
Asynchronous Interaction between FSM and Dataflow Models

Dohyung Kim, Soonhoi Ha
Department of Computer Engineering, Seoul National University

 Seoul, Korea 151-742
 {dhkim, sha}@iris.snu.ac.kr

Abstract

In this paper, we focus on communication protocols
which integrate control modules and function modules.
Among others, asynchronous interaction enables FSM
model to control the scheduling of dataflow model and
to change the parameters in the dataflow modules.
Compared with previous approaches, the proposed
technique supports formal specification for each com-
ponent and provides protocols which integrate the two
models in a flexible way.

1 Introduction

As the system complexity of electronic digital sys-
tems grows, a new systematic design methodology,
called codesign, has been sought for exploring optimal
architectures [1]. The specification languages used in
the codesign researches so far depend on the application
areas they target for. For computation-oriented applica-
tions such as DSP applications, dataflow models gain
popularity. On the other hand, for control-oriented ap-
plications, the Finite State Machine (FSM) or its vari-
ants are favored. Recently there emerges a new class of
applications that contain significant amounts of compu-
tation modules and control modules simultaneously.

We propose a cospecification method that specifies
control modules and function modules with FSM and
dataflow respectively, and integrates them via communi-
cation protocols on the codesign backplane [2]. This
paper focuses on the details of communication protocols
between FSM and dataflow models.

To define the communication requirements between
dataflow and FSM models, we examine the interaction
patterns between control modules and function modules
in typical embedded systems. Regardless of implementa-
tions, interaction patterns between control modules and
function modules can be divided into two categories:
one is synchronous interaction and the other is asyn-
chronous interaction.

In a synchronous interaction, a control module and a
function module communicate with each other by ex-
changing data samples. The function module may send a
sample to set a flag of a control register and the control-
ler becomes active on the arrival of the flag. Or, the con-
trol module may send a data sample which activates a
function module to process the sample.

Using asynchronous interactions, the control module
plays the role of supervisory module to manage the state
of the dataflow module in figure 1(i). We define three
states of a dataflow module by its current activity: ac-
tive, suspend and stop. If there is no synchronous input
interaction from the FSM module to a dataflow module,
the dataflow module goes into the active state from the
start by default. When the control module enters into a
certain state, it may want to suspend the dataflow mod-
ule and resume it later. When the dataflow module goes
into the suspend state, it stops its execution and just dis-
cards the incoming samples from the outside blocks.

Another situation of asynchronous interaction occurs
like figure 1(ii) when the control module wants to
change some parameters of dataflow nodes asynchro-
nously. Suppose a dataflow module decodes and plays
an encoded audio. If the user lowers the volume, that
action is delivered to the control module and finally to
the dataflow module by changing the "gain" parameter
of the dataflow node that amplifies the sound samples.

FSM

active

suspend stop

dataflow

variable

(i)

(ii)

1. signal input

2. change status

gain

Figure 1: Transmission of asynchronous con-
trol signal

In the next section, we introduce previous researches
and compare them with our approach. Section 3 intro-
duces the codesign backplane and shows implementa-
tion details of asynchronous interaction. We will show
the practicality of our work through an example and
conclude the paper in sections 4 and 5 respectively.

2 Previous Work

The Ptolemy software environment [3] supports mul-
tiple models of computation including dataflow and
FSM models. It enables a model of computation to con-
tain another models of computation inside as illustrated
in figure 2.

A

C

B

FSM B

FSM C

Dataflow

wormhole

wormhole

Figure 2: Interaction between FSM and data-
flow in Ptolemy

Interactions between different models of computation
are achieved by the wormhole mechanism. If the block
“B” gets a data from the block “A”, the wormhole deliv-
ers the data to internal FSM B, which defines a synchro-
nous interaction. Ptolemy does not support asynchro-
nous interaction directly. If an FSM node contains a
dataflow module, the dataflow module is executed while
the FSM node is active. If FSM nodes contain different
dataflow modules with different parameter values, it can
express parameter update though it is not an intuitive
expression. Other asynchronous interactions can not be
specified easily in Ptolemy.

COSY [4] environment provides a unified specifica-
tion of control and functional modules for IP-based real-
time design methodology. COSY uses an extension of
Kahn process network, called Y-chart API (YAPI) as
the specification language. YAPI model consists of a
network of processes connected by FIFOs.

A process has read, write and select port operations.
Read and write operations provide synchronous interac-
tion between components as in the Kahn process net-
work. Select operation is added to express data depend-
ent behavior of a process. It gets two input ports as ar-
guments and chooses one of the input non-
deterministically. Figure 3 shows an usage of select op-
eration for asynchronous interaction in COSY. If there is
no data in control path, the block “MPEG Decoder”
processes data and sends output. But if a control data
arrives at a control port, the block accepts the control
data through select operation and processes it, which
may be scheduling control or internal parameter update.

User Control

Stream
Parser

MPEG
Decoder

Image
Displaydata path

data path data path

data path

control path control path control path

Figure 3: Interaction between components of
an MPEG player in COSY

COSY uses a unified specification of control modules
and function modules that are assumed to be predefined
IPs. But predefined IPs must have a control module in-

side to process a control data from the select port to
combine control path and data path.

