
A GA-based approach for test generation
for automata-based programs

Spring/Summer Young Researchers' Colloquium on
Software Engineering 2010, Nizhny Novgorod

Andrey Zakonov

Research supervisors: Oleg Stepanov, PhD

Anatoly Shalyto, PhD

St. Petersburg State University of Information
Technologies, Mechanics and Optics

Fac. of Information Technologies and Programming

Agenda

 Automata-based approach and problem of the
quality assurance

 Developing and testing automata-program:
1.  Creating model and formalizing requirements
2.  Defining test scenarios
3.  Creating executable tests
4.  Running tests

 Summary

2

event

Automata-based approach

 Automata-based program consists of:
 model, a formal automata (FSM)
  control objects

 Model defines behavior of the system

 Control objects interact with environment (input/output)

3

State 1 State 2
Inputs

Controlled
Object

Outputs
Controlled

Object

Problem of quality assurance

  The problem is to check program against its
specification requirements

  There are three parts of automata-program that could
contain errors:
 model
  controlled objects
  interaction of the automaton with its controlled objects

 There are ways to check automata-model (Model
Checking), but they don’t work for controlled objects and
system in whole

4

Proposed solution

 To use automata-tests to check the automata-based
system in whole (model + controlled objects)

 Automata-test simulates inputs to the system and
checks behavior of the system for this inputs

 Drawbacks of testing approach:
 can not guarantee the correctness of a program
 normally a labor intensive and very expensive task

5

Significance of the problem

 No approach or tools to test automata-programs

 Extended Finite State Machine (EFSM) related
approaches don’t support an interaction with controlled
objects

 Traditional testing approaches can not be applied to
automata-program as is:
 all benefits of automata approach would be lost
 metrics are not meaningful

 Testing is labor-intensive and requires automation tools

6

Steps to test an automata-program

1. Formalize natural language specification

2. Describe test cases

3. Create an executable test

4. Run tests and check implementation against its
specification

7

Agenda

 Automata-based approach and problem of the
quality assurance

 Developing and testing automata-program:
1.  Creating model and formalizing requirements
2.  Defining test scenarios
3.  Creating executable tests
4.  Running tests

 Summary

8

I. Formalize specification

  Specification usually is described in natural language

  Example of ATM-like system:
  system withdraws from an account
  initially sum on account is more then 0 and less then

100000
  user can withdraw infinitely while sum is positive
  user enters amount to withdraw, more then 1 000 and less

then 15 000
  no more then 50 000 can be withdrawn during one day of

operation

  Good only for manual testing

9

I. Groups of requirements

 Model’s requirements:
  system withdraws from an account
  user can withdraw infinitely while sum is positive
  no more then 50 000 can be withdrawn during one

day of operation

 Control objects’ requirements:
  initially sum on account is more then 0 and less then

100000
  user enters amount to withdraw, more then 1 000

and less then 15 000

10

I. Developing a model - FSM

 We define events:
  e0 – initialized
  e1 – user input
  e2 – transaction complete
  e3 – error

 A lot of logic is hidden in control objects’
implementation

11

I. Covered requirements

 Model’s requirements:
  system withdraws from an account
  user can withdraw infinitely while sum is positive
  no more then 50 000 can be withdrawn during one

day of operation

 Control objects’ requirements:
  initially sum on account is more then 0 and less then

100000
  user enters amount to withdraw, more then 1 000

and less then 15 000

12

I. Developing a model - EFSM
 Extended Finite State Machine supports

variables and suits for more complex models

13

I. Covered requirements

 Model’s requirements:
  system withdraws from an account
  user can withdraw infinitely while sum is positive
  no more then 50 000 can be withdrawn during one

day of operation

 Control objects’ requirements:
  initially sum on account is more then 0 and less then

100000
  user enters amount to withdraw, more then 1 000

and less then 15 000

14

I. More ways to describe requirements

 Controlled objects contain some logic, as using
EFSM is not always good:
  too complex model
  model’s requirements and control objects’

requirements would be mixed up

 Need to formalize requirements to check the
model and controlled objects implementation

 Design by contract approach
  preconditions, postconditions, invariants

15

I. Requirements as contracts

 Control object requirements can be added as pre-
and postconditions of the transitions

 Model’s requirements can be added as invariants to
the states

  Java Modeling Language (JML) to write
requirements

  Benefits of such approach:
  model shows specification requirements
  developer-friendly syntax

16

I. Developing a model – EFSM+JML

  Account:
  @ensures ext_sum >= 0  

&& ext_sum <= 100000"
  User input:

  @ensures ext_x >= 1000  
&& ext_x <= 15000"

