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Abstract. The increasing popularity of streaming video is a cause for
concern for the stability of the Internet because most streaming video
content is currently delivered via UDP, without any end-to-end con-
gestion control. Since the Internet relies on end systems implementing
transmit rate regulation, there has recently been significant interest in
congestion control mechanisms that are both fair to TCP and effective
in delivering real-time streams. In this paper we design and implement
a protocol that attempts to maximize the quality of real-time MPEG-4
video streams while simultaneously providing basic end-to-end conges-
tion control. While several adaptive protocols have been proposed in the
literature [20,27], the unique feature of our protocol, the Video Trans-
port Protocol (VTP), is the use of receiver side bandwidth estimation.
We deploy our protocol in a real network testbed and extensively study
its behavior under varying link speeds and background traffic profiles
using the FreeBSD Dummynet link emulator [23]. Our results show that
VTP delivers consistent quality video in moderately congested networks
and fairly shares bandwidth with TCP in all but a few extreme cases. We
also describe some of the challenges in implementing an adaptive video
streaming protocol.

1 Introduction

As the Internet continues to grow and mature, transmission of multimedia con-
tent is expected to increase and compose a large portion of the overall data
traffic. Film and television distribution, digitized lectures, and distributed inter-
active gaming applications have only begun to be realized in today’s Internet,
but are rapidly gaining popularity. Audio and video streaming capabilities will
play an ever-increasing role in the multimedia-rich Internet of the near future.
Real-time streaming has wide applicability beyond the public Internet as well.
In military and commercial wireless domains, virtual private networks, and cor-
porate intra-nets, audio and video are becoming a commonplace supplements to
text and still image graphics.

Currently, commercial programs such as RealPlayer [19] and Windows Me-
dia Player [16] provide the predominant amount of the streamed media in the
Internet. The quality of the content delivered by these programs varies, but they
are generally associated with low resolution, small frame size video. One rea-
son these contemporary streaming platforms exhibit limited quality streaming
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is their inability to dynamically adapt to traffic conditions in the network dur-
ing a streaming session. Although the aforementioned applications claim to be
adaptive, there is no conclusive evidence as to what degree of adaptivity they
employ as they are proprietary, closed software [20]. Their video streams are
usually delivered via UDP with no transport layer congestion control. A large-
scale increase in the amount of streaming audio/video traffic in the Internet over
a framework devoid of end-to-end congestion control will not scale, and could
potentially lead to congestion collapse.

UDP is the transport protocol of choice for video streaming platforms mainly
because the fully reliable and strict in-order delivery semantics TCP do not suit
the real-time nature of video transmission. Video streams are loss tolerant and
delay sensitive. Retransmissions by TCP to ensure reliability introduce latency
in the delivery of data to the application, which in turn leads to degradation
of video image quality. Additionally, the steady state behavior of TCP involves
the repeated halving and growth of its congestion window, following the well
known Additive Increase/Multiplicative Decrease (AIMD) algorithm. Hence, the
throughput observed by a TCP receiver oscillates under normal conditions. This
presents another difficulty since video is usually streamed at a constant rate
(VTP streams are actually piecewise-constant). In order to provide the best
quality video with minimal buffering, a video stream receiver requires relatively
stable and predictable throughput.

Our protocol, the Video Transport Protocol (VTP), is designed with the pri-
mary goal of adapting an outgoing video stream to the characteristics of the
network path between sender and receiver. If it determines there is congestion,
the VTP sender will reduce its sending rate and the video encoding rate to a level
the network can accommodate. This enables VTP to deliver a larger portion of
the overall video stream and to achieve inter-protocol fairness with competing
TCP traffic. A secondary goal of VTP is the minimal use of network and end
system resources. We make several trade-offs to limit processing overhead and
buffering requirements in the receiver. In general, VTP follows a conservative de-
sign philosophy by sparingly using bandwidth and memory during the streaming
session.

An important aspect of VTP is that it is completely end-to-end. VTP does
not rely on QoS functionality in routers, random early drop (RED), other active
queue management (AQM), or explicit congestion notification (ECN). It could
potentially benefit from such network level facilities, but in this paper we focus
only on the case of real-time streaming in a strictly best effort network. Possible
interactions between VTP and QoS routers, AQM, or ECN is an area of future
work.