STATEMATE of i-Logix inc. [5] has been developed
for complex control-oriented reactive applications. It
consists of three charts: statechart [6], activity chart, and
module chart. The module chart represents the system
architecture. The statechart, an innovative extension of
FSM, is the major module that depicts reactive behavior
over time. The activity chart, corresponding to the
codesign backplane in our context that will be discussed
in the next section, describes the functional decomposi-
tion and the information flow of the system.

In the activity chart of figure 4, real lines show syn-
chronous interactions between the statechart and func-
tion modules, dotted lines indicate asynchronous
interactions which are emitted by a state transition in the
statechart.

B

C

A

Statechart
Activity Chart

a b

statechart

Figure 4: Interaction between statechart and
function modules in the activity chart of
STATEMATE

Statemate provides very flexible interaction mecha-
nism. But because it focuses on control-oriented reactive
systems, function modules in the activity chart are de-
pendent on the statechart. And both activity chart and
statechart do not have formality.

In short, no previous approach satisfies all require-
ments of formal composition of dataflow and control.
The proposed technique is to use the codesign backplane
to provide formal specification for control modules and
function modules like Ptolemy, and support both syn-
chronous and asynchronous interactions like Statemate.

3 Codesign Backplane

We implement the proposed technique in our
codesign environment PeaCE(Ptolemy extension as a
Codesign Environment) [7] that is based on the Ptolemy
software environment. The codesign backplane manages
all interactions between different models of computa-
tion. We adopt the discrete-event model of computation
[8] for the codesign backplane. The interactions between
dataflow modules and FSM modules should go through
the top-level co-design backplane. Therefore the
codesign backplane can implement proposed synchro-
nous and asynchronous communications.

In a synchronous interaction, a control module and a
function module communicate with each other by ex-
changing data samples. Since the receiving module waits
for the arrival of samples at a certain state, the interac-

tion is synchronized with sample exchange. Though
there are many possible methods to describe asynchro-
nous interactions, we choose to use a "script" language
inside a state in the control FSM. Table 1 shows the
syntax of the scripts. The first three manage the states of
the dataflow modules and the last script describes the
asynchronous parameter updates of dataflow modules.

How to accomplish an asynchronous interaction is
shown in figure 5. If the FSM make a transition to a new
state, the codesign backplane receives a script command
from the FSM. The backplane interprets the command
and sends a special control signal to the specified data-
flow block whose node_name property is equal to the
n_node field of the script. However, this control signal
path is not drawn explicitly in the graphic editor. There
is a hidden connection between the backplane and all
blocks in the graph. Each dataflow module checks the
arrival of the special control tokens from the backplane
regularly. If a special token is received, it changes the
graph activity as indicated. Otherwise, it continues to
execute the graph.

Scripts Actions

Run n_name Resume the n_name block

Suspend n_name Suspend the n_name block

Stop n_name Stop the n_name block.

Set n_name parame-
ter value

Update the parameter with
value in the n_name block

Table 1. Scripts for asynchronous interaction

A

B

C

node_name : foo

dataflow

Event
source X Y

a

reset

FSM

script : run foo script : suspend foo

Co-design backplane

Figure 5: Asynchronous interaction with a
normal dataflow module

If a dataflow module is synthesized as a C code, a
connection is established via TCP/IP to the codesign
backplane. We divide it into two situations for effective
simulation. If there is any synchronous connection be-
tween FSM and the dataflow module, the C process is
synchronized with data from FSM. But if there is no
synchronous connection, the C process can concurrently
be executed with the codesign backplane.

The situation when only asynchronous interactions
exist is illustrated in figure 6 which shows the synthe-

sized dataflow module of figure 5. Because there is no
data dependency between the codesign backplane and
the synthesized C process, two processes are executed
simultaneously. Since it does not need to wait for a con-
trol packet from FSM, we use non-blocking read opera-
tion while the C process runs. But if FSM changes the
state of the synthesized dataflow module to the “sus-
pend” or “stop” state, the process blocks and waits for a
control packet which make it active again, using block-
ing read.

C code process

init_variable:

while (true) {
 if (status==RUN) {
 non-blocking read for a control signal
 if (control packet==SUSPEND) {
 status=SUSPEND;
 continue;
 } else if (control packet==STOP) {
 status=STOP;
 goto init_variable;
 } else process parameter update
 } else { // status==SUSPEND || STOP
 blocking read for control a signal
 if (control packet==RUN) status=RUN;
 else if (control packet==STOP) {
 if (status==STOP) continue;
 status=STOP;
 goto init_variable;
 } else process parameter update
 }

}

synthesized C code for a dataflow module

variable initialization

Figure 6: Pseudo code for a synthesized data-
flow module with asynchronous interaction
only

In figure 6, the C process uses non-blocking read at
the “run” state and continues to execute synthesized
codes until a control packet arrives. If a control packet
arrives, the process reads the packet and processes it,
which sets the scheduling status or changes the parame-
ter value. But if the state is changed to “suspend” state,
the process uses blocking read until a control packet
arrives which changes the scheduling status to “run”
state.

