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Abstract. Traditional test generation methodologies for peripheral cores are 
performed by a skilled test engineer, leading to long generation times. In this 
paper a test generation methodology based on an evolutionary tool which 
exploits high level metrics is presented. To strengthen the correlation between 
high-level coverage and the gate-level fault coverage, in the case of peripheral 
cores, the FSMs embedded in the system are identified and then dynamically 
extracted via simulation, while transition coverage is used as a measure of how 
much the system is exercised. The results obtained by the evolutionary tool 
outperform those obtained by a skilled engineer on the same benchmark.  
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1   Introduction 

A system-on-chip (SoC) can integrate into a single device one or more processor 
cores with standard peripheral memory and application-oriented logic modules. This 
high integration of many components leads to an increased complexity of the test 
process since it decreases the accessibility of each functional module into the chip. 
Thus, the ever increasing usage of such devices demands for cheap testing 
methodologies. 

The Software-based Self-test (SBST), whereby a program is executed on the 
processor core to extract information about the functioning of the processor or other 
SoC modules and provide it to the external test equipment [2] meets this demands 
since: it allows cheap at-speed testing of the SoC; it is relatively fast and flexible; it 
has very limited, if any, requirements in terms of additional hardware for the test; it is 
applicable even when the structure of a core is not known, or can not be modified. 
Even though SBST is currently being increasingly employed, the real challenge of 
software-based testing techniques is to generate effective test programs.  

Many SBST techniques have been developed for the test of microprocessor cores; 
traditional methodologies resort to functional approaches based on exciting specific 
functions and resources of the processor [1]. New techniques, instead, differ on the 
basis of the kind of description they start from: in some cases only the information 
coming from the processor functional descriptions are required [3]; other simulation-
based approaches require a pre-synthesis RT-level description [4] or the gate-level 
description [5].  
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Simulation-based strategies are heavily time consuming,  thus, the use of RT-level 
descriptions to drive the generation of test sets is preferable to allow much faster 
evaluation. Relying on high-level models not only helps the user of the SoC to 
perform more simulations increasing the confidence in the generated tests, but is also 
of value to the manufacturer allowing early generation of a significant part of the final 
test set. Whereas the correlation between RT-level code coverage metrics (CCM) and 
gate-level fault coverage is not guaranteed in the general case, several RT-level based 
methodologies maximize the CCMs to obtain a good degree of confidence on the 
quality of the generated test set. 

This paper describes the application of an evolutionary algorithm in test set 
generation process for different types of peripheral cores embedded in a SoC. 
Furthermore the generation process is fully automated and requires a very low human 
effort. The generation process is driven by the transition coverage on the peripheral’s 
finite state machine (FSM) and by the RT-level Code Coverage Metrics (CCMs). 
Exploiting the correlation between high-level and low-level metrics, during the 
generation process only logic simulation is performed allowing the reduction of the 
generation time. The results are finally validated running a gate-level fault simulation. 

Results show that the combination of the FSM transition coverage and CCMs can 
effectively guide the test block generation and a high fault coverage can be achieved. 
Moreover, we show that the new approach makes the test generation process more 
robust, improving the relationship between high- and low-level metrics. 

The rest of the paper is organized as follows: section 2 recalls some background 
concepts in peripheral testing; section 3 outlines the methodology adopted for the 
generation of test sets and details the evolutionary tool. Section 4 introduces the 
experimental setup, describing the case study and presents the experimental results. 
Finally, section 5 draws some conclusions. 

2   Peripheral Testing 

2.1   Basics 

A typical SoC is composed of a microprocessor core, some peripheral components, 
memory modules, and possibly customized cores. An external ATE is supposed to be 
available for test application: its purpose is to load a test program in the memory, start 
execution, and interact with the peripherals applying data to the input ports and 
collecting values from the outputs while the program is running. 

