
A Ubiquitous Personalized Multimedia Service Model Based on FSM

Zhiwen Yu
1
, Xingshe Zhou

1
, Daqing Zhang

2
, Artur Lugmayr

3
, Zhiyong Yu

1

1 School of Computer Science, Northwestern Polytechnical University, Xi’an, P.R.China, 710072

zhiwenyu@nwpu.edu.cn
2 Context Aware Systems Department, Institute for Infocomm Research, Singapore

3 Digital Media Institute, Tampere University of Technology, Finland

Abstract
*

The ubiquitous computing environment and users’

demand for multimedia personalization precipitate a need
for ubiquitous personalized multimedia services (UPMSs).

Delivering UPMSs is very complex because of diverse

device capabilities, dynamic network characteristics, etc.

This paper proposes a lifecycle management model based

on FSM (Finite State Machines) for ubiquitous

personalized multimedia services (UPMSs). By using this
model, the management of UPMSs is very clear and easy,

and the services are delivered more efficiently, effectively,

and robustly.

1. Introduction
Multimedia information is widely used in pervasive

computing environment in many application fields, such

as multimedia digital libraries, the home entertainment,

live camera remote surveillance, and etc. A major trend

and requirement in today’s multimedia service is

personalization, which means providing multimedia

objects according to user preferences. Multimedia

personalization can provide what user wants directly, as

well as relieve the transmission load by filtering the data

not relevant. The environment of ubiquitous computing

and users’ demand for multimedia personalization

precipitate a need for ubiquitous personalized multimedia

services (UPMSs). Delivering UPMSs is very complex for

diverse device capabilities, dynamic network

characteristics, etc.

Most of existing related research is mainly focused on

service framework or architecture, multimedia description

model, and media transcoding or adaptation mechanisms.

However, they rarely put attention on service running

status management, which is critical for a complex

application like multimedia personalization in ubiquitous

environments. Thus, a big challenge for ubiquitous

multimedia service provider is to build a model that can

model the running process and manage the lifecycle of

UPMSs. In this paper, we propose a ubiquitous

personalized multimedia service model (UPMSM) based

* This work was supported by the Doctorate Foundation of Northwestern
Polytechnical University of China.

on FSM (Finite State Machines). FSM is a technique that

allows simple and accurate design of sequential logic and

control functions, which has been widely used in

designing computer programs, sequential logic circuits or

electronic control systems [1]. In our solution, a UPMS is

modeled as a deterministic FSM.

The strengths of the UPMSM lie in its unified model

for personalized multimedia services in ubiquitous

environments, i.e. independent of particular

implementation techniques, and its simplicity and easy

computability on diverse devices. By using UPMSM, the

management of UPMSs is very clear and easy, and the

services are delivered more efficiently, effectively, and

robustly.

2. UPMSM Model
We deploy the FSM (Finite State Machines) to

represent and manage service state and running status of

our ubiquitous personalized multimedia services. A

ubiquitous personalized multimedia service (UPMS) is

modeled as a deterministic FSM.

Definition 1 (UPMS State Machine), A UPMS State

Machine is a 5-tuple UPMS=(S, I, f, s0, F):

• S is a finite set of service states;

• I is a finite set of elements, which is defined in

Definition 2, each element is an input to the state

machine;

• f: SIS →×)(is the transition function;

• s0 ∈ S is the initial state;

• F ⊂ S is a finite set of final states.

Definition 2 (Input of UPMS State Machine, I), I is a

finite set of elements as inputs to the state machine. Each

element is a 2-tuple (R, E). R represents the reason why

the event E takes place. In each element, R can be NULL,

while E cannot be NULL.

Figure 1 shows the state machine model and complete

state transition of UPMS. A service request from terminal

user brings a new UPMS into birth. In its lifecycle, a

UPMS could be in several states, represented by ellipses

in the figure. The arrows between states represent state

transitions, and corresponding character strings (I1, …,

I10) stand for conditions of the transitions.

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

Figure 1. UPMS State Machine Model

The element values of UPMS State Machine are

presented in Table 1.

Table 1: UPMS State Machine Element Values

 The states in UPMS State Machine are described in

detail as follows.

