

BFS-based Symmetry Breaking Predicates for DFA Identification

Vladimir Ulyantsev PhD student ITMO University

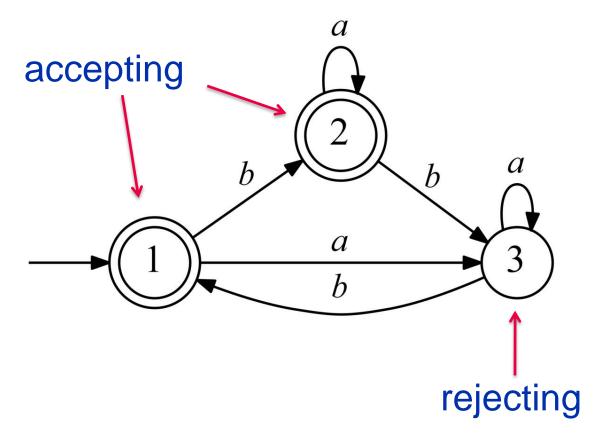
Ilya Zakirzyanov Bachelor student ITMO University

Anatoly Shalyto Dr. Sci., professor ITMO University

9th International Conference on Language and Automata Theory and Applications

March 4, 2015

Presentation by



Daniil Chivilikhin PhD student ITMO University

Outline

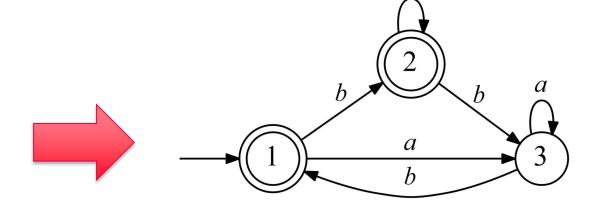
- Introduction
- OFASAT algorithm overview
- Handling noise in DFASAT
- SFS-based symmetry breaking for DFASAT
- Experiments
- Conclusions

Deterministic Finite Automata (DFA)

S₊ S_−

- ab
- abbb
- baba
- ba

• b


• bbb

a

DFA Identification Problem

 $S_{+}=\{ab, b, ba, bbb\}$ $S_{-}=\{abbb, baba\}$

Identifying a minimal DFA is NP-hard [Gold, 1978]

DFA Identification From Noisy Data

✓ K string labels are randomly flipped

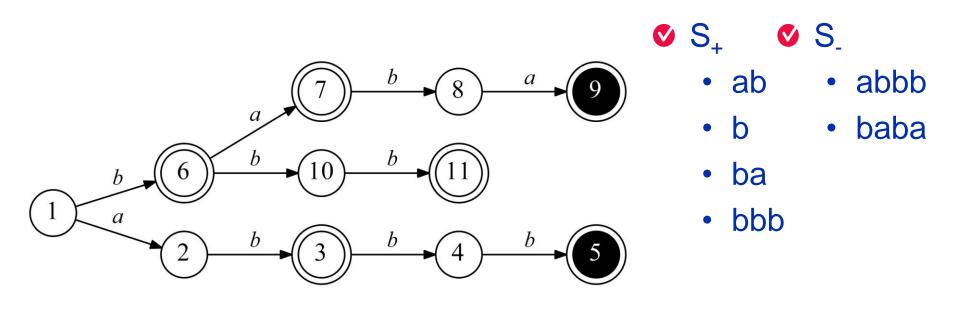
 $S_{+}=\{ab, b, ba, bbb\};$ $S_{-}=\{abbb, baba\}$ $S_{+}=\{ab, b, ba\};$ $S_{-}=\{abbb, baba, bbb\}$

Previous Research

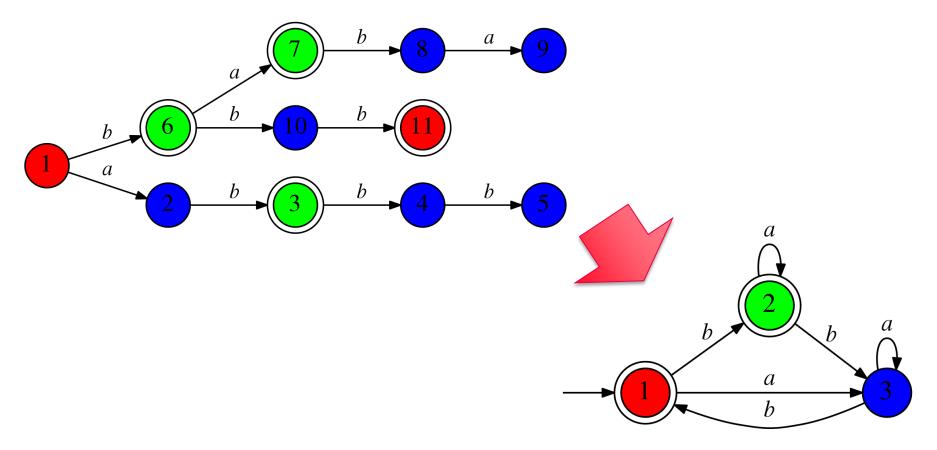
- Evolutionary algorithm with smart state labeling [Lucas et al., 2005]
 - State of the art for noisy case
- **VEXASAT [Heule & Verwer, 2010]**
 - State of the art for noiseless case