VTP is implemented entirely in user space and designed around open video
compression standards and codecs for which the source code is freely available.
The functionality is split between two distinct components, each embodied in a
separate software library with its own API. The components can be used together
or separately, and are designed to be extensible. VTP sends packets using UDP,
adding congestion control at the application layer.
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This paper discusses presents the VTP design in Section 2. Section 3 covers
the VTP experiments and results. The conclusion and a brief discussion of future
work follow.

2 The Video Transport Protocol

A typical video streaming server sends video data by dividing each frame into
fixed size packets and adding a header containing, for example, a sequence num-
ber, the time the packet was sent, and the relative play out time of the associated
video frame. Upon receiving the necessary packets to reassemble a frame, the re-
ceiver buffers the compressed frame for decoding. The decompressed video data
output from the decoder is then sent to the output device. If the decoder is given
an incomplete frame due to packet loss during the transmission, it may decide
to discard the frame. The mechanism used in the discarding decision is highly
decoder-specific, but the resulting playback jitter is a universal effect. In MPEG-
4 video, which we use in this paper, there are dependencies between independent
or “key” frames and predicted frames. Discarding a key frame can severely effect
the overall frame rate as errors will propagate to all frames predicted from the
key frame.

The primary design goal of VTP is to adapt the outgoing video stream so
that, in times of network congestion, less video data is sent into the network and
consequently fewer packets are lost and fewer frames are discarded. VTP rests on
the underlying assumption that the smooth and timely play out of consecutive
frames is central to a human observer’s perception of video quality. Although a
decrease in the video bitrate noticeably produces images of coarser resolution,
it is not nearly as detrimental to the perceived video quality as inconsistent,
start-stop play out. VTP capitalizes on this idea by adjusting both the video
bitrate and its sending rate during the streaming session. In order to tailor the
video bitrate, VTP requires the same video sequence to be pre-encoded at several
different compression levels. By switching between levels during the stream, VTP
makes a fundamental trade-off by increasing the video compression in an effort
to preserve a consistent frame rate at the client.

In addition to maintaining video quality, the other important factor for set-
ting adaptivity as the main goal in the design is inter-protocol fairness. Unregu-
lated network flows pose a risk to the stability and performance of the Internet
in their tendency to overpower TCP connections that carry the large majority of
traffic. While TCP halves its window in response to congestion, unconstrained
flows are under no restrictions with respect to the amount of data they can have
in the network at any time. VTP’s adaptivity attempts to alleviate this problem
by interacting fairly with any competing TCP flows.

The principal features of this design, each described in the following subsec-
tions, can be summarized as follows:

1. Communication between sender and receiver is a “closed loop,” i.e. the re-
ceiver sends acknowledgments to the sender at regular intervals.
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2. VTP is rate based; the bandwidth of the forward path is estimated and used
by the sender to determine the sending rate.

2.1 Sender and Receiver Interaction

VTP follows a client/sever design where the client initiates a session by request-
ing a video stream from the server. Once several initialization steps are com-
pleted, the sender and receiver communicate in a closed loop, with the sender
using the acknowledgments to determine the bandwidth and RTT estimates.

B) VTP Control Packet

32 bits

Video Data

A) VTP Video Packet

TYPE

SEQUENCE NO.

SENDER TIMESTAMP (secs)

SENDER TIMESTAMP (µsecs)

RECEIVER TIMESTAMP (secs)

RECEIVER TIMESTAMP (µsecs)

SIZE

32 bits

TYPE

SEQUENCE NO.

SENDER TIMESTAMP (secs)

SENDER TIMESTAMP (µsecs)

RECEIVER TIMESTAMP (secs)

RECEIVER TIMESTAMP (µsecs)

SIZE

Fig. 1. VTP packet formats for a) video packets and b) control packets.

Figure 1 shows the VTP video header and acknowledgment or “control
packet” formats. The symmetric design facilitates both bandwidth and RTT
computation. The TYPE field is used by the sender to explicitly request a con-
trol packet from the receiver. For every k video packets sent, the sender will
mark the TYPE field with an ack request, to which the receiver will respond
with a control packet. The value of k is a server option that is configurable at run
time by the user. The two timestamp fields for sender and receiver respectively
are used for RTT measurement and bandwidth computation. VTP estimates the
bandwidth available to it on the path and then calibrates its sending rate to the
estimate, as detailed in the following paragraphs.

