
Lecture Notes in Computer Science 3472
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

www.dbebooks.com - Free Books & magazines

Manfred Broy Bengt Jonsson
Joost-Pieter Katoen Martin Leucker
Alexander Pretschner (Eds.)

Model-Based Testing
of Reactive Systems

Advanced Lectures

1 3

Volume Editors

Manfred Broy
Martin Leucker
TU Munich
Institute for Informatics I4
Boltzmannstr. 3, 85748 Garching, Germany
E-mail: {broy,leucker}@in.tum.de

Bengt Jonsson
Uppsala University
Department of Computer Systems
Box 337, 751 05 Uppsala, Sweden
E-mail: bengt@it.uu.se

Joost-Pieter Katoen
University of Twente
Department of Computer Science
P.O. Box 271, 7500 AE Enschede, The Netherlands
E-mail: katoen@cs.utwente.nl

Alexander Pretschner
ETH Zurich
D-INFK, Information Security
Haldeneggsteig 4, 8092 Zürich, Switzerland
E-mail: alexander.pretschner@inf.ethz.ch

Library of Congress Control Number: 2005927641

CR Subject Classification (1998): D.2.5, D.2.4, D.2, F.3.1, D.2.11, D.3.1

ISSN 0302-9743
ISBN-10 3-540-26278-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26278-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11498490 06/3142 5 4 3 2 1 0

Preface

Testing is the primary hardware and software verification technique used by
industry today. Usually, it is ad hoc, error prone, and very expensive. In recent
years, however, many attempts have been made to develop more sophisticated,
formal testing methods. But a comprehensive account of the area of formal
testing is missing. The goal of this seminar volume is to provide an in-depth
exposure of this emerging area, especially to make it easily accessible to new
researchers in this field.

Since testing describes the methodology used to obtain better systems, it is
widely used in many scientific and industrial sectors dealing with system de-
velopment. As such, a book on testing is hardly ever a comprehensive overview
on the whole domain of testing, but a selection of important approaches and
application domains. In this volume, we focus on testing methods for reactive
systems. By reactive systems, we understand software and hardware systems
with a (usually) non-terminating behavior that interact through visible events,
such as Web servers, communication protocols, operating systems, smart cards,
processors, etc.

Furthermore, in most chapters of this book, we follow the so-called model-
based approach. The underlying assumption in the model-based approach is the
existence of a precise formal model of the system being developed. This model
can be used for studying the system to be. Especially in the testing phase of
product development, it can be used to generate complete test suites to show
conformance of the model and the actual implementation, or, just to derive
“interesting” test cases to check the developed system.

The 19 chapters of the book are grouped into six parts. In the first part, we
present the approaches for testing for finite-state machines, also called Mealy
machines. The second part, called testing of labeled transition systems, gives an
overview of the testing theory due to Hennessy and De Nicola together with its
extensions to I/O, timed, and probabilistic systems. In Part III, we focus on
methodology, algorithms, and techniques for model-based test case generation.

The methods illustrated in the first three parts of the book led to the de-
velopment of test tools and have been applied in many case studies showing
their advantages and drawbacks. Several tools and case studies are presented in
Part IV.

While test case generation can be considered the heart of testing, the testing
process as a whole is more complicated. The test cases have to executed on the
system under test. In several application domains, test suites are used to show
conformance to a standard. For this, test cases have to be interchanged among
developers. Furthermore, testing should be included in the overall development
process. In Part V, called Standardized Test Notation and Execution Architecture
we cover recent developments.

VI Preface

The last part of the book introduces two extensions of the typical testing
approach. It describes methods for the continuous testing effort, also at a later
run-time of the system. Furthermore, it recalls essentials of model checking, a
different powerful technique to get “better” systems, on the one hand to separate
model checking and testing, on the other hand to show possible combination
leading to approaches like black box checking or adaptive model checking. We
meaningfully term this last part Beyond Testing.

The volume is the outcome of a research seminar that was held in Schloss
Dagstuhl in January 2004 and that took place as part of the so-called GI/Re-
search Seminar series. Thirty three young researchers participated in the semi-
nar; each of them prepared a presentation based on one or several recent articles,
reshaping the material in form with special emphasis on motivation, examples,
and also exercises.

Thanks are due to the International Conference and Research Center of
Dagstuhl and the “Gesellschaft für Informatik (GI)” for the support it provided.
Further funding was provided by the Research Training Network GAMES fi-
nanced by the European Commission under the Fifth Framework Programme.
We also would like to thank the authors of the tutorial papers as well as their
reviewers for their efforts. Last but not least, we would like to thank Britta
Liebscher and Springer for substantial help in technical and editorial matters.

The editors hope that this book will help many readers to enter the domain of
model-based testing, either to apply the so-far-developed techniques to enhance
their product under development, or to improve the current testing techniques
to make them even more efficient and effective.