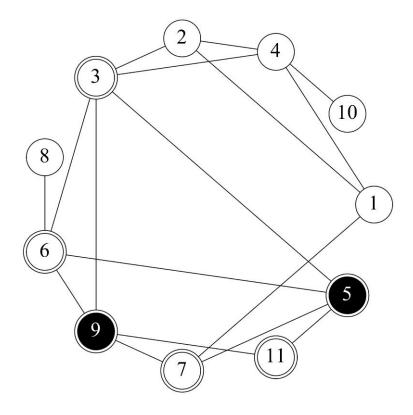
Our contribution

We focus on DFASAT Augment DFASAT to handle noisy data Augment DFASAT with new symmetry breaking predicates



DFASAT [Heule & Verwer, 2010]


- 1. Augmented Prefix Tree Acceptor construction
- 2. Consistency Graph construction
- 3. CNF Boolean Formula construction
- 4. SAT-solver execution
- 5. DFA reconstruction from satisfying assignment


Augmented Prefix Tree Acceptor

Main idea: APTA coloring

Consistency Graph

- Nodes same as APTA states
- Two nodes are connected if they cannot be merged into one DFA state
- Only exists in the noiseless case

Variables

- **Color** variables $x_{v,i} \equiv 1$ iff APTA state v has color i
- ✓ **Parent relation** variables $y_{i,i,j} \equiv 1$ iff DFA transition with symbol / from state *i* ends in state *j*
- Accepting color variables $z_i \equiv 1$ iff DFA state *i* is accepting

Types of clauses (1)

 V_+ – accepting states V_- – rejecting states

Accepting states colors

$$x_{v,i} \Rightarrow z_i, v \in V_+$$

- ✓ **Rejecting** states colors $x_{v,i} \Rightarrow \neg z_i, v \in V_-$
- Solve Each state has at least one color $x_{v,1} \lor x_{v,2} \lor \ldots \lor x_{v,C}$
- Solve Each state has at most one color $\neg x_{v,i} \lor \neg x_{v,j}, i < j$

Types of clauses (2)

p(v) – parent of APTA state v I(v) – incoming symbol of APTA state v

A DFA transition is set when a state and its parent are colored

$$x_{p(v),i} \wedge x_{v,j} \Rightarrow y_{l(v),i,j}$$

Each DFA transition must target at least one state

$$y_{l,i,1} \lor y_{l,i,2} \lor \ldots \lor y_{l,i,C}$$

Each DFA transition can target at most one state

$$y_{l,i,j} \Rightarrow \neg y_{l,i,k}, j < k$$

Types of clauses (3)

State color is set when DFA transition and parent color are set

$$y_{l(v),i,j} \wedge x_{p(v),i} \Rightarrow x_{v,j}$$

Colors of two states connected with an edge in the consistency graph must be different

$$x_{v,i} \implies \neg x_{w,i}, (v, w) \in E$$

Noisy DFA Identification

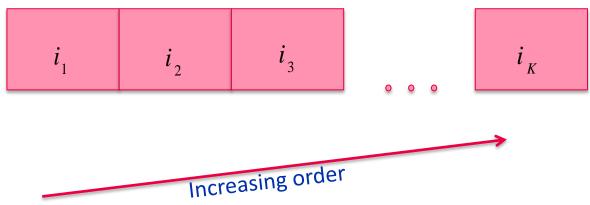
✓ K random attribution labels are *flipped*

 $S_{+}=\{ab, b, ba, bbb\};$ $S_{-}=\{abbb, baba\}$ $S_{+}=\{ab, b, ba\};$ $S_{-}=\{abbb, baba, bbb\}$