To make effective use of the test setup both the test programs and the peripheral 
input/output data have to be specified; therefore, a complete set for testing peripheral 
cores is composed of some test blocks [9], defined as basic test units composed of two 
parts: a configuration and a functional part. The configuration part includes a program 
fragment that defines the configuration modes used by the peripheral, and the 
functional part contains one or more program fragments that exercise the peripheral 
functionalities as well as the data set or stimuli set provided/read by the ATE. 

Researchers have long sought high-level methodologies to generate high quality 
test sets; this is possible only if a correlation between high-level metrics and gate-
level fault coverage exists. Differently from the general case, where the correlation is 
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vague, in the case of peripheral cores this correlation actually exists. It is not complete 
but, as experimentally shown in [10], suitable for test set generation. 

Therefore, an automatic methodology for the generation of test sets for peripheral 
cores that uses a high-level model of the peripheral in the generation phase is an 
interesting solution to overcome new testing issues on SoCs. 

As mentioned in [9], traditional code coverage metrics suitable for guiding the 
development of the test sets for peripheral cores are: Statement coverage (SC), 
Branch coverage (BC), Condition coverage (CC), Expression coverage (EC), Toggle 
coverage (TC). Maximizing all the coverage metrics allows to better exercise the 
peripheral core. It is not possible to accept a single coverage metric as the most 
reliable and complete one [6]; thus different metrics must be exploited in order to 
guarantee better performance of the test sets [7]. 

2.2   Previous Work 

An attempt to provide effective solutions for peripheral test set generation is 
presented in [9]; the process is performed by hand and mainly relies on the experience 
of a test engineer, who maximizes sequentially the various coverage metrics, 
generating one or more test blocks for every metric. This process is repeated until 
sufficiently high coverage values are obtained for all the chosen metrics. 

In [8] a pseudo-exhaustive approach to generate functional programs for 
peripheral testing was presented. The proposed method generates a functional 
program for each possible operation mode of the peripheral core in order to generate 
control sequences which would place the peripheral in all possible functional modes. 
The pseudo-exhaustive approach produces a large number of functional programs, 
since one has to be written for every operation mode. 

In [13] the authors describe a generic and systematic flow of SBST application on 
two communication peripheral cores. The methodology achieves high fault coverage 
but needs a deep knowledge of the peripheral core leading to long test development 
time with a high human effort. 

In [10] the peripheral test set generation has been automated using an evolutionary 

algorithm, called µGP
3
 The test block generation was supported by the construction of 

couples of templates: one for program and the other for data generation. The 
evolutionary algorithm is used to optimize parameter values, leaving the structure of 
the test block fixed. The obtained results compare favorably with respect to the 
manually generated [9]. 

In [12] an improved version of the evolutionary algorithm has been described, able 
to optimize both the structure and the parameters. The same results as [10] are 
obtained with no need of the rigid templates used previously, reducing significantly 
the required generation time. 

3   Proposed Approach 

As stated before, traditional CCMs extracted at the RT-level do not, in general, show 
a tight correlation with gate-level fault coverage. Furthermore, the RT-level 
descriptions use, especially in the case of complex cores, many modules that interact  
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among each other in order to perform the core functionalities. The traditional CCMs 
do not consider these interactions and only aim at maximizing the coverage metrics in 
each module. After the synthesis process, at the gate level, the distinction between 
modules of a core is less clear and therefore it is important to consider the interactions 
to enforce a correlation between high-level metrics and low level ones. 

One way to model a system is to represent it with a FSM. Coverage of all the 
possible transitions in the machine ensures thoroughly exercising the system 
functions. Additionally, the use of FSM transition coverage has the additional 
advantage that it makes the interactions between functional modules in the peripheral 
explicit. Figure 3 sketches the proposed methodology. 

 

Fig. 1. Evolutionary generation loop 

The evolutionary approach generates test blocks starting from information about 
the peripheral core and the processor assembly syntax only. Every new test block 
generated is evaluated using a high-level simulator. The evaluation stage assigns a 
fitness to every individual. The procedure ends when a time limit is elapsed or when a 
steady state is detected, that is, a predefined number of test blocks are generated 
without any improvement of the coverage metrics. At the end of the evolutionary run 
a single test block is provided as output. 