Munich, Uppsala, Enschede, Zurich, January 2005 Manfred Broy
Bengt Jonsson

Joost-Pieter Katoen
Martin Leucker

Alexander Pretschner

Contents

Part I. Testing of Finite State Machines

1 Homing and Synchronizing Sequences . 5
Sven Sandberg

2 State Identification . 35
Moez Krichen

3 State Verification . 69
Henrik Björklund

4 Conformance Testing . 87
Angelo Gargantini

Part II. Testing of Labeled Transition Systems

5 Preorder Relations . 117
Stefan D. Bruda

6 Test Generation Algorithms Based on Preorder Relations 151
Valéry Tschaen

7 I/O-automata Based Testing . 173
Machiel van der Bijl, Fabien Peureux

8 Test Derivation from Timed Automata . 201
Laura Brandán Briones, Mathias Röhl

9 Testing Theory for Probabilistic Systems . 233
Verena Wolf

Part III. Model-Based Test Case Generation

10 Methodological Issues in Model-Based Testing 281
Alexander Pretschner, Jan Philipps

11 Evaluating Coverage Based Testing . 293
Christophe Gaston, Dirk Seifert

12 Technology of Test-Case Generation . 323
Levi Lúcio, Marko Samer

VIII Contents

13 Real-Time and Hybrid Systems Testing . 355
Kirsten Berkenkötter, Raimund Kirner

Part IV. Tools and Case Studies

14 Tools for Test Case Generation . 391
Axel Belinfante, Lars Frantzen, Christian Schallhart

15 Case Studies . 439
Wolfgang Prenninger, Mohammad El-Ramly, Marc Horstmann

Part V. Standardized Test Notation and Execution Architecture

16 TTCN-3 . 465
George Din

17 UML 2.0 Testing Profile . 497
Zhen Ru Dai

Part VI. Beyond Testing

18 Run-Time Verification . 525
Séverine Colin, Leonardo Mariani

19 Model Checking . 557
Therese Berg, Harald Raffelt

Part VII. Appendices

20 Model-Based Testing – A Glossary . 607
Alexander Pretschner, Martin Leucker

21 Finite State Machines . 611
Bengt Jonsson

22 Labelled Transition Systems . 615
Joost-Pieter Katoen

Literature . 617

Index . 653

Part I

Testing of Finite State Machines

The first part of the book is devoted to the problem of black-box testing of finite
state machines in order to discover properties of their behavior and to check that
they conform to given specifications.

Finite state machines is a widely used model for reactive systems. It has been
used to model systems in a wide variety of areas, including sequential circuits,
communication protocol entities, and embedded controllers. The study of testing
of finite state machines has been motivated as fundamental research in computer
science, and by applications in the testing of sequential circuits, communication
protocols, embedded controllers, etc. For the case of sequential circuits, there
were activities in the 60’s and 70’s. Since the 80’s, there has been quite a lot
of activity motivated by the problem of conformance testing for communication
protocols. This area has generated invaluable insights into the problem of testing
the reactive aspects of systems, which can be used in testing today’s complex
reactive systems.

Although FSM notation is simple, conformance testing for FSMs is very
useful in practice. FSMs have been widely used to directly specify many types
of systems, including protocols, embedded control systems and digital circuits.
Moreover, many formal notations are very similar to finite state machines, or use
FSMs to specify some parts of the systems. Such notations include StateCharts
[Har87], SDL for communication protocols [BH89], UML state diagrams [RJB99]
and ASM [Gur94] for software, and StateFlow [Sta] and SCR [HJL96] for reactive
systems. Note that many control or reactive systems are described by an infinite
set of states and infinite transitions. However, it is often possible to extract

2 Part I. Testing of Finite State Machines

for such systems a system part or a particular system behavior or interaction
with the environment, which can be modeled by a finite state machine. In many
case this can be done through an abstraction process that allows the designer
to ignore some details and focus on the finite part of the system interaction
with the environment. This finite part of the specification can be used to derive
tests and to test the whole system. To apply these tests to the complete system,
we have to assume that we know the input and output finite vocabulary, and
that the system produces a response to an input signal within a known, finite
amount of time. A state of the system can be defined as a stable condition
in which it has produced the expected output and is waiting for a new input.
A transition is defined as the consumption of an input, the generation of an
output, and the possible move to a new state. In this chapter we consider only
deterministic systems, i.e. that produce the outputs and move to the next state
in a deterministic way.

Typical problems from applications are as follows.

• Conformance testing: Check that a finite state machine conforms to a given
specification. Typically the specification is given as a finite machine, and the
conformance testing is to check whether the system under test is equivalent
to its specification, or that it implements it in the sense of some preorder
relation.
• Property checking: Check that the behavior of a finite state machine sat-

isfies certain properties. These properties can be formulated, e.g., in some
temporal logic.
• Automata Learning: Given a finite state machine, determine its behavior.

This is a harder problem, which is considered in Section 19.4 of this volume.

In this Chapter, we will focus on the problem of conformance testing. There is
a wide literature on conformance testing, especially in the area of communica-
tion protocol testing. Most of these algorithms combine techniques for attacking
subproblems that investigating particular states or transitions of a finite state
machine. We will therefore first consider these subproblems and techniques for
their solution in Chapters 1 – 3. Chapter 4 will discuss how they can be com-
bined to the problem of testing conformance.

The contents of the respective chapters are as follows.

• Chapter 1 considers the construction of Homing and Synchronizing Sequen-
ces: given a finite state machine with known states and transitions, a syn-
chronizing sequence is a sequence of input symbols which takes the machine
to a unique final state, independent of the starting state. A homing sequence
is a sequence such that the final state (which need not be unique) can be
uniquely determined by observing the output.
• Chapter 2 considers the problem of State Identification: Given a finite state

machine with known states and transitions, identify in which state the ma-
chine currently is.
• Chapter 3 considers the problem of State Verification: Given a finite state

machine with known states and transitions, verify that a machine is in a
particular state Björklund (36)

Part I. Testing of Finite State Machines 3

• Chapter 4 considers the problem of Conformance Testing is considered:
Check that a finite state machine conforms to a given specification, given as
a finite state machine.