When the receiver receives a data packet with the TYPE field indicating it
should send a control packet, it performs two simple operations. First, it copies
the header of the video packet and writes its timestamp into the appropriate
fields. Second, it writes the number of bytes received since the last control packet
was sent into the SIZE field. The modified video packet header is then sent back
to the sender as a control packet.

Upon receipt of the control packet, the sender extracts the value in the SIZE
field and the receiver timestamp. The sender is able to compute the time delta
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between control packets at the receiver by keeping the value of one previous
receiver timestamp in memory and subtracting it from the timestamp in the
most recently received packet. The value of the SIZE field divided by this time
delta is the rate currently being achieved by this stream. This rate is also the
“admissible” rate since it is the rate at which data is getting through the path
bottleneck. In essence, the measured rate is equal to the bandwidth available
to the connection. Thus, it is input as a bandwidth sample into the bandwidth
estimation algorithm described in the next section.

The sender uses its own timestamps to handle the RTT computation. When
the sender sends a video packet with the TYPE field marked for acknowledgment,
it remembers the sequence number. If the sequence number on the returning
control packet matches the stored value (recall the receiver simply copies the
header into the control packet, changing only its own timestamp and the SIZE
field), the sender subtracts the sender timestamp in the control packet from the
current time to get the RTT sample.

If either a data packet that was marked for acknowledgment or a control
packet is lost, the sender notices a discrepancy in the sequence numbers of the
arriving control packets. That is, the sequence numbers to not match those that
the sender has recorded when sending out video packets with ack requests. In
this case, the sender disregards the information in the control packets. Valid
bandwidth or RTT samples are always taken from two consecutively arriving
control packets.

2.2 Bandwidth Estimation and Rate Adjustment

Bandwidth estimation is an active area of research in its own right [1,4,5,13].
In this paper we provide only a brief summary following [5]. Recall from the
previous section that the achieved rate sample bi can be obtained by dividing
the amount of data in the last k packets by the inter-arrival time between the
current and k − 1 previous packets. As a concrete example, suppose k = 4 and
four packets arrive at the receiver at times t1, ..., t4, each with d1, ..., d4 bytes of
data respectively. The sum

∑4
i=1 di is sent to the sender in the SIZE field of the

control packet.
The sender, knowing t1 from the last control packet and t4 from the current

control packet, computes

bi =

4∑

i=1

di

(t4 − t1)
(1)

Exponentially averaging the samples using the formula

Bi = (α)Bi−1 + (1− α)
(

bi + bi−1

2

)
(2)

yields the bandwidth estimate Bi that is used by the sender to adjust the sending
rate. The parameter α is a weighting factor that determines how much the two



530 Alex Balk et al.

most recent samples should be weighed against the history of the bandwidth es-
timate. In experimental trials, it was determined that VTP performs best when
α is a constant close to 1. Packet loss is reflected by a reduction in the achieved
rate and thus in the bandwidth estimate. Since the bandwidth estimation for-
mula takes into account losses due to both congestion and random errors, using
an exponential average prevents a single packet drop due to a link error from
causing a steep reduction in the estimate.

DR

Q0 Q1 Q2

IR0 IR1 IR2

Fig. 2. VTP finite state machine with states and transitions involved in a video quality
level increase represented with dashed lines.

Through the estimate of the connection bandwidth, the VTP sender gains
considerable knowledge about the conditions of the path. The sender uses the
estimate as input into an algorithm that determines how fast to send the data
packets and which pre-encoded video to send. We describe the algorithm in
terms of a finite state machine (FSM), shown in Figure 2. Assuming three video
encoding levels, the states Q0, Q1, and Q2 each correspond to one distinct video
level from which VTP can stream. We use three levels throughout this example
for simplicity, but n > 3 levels are possible in general. Each of the IR states, IR0,
IR1, and IR2, represent increase rate states, and DR represents the decrease rate
state. In Figure 2, the states and transitions involved in a quality level increase
are highlighted with dashed lines.