There are two other asynchronous signals: stop and
variable update. The stop signal makes a dataflow mod-
ule stop and change all internal states to initial values.
And the variable update signal changes the target vari-
able to a delivered value.

Figure 7 shows asynchronous interactions with a syn-
chronous connection between FSM and synthesized
dataflow modules. Every time a packet arrives at the C
process, the process tests whether it is a data packet or
the control packet from the packet header information. If
it is a data packet, the process consumes the data and
produce outputs if any. If a control packet is arrived, it
performs the scheduling control or updates the target
parameter with the control value. In this type of execu-

tion, it reads a packet from the backplane using blocking
read operation, processes the packet, and blocks again at
the next read operation.

C code process
while (true) {
 blocking read for a data or control packet

 if (is a control packet) {
 process the packet;
 continue;
 }
 if (status==SUSPEND) continue;

}

synthesized C code for a dataflow module

X Y

a

reset

FSM

script : run foo script : suspend foo

Co-design backplane

Dataflow

node_name : foo

TCP/IP

Figure 7: Synthesized dataflow module with
both synchronous interaction and asynchro-
nous interaction

4 Example : MPEG 1 Layer 3 Decoder

In this example, we implement an MPEG 1 Layer 3
audio player (MP3 player)[9] in which the decoding
algorithm is depicted as a dataflow graph and synthe-
sized into a C-code at compile-time (figure 8). The FSM
control module resides in the “controlFSM” block and
the TclScript block generates user control events to the
FSM block. The MP3 decoder reads an MP3 file and
decodes the encoded samples through a series of Huff-
man decoder, Dequantizer, and other function blocks.
The FSM block has three operations. One is to control
the execution of the MP3 decoder. Figure 8 shows that
MP3 decoder has “start”, “stop” and “suspend” execu-
tion states. Another is to control the “volume” value in
the MP3 decoder asynchronously. Final operation is to
display the current volume at the user interface.

Bitstream
unpacking

Frequency
sample

reconstruction

Frequency
to time

mapping
File Speaker

MPEG I Layer 3 Decoder

/usr13/dhkim/fsmc-test/mp3/controlFSM.std

Figure 8: MPEG 1 Layer 3 Decoder example

An MP3 decoder is synthesized and compiled as a
separate C process at compile-time, from the initial data-
flow specification in the codesign framework. At run-
time, the C process and the codesign framework com-
municate with each other via TCP/IP sockets. From this
communication channel, the special control signal sam-
ples are delivered to the C process to suspend or resume
the decoding. In this example, we play the MP3 file in
the Sun Ultra1 machine.

5 Conclusion

This paper presents the proposed communication
protocols between control modules and function mod-
ules. In the proposed technique, synchronous interaction
acts like function calls and asynchronous interaction
enables FSM to change the scheduling control and up-
date parameters of dataflow modules, which provides
the very flexible way to specify the system with both
control modules and function modules. Through com-
parison with the related works and an example, the prac-
ticality is demonstrated.

References

[1] Chiodo, M.; Giusto, P.; Hsieh, H.; Jurecska, A.; Lavagno,
L. Sangiovanni-Vincentelli, A.; A formal methodology
for hardware/software codesign of embedded systems.
IEEE Micro, August 1994.

[2] Kim, D.; Ha. S.; System level specification for multime-
dia applications. submitted to APCHDL, Fukuoka, Japan,
Oct. 6-8, 1999

[3] Buck, J.; Ha, S.; Lee, E.; Messerschmitt, D.; Ptolemy: a
framework for simulating and prototyping heterogeneous
systems. International Journal of Computer Simulation,
Vol. 4, pp. 155-182, 1994.

[4] Brunel, J-Y. et al.; COSY: a methodology for system
design based on reusable hardware & software IP’s, in
J-Y. Roger (ed.), Technologies for the Information Soci-
ety, pp. 709-716, 1998.

[5] Harel, D.; Lachover, H.; Naamad, A.; Pnueli, A.; Politi,
A.; Sherman, R.; Shtull-Trauring, A.; Trakhtenbrot, M.;
Statemate: a working environment for the development of
complex reactive systems. IEEE Trans. on Software En-
gineering, Vol. 16, No. 4, April 1990.

[6] Harel, D.; Statecharts: a visual formalism for complex
systems. Sci. Comput. Program, Vol. 8, pp. 231-274,
1987.

[7] Sung, W.; Ha, S.; Efficient and flexible cosimulation
environment for DSP applications. IEICE Transactions
on Fundamentals of Electronics, Communications and
Computer Sciences, Special Issue on VLSI Design and
CAD algorithms, Vol.E81-A, No.12, pp. 2605-2611, De-
cember, 1998

[8] Cassandras, C.; Discrete event systems, modeling and
performance analysis. Irwin, Homewood IL, 1993.

[9] Shlien, S.; Guide to MPEG-1 Audio Standard, IEEE
Trans. on Broadcasting, Vol. 40, No. 4, pp. 206-218, De-
cember 1994.

