™M

NNNNNNNNNNNNNNNNNNNNNNNN

Test-Based Extended Finite-State
Machines Induction with
Evolutionary Algorithms and Ant

Colony Optimization

Daniil Chivilikhin, Vladimir Ulyantsev, Fedor Tsarev

St. Petersburg National Research University of Information
Technologies, Mechanics and Optics

GECCO-2012
Graduate Students Workshop
July 7, 2012

Overview (1)

« Part of a bigger project on automated software
engineering and automata-based programming

« We focus on model driven-development

[Specification]@{ Model }@{ Code }

Overview (2)

Set of tests EFSM

v \
[Specification]@{ Model }@{ Code }

3

Automata-based Programming

Output
Entities with complex Events actions
designed as =
automated controlled Come|
objects I AN S

Automated Controlled Object

Control states and — 5
computational states

Events o

Output actions

Definitions
EFSM:

— Input events
— Input Boolean variables
— output actions

Test is a pair of two sequences
— Input sequence of pairs | = <e, f> | DA [x]/ 22
* e —input event

» f— guard condition — Boolean formula

on input variables B/zl.2
— A —reference sequence of output ’
actions

EFSM on the picture complies with
X P o. A/zlz]

— <A, Ix>, <A, x>

— 22,21

EFSM on the picture does not

comply with

— <A, x>

— 72 5

Example — Alarm Clock (1)

e Four events

— H — button “H” pressed

— M — button “M”
pressed

— A — button “A” pressed

— T — occurs on each
time tick

« Two Input variables
« Seven output actions

Example — Alarm Clock (2)
Tests Model

Test 1:
_T ﬁ)
—_ 25 W soff 2 Setting alarm
time

Test 2.
- H T/z H = M/Z T/zs
— 71 Alz , .

3. Alarm is on
Test 3
_ A, H T [%1] /2524 U \\)T [%2]] Zs2;
_ 23 T[x17%2] / 25

Example — Stack (1)

Tests Model
Test 1:
— push, pop
— ok, return element
Test 2.

— push, pop, pop
— 0k, return element,
error

TeSt 3: pop / error
— push, push, pop, pop

— 0k, ok, return element,
return element

push/ ok

pop [size=1]/ return
element

pop [size>1]/ return
element

Problems Considered

« Automated model design

N
{Specification% Model }
)

* Model mining

P
{ Model j@ Code j
N

Reduction to Automated Model
Design

-
[Setoftests ﬁ[Model } { Code }
Y,

_/

Well-known methods

10

Problem Definition

* Input data:

— Set of tests
— Number of states in EFSM (C)

 Need to find an EFSM with C states
complying with all tests

11

Precomputations

* For each pair of guard conditions from tests
compute:
— If they are same as Boolean functions
— If they have common satisfying assignment
* Time complexity:
— 0O(n%22M) where n is total size of tests’ input
seqguences, m is maximal number of input

variables occurring in guard condition (in
practice m is not greater than 5)

12

Evolutionary Algorithms

Random mutation hill climber and evolutionary
strategy can be easily used

Problem with genetic algorithms — no
meaningful crossover (“it is hard to
automatically identify functionally coherent
modules in automata”)

Johnson, C. Genetic Programming with Fithess based on Model
Checking. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2007. Volume 4445/2007, pp. 114-124.

Lucas, S. and Reynolds, J. Learning Deterministic Finite Automata
with a Smart State Labeling Algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence. Vol. 27, Ne7, 2005, pp. 1063—
1074.

This problem can be solved with test-based
crossover s

Individual Representation

T/1
Alx]/0

T[Ix]/1
M/ 2

{2, 0, {{A, x, 1, O}, {T, 'x, 1, 1}}, {{T, true, 1, 1},
{M, true, 0O, 2}}}

All EFSMs considered during one of evolutionary
algorithm have the same number of states

14

Transition Labeling Algorithm

» Applied to each individual before
calculation of fithess function

TIx]/1 T [%0] / 25

@ A[Xﬂ’OA@P @ A[xl]/@

TX]/1 M[x]/1 Tx]/zs M[xi]/zs

H] /1 @ @'H ol / 24 @
15

Mutation

* Change of transition
— Final state
— Event
— Guard condition
— Number of output actions

