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Abstract 

In this paper, we focus on communication protocols 
which integrate control modules and function modules. 
Among others, asynchronous interaction enables FSM 
model to control the scheduling of dataflow model and 
to change the parameters in the dataflow modules. 
Compared with previous approaches, the proposed 
technique supports formal specification for each com-
ponent and provides protocols which integrate the two 
models in a flexible way. 

1 Introduction 

As the system complexity of electronic digital sys-
tems grows, a new systematic design methodology, 
called codesign, has been sought for exploring optimal 
architectures [1]. The specification languages used in 
the codesign researches so far depend on the application 
areas they target for. For computation-oriented applica-
tions such as DSP applications, dataflow models gain 
popularity. On the other hand, for control-oriented ap-
plications, the Finite State Machine (FSM) or its vari-
ants are favored. Recently there emerges a new class of 
applications that contain significant amounts of compu-
tation modules and control modules simultaneously.  

We propose a cospecification method that specifies 
control modules and function modules with FSM and 
dataflow respectively, and integrates them via communi-
cation protocols on the codesign backplane [2]. This 
paper focuses on the details of communication protocols 
between FSM and dataflow models. 

To define the communication requirements between 
dataflow and FSM models, we examine the interaction 
patterns between control modules and function modules 
in typical embedded systems. Regardless of implementa-
tions, interaction patterns between control modules and 
function modules can be divided into two categories: 
one is synchronous interaction and the other is asyn-
chronous interaction. 

In a synchronous interaction, a control module and a 
function module communicate with each other by ex-
changing data samples. The function module may send a 
sample to set a flag of a control register and the control-
ler becomes active on the arrival of the flag. Or, the con-
trol module may send a data sample which activates a 
function module to process the sample.  

Using asynchronous interactions, the control module 
plays the role of supervisory module to manage the state 
of the dataflow module in figure 1(i). We define three 
states of a dataflow module by its current activity: ac-
tive, suspend and stop. If there is no synchronous input 
interaction from the FSM module to a dataflow module, 
the dataflow module goes into the active state from the 
start by default. When the control module enters into a 
certain state, it may want to suspend the dataflow mod-
ule and resume it later. When the dataflow module goes 
into the suspend state, it stops its execution and just dis-
cards the incoming samples from the outside blocks.  

Another situation of asynchronous interaction occurs 
like figure 1(ii) when the control module wants to 
change some parameters of dataflow nodes asynchro-
nously. Suppose a dataflow module decodes and plays 
an encoded audio. If the user lowers the volume, that 
action is delivered to the control module and finally to 
the dataflow module by changing the "gain" parameter 
of the dataflow node that amplifies the sound samples.  
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Figure 1: Transmission of asynchronous con-
trol signal 

In the next section, we introduce previous researches 
and compare them with our approach. Section 3 intro-
duces the codesign backplane and shows implementa-
tion details of asynchronous interaction. We will show 
the practicality of our work through an example and 
conclude the paper in sections 4 and 5 respectively. 

2 Previous Work 

The Ptolemy software environment [3] supports mul-
tiple models of computation including dataflow and 
FSM models. It enables a model of computation to con-
tain another models of computation inside as illustrated 
in figure 2. 
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Figure 2: Interaction between FSM and data-
flow in Ptolemy 

Interactions between different models of computation 
are achieved by the wormhole mechanism. If the block 
“B” gets a data from the block “A”, the wormhole deliv-
ers the data to internal FSM B, which defines a synchro-
nous interaction. Ptolemy does not support asynchro-
nous interaction directly. If an FSM node contains a 
dataflow module, the dataflow module is executed while 
the FSM node is active. If FSM nodes contain different 
dataflow modules with different parameter values, it can 
express parameter update though it is not an intuitive 
expression. Other asynchronous interactions can not be 
specified easily in Ptolemy. 

COSY [4] environment provides a unified specifica-
tion of control and functional modules for IP-based real-
time design methodology. COSY uses an extension of 
Kahn process network, called Y-chart API (YAPI) as 
the specification language. YAPI model consists of a 
network of processes connected by FIFOs.  

