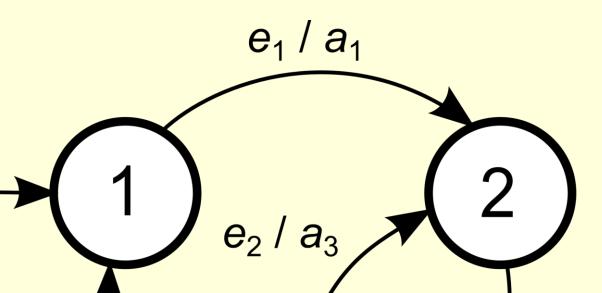


Search-Based Construction of Finite-State Machines with **Real-Valued Actions: New Representation Model**

Igor Buzhinsky, Vladimir Ulyantsev, Fedor Tsarev, Anatoly Shalyto

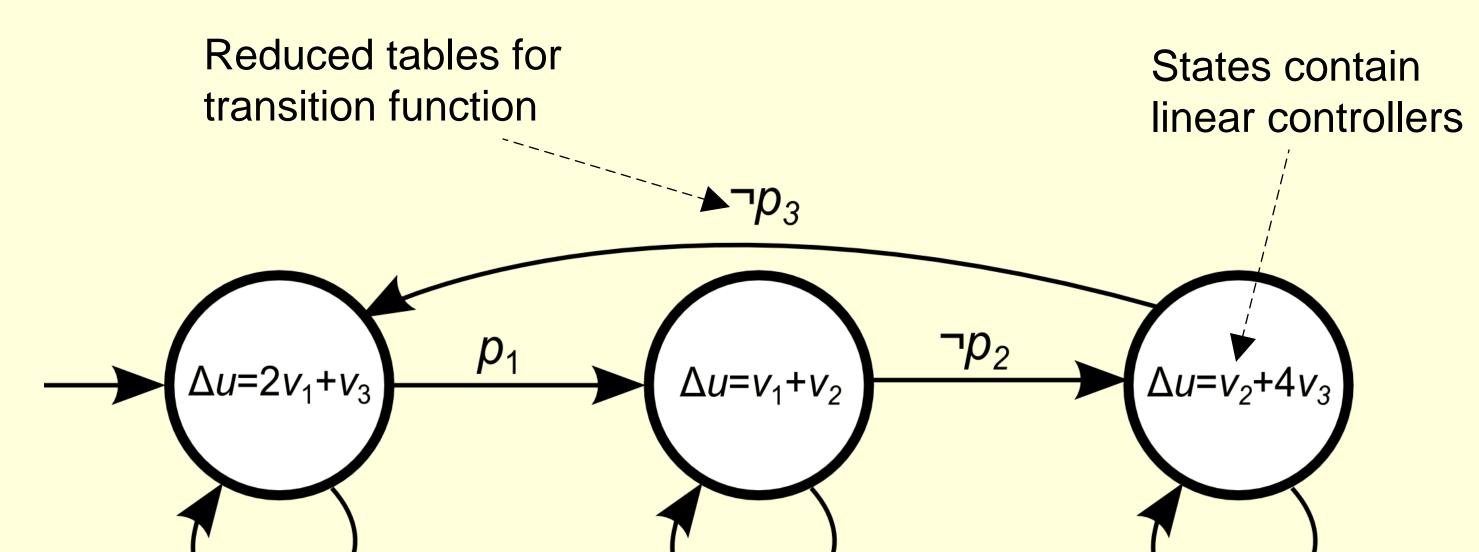

St. Petersburg National Research University of Information Technologies, Mechanics and Optics **Computer Technologies Department**