Starting in state Q0, a transition to IR0 is initiated by the reception of a
bandwidth estimate that is equal to or greater than the current sending rate.
Being in state Q0 only implies the VTP server is sending the lowest quality level,
it says nothing about the sending rate. In state IR0, the server checks several
conditions. First, it checks if the RTT timer has expired. If it has not, the
server returns to Q0 without taking any action and awaits the next bandwidth
estimate. If one RTT has passed, it remains in IR0 and investigates further. It
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next determines whether the sending rate is large enough to support the rate
of the next highest level (level 1 in this case). If not, the server increases the
sending rate by one packet size and returns to state Q0. If, on the other hand,
the sending rate can accommodate the next quality level, the server checks the
value of a variable we call “the heuristic.”

The heuristic is meant to protect against over ambitiously increasing the
video quality in response to instantaneous available bandwidth on the link that
is short-lived and will not be able to sustain the higher bitrate stream. If the
heuristic is satisfied, the server increases the sending rate by one packet size and
transitions to state Q1. If the heuristic is not met, the server increases the rate
by one packet and returns to state Q0. In normal operation, the server will cycle
between states Q0 and IR0 while continually examining the RTT timer, the
bandwidth estimate, and the heuristic, and adjusting the sending rate. When
conditions permit, the transition to Q1 occurs. The process repeats itself for
each of the quality levels.

In the current implementation the heuristic is an amount of time, measured
in units of RTT, to wait before switching to the next higher level of video quality.
Ideally, the heuristic would also take into account the receiver buffer conditions
to ensure a video quality increase would not cause buffer overflow. Since the
receiver is regularly relaying timestamp information to the sender, it would be
expedient to notify the sender of the amount of buffer space available in the
control packet. The sender would then be able to make the determination to raise
the video quality with the assurance that both the network and the receiver can
handle the data rate increase. [21] examines the factors that need to be taken
into account in quality changing decisions in detail.

In a rate and quality decrease, the transition to DR is initiated when the
server receives a bandwidth estimate less than its current sending rate. In DR,
the server checks the reference rate of each constituent quality to find the highest
one that can fit within the bandwidth estimate. The server sets its sending rate to
the bandwidth estimate and transitions to the state corresponding to the video
quality that can be supported. Unlike the state transitions to increase quality
levels, the decrease happens immediately, with no cycles or waits on the RTT
timer. This conservative behavior contributes greatly to the fairness properties
of VTP discussed in Section 3.2.

As the FSM suggests, the selection of the encoding bitrates is important. VTP
observes the rule that a particular video encoding level must be transmitted at
a rate greater than or equal to its bitrate and will not send slower than the rate
of the lowest quality encoding. This could potentially saturate the network and
exacerbate congestion if the lowest video bitrate is frequently higher than the
available bandwidth. Additionally, if the step size between each reference rate is
large, more data buffering is required at the receiver. This follows from the fact
that large step sizes lead to the condition where VTP is sending at a rate that
is considerably higher than the video bitrate for long periods of time.
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3 Experimental Evaluation

We implemented VTP on the Linux platform and performed extensive evalu-
ations using the Dummynet link emulator [23]. We developed a technique to
smooth the bandwidth required by the outgoing video stream and compute the
client buffer requirement for specific pre-encoded video segments. The goals of
our experiments were to assess inter-protocol fairness between VTP and TCP,
and to evaluate the quality of the transmitted video played by the client. In this
section we cover the results of our experimental evaluation.

3.1 Transmission Schedules for Variable Bitrate Video

In a constant bitrate (CBR) video source, the compression level is continuously
adjusted to maintain the target bitrate of the overall video stream. This is ben-
eficial for network transmission, but leads to varying video quality from frame
to frame and can have an unpleasant effect on the viewer’s perception. MPEG-4
preserves consistent quality by increasing the bitrate at times of high motion
or detail, producing a variable bitrate (VBR) encoding. In some instances the
bitrate can change dramatically during the course of a video clip. The amount
of rate variability is codec-dependent. In this research we investigated three
MPEG-4 video codecs: DivX 4.2 [6], FFmpeg 0.4.6 [10], and Microsoft MPEG-4
version 2 [16]. After several initial tests, the Microsoft codec was found to be
inappropriate for VTP. This codec uses an algorithm that drops entire frames
to achieve the desired compression level, conflicting with VTP’s assumption of
a similar frame pattern across the set of encodings.