Many works in the literature on testing of finite state machine assume that
systems are be modeled as Mealy machines. Mealy machines allow to model both
inputs and outputs as part of their behavior, and are therefore a suitable abstract
model of communication protocol entities and other types of reactive systems.
An overview of testing finite state machines is given in [LY94, LY96], from which
much of the material for this section is taken. Overviews of conformance testing
for communication protocols can be found in [SL89, Hol91, Lai02].

The basic concepts of finite states machines used in the following chapters is
given in Appendix 21.

1 Homing and Synchronizing Sequences

Sven Sandberg

Department of Information Technology
Uppsala University
svens@it.uu.se

1.1 Introduction

1.1.1 Mealy Machines

This chapter considers two fundamental problems for Mealy machines, i.e., finite-
state machines with inputs and outputs. The machines will be used in subsequent
chapters as models of a system or program to test. We repeat Definition 21.1 of
Chapter 21 here: readers already familiar with Mealy machines can safely skip
to Section 1.1.2.

Definition 1.1. A Mealy Machine is a 5-tuple M = 〈I ,O ,S , δ, λ〉, where I ,O
and S are finite nonempty sets, and δ : S × I → S and λ : S × I → O are total
functions.

The interpretation of a Mealy machine is as follows. The set S consists of
“states”. At any point in time, the machine is in one state s ∈ S . It is possible
to give inputs to the machine, by applying an input letter a ∈ I . The machine
responds by giving output λ(s , a) and transforming itself to the new state δ(s , a).
We depict Mealy machines as directed edge-labeled graphs, where S is the set of
vertices. The outgoing edges from a state s ∈ S lead to δ(s , a) for all a ∈ I , and
they are labeled “a/b”, where a is the input symbol and b is the output symbol
λ(s , a). See Figure 1.1 for an example.

We say that Mealy machines are completely specified, because at every state
there is a next state for every input (δ and λ are total). They are also determin-
istic, because only one next state is possible.

Applying a string a1a2 · · · ak ∈ I ∗ of input symbols starting in a state s1
gives the sequence of states s1, s2, . . . , sk+1 with sj+1 = δ(sj , aj). We extend

the transition function to δ(s1, a1a2 · · · ak) def= sk+1 and the output function to
λ(s1, a1a2 · · · ak) def= λ(s1, a1)λ(s2, a2) · · ·λ(sk , ak), i.e., the concatenation of all
outputs. Moreover, if Q ⊆ S is a set of states then δ(Q , x) def= {δ(s , x) : s ∈ Q}.
We sometimes use the shorthand s a−−→t for δ(s , a) = t , and if in addition we know
that λ(s , a) = b then we write s a/b−−−→t . The number |S | of states is denoted n.

Throughout this chapter we will assume that an explicit Mealy machine
M = 〈I ,O ,S , δ, λ〉 is given.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 5-33, 2005.
 Springer-Verlag Berlin Heidelberg 2005

6 Sven Sandberg

s1s2

s4s3

a/0 b/0

b/1 a/0

a/0

b/1

a/1

b/0

Fig. 1.1. A Mealy machine M = 〈I ,O ,S , δ, λ〉 with states S = {s1, s2, s3, s4}, input
alphabet I = {a, b}, and output alphabet O = {0, 1}. For instance, applying a starting
in s produces output λ(s, a) = 0 and moves to next state δ(s, a) = t .

1.1.2 Synchronizing Sequences

In the problems of this chapter, we do not know the initial state of a Mealy
machine and want to apply a sequence of input symbols so that the final state
becomes known. A synchronizing sequence is one that takes the machine to
a unique final state, and this state does not depend on where we started. Which
particular final state is not specified: it is up to whoever solves the problem to
select it. Thus, formally we have:

Definition 1.2. A sequence x ∈ I ∗ is synchronizing (for a given Mealy ma-
chine) if |δ(S , x)| = 1. 1 ��

Note that synchronizing sequences are independent of the output. Conse-
quently, when talking about synchronizing sequences we will sometimes omit
stating the output of the machine. For the same reason, it is not meaningful
to talk about synchronizing sequences “for minimized machines”, because if we
ignore the output then all machines are equivalent.

Example 1.3. Synchronizing sequences have many surprising and beautiful ap-
plications. For instance, robots that grasp and pick up objects, say, in a factory,
are often sensitive to the orientation of the object. If objects are fed in a random
1 The literature uses an amazing amount of synonyms (none of which we will use

here), including synchronizing word [KRS87], synchronization sequence [PJH92], re-
set sequence [Epp90], reset word [Rys97], directing word [ČPR71], recurrent word
[Rys92], and initializing word [Göh98]. Some texts talk about the machine as being
a synchronized [CKK02], synchronizing [KRS87], synchronizable [PS01], resettable
[PJH92], reset [Rys97], directable [BIĆP99], recurrent [Rys92], initializable [Göh98],
cofinal [ID84] or collapsible [Fri90] automaton.

1 Homing and Synchronizing Sequences 7

orientation, the problem arises of how to rotate them from an initially unknown
orientation to a known one. Using sensors for this is expensive and complicated.
A simple and elegant solution is depicted in Figure 1.2. Two parallel “pushing
walls” are placed around the object, and one is moved toward the other so that
it starts pushing the object, rotating it until a stable position between the walls
is reached. Given the possible directions of these pushing walls, one has to find
a sequence of pushes from different directions that takes the object to a known
state. This problem can be reduced to finding a synchronizing sequence in a
machine where the states are the possible orientations, the input alphabet is the
set of possible directions of the walls, and the transition function is given by
how a particular way of pushing rotates the object into a new orientation. This
problem has been considered by, e.g., Natarajan [Nat86] and Eppstein [Epp90],
who relate the problem to automata but use a slightly different way of pushing.
Rao and Goldberg [RG95] use our way of pushing and their method works for
more generally shaped objects. ��

(a) (b) (c) (d)

Fig. 1.2. Two pushing walls rotating the object to a new position. (a) The object. (b)
One wall moves toward the object until (c) it hits it and starts pushing it, rotating it
to the final stable position (d).

