Efficient BDD Algorithms for FSM Synthesis and Verification

Rajeev K. Ranjan* Adnan Aziz' Robert K. Brayton
Department of Electrical Engg. and Computer Sc.

University of Californiaat Berkeley
Berkeley, CA 94720

Abstract

We describe aset of BDD based a gorithmsfor efficient FSM
synthesis and verification. We establish that the core compu-
tation in both synthesisand verification is forming the image
and pre-image of sets of states under the transition relation
characterizing the design. To make these steps as efficient
as possible, we address BDD variable ordering, use of parti-
tioned transition rel ations, and use of clustering. We provide
an integrated set of algorithms and give references and com-
parisons with previouswork. We report experimenta results
on a series of seven industrial examples containing from 28
to 172 binary valued | atches.

1 Introduction

Theadvent of modern VLS| CAD toolshasradically changed
the process of designing digital systems. Thefirst CAD tools
automated the fina stages of design, such as placement and
routing. Asthelow level steps became better understood, the
focus shifted to the higher stages. In particular logic synthe-
sis, the science of optimizing designs (for various measures
such as area, speed, or power) specified at the gate levdl,
has shifted to the forefront of CAD research. Another area
rapidly gaining importance is design verification, the study
of systematic methods for formally proving the correctness
of designs.

Currently, a major area of research in logic synthesis is
the automatic optimization of sequentia hardware, i.e. fi-
nite state machines (FSM's) described as a netlist of gates
and latches. Thisincludes exploiting sequentia don't cares,
state minimization, FSM equivalence checking, and sequen-
tial ATPG [6, 15, 17, 20].

Formal design verification is a term given to the process
of mathematically proving that a system possesses a given
set of properties. Two popular paradigms for automated ver-
ification are language containment and model checking. In

*Supported by Motorola Grant
1 Supported by SRC 93-DC-008

Bernard Plessier Carl Pixley
Motorolalnc., MD OE321
6501 Wm Cannon Drive West
Ausgtin, TX 78735

language contai nment, the property is specified as a set of ac-
ceptable output traces; verification consists of checking that
the set of traces generated by the system is contained in the
set of acceptable traces. In modd checking, the property
is a formula from a tempora logic; verification consists of
checking that the system models the formula.

Both sequentia synthesis and forma verification ago-
rithms typically proceed by traversing the state transition
graph (STG) of the design. Since large designs invariably
consist of a set of interacting components, the number of
states in the design is the product of the number of states
in each component. This combinatorial blow up explosion
is referred to as state explosion. [9] pioneered the use of
Binary Decision Diagrams (BDD’s) to implicitly manipu-
late the product state space in the context of implementa
tion verification. Since then BDD's have been extended to
manipulate transition systems in the area of design verifica-
tion [2, 5, 7, 10, 12]. However, the size of BDD’s arising
in synthesis and verification computations continuesto be a
bottleneck.

In this paper we argue that the core computationsin syn-
thesis and verification are that of taking a given set of states
and finding all states which can reach/be reached the given
set in one step. These operations are referred to as theimage
and pre-image; our major contribution in this paper isan in-
tegrated set of BDD algorithmsthat perform thisoperation as
efficiently aspossible. Specifically, we addressthefollowing:

o BDD variable ordering techniques

e Use of clustering, i.e.
tractable components

partitioning the design into

¢ Ordering of theclusters, i.e. findingasequenceinwhich
to process the clusters

We give reference and comparisons to past work with the
details of these techniques. One salient feature of our algo-
rithms is that they are completely automatic. The methods
are interdependent and can be used together in various com-
binations. We report experimental results on a benchmark of
seven relatively large industrial designs.

Figure 1: Gates + Latches = Sequential Network

The remainder of this paper is structured as follows. Sec-
tion 2 reviews the basic definitions and terminol ogy. In Sec-
tion 3 we describe for each algorithm the underlying theory
and discussthe experimental results. We comment on theim-
plicationsof our results and indicate avenues for future work
in Section 4.

