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Overview (1) 

• Part of a bigger project on automated software 

engineering and automata-based programming 

• We focus on model driven-development 

Specification Model Code
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Overview (2) 

Specification Model Code

Set of tests EFSM 
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Automata-based Programming 

• Entities with complex 

behavior should be 

designed as 

automated controlled 

objects 

• Control states and 

computational states 

• Events 

• Output actions 

Automated Controlled Object
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Definitions 
• EFSM: 

– input events 

– input Boolean variables 

– output actions 

• Test is a pair of two sequences 
– Input sequence of pairs I = <e, f> 

• e – input event 

• f – guard condition – Boolean formula 
on input variables 

– A – reference sequence of output 
actions  

• EFSM on the picture complies with 
– <A, !x>,  <A,  x> 

– z2, z1 

• EFSM on the picture does not 
comply with  
– <A, x> 

– z2 
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Example – Alarm Clock (1) 

• Four events 

– H – button “H” pressed 

– M – button “M” 

pressed 

– A – button “A” pressed 

– T – occurs on each 

time tick 

• Two input variables 

• Seven output actions 
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Example – Alarm Clock (2) 

• Test 1: 

– T 

– z5 

• Test 2: 

– H 

– z1 

• Test 3: 

– A, H 

– z3 

• … 

Tests Model 
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Example – Stack (1) 

• Test 1: 
– push, pop 

– ok, return element 

• Test 2: 
– push, pop, pop 

– ok, return element, 
error 

• Test 3: 
– push, push, pop, pop 

– ok, ok, return element, 
return element 

• … 

Tests Model 

Stack is 

empty

Stack is 

not 

empty

push/ ok

pop [size=1]/ return

                  element

pop [size>1]/ return

                  element

pop / error
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Problems Considered 

• Automated model design 

 

 

 

• Model mining 

Specification Model

Model Code
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Reduction to Automated Model 

Design 

Well-known methods 

Set of tests Model Code
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Problem Definition 

• Input data: 

– Set of tests 

– Number of states in EFSM (C) 

• Need to find an EFSM with C states 

complying with all tests 
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Precomputations 

• For each pair of guard conditions from tests 

compute: 

– If they are same as Boolean functions 

– If they have common satisfying assignment 

• Time complexity: 

– O(n222m) where n is total size of tests’ input 

sequences, m is maximal number of input 

variables occurring in guard condition (in 

practice m is not greater than 5) 
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Evolutionary Algorithms 
• Random mutation hill climber and evolutionary 

strategy can be easily used 

• Problem with genetic algorithms – no 
meaningful crossover (“it is hard to 
automatically identify functionally coherent 
modules in automata”) 

– Johnson, C. Genetic Programming with Fitness based on Model 
Checking. Lecture Notes in Computer Science. Springer Berlin / 
Heidelberg, 2007. Volume 4445/2007, pp. 114–124. 

– Lucas, S. and Reynolds, J. Learning Deterministic Finite Automata 
with a Smart State Labeling Algorithm. IEEE Transactions on Pattern 
Analysis and Machine Intelligence. Vol. 27, №7, 2005, pp. 1063–
1074.  

• This problem can be solved with test-based 
crossover 



14 

Individual Representation 

0 1
A [x] / 0

T / 1

M / 2

T [!x] / 1

{2, 0, {{A, x, 1, 0}, {T, !x, 1, 1}}, {{T, true, 1, 1}, 

{M, true, 0, 2}}}  

All EFSMs considered during one of evolutionary 

algorithm have the same number of states 
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Transition Labeling Algorithm 

• Applied to each individual before 

calculation of fitness function 

1

4 3

2
A [x1] / 0

T [x2] / 1

M [x1] / 1

H [x2] / 1

T [x1] / 1

1

4 3

2
A [x1] /

T [x2] / z5

M [x1] / z3

H [x2] / z4

T [x1] / z5
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Mutation 

• Change of transition 

– Final state 

– Event 

– Guard condition 

– Number of output actions 

• Addition of deletion of a transitions 
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Fitness Function 
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Test-based Crossover 