An alternative way to formulate the synchronizing sequence problem is as
follows. Let S be a finite set, and f1, . . . , fk : S → S total functions. Find a
composition of the functions that is constant. Function fi corresponds to δ(·, ai),
where ai is the i ’th input symbol.

Example 1.4. To see that synchronizing sequences do not always exist, consider
the Mealy machine in Figure 1.1. If the same sequence of input symbols is applied
to two states that are “opposite corners”, then the respective final states will be
opposite corners too. So in particular no sequence x satisfies δ(s1, x) = δ(s3, x)
or δ(s2, x) = δ(s4, x). ��

Besides the parts orienting problem in Example 1.3, synchronizing sequences
have been used to generate test cases for synchronous circuits with no reset
[CJSP93], and are also important in theoretical automata theory and structural
theory of many-valued functions [Sal02].

8 Sven Sandberg

1.1.3 Homing Sequences

The second problem of this chapter, homing sequences, are sequences of input
symbols such that the final state after applying it can be determined by looking
at the output:

Definition 1.5. A sequence x ∈ I ∗ is homing (for a given Mealy machine) if
for every pair s , t ∈ S of states, δ(s , x) �= δ(t , x)⇒ λ(s , x) �= λ(t , x). 2 ��

Note that every synchronizing sequence is a homing sequence, but the con-
verse is not true. See Figure 1.1 for an example: we saw earlier that it does not
have a synchronizing sequence, but it has a homing sequence. After applying
ab, the possible outputs are λ(s1, ab) = 01, λ(s2, ab) = 01, λ(s3, ab) = 10, and
λ(s4, ab) = 00. Hence, if we observe output 00 or 10, the initial and hence also
final state becomes known. For output 01 we only know the initial state was s
or t , but in both cases the final state is u. Thus the output uniquely determines
the final state, and the sequence is homing.

Homing sequences can be either preset3, as in Definition 1.5, or adaptive.
While preset sequences are completely determined before the experiment starts,
adaptive sequences are applied to the machine as they are constructed, and
the next symbol in the sequence depends on the previous outputs. Thus, preset
sequences can be seen as a special case of adaptive sequences, where this de-
pendence is not utilized. Formally one can define adaptive homing sequences as
decision trees, where each node is labeled with an input symbol and each edge
is labeled with an output symbol. The test consists in walking from the root of
the tree toward a leaf: apply the input on the node, observe the output and walk
to the successor through the edge with the corresponding label. When a leaf is
reached, the sequence of outputs determines the final state (but unlike preset
sequences, the sequence of inputs would not necessarily determine the final state
if the initial state had been different).

Homing sequences are typically used as building blocks in testing problems
with no reset. Here, a reset is a special input symbol that takes every input to the
same state, i.e., it is a synchronizing sequence of length one. They have been used
in conformance testing (Section 4.5), and in learning (by Rivest and Schapire
[RS93]; see also Chapter 19). For machines with output, homing sequences
are often preferable to synchronizing sequences: first, they are usually shorter;
second, they always exist if the automaton is minimized (cf. Theorem 1.17), a
natural criterion that is often required anyway.

1.1.4 Chapter Outline

Section 1.2 introduces the important notion of current state uncertainty, used
when computing homing sequences. Section 1.3 presents algorithms for several
2 Synonyms (not used here) are homing word [Rys83], terminal state experiment

[Hib61], Identification experiment of the second kind (IE 2) [Sta72] and experiment
which distinguishes the terminal state of a machine [Gin58].

3 A synonym is uniform [Gin58].

1 Homing and Synchronizing Sequences 9

versions of the homing and synchronizing sequences problems: first an algorithm
to compute homing sequences for minimized Mealy machines (Section 1.3.1),
then an algorithm to compute synchronizing sequences (Section 1.3.2). Sec-
tion 1.3.3 unifies these algorithms into one for computing homing sequences
for general (not necessarily minimized) machines – this algorithm can be used
both to compute homing and synchronizing sequences. The two algorithms for
computing homing sequences are then modified to compute adaptive homing
sequences in Section 1.3.4. Finally, Section 1.3.5 gives exponential algorithms to
compute minimal length homing and synchronizing sequences.

Section 1.4 turns from algorithms to complexity. First, Section 1.4.1 shows
that it is NP-hard to find the shortest homing or synchronizing sequence. Second,
Section 1.4.2 shows that it is PSPACE-complete to determine if a machine has
a homing or synchronizing sequence, if it is known that the initial state is in a
particular subset Q ⊆ S . In both cases it means that polynomial algorithms for
the problems are unlikely to exist.

Section 1.5 gives an overview of research in the area and mentions some re-
lated areas, and Section 1.6 summarizes the most important ideas in the chapter.

Flogsta Ekeby

H̊aga Eriksberg K̊abo

Fig. 1.3. The subway map of Uppsala. The five stations are connected by two one-way
lines: white and grey.

Exercise 1.1. The schematic map of the subway in Uppsala looks as in Figure 1.3.
You do not know at which station you are, and there are no signs or other
characteristics that reveal the current station, but you have to get to Flogsta
by moving from station to station, in each step taking either the white or the
grey line. What type of sequence does this correspond to? Find a sequence if one
exists.

(Hint: use that if you are in Flogsta or H̊aga, the white line takes you to Eriksberg

for sure.)