2 Déefinitions and Ter minology

We now make the notion of a finite state machine and our
model for sequential hardware precise. We a so describe the
representation of FSM’susing BDD's.

Definition 1 A Finite SateMachine(FSM) M isaquintuple,
(Q,1,0,A,9),where@ istheset of states, 7 istheset of input
values, O isthe set of output values, A isthe output function,
and ¢ isthe next state function. The output function A is a
compl etel y-specified functionwith domain (@ x I') and range
0. The next state function isacompletely-specified function
with domain (@ x I) and range Q.

Given aFSM (Q, 1,0, A, 6), itstransition relation is the
function T : S x I x S — {0,1}; T(z,4,y) =1«
y = §(x,). A setof states A C @ can be associated to its
characteristic functionA : @ — {0,1} ; A(z)=1e €
A

A hardware design D consists of a set of interconnected
latches and gates, asillustrated in Figure 1. For the purposes
of this paper, a design with » latches, m output wires and ¢
input wires is characterized by an associated FSM with state
space Qp = {0,1}", input space I = {0, 1}*, and output
space O = {0, 1}™; the next state and output functions are
defined by the correspondinglogic. Notethat each latch k has
itsown next state function &, : {0, 1} x {0,1}* — {0, 1}.

We will routinely refer to the states in ()p as the states
of the design. In the sequel, all FSM’s will be assumed to
be derived from hardware designs; we will use i to denote

the input vector, & the present state vector, and i the next
state vector. Definethe transitionrelation of latch & to be the
function Ty (Z,7,yx) = 1 + 0x(%,7) = y. Then for an
FSM on n latches, the transition relation can be factored as
follows:

HT(E’?’ Yr) 1

It is routine to encode the FSM transition relation T, the
transition relation of the individual latches Ty, as well as
state sets A using BDD’s. This approach has the advan-
tage of compactly representing alarge number of commonly
encountered functions, thus combating state explosion. Fur-
thermore, operations such as tautology checking, negation,
conjunction, and existential quantification can be efficiently
performed using BDD'’s.

Definition 2 Given an FSM with transition relation 7", and
a set of states A, the image of A is the set of states with
characteristic function Img(¢) = (3%,7) [T(Z,7,7) - A()];
the pre-image of A is the set of states with characteristic
function Pre(Z) = (37,7) [T(Z,4,7) - A(7)].

In [18] we provide a partial survey of the synthesis and
verification algorithmsthat are built using theimage and pre-
image operations. These include computing local observ-
ability don't cares in combinational circuits, reached state
computation, equiva ent state computation, FSM equivalence
checking, sequential ATPG, computing paths to fair cycles,
and CTL modd checking.

Reached state computation is the process of taking a des-
ignated initial state, and finding all states reachable from this
dtate, i.e. al states s, such that there is a sequence of inputs
which lead the FSM into s, from the initid state. Math-
ematically, this is performed by the following fixed point
calculation:

Ao(#) = Init(#)
Apya(y) =

~—

-

An(@) + (37 [T(F0,5) - Ar()]

where Init isthe characteristic function of the set consisting
of theinitial state. The limit of the A;’'sisthe characteristic
function of the reached state set. Clearly, the core computa-
tion is an image computation.

Remark: Non-determinism is often used to describe ab-
stracted systems (where a complex component has been re-
placed by asimpler onewhosebehavior containsthe behavior
of the original system), or under-specified systems (wherede-
cisionsrelated to the actually implementation have not been
made). Non-determinism can easily be modelled by adding
new unconstrained inputs to get an equivalent deterministic
FSM; furthermore, this can be done automatically. 1n [18]

we show that determining the least number of inputsto “de-
terminize’ non deterministic behavior is NP—complete, and
describe a heuristic solution to this problem. The upshot is
that thereis no loss of generaity in restricting our attention
to deterministic systems.

3 Algorithms

In this section we present various BDD based algorithms to
efficiently perform the core computations. In Section 3.1,
techniques are discussed to achieve good BDD variable or-
derings. Section 3.2 presents the use of clustered transition
relations. The approach used for ordering the clustersis de-
tailed in Section 3.3.