The sketched procedure is iteratively repeated to generate a complete test set. In 
the steps following the first one, the evaluation phase is modified in order to only take 
into account the additional coverage provided by the new test blocks. The rationale 
for this methodology is that in general it is not possible to completely solve the 
problem with one single test block. The end result of the process is a set of test blocks 
that cumulatively maximize the targeted coverage metrics. 

3.1   Evolutionary Tool 

For the automatic generation of the test blocks an evolutionary tool named μGP3 [14] 

has been employed. μGP3 is a general-purpose approach to evolutionary computation, 
derived from a previous version specifically aimed at test program generation.  
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The tool is developed following the rules of software engineering and was 
implemented in C++. All input/output, except for the individuals to evaluate, is 
performed using XML with XSLT. The use of XML with XSLT for all input and 
output allows the use of standard tools, such as browsers, for inspection of the 
constraint library, the populations and the configuration options. 

The current version of the μGP
3
 comprises about 50,000 lines of C++ code, 113 

classes, 149 header files and 170 C++ files. 

Evolution Unit. μGP3 bases its evolutionary process on the concept of constrained 
tagged graph, that is a directed graph every element of which may own one or more 
tags, and that in addition has to respect a set of constraints. A tag is a name-value pair 
whose purpose is to convey additional information about the element to which it 
belongs, such as its name. Tags are used to add semantic information to graphs, 
augmenting the nodes with a number of parameters, and also to uniquely identify each 
element during the evolution. The constraints may affect both the information 
contained in the graph elements and its structure. Graphs are initially generated in a 
random fashion; subsequently, they may be modified by genetic operators, such as the 
classical mutation and recombination, but also by different operators, as required by 
the specific application. The tool architecture has been specially thought for easy 
addition of new genetic operators as needed by the application. The activation 
probability and strength for every operator is an endogenous parameter. 

The genotype of every individual is described by one or more constrained tagged 
graphs, each of which is composed by one or more sections. Sections allow to define 
a global structure for the individuals that closely follows the structure of any 
candidate solution for the problem. 

Constraints. The purpose of the constraints is to limit the possible productions of the 
evolutionary tool, and also provide them with semantic value. 

The constraints are provided through a user-defined library that provides the 
genotype-phenotype mapping for the generated individuals, describes their possible 
structure and to define which values the existing parameters (if any) can take. 
Constraint definition is left to the user to increase the generality of the tool. 

The constraints are divided in sections, every section of the constraints matching a 
corresponding section in the individuals. Every section may also be composed of 
subsections and, finally, the subsections are composed of macros. 

Constraint definition is flexible enough to allow the definition of complex entities, 
such as the test blocks described above, as individuals. Different sections in the 
constraints, and correspondingly in the individual, can map to different entities. 

In this specific case the constraints define three sections: a program configuration 
part, a program execution part and a data part or stimuli set. The first two are composed 
of assembly code, the third is written as part of a VHDL testbench. Though syntactically 
different, the three parts are interdependent in order to obtain good solutions. 

Fitness. Individual fitnesses are computed by means of an external evaluator: this 
may be any program able to provide the evolutionary core with proper feedback.  

The fitness of an individual is represented by a sequence of floating point numbers 
optionally followed by a comment string. This is currently used in a prioritized 
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fashion: one fitness A is considered greater than another fitness B if the n-th 
component of A is greater than the n-th component of B and all previous components 
(if any) are equal; if all components are equal then the two fitnesses are considered 
equal.  

Evolutionary Scheme. The evolutionary tool is currently configured to cultivate all 
individuals in a single panmictic population, although it can be configured to use an 
island model. The population is ordered by fitness. Choice of the individuals for 
reproduction is performed by means of a tournament selection; the tournament size τ 
is also endogenous. The population size μ is set at the beginning of a run, and the tool 
employs a variation on the plus (µ+λ) strategy: a configurable number λ of genetic 
operators are applied on the population. Since different operators may produce 
different number of offspring the number of individuals added to the population is 
variable. All new unique individuals are then evaluated, and the population resulting 
from the union of old and new individuals is sorted by decreasing fitness. Finally, 
only the first μ individuals are kept. 