1.2 Initial and Current State Uncertainty

Consider a Mealy machine to which we apply some input string and receive an
output string. Even if the input string was not homing, we may still draw some

10 Sven Sandberg

partial conclusions from the output. The initial state uncertainty describes what
we know about the initial state, and the current state uncertainty describes what
we know about the final state. Current state uncertainty is crucial when com-
puting homing sequences, and the definition relies on initial state uncertainty.

Definition 1.6. The initial state uncertainty (with respect to a Mealy ma-
chine) after applying input sequence x ∈ I ∗ is a partition

π(x) def= {B1,B2, . . . ,Br} ⊂ P(S)

of the states. Two states s , t are in the same block Bi if and only if λ(s , x) =
λ(t , x). ��

Thus, after applying input x , for a certain output we know the initial state
was in B1, for another output we know it was in B2, and so on. Although initial
state uncertainty will not be used explicitly until Sections 2 and 3.4.3, it provides
intuitions that will be useful here, and we also need it to define the current state
uncertainty.

The current state uncertainty is a data structure that, given an input string,
describes for each output string the set of possible final states. Thus, computing
a homing sequence means to find an input string for which the current state
uncertainty associated with each output string is a singleton.

Definition 1.7. The current state uncertainty (with respect to a Mealy
machine) after applying input sequence x ∈ I ∗ is σ(x) def= {δ(Bi , x) : Bi ∈
π(x)} ⊂ P(S). ��

The elements of both the initial and the current state uncertainty are called
blocks. If B is a block of π(x) or σ(x) then |B | denotes its size, whereas |π(x)|
and |σ(x)| denote the number of blocks. While the initial state uncertainty is
a partition (i.e., any two blocks are disjoint, and the union of all blocks is the
entire set of states), Example 1.8 will show that the current state uncertainty
does not need to be one: a state may belong to several different blocks, and the
union of all blocks does not need to be the whole set of states.

We will frequently take the viewpoint that the current state uncertainty
evolves as more input symbols are applied. Namely, the current state uncertainty
σ(xy) is obtained by applying δ(·, y) to each block of σ(x), splitting the result
if some states gave different outputs on y.

Example 1.8. To see how the current state uncertainty works, consider the ma-
chine in Figure 1.4. Initially, we do not know the state, so it may be either s1,
s2, or s3. Thus the current state uncertainty is σ(ε) = {{s1, s2, s3}}. Apply the
string a to the machine. If we receive the output 1, then we were in state s2
so the current state is s1. If we receive the output 0, then we were in either
s1 or s3 and the current state is either s1 or s3. We then describe the current
state uncertainty as σ(a) = {{s1}1, {s1, s3}0} (the subscripts, included only in
this example for clarity, show which outputs correspond to each block). Now we

1 Homing and Synchronizing Sequences 11

s1

s2 s3

b/0a/1

a/0

a/0

b/0

b/0
Fig. 1.4. Example illustrating current state uncertainty

additionally apply the letter b. If we were in s1 then we end up in s3 and receive
output 0, and if we were in either s3 or s1 then we end up in either s2 or s3, in
both cases receiving output 0. Thus the current state uncertainty after applying
ab is σ(ab) = {{s3}10, {s2, s3}00}. Finally, we apply the letter a at this point.
If we were in s3, then we move to s3 with output 0, and if we were in s2, then
we move to s1 and receive output 1. Thus the current state uncertainty becomes
σ(aba) = {{s3}100 or 000, {s1}001}. We end the example with an important re-
mark: since every set in the current state uncertainty is now a singleton, we can
determine the current state uniquely, by looking at the output. Thus aba is a
homing sequence. (Verify this using Definition 1.5!) ��

We conclude this section with two important observations. First, as the se-
quence is extended, the initial state uncertainty becomes more and more refined.
I.e., by applying more input symbols the blocks of the partition may be split but
not merged:

Lemma 1.9. For any sequences x , y ∈ I ∗, the following holds.

∀Bi ∈ π(xy)∃Bj ∈ π(x) : Bi ⊆ Bj .

Proof. All states in a block of π(xy) give the same output on xy. In particular
they give the same output on x , so they all belong to the same block of π(x). ��

Second, as a sequence x is extended, the sum
∑

B∈σ(x)|B | of sizes of all blocks
in the current state uncertainty can never increase. This is because if B ∈ σ(xy)
then B = δ(Q , y), where Q ⊆ B ′ is a subset of some block B ′ ∈ σ(x): here we
must have |B ′| ≥ |Q | ≥ |B |. (When is each inequality strict?) Moreover, the
number of blocks can only decrease if two blocks are mapped to the same block,
in which case the sum of sizes of all blocks also decreases. This (very informally)
explains the following lemma, whose proof we delegate to Exercise 1.2.

12 Sven Sandberg

Lemma 1.10. If x , y ∈ I ∗ are any two sequences, the following holds.

∑

B∈σ(x)

|B |

− |σ(x)| ≥

∑

B∈σ(xy)

|B |

− |σ(xy)|. ��

As we will see in the next section, algorithms for computing homing se-
quences work by concatenating sequences so that in each step the inequality in
Lemma 1.10 is strict : note that x is homing when

∑
B∈σ(x)|B | − |σ(x)| reaches

zero.
Initial and current state uncertainty has been used since the introduction of

homing sequences [Moo56, Gil61] although we use a slightly different definition
of current state uncertainty [LY96].

Exercise 1.2. Prove Lemma 1.10.

