. The success of
such algorithms depends critically on the size of the result-
ing BDDs, which is very sensitive to the variable ordering
chosen. Given a logic function, the problem of finding the
ordering that leads to a minimum sized BDD for the function
is algorithmically intractable. Hence we need to apply some
heuristics [3, 15, 20].

In the dynamic reordering scheme [19], the BDD package
automatically reorders variables to minimize the total number
of BDD nodes. Starting with a good heuristic ordering leads
to better results. Since invoking dynamic reordering takes
a significant amount of time, we found the following two
parameters to be useful in controlling BDD size and improv-
ing computational efficiency. The first parameter, the “base
value”, is the total number of nodes in the BDD manager at
which the reordering starts. The second parameter, the “in-
crement value”, is the amount by which the number of BDD
nodes in the manager must increase between two successive
invocations of reordering. These parameters can be chosen
at the prompt and can be changed dynamically in the course
of computation.

3.1.1 Results and Discussion

In our framework, we provide options for using ordering
heuristics given in [3] and [20]. For our experiments we
chose the heuristic in [3] as it was shown to outperform the
other.

To demonstrate the effectiveness of dynamic ordering
where the initial ordering is either random or based on a
good heuristic, we performed some experiments.

We observe from Table 2 that for large examples, use of
static ordering alone often leads to large BDD sizes. In the
examples shown in the table, only one (2MDLC) could be
completed using static ordering. The smaller BDD sizes for
case C as compared to case B indicate that dynamic ordering
should be used along with good heuristic initial ordering.

We also provide the ability to read in a manual ordering
from a file. This feature especially becomes useful when
we want to use the variable ordering previously generated by
some heuristic or by dynamic reordering. As mentioned ear-
lier, dynamic reordering is computationally expensive and
thus bypassing it by using a previously generated order-
ing provides a significant computational advantage. Results
shown in Table 2 indicate that using a previously generated
ordering can achieve up to 10x speed improvement. How-
ever, we observe that for 2MDLC, time taken in case D is
more than that taken in case A. This is because, in case D, the
ordering is obtained after invoking dynamic reordering dur-
ing reachability. This results in the smaller size for reached
set representation (see column jRj). However, it need not be
the best BDD ordering for transition relation representation
and reachability computation.

In addition, we provide the ability to read in partial orders
and heuristically complete them to obtain good initial order-
ings. Thus, if incremental changes are made to the design,
the previous ordering can be adapted to be used for the up-
dated design. This can substantially improve the dynamic
reordering performance.

3.2 Use of Clustered Transition Functions

As described in x2, the transition relation of the design is a
single BDD [3] which is the conjunctionof the latch transition
relations. As the complexity of the design grows, the size of
this BDD often explodes. Hence computing the image and
pre-image directly as given in definition 2 becomes infeasible
for large designs.

The factorization of the transition relation given in equa-
tion 1 can be exploited to avoid building the complete transi-
tion relation. In particular, quantification of variables present
in a subset of the conjoined terms can be performed iteratively.

A vector of BDD’s is used in [10, 20]; each element of the
vector represents the corresponding latch transition relation.
Coudert [10] proposed reducing image computations to range

3

Example # Latches # Gates Depth # States Description

sbc 28 927 10 154593 ISCAS’89 sequential benchmark (a
snooping bus controller).

Gigamax 45 994 15 2:77� 108 Cache coherency protocol description
for hardware implementation of Giga-
max distributed multiprocessor [16].

BDLC* 144 4775 103 1:66� 1035 Abstracted Byte Data Link Controller
(BDLC);Manages the Tx-Rx protocol
between microprocessorand a serial bus.
Contains the abstract description of BIT
module.

BDLC 172 6639 6998 2:85� 1045 Unabstracted version of the previous
example.

2MDLC 83 2596 1006 65958 Two BIT modules interacting via serial
bus using BDLC protocol.

BIU 154 3018 23 1:06� 1037 Abstracted version of a Bus Interface
Unit from a commercial microprocessor.

Every 63 838 1279 8:33� 108 Cache flush controller module of a com-
mercial microprocessor.

Table 1: Benchmark examples used in this work.