  Model
  @invariant today <= 50000" 17

I. Covered requirements

 Model’s requirements:
  system withdraws from an account
  user can withdraw infinitely while sum is positive
  no more then 50 000 can be withdrawn during one

day of operation

 Control objects’ requirements:
  initially sum on account is more then 0 and less then

100000
  user enters amount to withdraw, more then 1 000

and less then 15 000

C
on

tra
ct

s
E

FS
M

18

Agenda

 Automata-based approach and problem of the
quality assurance

 Developing and testing automata-program:
1.  Creating model and formalizing requirements
2.  Defining test scenarios
3.  Creating executable tests
4.  Running tests

 Summary

19

II. Defining test cases

 Convenient to describe test scenarios in natural
language

  Let’s define formally test case as a sequence of
transitions in the automaton
  easy conversion to and from natural language
  can be generated automatically

  Test scenario looks like:
  t1, t2, t4, t5, t2, t4, t5, t2, t4

20

Agenda

 Automata-based approach and problem of the
quality assurance

 Developing and testing automata-program:
1.  Creating model and formalizing requirements
2.  Defining test scenarios
3.  Creating executable tests
4.  Running tests

 Summary

21

III. Test scenario execution

  To execute the given path it’s necessary:
  provide events in the correct order
  provide values for the external variables

  External variable values come from environment:
  no access to environment on testing stage
  automation is wanted

  It’s a problem to guess these values:
  fulfill all the transition guards
  fulfill control objects’ contracts

22

III. Guessing variable values

 Genetic algorithm can be applied
  Fitness function estimates how good is given set

of values for the desired path:
  successful steps
  branch distance for failed steps
  location of failed steps

  Values with zero fitness will make the test
 GA is applied to solve optimization problem

23

III. GA details

  Chromosome is a vector of variable values
  <x1, x2, …, xn>"

  One-point crossover operator
<x1, x2, x3, x4> <x1, x2, x3, y4>"

" <y1, y2, y3, y4> <y1, y2, y3, x4>

  Mutation – replace random variable with random
number

  Fitness function
  branch distance:
  weighted sum, path

24

III. Guessing values example (1)

  Example of test cases:
  Three times withdrawal operation is successful,

forth time there is not enough on the account
  Twenty times withdrawal operation is

successful
 Different variable values are required for these

tests

25

III. Guessing values example (2)

  First test scenario transition path:
  t1, t2, t3, t2, t3, t2, t3, t2, t4

  Five external variables are used:
  ext_sum – initial value on the account;
  ext_x1 – first withdrawal;
  ext_x2 – second withdrawal;
  ext_x3 – third withdrawal;
  ext_x4 – failed to withdraw.

  Proof-of-concept tool accepts transition path and
returns set of variables

26

III. Generating executable tests

  Automatically found values:
  ext_sum = 15673;
  ext_x1 = 4357; ext_x2 = 8023;
  ext_x3 = 2162; ext_x4 = 9183;

  Executable test on Java can be created and run later
  Organizing big test suits are good for regression and

stress testing

27

Agenda

 Automata-based approach and problem of the
quality assurance

 Developing and testing automata-program:
1.  Creating model and formalizing requirements
2.  Defining test scenarios
3.  Creating executable tests
4.  Running tests

 Summary

28

IV. Running tests

  Behavior of the system need to be checked during
the evaluation of the given path

  If JML contracts are defined for states on this path
they would be checked at the runtime:
  JML Runtime Assertion Checker can be used

  In the example @invariant today <= 50000 will
be checked after each transaction

  In case of failing the condition an exception will be
raised

29

IV. Running tests

  Implicit requirements are always checked:
  deadlocks
  exception
  execution time
  etc.

  For real control objects contracts will be useful to
reveal inadequate implementation

30

Values that fail requirements

  Fitness function may take into the account model’s
specification

  It will help to find values that fail requirements
  Examine steps of the given path sequentially:

  try to fail at first step
  fulfill first step and fail second
  …
  fulfill first n-1 steps and fail nth step

31

Agenda

 Automata-based approach and problem of the
quality assurance

 Developing and testing automata-program:
1.  Creating model and formalizing requirements
2.  Defining test scenarios
3.  Creating executable tests
4.  Running tests

 Summary

32

Approach summary

1.  Specification is formalized using EFSMs and JML
contracts

2.  Test scenarios are described as a transition path
3.  GA-based tool is used to find variable values for

given path and executable tests are generated
4.  Tests are run automatically and JML requirements

fulfillment is checked at the runtime

33

Thank you

 Questions & Answers

  Andrew Zakonov, SPb SU ITMO
 andrew.zakonov@gmail.com

34