Exercise 1.3. Recall from the discussion before Lemma 1.10 that if B ∈ σ(xy)
then B = δ(Q , y) where Q ⊆ B ′ for some B ′ ∈ σ(x). When is |B ′| > |Q |, and
when is |Q | > |B |?

1.3 Algorithms for Computing Homing and
Synchronizing Sequences

1.3.1 Computing Homing Sequences for Minimized Machines

This section presents an algorithm to compute homing sequences, assuming the
machine is minimized (for definitions and algorithms for minimization, refer to
Chapter 21). This is an important special case that occurs in many practical
applications, cf. Section 4.5 and the article by Rivest and Schapire [RS93]. The
algorithm for minimized machines is a simpler special case of the general Algo-
rithm 3 in Section 1.3.3: they can be implemented to act identically on minimized
machines. Both algorithms run in time O(n3 + n2 · |I |), but the one for mini-
mized machines requires less space (O(n) instead of O(n2+n ·|I |)) and produces
shorter sequences (bounded by (n2 − n)/2 instead of (n3 − n)/6). The general
algorithm, on the other hand, gives additional insight into the relation between
homing and synchronizing sequences, and is of course applicable to more problem
instances.

The algorithm of this section builds a homing sequence by concatenating
many separating sequences. A separating sequence for two states gives different
output for the states:

Definition 1.11. A separating sequence for two states s , t ∈ S is a sequence
x ∈ I ∗ such that λ(s , x) �= λ(t , x). ��

1 Homing and Synchronizing Sequences 13

The Algorithm. Algorithm 1 computes a homing sequence for a minimized
machine as follows. It first finds a separating sequence for some two states of the
machine. By the definition of separating sequence, the two states give different
outputs, hence they now belong to different blocks of the resulting current state
uncertainty. Next iteration finds two new states that belong to the same block of
the current state uncertainty and applies a separating sequence for them. Again,
the two states end up in different blocks of the new current state uncertainty. This
process is repeated until the current state uncertainty contains only singleton
blocks, at which point we have a homing sequence.

Algorithm 1 Computing a homing sequence for a minimized machine.

1 function Homing-For-Minimized(Minimized Mealy machine M)
2 x ← ε
3 while there is a block B ∈ σ(x) with |B | > 1
4 find two different states s , t ∈ B
5 let y be a separating sequence for s and t
6 x ← xy
7 return x

Step 5 of the algorithm can always be performed because the machine is
minimized. Since y is separating, the block B splits into at least two new blocks
(one containing s and one containing t). Thus, Lemma 1.10 holds with strict
inequality between any two iterations, i.e., the quantity

∑
B∈σ(x)|B | − |σ(x)|

strictly decreases in each iteration. When the algorithm starts, it is n − 1 and
when it terminates it is 0. Hence the algorithm terminates after concatenating
at most n − 1 separating sequences.

The algorithm is due to Ginsburg [Gin58] who relies on the adaptive version
of Moore [Moo56] which we will see more of in Section 1.3.4.

Length of Separating Sequences. We now show that any two states in a
minimized machine have a separating sequence of length at most n − 1. Since
we only need to concatenate n − 1 separating sequences, this shows that the
computed homing sequence has length at most (n − 1)2. The argument will also
help understanding how to compute separating sequences.

Define a sequence ρ0, ρ1, . . . of partitions, so that two states are in the same
class of ρi if and only if they do not have any separating sequence of length i .
Thus, ρi is the partition induced by the relation s ≡i t def⇔ “λ(s , x) = λ(t , x) for
all x ∈ I ∗ of length at most i”. In particular, ρ0 = {S}, and ρi+1 is a refinement
of ρi . These partitions are also used in algorithms for machine minimization; cf.
Section 21. The following lemma is important.

Lemma 1.12 ([Moo56]). If ρi+1 = ρi for some i, then the rest of the sequence
of partitions is constant, i.e., ρj = ρi for all j > i.

14 Sven Sandberg

Proof. We prove the equivalent, contrapositive form: ρi+1 �= ρi ⇒ ρi �= ρi−1

for all i ≥ 1. If ρi+1 �= ρi then there are two states s , t ∈ S with a shortest
separating sequence of length i +1, say ax ∈ I i+1 (i.e., a is the first letter and x
the tail of the sequence). Since ax is separating for s and t but a is not, x must
be separating for δ(s , a) and δ(t , a). It is also a shortest separating sequence,
because if y ∈ I ∗ was shorter than x , then ay would be a separating sequence for
s and t , and shorter than ax . This proves that there are two states δ(s , a), δ(t , a)
with a shortest separating sequence of length i , so ρi �= ρi−1. ��

Since a partition of n elements can only be refined n times, the sequence
ρ0, ρ1, . . . of partitions becomes constant after at most n steps. And since the
machine is minimized, after this point the partitions contain only singletons.
So any two states have a separating sequence of length at most n − 1, and the
homing sequence has length at most (n − 1)2.

Hibbard [Hib61] improved this bound, showing that the homing sequence
computed by Algorithm 1 has length at most n(n−1)/2, provided we choose two
states with the shortest possible separating sequence in each iteration. Moreover,
for every n there is an n-state machine whose shortest homing sequence has
length n(n − 1)/2, so the algorithm has the optimal worst case behavior in
terms of output length.

Computing Separating Sequences. We are now ready to fill in the last
detail of the algorithm. To compute separating sequences, we first construct the
partitions ρ1, ρ2, . . . , ρr described above, where r is the smallest index such that
ρr contains only singletons. Two states s , t ∈ S belong to different blocks of ρ1

if and only if there is an input a ∈ I so that λ(s , a) �= λ(t , a), and thus ρ1 can
be computed. Two states s , t ∈ S belong to different blocks of ρi for i > 1 if
and only if there is an input a such that δ(s , a) and δ(t , a) belong to different
blocks of ρi−1, and thus all ρi with i > 1 can be computed.