To illugtrate the effectiveness of these algorithms and to
contrast them with some previous approaches, we use a set of
seven benchmark examples. We perform reachability analy-
sis on these examples (Table 1) to demonstrate the effective-
ness of the algorithms for the image computations. Prelimi-
nary experiments indicate that these algorithms are efficient
for inverse image computations as well. We will report a
complete set of the results on inverse image computationsin
thefinal version of the work.

All examples were run on a DEC5900/260 workstation
with 400M Bytes memory. A limit of 10000 seconds of CPU
time and 400MBytes of data size were used while running
the experiments.

3.1 Ordering of BDD variables

As mentioned earlier, our symbolic verification algorithms
use BDDs as the underlying data structure. The success of
such algorithms depends critically on the size of the result-
ing BDDs, which is very sensitive to the variable ordering
chosen. Given alogic function, the problem of finding the
ordering that leads to a minimum sized BDD for the function
isagorithmically intractable. Hence we need to apply some
heuristics[3, 15, 20].

In the dynamic reordering scheme [19], the BDD package
automatically reordersvariabl esto minimizethetotal number
of BDD nodes. Starting with a good heuristic ordering leads
to better results. Since invoking dynamic reordering takes
a significant amount of time, we found the following two
parameters to be useful in controlling BDD size and improv-
ing computational efficiency. The first parameter, the “base
value’, is the total number of nodes in the BDD manager at
which the reordering starts. The second parameter, the “in-
crement value’, is the amount by which the number of BDD
nodes in the manager must increase between two successive
invocations of reordering. These parameters can be chosen
at the prompt and can be changed dynamically in the course
of computation.

3.1.1 Resultsand Discussion

In our framework, we provide options for using ordering
heuristics given in [3] and [20]. For our experiments we
chose the heuristicin [3] as it was shown to outperform the
other.

To demongtrate the effectiveness of dynamic ordering
where the initial ordering is either random or based on a
good heuristic, we performed some experiments.

We observe from Table 2 that for large examples, use of
static ordering a one often leads to large BDD sizes. Inthe
examples shown in the table, only one (2MDLC) could be
completed using static ordering. The smaller BDD sizes for
case C as compared to case B indicate that dynamic ordering
should be used along with good heuristic initial ordering.

We aso provide the ability to read in a manual ordering
from a file. This feature especialy becomes useful when
we want to use the variable ordering previoudy generated by
some heuristic or by dynamic reordering. As mentioned ear-
lier, dynamic reordering is computationally expensive and
thus bypassing it by using a previously generated order-
ing provides a significant computational advantage. Results
shown in Table 2 indicate that using a previously generated
ordering can achieve up to 10x speed improvement. How-
ever, we observe that for 2MDLC, time taken in case D is
morethan that taken in case A. Thisisbecause, incase D, the
ordering is obtained after invoking dynamic reordering dur-
ing reachability. This resultsin the smaller size for reached
set representation (see column | R|). However, it need not be
the best BDD ordering for transition relation representati on
and reachability computation.

In addition, we provide the ability to read in partia orders
and heuristically complete them to obtain good initial order-
ings. Thus, if incremental changes are made to the design,
the previous ordering can be adapted to be used for the up-
dated design. This can substantialy improve the dynamic
reordering performance.

3.2 Useof Clustered Transition Functions

As described in §2, the transition relation of the design is a
singleBDD [3] whichisthe conjunctionof thelatch transition
relations. Asthe complexity of the design grows, the size of
this BDD often explodes. Hence computing the image and
pre-image directly asgiven in definition 2 becomes infeasible
for large designs.

The factorization of the transition relation given in equa
tion 1 can be exploited to avoid building the complete transi -
tion relation. In particular, quantification of variables present
in asubset of the conjoined termscan beperformed iteratively.