 Addition of deletion of a transitions

16

Fitness Function

1T/

FE ==
Bz

FF, =+

EDO;,A)

max(len(O),len(A,))

e L (M —cnt) FF <1

1
0+ (M —cnt) FF, =1

17

Test-based Crossover

Input
sequences of
tests

EFSM

Marked transitions are

kept together in
EFSMs

Output
sequences

Transitions used while
processing these tests

are marked

<

i

Output sequences are
compared with reference

~~

10% of tests for which edit
distance between output and
reference is minimal are
selected

18

Example (1)

 Test set contains:
— Test 1:

Alx]/z1 Bly] / z2
i OO0
’ Zl’ 22 A[x]/ z1 B [ly]/ 22
— Test 2:

AlX] 1 z2 Bly]/ z1
’ 22 Zl A[x]/z2 B[ly]/z1

19

Example (2)

 Test set contains:

RN P
e 0508
* 21, 22 A[Ix]/ z1 B [ly]/ 22

— Test 2:

Alx]/ z2 Bly] / z1
+ A[X], B [!y] ‘
e 22. 71 @

20

Parents
: Alx]/ z1
A'X]/z
: A[X] / z2
A['x]/ z2

N\

N\

Example (3)
Offsprings

AlX]/z1

21

Example (4)
* Duplicate and contradictory transitions
removal
« Showing for state O of first offspring

Alx]/ z1

Alx]/ z1

\ / Conflicting ==

A[x]/ 22 pair \
A[X]] z2

/

/ \ A['x]/z2

22

Example (5)

» Both offsprings pass both tests
Alx]/z1 Bly] / z2
Alx]/z1 Bly] / z2

23

Ant Colony Optimization

« Graph:
= Nodes — finite-state machines
= Edges — mutations of finite-state machines
= Graphis too big to be constructed explicitly

Algorithm:
1. Graph G = {random FSM}
2. While (true)
Launch colony on graph G
Update pheromone values
Check stop conditions:
If stagnation, restart

24

Choosing the Next Node

P =P, P=1-P,

“Roulette”
method

N
.- T
Transition to best Pay = !
successor Tuw

we{AlL A2, A3, A4}

c
<

25

Update Pheromone Values

Quality of solution (ant path) — max value of f
among all nodes in path

New pheromone value on edge:

_ best
Tuy = Pluy T ATyy
p < 1 — evaporation rate

ATB\?St — max pheromone value ever added
to the edge (u, v)

26

Choosing Start Nodes on Restart

* Best path — path from some node to a
node with max value of f

o Start nodes are selected with “roulette”
method from nodes of best path

27

Experiments (1)

« Six algorithms:
— a genetic algorithm with traditional crossover (GA-1)
— a random mutation hill climber (RMHC)
— (1+1) evolutionary strategy (ES)
— a genetic algorithm with test-based crossover (GA-2)
— GA-2 hybridized with RMHC (GA-2+HC)
— ant colony optimization (ACO)

* |nput data: 38 tests for alarm clock

— total length of input sequences 242
— total length of reference sequences 195

« 1000 runs of each algorithm

28

Experiments (2)

Algorithm Min Max Avg Median
GA-1 | 855390 | 38882588 |5805943| 4588736
RMHC | 1150 | 95092213 [1423983| 957746
ES
1506 | 9161811 |3447390| 856730
GA-2 | 32830 | 599022 | 117977 | 83787
GA-2+HC | 56740 | 188509 | 53706 | 48106
ACO 2440 | 210971 | 53944 | 46293

29

Experiments (3)

1200000

Median number of
fitness function

evaluations | 1000000

800000

600000

400000

200000

|

|

ACO | |o*
0 T T T T T
0/ / 2000000 4000000 6000000 8000000 / 10000000 12000000
GA-2+HC Maximal
number of
ES RM HC fitness function
GA‘2 evaluations

30

Summary

Test-based crossover greatly improves the
performance of GA

GA on average significantly outperforms
RMHC and ES

ACO outperforms GA-2

Difference between average performance
of ACO and GA-2+HC is insignificant

31

Thank you!

Questions?