To find a separating sequence for two states s , t ∈ S , find the smallest index
i such that s and t belong to different blocks of ρi . As argued in the proof of
Lemma 1.12, the separating sequence has the form ax , where x is a shortest
separating sequence for δ(s , a) and δ(t , a). Thus, we find the a that takes s
and t to different blocks of ρi−1 and repeat the process until we reach ρ0. The
concatenation of all such a is our separating sequence.

This algorithm can be modified to use only O(n) memory, not counting the
space required by the output. Typically, the size of the output does not contribute
to the memory requirements, since the sequence is applied to some machine on
the fly rather than stored explicitly.

Exercise 1.4. Give an example of a Mealy machine that is not minimized but has
a homing sequence. Is there a Mealy machine that is not minimized and has a
homing but no synchronizing sequence?

1 Homing and Synchronizing Sequences 15

1.3.2 Computing Synchronizing Sequences

Synchronizing sequences are computed in a way similar to homing sequences. The
algorithm also concatenates many short sequences into one long, but this time
the sequences take two states to the same final state. Analogously to separating
sequences, we define merging sequences:

Definition 1.13. A merging sequence for two states s , t ∈ S is a sequence
x ∈ I ∗ such that δ(s , x) = δ(t , x). ��

The Algorithm. Algorithm 2 first finds a merging sequence y for two states.
This ensures that |δ(S , y)| < |S |, because each state in S gives rise to at most one
state in δ(S , y), but the two states for which the sequence is merging give rise to
the same state. This process is repeated, in each step appending a new merging
sequence for two states in δ(S , x) to the result x , thus decreasing |δ(S , x)|.

If at some point the algorithm finds two states that do not have a merging
sequence, then there is no synchronizing sequence: if there was, it would merge
them. And if the algorithm terminates by finishing the loop, the sequence x is
clearly synchronizing. This shows correctness. Since |δ(S , x)| is n initially and 1
on successful termination, the algorithm needs at most n − 1 iterations.

Algorithm 2 Computing a synchronizing sequence.

1 function Synchronizing(Mealy machineM)
2 x ← ε
3 while |δ(S , x)| > 1
4 find two different states s0, t0 ∈ δ(S , x)
5 let y be a merging sequence for s0 and t0

(if none exists, return Failure)
6 x ← xy
7 return x

As a consequence of this algorithm, we have (see, e.g., Starke [Sta72]):

Theorem 1.14. A machine has a synchronizing sequence if and only if every
pair of states has a merging sequence.

Proof. If the machine has a synchronizing sequence, then it is merging for every
pair of states. If every pair of states has a merging sequence, then Algorithm 2
computes a synchronizing sequence. ��

To convince yourself, it may be instructive to go back and see how this
algorithm works on Exercise 1.1.

16 Sven Sandberg

Computing Merging Sequences. It remains to show how to compute merg-
ing sequences. This can be done by constructing a product machine M′ =
〈I ′,S ′, δ′〉, with the same input alphabet I ′ = I and no outputs (so we omit
O ′ and λ′). Every state in M′ is a set of one or two states in M, i.e., S ′ =
{{s}, {s , t} : s , t ∈ S}. Intuitively, these sets correspond to possible final states
in M after applying a sequence to the s0, t0 chosen on line 4 of Algorithm 2.
Thus we define δ′ by setting {s , t} a−−→{s ′, t ′} in M′ if and only if s a−−→s ′ and
t a−−→t ′ in M, where we may have s = t or s ′ = t ′. In other words, δ′ is the re-
striction of δ to sets of size one or two. Clearly, δ′({s , t}, x) = {s ′, t ′} if and only
if δ({s , t}, x) = {s ′, t ′} (where in the first case {s , t} and {s ′, t ′} are interpreted
as states of M′ and in the second case as sets of states in M). See Figure 1.5
for an example of the product machine. Thus, to find a merging sequence for s
and t we only need to check if it is possible to reach a singleton set from {s , t}
in M′. This can be done, e.g., using breadth-first search [CLRS01].

s1

s2 s3

a, b

a

b

a

b

s1, s2

s2, s3 s1, s3

s1 s2 s3

a

b

b

a

a

ba, b

a

b

b

a
Fig. 1.5. A Mealy machineM and the corresponding product machineM′. Outputs
are omitted here. In the product machine, edges in the shortest path forest are solid
and other edges are dashed.

Efficient Implementation. The resulting algorithm is easily seen to run in
time O(n4 + n3 · |I |). In each of the O(n) iterations, we compute δ(S , xy) by
applying y to every element of δ(S , x). Since |y| = O(n2) and |δ(S , x)| = O(n),
this needs O(n3) time per iteration. The breadth first search needs linear time
in the size of M′, i.e., O(n2 · |I |). We now show how to save a factor n, using
several clever tricks due to Eppstein [Epp90].

Theorem 1.15 ([Epp90]). Algorithm 2 can be implemented to consume time in
O(n3 + n2 · |I |) and working space O(n2 + n · |I |) (not counting the space for
the output).

The extra condition “not counting the space for the output” is necessary be-
cause the only known upper bound on the length of synchronizing sequences is

1 Homing and Synchronizing Sequences 17

O(n3) (cf. Theorem 1.16). The output may not contribute to the space require-
ment, in case the sequence is not stored explicitly but applied to some machine
one letter at a time as it is being constructed.