A vector of BDD’sisused in[10, 20]; each element of the
vector represents the corresponding latch transition relation.
Coudert [10] proposed reducing image computationsto range

| Example | #Latches | #Gates | Depth | #States | Description
sbc 28 927 10 154593 ISCAS'89 sequential benchmark (a
snooping bus controller).
Gigamax 45 994 15 2.77 x 108 | Cache coherency protocol description
for hardware implementation of Giga-
max distributed multiprocessor [16].
BDLC* 144 4775 103 1.66 x 10® | Abstracted Byte Data Link Controller
(BDLC);Manages the Tx-Rx protocol
between microprocessor and aserial bus.
Containsthe abstract description of BIT
module.
BDLC 172 6639 6998 | 2.85x 10%® | Unabstracted version of the previous
example.
2MDLC 83 2596 1006 65958 Two BIT modules interacting via serial
bus using BDL C protocol.
BIU 154 3018 23 1.06 x 10% | Abstracted version of a Bus Interface
Unit from acommercial microprocessor.
Every 63 838 1279 | 8.33 x 10° | Cacheflush controller module of acom-
mercial microprocessor.
Table 1: Benchmark examples used in thiswork.
Different Cases
Example | L CaseA CaseB CaseC CaseD
7] | [R[[Time 7] | JRr| [Time| 7] | [R] [Time]| Time
2MDLC | 83 3350 76158 155 | timeout - - 3350 8382 923 265
BDLC* | 144 22122 Space out - 13110 8979 2558 | 12524 9454 1866 368
BDLC | 172 | space out - - 23501 | timeout - 25379 | timeout - 1515
BIU 154 36734 time out - 13098 3271 3409 | 10471 4536 1779 93

Case A: Only dtatic ordering performed.

Case B: Dynamic ordering performed with arandom static ordering.

Case C: Both static and dynamic ordering performed.
Case D: Saved ordering file used.
L: Number of binary latches.

|T'|: Shared BDD size of the transition relation.
|R|: BDD size of the reached set.
Time: Timein seconds to perform reachability.
space out : Exceeded the memory limit

time out : Exceeded the time limit

Table 2: Resultsfor various ordering heuristics.

computations by exploiting the property of the constrain op-
erator; the range computation is performed by recursive co-
factoring. Efficiency comes from caching intermediate re-
sultsand exploiting digjoint support. Touati [20] suggested a
similar approach based on forming the product as a balanced
binary tree. Image computation or pre-image computation is
carried out iteratively using latch transition relations. Asthe
number of latches in the system grows, the computation time
incresses.

TypicalytheBDD for each latchissmall. Inadesignwith
a large number of latches, iteration over each latch, while
being space efficient, is often time consuming. Forming
clusters of the latches, while consuming dlightly more space,
can reduce the number of iterations substantially. In this
section we devel op thisidea.

We group sets of latch transitionrel ationstogether to form
avector of clustered transitionrel ations. Supposethe ori ginal
vector of transitionrelations correspondingto latchesis given
by T = Tx(#, i, yi) fork = 1,2, .. .n. Thentheimage of
A (%) isgiven by,

Img(A(F) = &)[A@) - [[Te@iw)] @

k

While forming clusters of latches, we take the product of
the corresponding latch transition relations. If there are K
clustersC1q, C», - - - C, of latches, then theimage computation
can be equivalently written as,

Img(A(#) = (37,) [A(F) - [Te.] 3

where Tck = HjECk Tj (f, i, yj).

In[4], Burch aso proposed the use of clustered transition
relations to represent circuits more efficiently. Latches were
grouped together to form clusters but no automatic way to
form clusters was given. Their technique possibly required

user expertise, based on circuit structure.

3.21 Proposed Clustering Technique

In our approach the user specifies alimit onthe BDD size of
individual clusters (Partition Size Limit). Thelatch transition
relations are ordered using one of the heuristics given in
Section 3.3. Then the latch transition relations of latches
are conjoined in this order until the product size surpasses
the user specified limit. At this point the current cluster
is complete and is stored in an array. Then, the clustering
continues starting from the next latch.