To promote diversity, the individuals genetically equal to already existing ones, 
called clones, may have their fitness scaled by a fixed value in the range [0.0,1.0].  

The possible termination conditions for the evolutionary run are: a target fitness 
value is achieved by the best individual; no fitness increase is registered for a 
predefined number of generations; a maximum number of generations is reached. 

At the end of every generation the internal state of the algorithm is saved in a XML 
file for subsequent analysis and for providing a minimal tolerance to system crashes. 

3.2   Evaluator 

The proposed approach is based on modeling the entire system as a FSM which is 
dynamically constructed during the test generation process. Thus, differently from 
other approaches, the FSM extraction is fully automated, and requires minimum 
human effort: the approach only requires the designer to identify the state registers in 
the RT-level code; every global state in the peripheral represents a possible 
configuration of values of all the state registers. Thus, whenever a state register in any 
module changes its value, also the global state of the peripheral is affected.  

Given the dynamic nature of the FSM construction, it is not possible to assume 
known the maximum number of reachable states, not to mention the possible 
transitions. For this reason it is impossible to determine the transition coverage with 
respect to the entire FSM. 

As experimentally demonstrated [6], maximizing more than one metric usually 
leads to better quality tests. Thereby, the simulation-based method proposed here 
exploits the FSM transition coverage, that enforce a maximum interaction between 
peripheral modules, and  all the available CCMs to thoroughly exercise the peripheral 
functionalities. 

The implemented evaluator collects the output of the simulation and dynamically 
explores the FSM; it assesses the quality of the test block considering the transition 
coverage on the FSM and the CCMs. 

The fitness fed back to the evolutionary tool is composed of many parts: the FSM 
transition coverage followed by all the others CCMs (SC, BC, CC, EC, TC). As we 
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mentioned before the metrics are considered in order of importance. In this way it is 
possible, during the generation process, to select more thoroughly those test blocks 
that are able to better excite the peripheral. 

4   Experimental Analysis 

4.1   Test Case 

The benchmark is a purposely designed SoC which includes a Motorola 6809 
microprocessor, a Universal Asynchronous Receive and Transmit (UART), a 
Peripheral Interface Adapter (PIA), a Video display unit (VDU) and a RAM memory 
core. The system derives from one available on an open source site [11]. The 
methodology is used to test the UART, the PIA and the VDU in the targeted SoC. 

The peripherals are described at RT-level in VHDL code and are composed of 
different modules. The SoC was synthesized using a generic home-developed library. 

Table 1. Implementation characteristics 

Description measure PIA VDU UART 
statements 149 153 383
branches 134 66 182
condition 75 24 73
expression 0 9 54

RT-level 

toggle 77 199 203
Gates 1,016 1,321 2,247Gate level Faults 1,938 2334 4,054 

Table 1 shows details of the targeted peripherals, including information at high and 
low level. Rows labeled with RT-level present CCM information while the remaining 
rows illustrate the number of gates counted on the synthesized devices and the 
number of collapsed faults for the stuck-at model, respectively. 

At the end of the generation process, some gate-level fault simulation were 
performed only to validate the proposed methodology; the gate-level fault coverage 
figures reported in the following sections target the single stuck-at fault model. 

4.2   Experimental Results 

All the reported experiments have been performed on a PC with an Athlon XP3000 
processor, 1GB of RAM, running Linux. 

The algorithm parameters for the evolutionary experiments are the same both when 
targeting only the CCMs, and when the number of transitions in the FSM is also taken 
into account: for the PIA and the VDU experiments, µ=50 and λ=70; and as the 
UART is more complex than the PIA the evolutionary parameters were set to  
perform a lower number of simulations: µ was set to 30 and λ to 40. 