Different Cases
Example L Case A Case B Case C Case DjT j jRj Time jT j jRj Time jT j jRj Time Time

2MDLC 83 3350 76158 155 time out – – 3350 8382 923 265
BDLC* 144 22122 space out – 13110 8979 2558 12524 9454 1866 368
BDLC 172 space out – – 23501 time out – 25379 time out – 1515
BIU 154 36734 time out – 13098 3271 3409 10471 4536 1779 93

Case A: Only static ordering performed.
Case B: Dynamic ordering performed with a random static ordering.
Case C: Both static and dynamic ordering performed.
Case D: Saved ordering file used.
L: Number of binary latches.jT j: Shared BDD size of the transition relation.jRj: BDD size of the reached set.
Time: Time in seconds to perform reachability.
space out : Exceeded the memory limit
time out : Exceeded the time limit

Table 2: Results for various ordering heuristics.

4

computations by exploiting the property of the constrain op-
erator; the range computation is performed by recursive co-
factoring. Efficiency comes from caching intermediate re-
sults and exploiting disjoint support. Touati [20] suggested a
similar approach based on forming the product as a balanced
binary tree. Image computation or pre-image computation is
carried out iteratively using latch transition relations. As the
number of latches in the system grows, the computation time
increases.

Typically the BDD for each latch is small. In a design with
a large number of latches, iteration over each latch, while
being space efficient, is often time consuming. Forming
clusters of the latches, while consuming slightly more space,
can reduce the number of iterations substantially. In this
section we develop this idea.

We group sets of latch transition relations together to form
a vector of clustered transition relations. Suppose the original
vector of transition relations corresponding to latches is given
by Tk = Tk(~x;~i; yk) for k = 1; 2; : : :n. Then the image ofA(~x) is given by,

Img(A(~x)) = (9~x; ~i) [A(~x) �Yk Tk(~x;~i; yk)] (2)

While forming clusters of latches, we take the product of
the corresponding latch transition relations. If there are K
clustersC1; C2; � � �Ck of latches, then the image computation
can be equivalently written as,

Img(A(~x)) = (9~x; ~i) [A(~x) �Yk TCi] (3)

where TCk = Qj2Ck Tj(~x;~i; yj).
In [4], Burch also proposed the use of clustered transition

relations to represent circuits more efficiently. Latches were
grouped together to form clusters but no automatic way to
form clusters was given. Their technique possibly required
user expertise, based on circuit structure.

3.2.1 Proposed Clustering Technique

In our approach the user specifies a limit on the BDD size of
individual clusters (Partition Size Limit). The latch transition
relations are ordered using one of the heuristics given in
Section 3.3. Then the latch transition relations of latches
are conjoined in this order until the product size surpasses
the user specified limit. At this point the current cluster
is complete and is stored in an array. Then, the clustering
continues starting from the next latch.

3.2.2 Results and Discussion

Table 3 shows our results on clustering by BDD size.

We make the following observations: setting higher lim-
its obviously leads to fewer clusters but the total number of
BDD nodes taken by the clusters becomes bigger. From
Equation [3], we observe that the image computation is per-
formed by taking the product of cluster transition relations
sequentially (we will refer to them as sequential iterations).
The time taken in forming this product is a function of num-
ber of clusters as well as the cluster sizes. This results in the
total CPU time being a convex function of partitionsize limit.
Heuristically this can be reasoned as follows.

Using a limit of one yields a procedure which uses the least
amount of space but results in maximum number of clusters
(equal to the number of latches in the system) implying max-
imum number of sequential iterations. As the threshold is
raised, the number of iterations is reduced, while BDD sizes
of the operands increase. In the beginning, the reduction in
the number of iterations offsets the increase in BDD sizes
(and hence greater computation complexity). Hence initially
run time is reduced as the cluster size is increased. But later,
the BDD computation time starts to dominate the savings due
to decreased number of iterations and we observe an increase
in runtime. This is true for all the examples, except ones
for which the design’s transition relation is not very big (e.g.
2MDLC).

3.3 Ordering of Clustered Transition Rela-
tions

Since the system behavior is represented in terms of clusters
of transition relations, the core verification operations (image
and reverse image computation) are performed iteratively, one
cluster at a time. Suppose A(~x) represents the set of states,
and Tk(~x;~i; ~yk) represents the transition relation of the kth
cluster; then the image of A(~x) under the set of transition
relations is mathematically given by,

Img(A(~x)) = (9 ~x;~i) [A(~x) � T1(~x;~i; ~y1) �T2(~x;~i; ~y2) � � � � Tk(~x;~i; ~yk)]
Since transition relations can be moved out of the scope of
the existential quantification if they do not depend on any
of the variables being quantified, for a given ordering of the
transition relations, the above equation can be rewritten as,

Img(A(~x)) = (9 ~xk;~ik) [Tk(~x; ~u; ~yk)(9~xk�1;~ik�1) Tk�1(~x; ~u; ~yk�1) � � � �(9~x1;~i1) T1(~x; ~u; ~y1) � A(~x)))]
Coudert [10] proposed the recursive image computation.