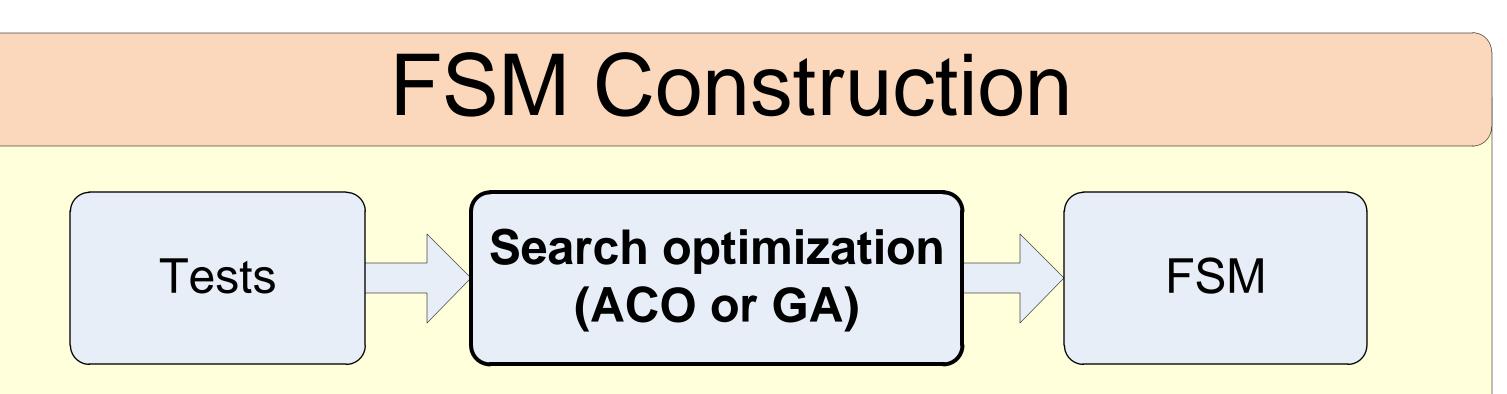
Problem Statement

 e_2 / a_2

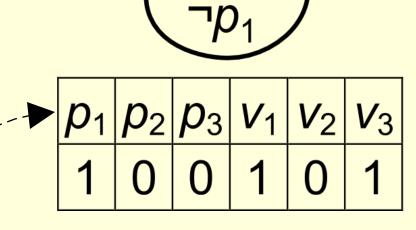
Finite-State Machine:

- FSM = $(S, s_0, E, A, \delta, \lambda)$
- S finite set of states
- s_0 start state
- *E*, *A* event and action sets • δ : $S \times E \rightarrow S$ – transition function • $\lambda: S \times E \rightarrow A - \text{output function}$ e_1 / a_2


 Tests (input data): in[<i>i</i>][<i>t</i>][<i>k</i>] – inputs (flight parameter 	Values	Meaning	<i>t</i> = 1	•••	<i>t</i> = 235		
	in[<i>i</i>][<i>t</i>][1]	Pitch angle	3.078		4.112		
values)	in[<i>i</i>][<i>t</i>][2]	Airspeed (knots)	251.42		253.20		
• out[<i>i</i>][<i>t</i>][<i>j</i>] – outputs	out[<i>i</i>][<i>t</i>][1]	Aileron position	0.000		0.073		
(control parameter	out[<i>i</i>][<i>t</i>][2]	Elevator position	-0.035		-0.037		
values)	Test example						


GEC

Problem:


- Control object has real-valued inputs and control parameters
- Tests are the examples of proper control
- Given a set of *N* tests ($N \approx 20-30$), an FSM should be constructed with behavior close to the tests
- Aircraft model is used as a control object
- Tests can be written manually in a flight simulator

- Ant colony optimization (ACO) and genetic algorithm (GA) are used for FSM searching
- FSMs with the undefined output function are individuals
- Output function is derived so that the fitness function is maximized

Predicates (Boolean functions of inputs) are used as transition conditions

Boolean masks define which predicates and variables are important for different states

 $|p_1|p_2|p_3|v_1|v_2|v_3|$

Real-valued variables (arbitrary functions of inputs) are used for

output generation

p₃

 $p_1 p_2 p_3 v_1 v_2 v_3$

• Fitness function:

- $f = 1 \sqrt{\frac{1}{N} \sum_{i=1}^{N} \rho^2 (\operatorname{ans}[i], \operatorname{out}[i]) K} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\operatorname{max}(\tau_i \tau, 0))^2};$ $\rho^{2}(\operatorname{ans}[i], \operatorname{out}[i]) = \frac{1}{\operatorname{len}[i]} \sum_{t=1}^{\operatorname{len}[i]} \frac{1}{C} \sum_{i=1}^{C} \left(\frac{\operatorname{ans}[i][t][j] - \operatorname{out}[i][t][j]}{c_{i}^{\max} - c_{i}^{\min}} \right)$
- C number of control parameters
- ans[*i*] FSM's output for the *i*-th test
- τ_i number of state changes on the *i*-th test, τ number of allowed state changes

Experiments & Results

- Intel Core 2 Quad Q9400 processor, four cores
- Three test sets, searching for FSMs with 3–5 states
- Comparison with the previous model (four states):

		Average fitness (ACO)	Average pitch error	Average roll error
Loop	New representation model	0.9866	13.8881	2.1673
	Model from Alexandrov et al.	0.9834	18.0996	5.1842
Barrel roll	New representation model	0.9862	2.2089	15.0424
	Model from Alexandrov et al.	0.9854	4.4626	21.6019
180° turn	New representation model	0.9899	1.6847	3.183
	Model from Alexandrov et al.	0.9900	8.8672	54.1725

Screenshots (FlightGear)

• Quality is improved

- Now it is possible to construct FSMs performing the turn
- Method run time ≈ 20 minutes

Barrel roll Loop

Publications

- Alexandrov A., Sergushichev A., Kazakov S., Tsarev F. Genetic algorithm for induction of finite automata with continuous and discrete output actions. In Proceedings of the 13th annual conference companion on Genetic and evolutionary computation (GECCO '11), 2011, P. 775-778
- Chivilikhin D., Ulyantsev V. Learning Finite-State Machines with Ant Colony Optimization. Lecture Notes in Computer Science, 2012, Volume 7461/2012, P. 268–275

{buzhinsky, ulyantsev, tsarev}@rain.ifmo.ru