3.2.2 Resaultsand Discussion

Table 3 shows our resultson clustering by BDD size.

We make the following observations: setting higher lim-
its obvioudly leads to fewer clusters but the total number of
BDD nodes taken by the clusters becomes bigger. From
Equation [3], we observe that the image computation is per-
formed by taking the product of cluster transition relations
sequentially (we will refer to them as sequential iterations).
The time taken in forming this product is a function of num-
ber of clusters as well as the cluster sizes. Thisresultsinthe
total CPU timebeing a convex function of partitionsizelimit.
Heuristically this can be reasoned as follows.

Usingalimit of oneyiel dsaprocedurewhich usestheleast
amount of space but results in maximum number of clusters
(equal to the number of latchesin the system) implying max-
imum number of sequential iterations. As the threshold is
raised, the number of iterationsis reduced, while BDD sizes
of the operands increase. In the beginning, the reduction in
the number of iterations offsets the increase in BDD sizes
(and hence greater computation complexity). Hence initia ly
run timeisreduced as the cluster sizeisincreased. But later,
the BDD computation time startsto dominate the savings due
to decreased number of iterationsand we observe an increase
in runtime. This is true for al the examples, except ones
for which the design’stransition relation is not very big (e.g.
2MDLC).

3.3 Ordering of Clustered Transition Rela-
tions

Since the system behavior isrepresented in terms of clusters
of transition rel ations, the core verification operations (image
and reverseimagecomputation) areperformediteratively, one
cluster at atime. Suppose A(¥) represents the set of states,
and Tj (¥, i, ¥) represents the transition relation of the k"
cluster; then the image of A(#) under the set of transition
relationsis mathematically given by,

Img(A(F) = (379 [A@@) -

Since transition relations can be moved out of the scope of
the existential quantification if they do not depend on any
of the variables being quantified, for a given ordering of the
transition rel ations, the above equation can be rewritten as,

Img(A(7)) = (3fk,7k)[Tk(f,§',y7c)

(Zp—1,tk-1) Troa(Z, 86, ypl1) - - -

(371, 71) Ta1(Z, @, 1) - A(2)))]

Coudert [10] proposed the recursive image computation.
Touati [20] computestheimage of aset of statesby exploiting
the property of the generdized cofactor in converting the

Examples
Partition 2MDLC (L=83) BDLC* (L=144) BDLC (L=172) BIU (L=154)

SizeLimit [N | [7] [Time| N | 7] [Time| N | [I] | Time N | J7] [Time

1 83| 3216 588 | 144 4106 637 | 172 7042 5336 | 154 4021 118

100 20 | 3905 323 | 47 7089 354 | 54 | 12530 2489 52 11208 88

500 11| 10220 | 236 | 21 13901 315 | 27 18641 1518 31 24175 83

1000 7 9057 219 | 14 18281 224 | 18 | 23332 1185 25 35447 84

2000 6 | 16785 | 279 | 11 26227 237 | 13 | 29904 1147 19 56351 143

5000 4 | 50947 | 627 8 43490 303 8 42263 885 16 | 107626 | 143

10000 3 | 55170 | 629 7 74727 428 6 70002 862 13 | 143758 | 163

20000 3 | 68432 | 706 6 131602 | 718 5 85639 878 12 | 283086 | 269

10000000 | 1 | timeout - 1 | spaceout - 1 | 1153617 | timeout | 1 | spaceout -

N: Number of partitions
L,|T|, Time: Asin Table 2.

Table 3: Results on space-time trade off in clustering by the BDD size approach.

image computation into range computation given by

3z 7

I Tea (&7, 37)]
k

where T, A#) denotes the generdized cofactor of
T (&, 7, y) With respect to A (). Thisrange computationis
performed using a balanced binary tree — leaves correspond
to terms and variables at nodes of the tree that do not appear
in the support of nodes el sawhere are existentially quantified.
They reported better performance than [10].