Since it would be ineffective to transmit video data at uneven, bursty rates,
we “smoothed” the VBR MPEG-4 video to develop a piecewise-constant send-
ing rate profile. Figure 3 shows the results of applying a modified version of the
PCRTT algorithm [15] to a 130 second sample of the movie “TRON” encoded
with the DivX codec at three different levels of compression. The “QP range”
in the figure represents the amount of compression applied by the codec: “QP”
stands for “quantization parameters,” where higher QPs imply more compres-
sion and the lower quality. The peak rate is reduced significantly, from more
than 4 Mbps to around 1.6 Mbps in the transmission plan. Similarly, Figure 4
shows the smoothing algorithm applied to a 50 second sample of a trailer for the
movie “Atlantis” produced with the FFmpeg codec for three different ranges of
quantization parameters. These two sets of video sources are used throughout
the experimental evaluation of VTP.

3.2 Fairness with TCP

The the first set of experiments was designed to quantitatively measure how
much bandwidth TCP and VTP attain when competing directly with each other.
We streamed both the “TRON” and “Atlantis” video sources in various scenar-
ios differing mainly in link capacity and number of competing TCP connections.
The experiments were performed using a relatively simple network topology in
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Fig. 3. Source bitrates (left) and sending rate profile (right) produced for “TRON.”
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Fig. 4. Source bitrates (left) and sending rate profile (right) produced for “Atlantis.”

which two independent LANs were connected through a PC running FreeBSD
acting as a gateway. The Dummynet utility and the Iperf program1 were used
to vary the link capacity and generate background TCP traffic respectively. In
this environment all packets arrive in order, so any gap in sequence numbers can
immediately be interpreted by the receiver as packet loss.

Figure 5 presents the normalized throughput of VTP sending the “Atlantis”
segment on a 3 Mbps, 10 ms RTT link with various numbers of TCP flows. Each
column of data points represents a separate experiment where a single VTP flow
and several TCP flows share the link. The x axis is labeled with total number
of flows (e.g. the column labeled “16” is the result of one VTP and 15 TCP
flows). The normalized throughput is computed by simply dividing the average
bandwidth received by each flow by the fair share bandwidth value for each case.
Perfect inter-protocol fairness would be exhibited by both VTP and TCP scoring

1 http://dast.nlanr.net/Projects/Iperf/
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a normalized throughput of 1. The vertical bars show the standard deviation of
the TCP bandwidth values for cases where there is more than 1 TCP connection.

0

0.5

1

1.5

2

2 4 8 16 32

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

connections

TCP flows
VTP flow

Fig. 5. Single VTP flow competing
with TCP on a 3 Mbps link.
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Fig. 6. “TRON” video stream trans-
mitted using VTP sharing a 5 Mbps
link with TCP connections.

In the case of 2 connections, TCP obtains much more bandwidth simply be-
cause VTP has no need to transmit faster than about 450 Kbps, the average rate
of the sending plan for the highest video quality (see Figure 4). As the number
of connections increases, VTP and TCP compete for the limited resources of the
link. VTP shares the link relatively fairly except for the case of 32 connections.
In this case, the fair share value is 3000/32 = 93.75 Kbps, which is roughly three
quarters of the rate of the lowest video quality according to Figure 4. Since VTP
does not send slower than the rate of the transmission plan for the lowest video
quality (about 125 Kbps according to Figure 4) it uses slightly more than the fair
share value of the bandwidth. It is important to note that this unfairness is not
an inherent limitation of VTP, but a circumstance of the relationship between
the link capacity and the video encoding. The case where VTP shares the link
with 7 TCP connections results in near perfect fairness.

In Figure 6, VTP sends the “TRON” video segment on a 5 Mbps, 10 ms RTT
link against background TCP traffic. The “TRON” send plan requires signifi-
cantly higher bitrates than “Atlantis,” thus we set the link speed correspondingly
higher. The “TRON” transmission plan also contains larger instantaneous jumps
in send rate – as much as 1 Mbps for the highest video quality (see Figure 3).
Both of these differences are a result of the dissimilar bitrate profiles produced
by the DivX and FFmpeg codecs, as evident in Figures 3 and 4.

