
Test-Based Extended Finite-State

Machines Induction with

Evolutionary Algorithms and Ant

Colony Optimization

Daniil Chivilikhin, Vladimir Ulyantsev, Fedor Tsarev

St. Petersburg National Research University of Information
Technologies, Mechanics and Optics

GECCO-2012

Graduate Students Workshop

July 7, 2012

NATIONAL RESEARCH UNIVERSITY

2

Overview (1)

• Part of a bigger project on automated software

engineering and automata-based programming

• We focus on model driven-development

Specification Model Code

3

Overview (2)

Specification Model Code

Set of tests EFSM

4

Automata-based Programming

• Entities with complex

behavior should be

designed as

automated controlled

objects

• Control states and

computational states

• Events

• Output actions

Automated Controlled Object

O
Controlled Object

A
Finite-State Machine

Z

Xo

Y
Set of Control

States

δ
Transition

Function

φ
Actions

Function

V
Set of

Computational

States

fc
Commands

fq
Requests

XE

e1

e2

z1

z3

Events
Output

actions

z2

z4

z2

5

Definitions
• EFSM:

– input events

– input Boolean variables

– output actions

• Test is a pair of two sequences
– Input sequence of pairs I = <e, f>

• e – input event

• f – guard condition – Boolean formula
on input variables

– A – reference sequence of output
actions

• EFSM on the picture complies with
– <A, !x>, <A, x>

– z2, z1

• EFSM on the picture does not
comply with
– <A, x>

– z2

6

Example – Alarm Clock (1)

• Four events

– H – button “H” pressed

– M – button “M”

pressed

– A – button “A” pressed

– T – occurs on each

time tick

• Two input variables

• Seven output actions

7

Example – Alarm Clock (2)

• Test 1:

– T

– z5

• Test 2:

– H

– z1

• Test 3:

– A, H

– z3

• …

Tests Model

8

Example – Stack (1)

• Test 1:
– push, pop

– ok, return element

• Test 2:
– push, pop, pop

– ok, return element,
error

• Test 3:
– push, push, pop, pop

– ok, ok, return element,
return element

• …

Tests Model

Stack is

empty

Stack is

not

empty

push/ ok

pop [size=1]/ return

 element

pop [size>1]/ return

 element

pop / error

9

Problems Considered

• Automated model design

• Model mining

Specification Model

Model Code

10

Reduction to Automated Model

Design

Well-known methods

Set of tests Model Code

11

Problem Definition

• Input data:

– Set of tests

– Number of states in EFSM (C)

• Need to find an EFSM with C states

complying with all tests

12

Precomputations

• For each pair of guard conditions from tests

compute:

– If they are same as Boolean functions

– If they have common satisfying assignment

• Time complexity:

– O(n222m) where n is total size of tests’ input

sequences, m is maximal number of input

variables occurring in guard condition (in

practice m is not greater than 5)

13

Evolutionary Algorithms
• Random mutation hill climber and evolutionary

strategy can be easily used

• Problem with genetic algorithms – no
meaningful crossover (“it is hard to
automatically identify functionally coherent
modules in automata”)

– Johnson, C. Genetic Programming with Fitness based on Model
Checking. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2007. Volume 4445/2007, pp. 114–124.

– Lucas, S. and Reynolds, J. Learning Deterministic Finite Automata
with a Smart State Labeling Algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence. Vol. 27, №7, 2005, pp. 1063–
1074.

• This problem can be solved with test-based
crossover

14

Individual Representation

0 1
A [x] / 0

T / 1

M / 2

T [!x] / 1

{2, 0, {{A, x, 1, 0}, {T, !x, 1, 1}}, {{T, true, 1, 1},

{M, true, 0, 2}}}

All EFSMs considered during one of evolutionary

algorithm have the same number of states

15

Transition Labeling Algorithm

• Applied to each individual before

calculation of fitness function

1

4 3

2
A [x1] / 0

T [x2] / 1

M [x1] / 1

H [x2] / 1

T [x1] / 1

1

4 3

2
A [x1] /

T [x2] / z5

M [x1] / z3

H [x2] / z4

T [x1] / z5

16

Mutation

• Change of transition

– Final state

– Event

– Guard condition

– Number of output actions

• Addition of deletion of a transitions

17

Fitness Function

 

