Burch [4] criticized thisapproach on the groundsthat gen-
eralized co-factor may introduce new variables in the sup-
ports of the terms, which delays the ability to quantify out
variables. Heuristicaly, thiswould lead to larger BDD size
of the intermediate product terms.

Notethat if T (¥, i, i) isconjoined with the product term
obtained so far, it introduces at least |7 | new variables (the
corresponding next state variables). Heuristically the num-
ber of the variables getting existentialy quantified from the
product term and the number of additional variables getting
introduced in the product term determine the computational
efficiency of this operation. Thus the space requirement and
the efficiency of image and pre-image computations become
dependent on the order in which these clusters are processed.
In[4], an ordering schemeof thepartitioned transitionrel ation
is proposed and is based on the semantics of the underlying
model. However, this requires detailed understanding of the
semantics of the model and hence is not easily automated.

Geigt et al. [11] give asimple automated way to order the
relationswhen each relation consistsof the next state function
of a single latch. The primary criterion used is to choose

the relation next in ordering for which maximum number of
variables can be quantified out from the new product (unique
variables belonging to that partition). In case of atie, the
rel ation with the maximum support is chosen.

Since, in our approach, clusters do not necessarily consist
of asingle latch, the ordering criteria should aso take into
account the number of next state variables introduced, while
choosing the next cluster in the order. It was found that
the maximum depth in the BDD ordering of any variable
in a partition, referred to as the index of the variable, aso
affects the performance. The reasoning behind this is that
existentially quantifying a variable from a function becomes
computationally less expensive as the depth of thevariablein
the ordering increases.

3.3.1 Our Heuristic

In our heuristic, four different factors were used to decide the
ordering of the partitions. We maintain two sets of clusters
P and Q. The set P denotes the set of clusters which have
already been ordered. This set is initidized as empty set.
The set) contains the clusters which are not yet ordered.
For each cluster C; in the set), we find the parameters as
described below. In the following, P.S, PI and N .S denote
the set of present state, primary input and next state variables
respectively. A varigbleisdenoted by v, S(7") representsthe
set of support variablesof 7"and || A || denotesthecardinaity
of theset A.

Love, =||{v]| (veSTeg,)) AN(ve PSUPI) A (v
S(Te;) C; # Ci,C; € Q)} ||, i.e. the number of
variableswhich can beexistentially quantifiedwhen 7,
ismultiplied in the product.

2. we, =||{v]| (ve PSUPI) A (veS(Te,)) I ie
the number of present state and primary input variables
in the support 7¢, .

3. xc, =||{v | (vePSUPI) A (veESTg) C; e
Q) } ||, i.e. the number of present state and primary
input variables which have not yet been quantified.

4. yo, =[|{v | (ve STe,)) AN (ve NS}, ie the
number of next state variables that would be introduced
in the product by multiplying 7, .

5 zc, =[[{v | (veNS) AN (veSTc;), C;€Q) T
i.e. thenumber of next state variables not yet introduced
in the product.

6. mc, = max{index(v),v € S(I¢,) A v € (PIU
PS)},i.e,themaximum BDD index of avariableto be
quantified in the support of 7¢,.

7. M¢, = max{mc,, C; € Q },i.e. themaximum BDD
index of avariableto be quantified out in the remaining
clusters.

In order to normalize the effect of parameters 1,2,5 and 6, we
form the following ratios.

1. R]é, = (vcl/wcl).

2. R%«l = (wcl/l‘cl).
3. R?C,’, = (yCz/ZC,)'
4. Ré«l = (mC,/MC,)'

Weights of W1, W,, W3, and W, are attached to the above
four factorsrespectively. The order of the clustersisobtained
by greedily choosing the cluster with the best cost function
value at each step. The chosen cluster ismoved from set () to
set P and the processisrepeated until all the sets are ordered
(set () becomes empty).

In our framework these weights can be interactively var-
ied. We performed a series of experiments to find a good
combination of these weights.