Noisy DFA Identification: Issues

Consistency graph is undefined
We do not know the exact labels of strings

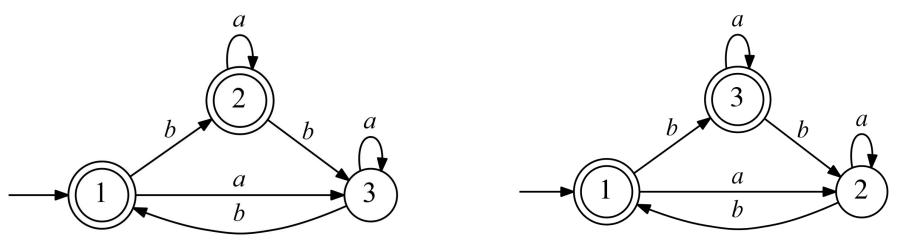
How can we modify the described translation to deal with noise?


Noisy DFA Identification (2)

- \heartsuit New variables f_v
- ✓ $f_v \equiv 1$ iff the label of state v can (but <u>does</u> <u>not have to</u>) be incorrect (**f**lipped)
- Modify clauses for state colors

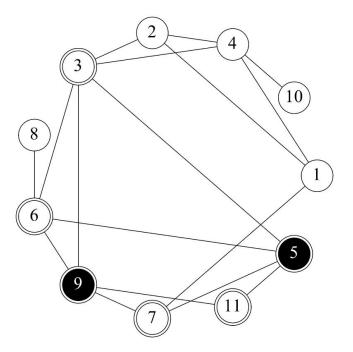
Noisy DFA Identification (3)

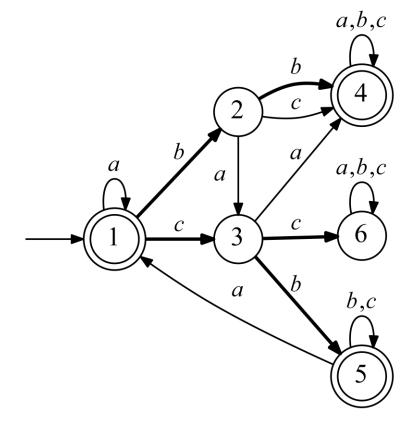
♦ Array of length *K*

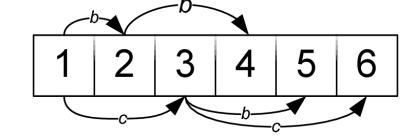

Vumbers of APTA states for which that can be flipped

Some extra variables and clauses for representing that as a Boolean formula; order encoding method used

Symmetry breaking


Many optimization problems exhibit symmetries
Here: groups of isomorphic DFA




Max-clique symmetry breaking [Heule & Verwer, 2010]

- Find a big clique in the CG with fast heuristic algorithm
- Fix colors of clique states in the APTA
- Note: not applicable in the noisy case

BFS-based Symmetry Breaking Predicates

BFS queue

BFS-enumerated DFA

BFS-based Symmetry Breaking Predicates

Idea – force the DFA to be BFS-enumerated
Already used in several algorithms

✓ How do we encode BFS-enumeration in SAT?

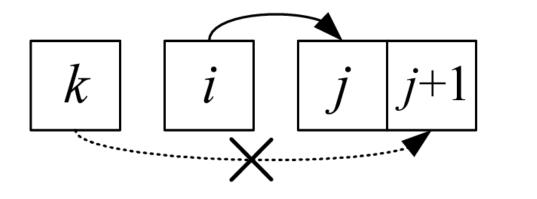
Additional variables

✓ **Parents** variables $p_{j,i} \equiv 1$ iff state *i* is the parent of state *j* in the BFS-tree

✓ **Transition** variables $t_{j,i} \equiv 1$ iff there is a transition between states *i* and *j*

26

Ordering parents


ITMO UNIVERSITY

Each state except initial one must have a parent with a smaller number

$$p_{j,1} \lor p_{j,2} \lor \ldots \lor p_{j,j-1}, 2 \le j \le C$$

In BFS-enumeration states' parents must be ordered

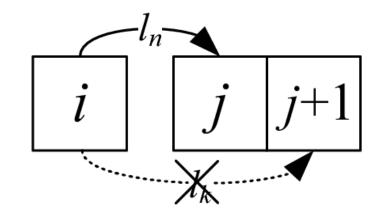
$$p_{j,i} \Rightarrow \neg p_{j+1,k}, 1 \le k < i < j < C$$

Ordering children

Transition variables: there is a transition between states *i* and *j*

$$t_{i,j} \Leftrightarrow y_{l_1,i,j} \vee \ldots \vee y_{l_L,i,j}, i < j$$

State *j* was enqueued while processing the state with minimal number *i* among states that have a **transition** to *j*


$$p_{j,i} \Leftrightarrow (t_{i,j} \wedge \neg t_{i-1,j} \wedge \dots \wedge \neg t_{1,j}), i < j$$