A process has read, write and select port operations. 
Read and write operations provide synchronous interac-
tion between components as in the Kahn process net-
work. Select operation is added to express data depend-
ent behavior of a process. It gets two input ports as ar-
guments and chooses one of the input non-
deterministically. Figure 3 shows an usage of select op-
eration for asynchronous interaction in COSY. If there is 
no data in control path, the block “MPEG Decoder” 
processes data and sends output. But if a control data 
arrives at a control port, the block accepts the control 
data through select operation and processes it, which 
may be scheduling control or internal parameter update. 
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Figure 3: Interaction between components of 
an MPEG player in COSY 

COSY uses a unified specification of control modules 
and function modules that are assumed to be predefined 
IPs. But predefined IPs must have a control module in-

side to process a control data from the select port to 
combine control path and data path. 

STATEMATE of i-Logix inc. [5] has been developed 
for complex control-oriented reactive applications. It 
consists of three charts: statechart [6], activity chart, and 
module chart. The module chart represents the system 
architecture. The statechart, an innovative extension of 
FSM, is the major module that depicts reactive behavior 
over time. The activity chart, corresponding to the 
codesign backplane in our context that will be discussed 
in the next section, describes the functional decomposi-
tion and the information flow of the system.  

In the activity chart of figure 4, real lines show syn-
chronous interactions between the statechart and func-
tion modules, dotted lines indicate asynchronous 
interactions which are emitted by a state transition in the 
statechart. 
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Figure 4: Interaction between statechart and 
function modules in the activity chart of 
STATEMATE 

Statemate provides very flexible interaction mecha-
nism. But because it focuses on control-oriented reactive 
systems, function modules in the activity chart are de-
pendent on the statechart. And both activity chart and 
statechart do not have formality. 

In short, no previous approach satisfies all require-
ments of formal composition of dataflow and control. 
The proposed technique is to use the codesign backplane 
to provide formal specification for control modules and 
function modules like Ptolemy, and support both syn-
chronous and asynchronous interactions like Statemate. 

3 Codesign Backplane 

We implement the proposed technique in our 
codesign environment PeaCE(Ptolemy extension as a 
Codesign Environment) [7] that is based on the Ptolemy 
software environment. The codesign backplane manages 
all interactions between different models of computa-
tion. We adopt the discrete-event model of computation 
[8] for the codesign backplane. The interactions between 
dataflow modules and FSM modules should go through 
the top-level co-design backplane. Therefore the 
codesign backplane can implement proposed synchro-
nous and asynchronous communications. 

In a synchronous interaction, a control module and a 
function module communicate with each other by ex-
changing data samples. Since the receiving module waits 
for the arrival of samples at a certain state, the interac-



tion is synchronized with sample exchange. Though 
there are many possible methods to describe asynchro-
nous interactions, we choose to use a "script" language 
inside a state in the control FSM. Table 1 shows the 
syntax of the scripts. The first three manage the states of 
the dataflow modules and the last script describes the 
asynchronous parameter updates of dataflow modules.  

How to accomplish an asynchronous interaction is 
shown in figure 5. If the FSM make a transition to a new 
state, the codesign backplane receives a script command 
from the FSM. The backplane interprets the command 
and sends a special control signal to the specified data-
flow block whose node_name property is equal to the 
n_node field of the script. However, this control signal 
path is not drawn explicitly in the graphic editor. There 
is a hidden connection between the backplane and all 
blocks in the graph. Each dataflow module checks the 
arrival of the special control tokens from the backplane 
regularly. If a special token is received, it changes the 
graph activity as indicated. Otherwise, it continues to 
execute the graph.  

Scripts Actions 

Run n_name Resume the n_name block 

Suspend n_name Suspend the n_name block 

Stop n_name Stop the n_name block.  

Set n_name parame-
ter value 

Update the parameter with 
value in the n_name block 

Table 1. Scripts for asynchronous interaction 
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Figure 5: Asynchronous interaction with a 
normal dataflow module 

If a dataflow module is synthesized as a C code, a 
connection is established via TCP/IP to the codesign 
backplane. We divide it into two situations for effective 
simulation. If there is any synchronous connection be-
tween FSM and the dataflow module, the C process is 
synchronized with data from FSM. But if there is no 
synchronous connection, the C process can concurrently 
be executed with the codesign backplane. 