Figure 6 shows that VTP uses less than or equal to its fair share of band-
width in all cases except that of 16 connections, where again the link limitation
is reached. The figure verifies the “Atlantis” experiments: VTP behaves fairly,
in some cases generously leaving bandwidth unused, if its bandwidth share allo-
cation is at least enough to stream the lowest quality of video.
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In summary, we have demonstrated that VTP uses network resources fairly
when facing competition from the AIMD based congestion control of TCP. In
lightly loaded networks, VTP uses only the bandwidth required to transmit at
the rate of the highest quality video stream, the remaining bandwidth can be
claimed by other connections. In environments of moderate congestion, VTP
fairly shares the link as long as its fair share is at least the rate of the lowest
quality video. Additionally, VTP’s fairness properties are not codec specific, and
that it is able to maintain stable sending rates when streaming source video with
significantly different transmission plans.

3.3 Video Quality

In the evaluation of video quality delivered by VTP, we concentrated on two key
parameters: the frame rate of the received video and the average values of the
quantization parameters. We place a rather strict constraint on the player by
configuring it to only display frames which are received completely intact, i.e.,
frames which have any errors due to packet loss are discarded. This bolsters the
importance of the play out frame rate and magnifies the performance of VTP in
terms of its key goal of providing a stable frame rate through quantization scale
adjustment.
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Fig. 7. Frame rate of received “TRON” stream with VTP and Non-Adaptive Stream-
ing.

Figure 7 depicts a representative example of the advantage gained by VTP
adaptivity. In this experiment, the conditions are those of the fourth case in
Figure 6: 1 monitored flow (either VTP or non-adaptive streaming) sharing a
5 Mbps, 10 ms RTT link with 11 competing TCP connections. As the stream-
ing session progresses, VTP discovers the fair share of available bandwidth and
appropriately tunes to sending rate and video bitrate to avoid overflowing the
router buffer. The resulting frame rate of the VTP stream stabilizes with time,
while the frame rate of the non-adaptive stream increasingly oscillates toward
the end of the segment, suffering from the effect of router packet drops.
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In Figure 8 we present the average values of the QPs of the “Atlantis” segment
throughout the duration of the session. We show the 3 Mbps case from the
experiment in the previous section together with the case of a 2 Mbps link.
The plot verifies that VTP adapts the outgoing video stream to fit the available
network bandwidth. When there is little contention for the link, e.g. 2 and 4 total
connections, VTP chooses video primarily from the high quality, high bitrate
stream (recall lower QP values imply less compression and higher quality). As
the number of competing TCP connections increases, the QP values consistently
increase, indicating VTP lowering the quality of the outgoing video in response
to congestion. This clearly illustrates the mechanism by which VTP attains
adaptivity. VTP is also aware of the additional bandwidth afforded to it by
the increase in link capacity from 2 to 3 Mbps. In the cases of 8, 16, and 32
connections, VTP carefully chooses the highest quality outgoing stream that
will fit its fair share of the available bandwidth. This leads to a QP reduction of
between 3 and 5, indicating higher quality video being sent when more bandwidth
is available at 3 Mbps.

4 Conclusion

In this paper we designed, implemented and tested a new protocol to stream
MPEG-4 compressed video in real-time. A distinct feature of VTP is the use
of bandwidth estimation to adapt the sending rate and the video encoding in
response to changes in network conditions. We developed VTP in accordance
with open standards for video compression and file formats, and built a plug-in
for a widely used video player to serve as the VTP receiver. We have made an
effort to make VTP easily extensible.

VTP was evaluated in a controlled network environment under a variety of
link speeds and background traffic. Experimental results show that VTP offers
considerable gains over non-adaptive streaming in effective frame rate. To a
large extent, VTP behaves fairly toward TCP when both protocols compete in
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a congested network. We found that VTP fairness toward TCP is vulnerable
if the lowest video bitrate is higher than the average link fair share available
to VTP. A priori knowledge of the general link capacity and typical network
utilization can be extremely useful in the selection and configuration of the video
sources for VTP. We believe this information is usually not difficult to obtain
for administrators, and that a small amount of careful manual configuration is
a reasonable price for the advantages of VTP.

For any streaming system to be fully useful, audio and video must be mul-
tiplexed into the data stream and synchronized during play out. A near term
goal is to include the capability to adaptively stream audio and video in com-
bination under the VTP protocol. We will also further investigate the effect
of changing the k parameter, the number of packets used to compute a single
bandwidth sample. We plan to implement an algorithm to dynamically adjust k
during streaming to improve VTP’s efficiency and fairness with TCP. Another
advantage would be reducing the amount of manual user configuration required.
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