Touati [20] computes the image of a set of states by exploiting
the property of the generalized cofactor in converting the

5

Examples
Partition 2MDLC (L=83) BDLC* (L=144) BDLC (L=172) BIU (L=154)

Size Limit N jT j Time N jT j Time N jT j Time N jT j Time

1 83 3216 588 144 4106 637 172 7042 5336 154 4021 118
100 20 3905 323 47 7089 354 54 12530 2489 52 11208 88
500 11 10220 236 21 13901 315 27 18641 1518 31 24175 83

1000 7 9057 219 14 18281 224 18 23332 1185 25 35447 84
2000 6 16785 279 11 26227 237 13 29904 1147 19 56351 143
5000 4 50947 627 8 43490 303 8 42263 885 16 107626 143
10000 3 55170 629 7 74727 428 6 70002 862 13 143758 163
20000 3 68432 706 6 131602 718 5 85639 878 12 283086 269

10000000 1 time out – 1 space out – 1 1153617 time out 1 space out –

N: Number of partitions
L,jT j, Time: As in Table 2.

Table 3: Results on space-time trade off in clustering by the BDD size approach.

image computation into range computation given by(9~x; ~i) "Yk TkA(~x)(~x;~i; ~yk)#
where TkA(~x) denotes the generalized cofactor ofTk(~x;~i; yk) with respect toA(~x). This range computation is
performed using a balanced binary tree – leaves correspond
to terms and variables at nodes of the tree that do not appear
in the support of nodes elsewhere are existentially quantified.
They reported better performance than [10].

Burch [4] criticized this approach on the grounds that gen-
eralized co-factor may introduce new variables in the sup-
ports of the terms, which delays the ability to quantify out
variables. Heuristically, this would lead to larger BDD size
of the intermediate product terms.

Note that ifTk(~x;~i; ~yk) is conjoined with the product term
obtained so far, it introduces at least j~ykj new variables (the
corresponding next state variables). Heuristically the num-
ber of the variables getting existentially quantified from the
product term and the number of additional variables getting
introduced in the product term determine the computational
efficiency of this operation. Thus the space requirement and
the efficiency of image and pre-image computations become
dependent on the order in which these clusters are processed.
In [4], an ordering scheme of the partitioned transition relation
is proposed and is based on the semantics of the underlying
model. However, this requires detailed understanding of the
semantics of the model and hence is not easily automated.

Geist et al. [11] give a simple automated way to order the
relations when each relation consists of the next state function
of a single latch. The primary criterion used is to choose

the relation next in ordering for which maximum number of
variables can be quantified out from the new product (unique
variables belonging to that partition). In case of a tie, the
relation with the maximum support is chosen.

Since, in our approach, clusters do not necessarily consist
of a single latch, the ordering criteria should also take into
account the number of next state variables introduced, while
choosing the next cluster in the order. It was found that
the maximum depth in the BDD ordering of any variable
in a partition, referred to as the index of the variable, also
affects the performance. The reasoning behind this is that
existentially quantifying a variable from a function becomes
computationally less expensive as the depth of the variable in
the ordering increases.

3.3.1 Our Heuristic

In our heuristic, four different factors were used to decide the
ordering of the partitions. We maintain two sets of clustersP and Q. The set P denotes the set of clusters which have
already been ordered. This set is initialized as empty set.
The set Q contains the clusters which are not yet ordered.
For each cluster Ci in the set Q, we find the parameters as
described below. In the following, PS, PI and NS denote
the set of present state, primary input and next state variables
respectively. A variable is denoted by v, S(T) represents the
set of support variables of T and k A k denotes the cardinality
of the set A.

1. vCi =k f v j (v 2 S(TCi)) ^ (v 2 PS [PI) ^ (v 62S(TCj) Cj 6= Ci; Cj 2 Q) g k, i.e. the number of
variables which can be existentially quantified when TCi
is multiplied in the product.

6

2. wCi =k f v j (v 2 PS [PI) ^ (v 2 S(TCi)) g k, i.e.
the number of present state and primary input variables
in the support TCi .

3. xCi =k f v j (v 2 PS [PI) ^ (v 2 S(TCj); Cj 2Q) g k, i.e. the number of present state and primary
input variables which have not yet been quantified.