3.3.2 Resultsand Discussion

Table 4 compares the performance (CPU time in seconds)
of our ordering heuristic with the heuristic proposed in [11].
Specifically we report the time taken in the reached state
computation. Thewe ghtschosen after someexperimentation
inour heuristicwere Wy, = 2, Wo =1, W =1, Wy = L
The above results indicate that the proposed approach a-
ways outperforms that in [11]. Improvements up to 40%
were achieved. The balanced binary tree approach to early
quantification proposed in [20] does not explicitly give any

VariousHeuristics
Example | CAV94 | IWLS95
BIU 151 84
Every 1958 1855
2MDLC 270 244
BDLC* 385 322
BDLC 2068 1973
Gigamax 4.6 3.7
shc 93 52

Table 4: Comparison of CPU time (in seconds) for different
cluster ordering heuristics.

ordering to theleaves of thetreg, i.e. thelatch transition rela-
tions. We found that using a random ordering for the leaves
led to poor performance. However, the ordering schemes de-
scribed in this section, coupled with [20]’s approach leads to
performances that are usually (but not always) comparable to
the results reported above.

4 Conclusion and Future Work

We described aseries of algorithmsfor efficient synthesisand
verification using BDD’s. We argued that the core computa
tionin synthesisand verification isthat of forming theimage
and pre-image of a set of states under the transition relation
characterizing the system. To make this step efficient, we ad-
dressed BDD variable ordering, use of partitioned transition
relations, and use of clustering. The efficacy of these algo-
rithmswas demonstrated on aset of seven industrial examples
ranging in size from 28 to 172 binary latches.

These algorithms are an integral part of a second gen-
eration BDD based tool (HSIS-II) for both logic synthesis
and formal design verification using either model checking
or language containment. The input is an enhanced version
of Verilog which is compiled to a hierarchica netlist [1].
This is determinized and read into a network of latches and
gates. The agorithms described in this paper are integrated
into the tool which is aimed at users of synthesis and verifi-
cation as well as developers interested in creating their own
applicationson top of the efficient core computation routines
provided.

Our routines use several parameters (default or user spec-
ified). It islikely that no universal choice of settings will
yield the best results for al examples. Hence the ability to
set parameters at the prompt is provided; further experiments
possibly will lead to ageneral purposerobust script for novice
USers.

Other BDD based techniques which look promising in-

clude the “exists—cofactor” of [6], and the “implicitly con-
joined invariants’ of [13]. We plan to experiment with them
sinceit should be relatively easy with the data structure pro-
posed in this paper to implement these methods. We aso
intend to experiment with the functional and structural ap-
proaches for automatic state variable clustering [8]. Certain
limitations of BDD based formal design verification can not
be solved by thetechniquesdescribed in thiswork. For exam-
ple, thesize of thereached set may belarge under any variabl e
ordering. Other data structures like GBDDs, XBDDs, ZB-
DDs|[14] might beuseful inthese cases. Thereareasoawide
class of heuristicsfor coping with state explosion that are or-
thogonal to the approaches we have taken, such as property
specific reductions [2], abstractions [12], and conservative
approximations to reached state sets [7]. We believe these
techniques can be conveniently developed in our framework
and then tested and compared on realistic examples.

5 Acknowledgements

We would like to thank Thomas R. Shiple and the reviewers
for their helpful and constructive comments.

References

[1] A. Aziz, F. Baarin, S-T. Cheng, R. Hojati, T. Kam, S. C.
Krishnan, R. K. Ranjan, T. R. Shiple, V. Singhal, S. Tasiran,
H.-Y. Wang, R. K. Brayton,and A. L. Sangiovanni-Vincentelli.
HSIS: A BDD-Based Environment for Formal Verification. In
Proc. of the Design Automation Conf., pages 454-459, June
1994.

[2] A. Aziz, T. R. Shiple, V. Singhal, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Formula-Dependent Equivalencefor
Compositional CTL Model Checking. In Computer Aided Ver-
ification, volume 818 of Lecture Notesin Computer Science,
pages 324-337. Springer-Verlag, 1994.