In order to provide the reader with a reference value, we recall that the fault 
coverage obtained by the manual approach presented in [9] is 80.96% for the UART 
and 89.78% for the PIA. 
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Table 2 summarizes the results obtained for the targeted peripherals, reporting the 
number of FSM transitions covered, the high-level CCMs and the stuck-at fault 
coverage (FC) in percentage. The reader should note that the value of traditional 
CCMs are expressed as absolute values (instead of percentages). 

Table 2. Results for considered peripherals 

 PIA VDU UART 
FSM Transition 115 191,022 142 
Statement 149 153 383 
Branch 129 66 180 
Condition 68 23 72 
Expression 0 9 51 
Toggle 77 191 203 
FC(%) 91.4 90.8 91.28 

For every peripheral considered the methodology is able to reach a good value of 
gate-level fault coverage. In the case of the VDU the number of transition is very 
high; this is due to the state registers that hold the current position on the screen. 

To experimentally demonstrate that the use of the FSM transition coverage is 
essential to strengthen the correlation between high an low level metrics 100 
experiments on the UART are performed, using both the evolutionary approach 
presented in [12] and the generation process detailed above. 

Table 3. Comparison between the two methodologies 

  FSM SC BC CC EC TC FC 
Average NA 381.8 178.7 70.7 50.7 201.3 84.8 [12] 
std.dev. NA 0.36 0.39 0.30 0.32 0.40 6.37 

Average 141.0 382.2 179.3 71.8 50.8 202.2 90.9 New 
methodology std.dev. 1.49 0.28 0.33 0.22 0.24 0.36 1.10 

Table 3 reports a comparison between the results of the experiments performed 
following the methodology presented in [12] and the current one; the table illustrates 
the average and standard deviation of the different CCMs and of the stuck-at fault 
coverage (FC). In all cases the CCMs are very near to the absolute maximum, and 
both methodologies lead to small standard deviations on the considered metrics. In the 
first case, however, the standard deviation in the fault coverage of each test set is 
relatively high. Although the methodology obtains good results, it is not as robust as 
desirable, and the obtained solution may not exhibit the expected quality. 

Using the new methodology the average fault coverage is increased by more than 
6% and, more importantly, the standard deviation of the fault coverage is dramatically 
reduced. This clearly shows that the robustness of the methodology is increased, and 
solutions of consistent quality can be obtained. 
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Table 4. Overall comparison 

 FC TGEN TAPP Size 
[12] 90.7 5.1 28,842 1,953/72 
New Methodology 91.3 2.2 32,762 2,345/87 

Table 4 synthetically reports a comparison between the two methodologies in the 
case of the UART, highlighting the obtained fault coverage (FC) in percentage, the 
average generation time (TGEN) expressed in hours, the average application time 
(TAPP) in clock cycles, and the average size of the test sets, reported as program bytes 
and data bytes. The results clearly show that the new methodology outperforms the 
previous one in terms of fault coverage and generation time. The latter, in particular, 
is less than a half with respect to the previous methodology, highlighting the 
efficiency of the new approach. 

Other approaches [8][13] to peripheral test are not directly comparable with our 
methodology since they are referred to different devices, although their complexity 
and the results are similar to the devices analyzed here. Furthermore, our 
methodology only needs RT-level simulation and does not need the time-expensive 
fault-simulations. 

5   Conclusions 

In this paper a successful application of the evolutionary tool for the generation of 
sets of test blocks for different types of peripheral modules in SoCs driven by the 
FSM transition coverage and the high-level CCM has been described.  

The evolutionary tool is able to generate test blocks where the relation between 
high-level coverage metrics and low level one is much stronger; this better relation 
has been experimentally demonstrated with a experimental analysis where many test 
blocks are generated and evaluated. 

The experimental results on different type of peripheral cores, communication 
peripherals and VDU controller, show the effectiveness of the proposed methodology. 
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