Input 

sequences of 

tests

EFSM
Output 

sequences

Output sequences are 

compared with reference

10% of tests for which edit 

distance between output and 

reference is minimal are 

selected

Transitions used while 

processing these tests 

are marked

Marked transitions are 

kept together in 

EFSMs
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Example (1) 

• Test set contains: 

– Test 1: 

• A [x], B [y] 

• z1, z2 

– Test 2: 

• A [!x], B [!y] 

• z2, z1 

– … 

0 1

A[x] / z1

A [!x] / z1

2

B[y] / z2

B [!y] / z2

0 1

A[x] / z2

A [!x] / z2

2

B[y] / z1

B [!y] / z1
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Example (2) 

• Test set contains: 

– Test 1: 

• A [x], B [y] 

• z1, z2 

– Test 2: 

• A [!x], B [!y] 

• z2, z1 

– … 

0 1

A[x] / z1

A [!x] / z1

2

B[y] / z2

B [!y] / z2

0 1

A[x] / z2

A [!x] / z2

2

B[y] / z1

B [!y] / z1
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Example (3)  

0

A[x] / z1

A [!x] / z1

0

A[x] / z2

A [!x] / z2

0

A[x] / z1

A [!x] / z1

A [!x] / z2

0
A [!x] / z2

A[x] / z1

A[x] / z2

Parents Offsprings 
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Example (4) 
• Duplicate and contradictory transitions 

removal 

• Showing for state 0 of first offspring 

A[x] / z1

A [!x] / z2

A[x] / z2

Conflicting 

pair 

A[x] / z1

A [!x] / z2
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Example (5) 

• Both offsprings pass both tests 

0 1

A[x] / z1

A [!x] / z2

2

B[y] / z2

B [!y] / z1

0 1

A[x] / z1

A [!x] / z2

2

B[y] / z2

B [!y] / z1
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Ant Colony Optimization 
• Graph: 

 Nodes – finite-state machines 

 Edges – mutations of finite-state machines 

 Graph is too big to be constructed explicitly  

Algorithm: 

1. Graph G = {random FSM} 

2. While (true)  

         Launch colony on graph G 

         Update pheromone values 

         Check stop conditions: 

               if stagnation, restart 
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Choosing the Next Node 
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“Roulette”  

method 
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Update Pheromone Values 

• Quality of solution (ant path) – max value of f 

among all nodes in path 

• New pheromone value on edge: 

 

 

• ρ < 1 – evaporation rate 

•              – max pheromone value ever added 

to the edge (u, v) 

 

best
uv

best
uvuvuv  
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Choosing Start Nodes on Restart 

• Best path – path from some node to a 

node with max value of f 

• Start nodes are selected with “roulette” 

method from nodes of best path 
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Experiments (1) 
• Six algorithms:  

– a genetic algorithm with traditional crossover (GA-1) 

– a random mutation hill climber (RMHC) 

–  (1+1) evolutionary strategy (ES) 

– a genetic algorithm with test-based crossover (GA-2) 

– GA-2 hybridized with RMHC (GA-2+HC) 

– ant colony optimization (ACO) 

• Input data: 38 tests for alarm clock  

– total length of input sequences 242 

– total length of reference sequences 195 

• 1000 runs of each algorithm 
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Experiments (2) 

Algorithm Min Max Avg Median 

GA-1 855390 38882588 5805943 4588736 

RMHC 
1150 9592213 

 

1423983 957746 

ES 
1506 9161811 

 

3447390 856730 

GA-2 32830 599022  117977 83787 

GA-2+HC 
26740 188509  53706 48106 

ACO 2440 210971 53944 46293 
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Experiments (3) 
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Summary 

• Test-based crossover greatly improves the 

performance of GA  

• GA on average significantly outperforms 

RMHC and ES 

• ACO outperforms GA-2 

• Difference between average performance 

of ACO and GA-2+HC is insignificant 

 



Thank you! 

Questions? 