T

j jj

jj

AlenOlen

AOED

T
FF

1
1

)(),(max

),(
1

1
















1FFcnt),(
1

20

1FFcnt),(
1

FF10

FF

1

11

2

M
M

M
M

18

Test-based Crossover

Input

sequences of

tests

EFSM
Output

sequences

Output sequences are

compared with reference

10% of tests for which edit

distance between output and

reference is minimal are

selected

Transitions used while

processing these tests

are marked

Marked transitions are

kept together in

EFSMs

19

Example (1)

• Test set contains:

– Test 1:

• A [x], B [y]

• z1, z2

– Test 2:

• A [!x], B [!y]

• z2, z1

– …

0 1

A[x] / z1

A [!x] / z1

2

B[y] / z2

B [!y] / z2

0 1

A[x] / z2

A [!x] / z2

2

B[y] / z1

B [!y] / z1

20

Example (2)

• Test set contains:

– Test 1:

• A [x], B [y]

• z1, z2

– Test 2:

• A [!x], B [!y]

• z2, z1

– …

0 1

A[x] / z1

A [!x] / z1

2

B[y] / z2

B [!y] / z2

0 1

A[x] / z2

A [!x] / z2

2

B[y] / z1

B [!y] / z1

21

Example (3)

0

A[x] / z1

A [!x] / z1

0

A[x] / z2

A [!x] / z2

0

A[x] / z1

A [!x] / z1

A [!x] / z2

0
A [!x] / z2

A[x] / z1

A[x] / z2

Parents Offsprings

22

Example (4)
• Duplicate and contradictory transitions

removal

• Showing for state 0 of first offspring

A[x] / z1

A [!x] / z2

A[x] / z2

Conflicting

pair

A[x] / z1

A [!x] / z2

23

Example (5)

• Both offsprings pass both tests

0 1

A[x] / z1

A [!x] / z2

2

B[y] / z2

B [!y] / z1

0 1

A[x] / z1

A [!x] / z2

2

B[y] / z2

B [!y] / z1

24

Ant Colony Optimization
• Graph:

 Nodes – finite-state machines

 Edges – mutations of finite-state machines

 Graph is too big to be constructed explicitly

Algorithm:

1. Graph G = {random FSM}

2. While (true)

 Launch colony on graph G

 Update pheromone values

 Check stop conditions:

 if stagnation, restart

25

Choosing the Next Node

A

f(A)=10

А4

f(A4)=9

A3

f(A3)=0

A2

f(A2)=12

A1

f(A1)=8Mutation

A

A4

A3

A2

A1

1

8

9

10

Transition to best

successor

“Roulette”

method

P = P0 P = 1 - P0






}4,3,2,1{ AAAAw

uw

uv
Avp





26

Update Pheromone Values

• Quality of solution (ant path) – max value of f

among all nodes in path

• New pheromone value on edge:

• ρ < 1 – evaporation rate

• – max pheromone value ever added

to the edge (u, v)

best
uv

best
uvuvuv  

27

Choosing Start Nodes on Restart

• Best path – path from some node to a

node with max value of f

• Start nodes are selected with “roulette”

method from nodes of best path

28

Experiments (1)
• Six algorithms:

– a genetic algorithm with traditional crossover (GA-1)

– a random mutation hill climber (RMHC)

– (1+1) evolutionary strategy (ES)

– a genetic algorithm with test-based crossover (GA-2)

– GA-2 hybridized with RMHC (GA-2+HC)

– ant colony optimization (ACO)

• Input data: 38 tests for alarm clock

– total length of input sequences 242

– total length of reference sequences 195

• 1000 runs of each algorithm

29

Experiments (2)

Algorithm Min Max Avg Median

GA-1 855390 38882588 5805943 4588736

RMHC
1150 9592213

1423983 957746

ES
1506 9161811

3447390 856730

GA-2 32830 599022 117977 83787

GA-2+HC
26740 188509 53706 48106

ACO 2440 210971 53944 46293

30

Experiments (3)

0

200000

400000

600000

800000

1000000

1200000

0 2000000 4000000 6000000 8000000 10000000 12000000

RMHC
ESGA-2

GA-2+HC

ACO

Maximal

number of

fitness function

evaluations

Median number of

fitness function

evaluations

31

Summary

• Test-based crossover greatly improves the

performance of GA

• GA on average significantly outperforms

RMHC and ES

• ACO outperforms GA-2

• Difference between average performance

of ACO and GA-2+HC is insignificant

Thank you!

Questions?