Evaluating When a client sends a request to the server

for multimedia service, the service is in the Evaluating

state. In this state, the server selects or generates a

multimedia object according to user preferences, terminal

capabilities, and network characteristics.

Ready When a multimedia object is assigned to a

service, it jumps to the Ready state, and is ready for

scheduling. If a service is selected to run, it jumps to the

Running state.

Running Service in the Running state means media

streaming or file downloading. In the process of running,

(i) if the service finishes successfully or is broken by the

user or service provider, it jumps to the Completed state;

(ii) if network available bandwidth decreases, and cannot

deliver the multimedia object, the service enters the

Blocked state.

Blocked When a service is in the Blocked state, (i) it

makes transcoding for the multimedia object; if the

adjusted object can be delivered in the current network

condition, then the service is woken up, and put into the

Ready state; (ii) whatever trancoding is made, the object

cannot be delivered in the current network condition, then

the service jumps to the Waiting state.

Waiting When a service is in the Waiting state, (i) the

network bandwidth increases, and is enough for the object

to be delivered, then the service is woken up, and put into

the Ready state, waiting for another scheduling; (ii) the

preset waiting time is over, then the service enters the

Terminated state.

Completed The service releases all of its resources

(such as service identifier, priority, etc.).

Terminated The function is similar to Completed state.

It is different from Completed state in that Completed

state means a service finishes successfully, or is broken by

the user or service provider, not due to resources

dissatisfaction (e.g., multimedia, terminal capabilities, and

network), while Terminated state means a service abends

due to resource dissatisfaction.

3. Conclusion
In this paper, we propose UPMSM, which provides a

model for lifecycle management based on FSM for

ubiquitous personalized multimedia services. The

UPMSM is a powerful model for dynamically adapting

arbitrary consumer desired services to personal profiles. A

service management module adopting UPMSM

emphasizes the need for transparent access to content,

where system tasks (e.g. dynamic content adaptation to

available network bandwidth) are hidden from the

consumer.

We have applied UPMSM to implement a service

manager for ubiquitous personalized multimedia service

lifecycle management. The preliminary experimental

results proved the effectiveness of the proposed scheme.

References
[1] David Gibson, “Finite State Machines: Making simple work

of complex functions”, SPLat Controls Pty Ltd.,

http://www.microconsultants.com/tips/fsm/fsmartcl.pdf

Element Value

S {Evaluating, Ready, Running, Blocked, Waiting,

Completed, Terminated}

I {I1, I2, I3, I4, I5, I6, I7, I8, I9, I10}

I1=(Satisfy user preferences, device capabilities,

and network static characteristics, Join ())

I2=(Cannot satisfy user preferences, device

capabilities, and network static characteristics,

Discard ())

I3=(NULL, Schedule ())

I4=(Service successfully finishes, Finish ())

I5=(User or service provider stops the service,

Finish ())

I6=(Cannot transfer for network bandwidth

changes, Block ())

I7=(Can transfer after transcoding, Wake up ())

I8=(Cannot transfer after transcoding, Lay aside ())

I9=(Network bandwidth is satisfied for delivery,

Wake up ())

I10=(Time over, Discard ())

f f(Evaluating, I1)=Ready;

f(Evaluating, I2)=Terminated;

f(Evaluating, I5)=Completed;

f(Ready, I3)=Running;

f(Ready, I5)= Completed;

f(Running, I4)=Completed;

f(Running, I5)=Completed;

f(Running, I6)=Blocked;

f(Blocked, I7)=Ready;

f(Blocked, I9)=Ready;

f(Blocked, I8)=Waiting;

f(Blocked, I5)=Completed;

f(Waiting, I9)=Ready;

f(Waiting, I5)=Completed;

f(Waiting, I10)=Terminated

s0 Evaluating

F {Completed, Terminated}

Evaluating Ready Running

Blocked Waiting

Completed

Terminated

Service
request I1 I3

I2
I4, I5

I5

I6 I5

I7, I9

I8

I9

I10
I5 I5

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05)
0-7695-2315-3/05 $ 20.00 IEEE