[3] A.Aziz,S. Tasiran, and R. K. Brayton. BDD Variable Ordering
for Interacting Finite State Machines. In Proc. of the Design
Automation Conf., San Diago, CA, June 1994.

[4] J. R. Burch, E. M. Clarke, and D. E. Long. Representing
Circuits More Efficiently in Symbolic Model Checking. In
Proc. of the Design Automation Conf., June 1991.

[5] J.R.Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Se-
quential Circuit Verification Using Symbolic Model Checking.
In Proc. of the Design Automation Conf., June 1990.

[6] G. Cabodi and P. Camurati. Exploiting Cofactoring for Effi-
cient FSM Symbolic Traversal Based on the Transition Rela-
tion. In Proc. Intl. Conf. on Computer Design, pages299-313,
Oct. 1993.

[7] H.Cho, G. D. Hachtel, E. Macii, B. Plessier, and F. Somenzi.
Algorithms for Approximate FSM Traversal. In Proc. of the
Design Automation Conf., pages 25-30, June 1993.

[8] H.Cho, G.D. Hachtel, E. Macii, M. Poncino, and F. Somenzi.
A Structural Approach to State Space Decomposition for Ap-
proximate Reachability Analysis. In Proc. Intl. Conf. on Com-
puter Design, Oct. 1994.

[9] O. Coudert, C. Berthet, and J. C. Madre. Verification of Se-
guential MachinesBased on Symbolic Execution. In J. Sifakis,
editor, Proc. of the Workshop on Automatic Verification Meth-
ods for Finite Sate Systems, volume 407 of Lecture Notesin
Computer Science, pages 365-373, June 1989.

[10] O. Coudert and J. C. Madre. A Unified Framework for the
Formal Verification of Sequential Circuits. In Proc. Intl. Conf.
on Computer-Aided Design, pages 126-129, Nov. 1990.

[11] D. Geist and I. Beer. Efficient model checking by automated
ordering of transition relation partitions. In Computer Aided
\erification, volume 818 of Lecture Notes in Computer Sci-
ence, pages 52—71. Springer-Verlag, 1994.

[12] S. Graf. Verification of a Distributed Cache Memory by Using
Abstractions. In Computer Aided \erification, volume 818 of
Lecture Notesin Computer Science, pages207—219. Springer-
Verlag, 1994.

[13] A.J.Hu, G.York,andD.L.Dill. New Techniquesfor Efficient
Verification with Implicitly Conjoined BDD's. In Proc. of the
Design Automation Conf., pages 276282, June 1994.

[14] S.-W. Jeong, B. Plessier, G. D. Hachtel, and F. Somenzi. Ex-
tended BDD’s: Trading off Canonicity for Structure in Veri-
fication Algorithms. In Proc. Intl. Conf. on Computer-Aided
Design, 1991.

[15] S.-W. Jeong, B. Plessier, G. D. Hachtel, and F. Somenzi. Vari-
able Ordering for FSM Traversal. In Proc. Intl. Conf. on
Computer-Aided Design, 1991.

[16] K.L.McMillan. SymbolicModel Checking. Kluwer Academic
Publishers, 1993.

[17] C. Pixley. A Computational Theory and Implementation of
Sequential Hardware Equivalence. In E. M. Clarke and R. P.
Kurshan, editors, Proc. of the Workshop on Computer-Aided
\erification, volume 3 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 293-320.
American Mathematical Society, June 1990.

[18] R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Bray-
ton. Efficient Formal Design Verification: Data Structure +
Algorithms. Technical Report UCB/ERL M94, Electronics
Research Lab, Univ. of California, Berkeley, CA 94720, Oct.
1994,

[19] R. Rudell. Dynamic Variable Ordering for Binary Decision
Diagrams. In Proc. Intl. Conf. on Computer-Aided Design,
pages42—47, Nov. 1993.

[20] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Implicit State Enumeration of Fi-
nite State Machines using BDD’s. In Proc. Intl. Conf. on
Computer-Aided Design, pages 130133, Nov. 1990.