Ordering transitions

Minimal symbol variables

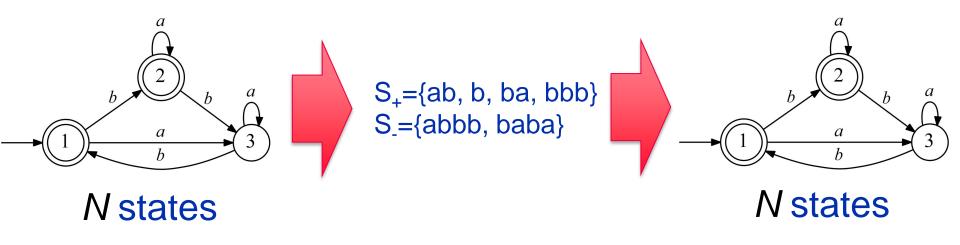
$$m_{l_n,i,j} \Leftrightarrow y_{l_n,i,j} \wedge \neg y_{l_{n-1},i,j} \wedge \dots \wedge \neg y_{l_1,i,j}, i < j$$

Arranging consecutive states j and j+1 with the same parent i in the alphabetical order of minimal symbols on transitions between them and i

 $p_{j,i} \wedge p_{j+1,i} \wedge m_{l_n,i,j} \Rightarrow \neg m_{l_k,i,j+1}, i < j, k < n$

Experimental setup

- Random data sets
- Binary alphabet
- \checkmark *TL* time limit (*TL* = 1800 seconds)
- ✓ *lingeling* SAT-solver
- Mean time among 100 launches of experiments


Noiseless DFA Identification

OFASAT with max-clique symmetry breaking clearly outperforms our method

Noisy DFA Identification when target DFA exists

- N size of the DFA used for generating input set of strings
- $\heartsuit N$ size of the target DFA

Noisy DFA Identification, *S* = 10*N* strings

Number of states	Noise level, %	BFS, s	DFASAT, s	EA, s
5	2	0.22	0.38	1.22
5	4	0.59	0.9	1.1
6	2	1.05	2.44	2.94
6	4	3.34	7.82	2.85
7	1	4.34	10.83	21.36
7	3	17.22	143.66	19.16
8	1	17.89	31.58	30.29
8	2	163.92	225.31	19.8

Noisy DFA Identification, *S* = 25*N* strings

Number of states	Noise level, %	BFS, s	DFASAT, s	EA, s
5	1	0.54	0.64	2.77
5	2	2.42	4.33	1.80
6	1	6.3	11.95	11.65
6	2	13.3	43.54	4.8
7	1	31.01	114.95	17.24
7	2	286.76	TL	13.11
8	1	239.46	404.32	21.73

Noisy DFA Identification, *S* = 50*N* strings

Number of states	Noise level, %	BFS, s	DFASAT, sec	EA, s
5	1	4.2	7.59	6.07
5	2	12.87	22.36	3.05
6	1	20.76	52.5	20.39
6	2	107.94	309.22	11.28

Noisy DFA identification when the target DFA does not exist

- (N + 1) size of the DFA used for generating input set of strings
- ✓ N size of the target DFA
- Note: the state-of-the-art EA cannot determine that a DFA consistent with a given set of strings does not exist

Noisy DFA identification when the target DFA does not exist, *S* = 50*N* strings

Ν	K	BFS, s	DFASAT, s	Passed BFS, %	Passed DFASAT, %
5	1	11.57	257.13	100	100
5	2	46.42	1296.71	100	30
6	1	110.05	TL	100	0
6	2	581.73	TL	100	0
7	1	995.27	TL	89	0
7	2	TL	TL	0	0

Conclusion

- Exact solution for noisy DFA identification
- New symmetry breaking predicates based on BFS
 - Applicable in the noisy case
 - Greatly speed up the discovery of non-existence of a DFA
- Implementation
 - http://github.com/ctlab/DFA-Inductor

Acknowledgements

This work was financially supported by the Government of Russian Federation, Grant 074-U01, and also partially supported by RFBR, research project No. 14-07-31337 mol_a.

BFS-based SBPs for DFA Identification

ITMO UNIVERSITY

Thank you for your attention!

Vladimir Ulyantsev Ilya Zakirzyanov Anatoly Shalyto {ulyantsev,zakirzyanov}@rain.ifmo.ru