4. yCi =k f v j (v 2 S(TCi)) ^ (v 2 NS) g k, i.e. the
number of next state variables that would be introduced
in the product by multiplying TCi .

5. zCi =k f v j (v 2 NS) ^ (v 2 S(TCj); Cj 2 Q) g k,
i.e. the number of next state variables not yet introduced
in the product.

6. mCi = maxfindex(v); v 2 S(TCi) ^ v 2 (PI [PS) g, i.e., the maximum BDD index of a variable to be
quantified in the support of TCi .

7. MCi = maxfmCj ; Cj 2 Q g, i.e. the maximum BDD
index of a variable to be quantified out in the remaining
clusters.

In order to normalize the effect of parameters 1,2,5 and 6, we
form the following ratios.

1. R1Ci = (vCi=wCi).
2. R2Ci = (wCi=xCi).
3. R3Ci = (yCi=zCi).
4. R4Ci = (mCi=MCi).

Weights of W1, W2, W3, and W4 are attached to the above
four factors respectively. The order of the clusters is obtained
by greedily choosing the cluster with the best cost function
value at each step. The chosen cluster is moved from set Q to
set P and the process is repeated until all the sets are ordered
(set Q becomes empty).

In our framework these weights can be interactively var-
ied. We performed a series of experiments to find a good
combination of these weights.

3.3.2 Results and Discussion

Table 4 compares the performance (CPU time in seconds)
of our ordering heuristic with the heuristic proposed in [11].
Specifically we report the time taken in the reached state
computation. The weights chosen after some experimentation
in our heuristic were W1 = 2;W2 = 1;W3 = 1;W4 = 1.

The above results indicate that the proposed approach al-
ways outperforms that in [11]. Improvements up to 40%
were achieved. The balanced binary tree approach to early
quantification proposed in [20] does not explicitly give any

Various Heuristics
Example CAV94 IWLS95

BIU 151 84
Every 1958 1855

2MDLC 270 244
BDLC* 385 322
BDLC 2068 1973

Gigamax 4.6 3.7
sbc 93 52

Table 4: Comparison of CPU time (in seconds) for different
cluster ordering heuristics.

ordering to the leaves of the tree, i.e. the latch transition rela-
tions. We found that using a random ordering for the leaves
led to poor performance. However, the ordering schemes de-
scribed in this section, coupled with [20]’s approach leads to
performances that are usually (but not always) comparable to
the results reported above.

4 Conclusion and Future Work

We described a series of algorithms for efficient synthesis and
verification using BDD’s. We argued that the core computa-
tion in synthesis and verification is that of forming the image
and pre-image of a set of states under the transition relation
characterizing the system. To make this step efficient, we ad-
dressed BDD variable ordering, use of partitioned transition
relations, and use of clustering. The efficacy of these algo-
rithms was demonstrated on a set of seven industrial examples
ranging in size from 28 to 172 binary latches.

These algorithms are an integral part of a second gen-
eration BDD based tool (HSIS-II) for both logic synthesis
and formal design verification using either model checking
or language containment. The input is an enhanced version
of Verilog which is compiled to a hierarchical netlist [1].
This is determinized and read into a network of latches and
gates. The algorithms described in this paper are integrated
into the tool which is aimed at users of synthesis and verifi-
cation as well as developers interested in creating their own
applications on top of the efficient core computation routines
provided.

Our routines use several parameters (default or user spec-
ified). It is likely that no universal choice of settings will
yield the best results for all examples. Hence the ability to
set parameters at the prompt is provided; further experiments
possibly will lead to a general purpose robust script for novice
users.

Other BDD based techniques which look promising in-

7

clude the “exists–cofactor” of [6], and the “implicitly con-
joined invariants” of [13]. We plan to experiment with them
since it should be relatively easy with the data structure pro-
posed in this paper to implement these methods. We also
intend to experiment with the functional and structural ap-
proaches for automatic state variable clustering [8]. Certain
limitations of BDD based formal design verification can not
be solved by the techniques described in this work. For exam-
ple, the size of the reached set may be large under any variable
ordering. Other data structures like GBDDs, XBDDs, ZB-
DDs [14] might be useful in these cases. There are also a wide
class of heuristics for coping with state explosion that are or-
thogonal to the approaches we have taken, such as property
specific reductions [2], abstractions [12], and conservative
approximations to reached state sets [7]. We believe these
techniques can be conveniently developed in our framework
and then tested and compared on realistic examples.