The situation when only asynchronous interactions 
exist is illustrated in figure 6 which shows the synthe-

sized dataflow module of figure 5. Because there is no 
data dependency between the codesign backplane and 
the synthesized C process, two processes are executed 
simultaneously. Since it does not need to wait for a con-
trol packet from FSM, we use non-blocking read opera-
tion while the C process runs. But if FSM changes the 
state of the synthesized dataflow module to the “sus-
pend” or “stop” state, the process blocks and waits for a 
control packet which make it active again, using block-
ing read. 

C code process

init_variable:

while (true) {
   if (status==RUN) {
      non-blocking read for a control signal
      if (control packet==SUSPEND) {
         status=SUSPEND;
         continue;
     } else if (control packet==STOP) {
         status=STOP;
         goto init_variable;
     } else process parameter update
   } else {   // status==SUSPEND || STOP
      blocking read for control a signal
      if (control packet==RUN) status=RUN;
      else if (control packet==STOP) {
         if (status==STOP) continue;
         status=STOP;
         goto init_variable;
      } else process parameter update
   }    

}

synthesized C code for a dataflow module

variable initialization

 
Figure 6: Pseudo code for a synthesized data-
flow module with asynchronous interaction 
only 

In figure 6, the C process uses non-blocking read at 
the “run” state and continues to execute synthesized 
codes until a control packet arrives. If a control packet 
arrives, the process reads the packet and processes it, 
which sets the scheduling status or changes the parame-
ter value. But if the state is changed to “suspend” state, 
the process uses blocking read until a control packet 
arrives which changes the scheduling status to “run” 
state.  

There are two other asynchronous signals: stop and 
variable update. The stop signal makes a dataflow mod-
ule stop and change all internal states to initial values. 
And the variable update signal changes the target vari-
able to a delivered value. 

Figure 7 shows asynchronous interactions with a syn-
chronous connection between FSM and synthesized 
dataflow modules. Every time a packet arrives at the C 
process, the process tests whether it is a data packet or 
the control packet from the packet header information. If 
it is a data packet, the process consumes the data and 
produce outputs if any. If a control packet is arrived, it 
performs the scheduling control or updates the target 
parameter with the control value. In this type of execu-



tion, it reads a packet from the backplane using blocking 
read operation, processes the packet, and blocks again at 
the next read operation.  

C code process
while (true) {
   blocking read for a data or control packet

   if (is a control packet) {
      process the packet;
      continue;   
   }    
   if (status==SUSPEND) continue;

  
}
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Figure 7: Synthesized dataflow module with 
both synchronous interaction and asynchro-
nous interaction 

4 Example : MPEG 1 Layer 3 Decoder 

In this example, we implement an MPEG 1 Layer 3 
audio player (MP3 player)[9] in which the decoding 
algorithm is depicted as a dataflow graph and synthe-
sized into a C-code at compile-time (figure 8). The FSM 
control module resides in the “controlFSM” block and 
the TclScript block generates user control events to the 
FSM block. The MP3 decoder reads an MP3 file and 
decodes the encoded samples through a series of Huff-
man decoder, Dequantizer, and other function blocks. 
The FSM block has three operations. One is to control 
the execution of the MP3 decoder. Figure 8 shows that 
MP3 decoder has “start”, “stop” and “suspend” execu-
tion states. Another is to control the “volume” value in 
the MP3 decoder asynchronously. Final operation is to 
display the current volume at the user interface. 
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Figure 8: MPEG 1 Layer 3 Decoder example 

An MP3 decoder is synthesized and compiled as a 
separate C process at compile-time, from the initial data-
flow specification in the codesign framework. At run-
time, the C process and the codesign framework com-
municate with each other via TCP/IP sockets. From this 
communication channel, the special control signal sam-
ples are delivered to the C process to suspend or resume 
the decoding. In this example, we play the MP3 file in 
the Sun Ultra1 machine.  

5 Conclusion 

This paper presents the proposed communication 
protocols between control modules and function mod-
ules. In the proposed technique, synchronous interaction 
acts like function calls and asynchronous interaction 
enables FSM to change the scheduling control and up-
date parameters of dataflow modules, which provides 
the very flexible way to specify the system with both 
control modules and function modules. Through com-
parison with the related works and an example, the prac-
ticality is demonstrated. 
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