5 Acknowledgements

We would like to thank Thomas R. Shiple and the reviewers
for their helpful and constructive comments.

References

[1] A. Aziz, F. Balarin, S.-T. Cheng, R. Hojati, T. Kam, S. C.
Krishnan, R. K. Ranjan, T. R. Shiple, V. Singhal, S. Tasiran,
H.-Y. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
HSIS: A BDD-Based Environment for Formal Verification. In
Proc. of the Design Automation Conf., pages 454–459, June
1994.

[2] A. Aziz, T. R. Shiple, V. Singhal, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Formula-DependentEquivalence for
Compositional CTL Model Checking. In Computer Aided Ver-
ification, volume 818 of Lecture Notes in Computer Science,
pages 324–337. Springer-Verlag, 1994.

[3] A. Aziz, S. Tasiran, and R. K. Brayton. BDD Variable Ordering
for Interacting Finite State Machines. In Proc. of the Design
Automation Conf., San Diago, CA, June 1994.

[4] J. R. Burch, E. M. Clarke, and D. E. Long. Representing
Circuits More Efficiently in Symbolic Model Checking. In
Proc. of the Design Automation Conf., June 1991.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Se-
quential Circuit Verification Using Symbolic Model Checking.
In Proc. of the Design Automation Conf., June 1990.

[6] G. Cabodi and P. Camurati. Exploiting Cofactoring for Effi-
cient FSM Symbolic Traversal Based on the Transition Rela-
tion. In Proc. Intl. Conf. on Computer Design, pages 299–313,
Oct. 1993.

[7] H. Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi.
Algorithms for Approximate FSM Traversal. In Proc. of the
Design Automation Conf., pages 25–30, June 1993.

[8] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, and F. Somenzi.
A Structural Approach to State Space Decomposition for Ap-
proximate Reachability Analysis. In Proc. Intl. Conf. on Com-
puter Design, Oct. 1994.

[9] O. Coudert, C. Berthet, and J. C. Madre. Verification of Se-
quential Machines Based on Symbolic Execution. In J. Sifakis,
editor, Proc. of the Workshop on Automatic Verification Meth-
ods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 365–373, June 1989.

[10] O. Coudert and J. C. Madre. A Unified Framework for the
Formal Verification of Sequential Circuits. In Proc. Intl. Conf.
on Computer-Aided Design, pages 126–129, Nov. 1990.

[11] D. Geist and I. Beer. Efficient model checking by automated
ordering of transition relation partitions. In Computer Aided
Verification, volume 818 of Lecture Notes in Computer Sci-
ence, pages 52–71. Springer-Verlag, 1994.

[12] S. Graf. Verification of a Distributed Cache Memory by Using
Abstractions. In Computer Aided Verification, volume 818 of
Lecture Notes in Computer Science, pages 207–219. Springer-
Verlag, 1994.

[13] A. J. Hu, G. York, and D. L. Dill. New Techniques for Efficient
Verification with Implicitly Conjoined BDD’s. In Proc. of the
Design Automation Conf., pages 276–282, June 1994.

[14] S.-W. Jeong, B. Plessier, G. D. Hachtel, and F. Somenzi. Ex-
tended BDD’s: Trading off Canonicity for Structure in Veri-
fication Algorithms. In Proc. Intl. Conf. on Computer-Aided
Design, 1991.

[15] S.-W. Jeong, B. Plessier, G. D. Hachtel, and F. Somenzi. Vari-
able Ordering for FSM Traversal. In Proc. Intl. Conf. on
Computer-Aided Design, 1991.

[16] K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[17] C. Pixley. A Computational Theory and Implementation of
Sequential Hardware Equivalence. In E. M. Clarke and R. P.
Kurshan, editors, Proc. of the Workshop on Computer-Aided
Verification, volume 3 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 293–320.
American Mathematical Society, June 1990.

[18] R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Bray-
ton. Efficient Formal Design Verification: Data Structure +
Algorithms. Technical Report UCB/ERL M94, Electronics
Research Lab, Univ. of California, Berkeley, CA 94720, Oct.
1994.

[19] R. Rudell. Dynamic Variable Ordering for Binary Decision
Diagrams. In Proc. Intl. Conf. on Computer-Aided Design,
pages 42–47, Nov. 1993.

[20] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Implicit State Enumeration of Fi-
nite State Machines using BDD’s. In Proc. Intl. Conf. on
Computer-Aided Design, pages 130–133, Nov. 1990.

8