Proof.
Overview. The proof is in several steps. First, we show how to implement the
algorithm to use only the required time, not bothering about how much space is
used. The real bottleneck is computing δ(S , x). For this to be fast, we precompute
one lookup table per node of the shortest path forest ofM′. Each table has size
O(n), and since there are O(n2) nodes, the total space is O(n3), which is too
big. To overcome this, we then show how to leave out all but every n’th table,
without destroying the time requirement.
The Shortest Path Forest. We first show how to satisfy the time requirements.
Run breadth-first search in advance, starting simultaneously from all singletons
in the product machine M′ and taking transitions backward. Let it produce a
shortest path forest, i.e., a set of trees where the roots are the singletons and
the path from any node to the root is of shortest length. This needs O(n2 · |I |)
time. For any {s , t} ∈ S ′, denote by τs,t the path from {s , t} to the root in this
forest. The algorithm will always select y = τs0,t0 on line 5.
Tables. Recall that we obtain δ(S , xy) by iterating through all elements u of
the already known set δ(S , x) and computing δ(u, y). In the worst case, y is
quadratically long and thus the total work for all O(n) choices of u in all O(n)
iterations becomes O(n4). We now improve this bound to O(n2). Since y = τs0,t0 ,
we precompute δ(u, τs,t) for every s , t , u ∈ S . Thus, computing δ(u, y) is done in
O(1) time by a table lookup and we obtain δ(S , xy) from δ(S , x) in O(n) time.
The tables need O(n3) space, but we will improve that later.
Computing Tables. We now show how to compute the tables. For every {s , t} ∈
S ′ we compute an n element table, with the entries δ(u, τs,t) for each u ∈ S , using
totally O(n3) time and space, as follows. Traverse the shortest path forest in pre-
order, again following transitions backward. When visiting node {s , t} ∈ S ′, let
{s ′, t ′} be its parent in the forest. Thus, there is some a such that τs,t = aτs′,t′ .
Note that δ(u ′, τs′,t′) has already been computed for all u ′ ∈ S , since we traverse
in pre-order. To compute δ(u, τs,t) we only need to compute δ(u, a) and plug
it into the table in the parent node: δ(u, τs,t) = δ(δ(u, a), τs′,t′). This takes
constant time, so doing it for every u ∈ S and every node in the tree requires
only O(n3) time.

We thus achieved the time bound, but the algorithm now needs O(n2 · |I |)
space to storeM′ and O(n3) to store the tables of all δ(u, τs,t). We will reduce
the first to O(n · |I |+ n2) and the second to O(n2).
Compact Representation ofM′. The graphM′ has O(n2) nodes and O(n2 · |I |)
edges. The breadth-first search needs one flag per node to indicate if it has
been visited, so we cannot get below O(n2) space. But we do not have to store
edges explicitly. The forward transitions δ′ can be computed on the fly using
δ. The breadth-first search takes transitions backward. To avoid representing
backwards transitions explicitly, we precompute for every s ′ ∈ S and a ∈ I ,
the set δ−1(s ′, a) def= {s ∈ S : δ(s , a) = s ′} (requiring totally O(n · |I |) space).

18 Sven Sandberg

By definition, the backward transitions on input a from some state {s ′, t ′} ∈ S ′

are all {s , t} so that s ∈ δ−1(s ′, a) and t ∈ δ−1(t ′, a). For a single state and a
single input, these can be found in time O(r), where r is the number of resulting
backward transitions. Consequently, the breadth-first search can still be done in
O(n2 · |I |) time even if edges are not represented explicitly.
Leaving out Tables. To reduce the space needed by tables, we will leave out the
tables for all but at most every n’th node of the forest, so the distribution of
tables in the forest becomes “sparse”. At the same time we will guarantee that
following the shortest path from any node toward a root, a node with a table
will be found after at most n steps. Thus, when the main algorithm computes
δ(δ(S , x), y) it has to follow the shortest path in the forest for at most n steps
per state in δ(S , x) before it can look up the answer. As a result, the total time
over all iterations to update δ(S , xy) grows to O(n3), but that is within the time
limit.
Which Tables to Leave out. To determine which nodes in the shortest path forest
that should have a table, we first take a copy of the forest. Take a leaf of maximal
depth, follow the path from this leaf toward the root for n steps and let {s , t}
be the node we arrive at. Mark {s , t} as a node for which the table should be
computed, and remove the entire subtree rooted at {s , t}. Repeat this process
as long as possible, i.e., until the resulting forest has depth less than n. Since
every removed subtree has depth n, the path from any node to a marked node
has length at most n, thus guaranteeing that updating δ(u, xy) needs at most n
steps. Moreover, every removed subtree has at least n nodes, so tables will be
stored in at most every n’th node.
Computing Tables When They Are Few. Finally, computing the tables when they
are more sparsely occurring is done almost as before, but instead of using the
table value from a parent, we find the nearest ancestor that has a table, requiring
O(n) time for every element of every table, summing up to O(n3) because there
are O(n) tables with n entries each.

We conclude the proof with a summary of the requirements of the algorithm.

• The graphM′ needs O(n2) space for nodes and O(n · |I |) for edges.
• There are O(n) tables, each one taking O(n) space, so totally O(n2).
• The breadth-first search needs O(n2 · |I |) time.
• Computing the tables needs O(n3) time.
• In each of the O(n) iterations, computing δ(S , xy) needs O(n2) time.
• In each iteration, writing the merging sequence to the output is linear in its

length, which is bounded by O(n2). ��

Length of Synchronizing Sequences. The merging sequences computed are
of minimal length, because breadth-first search computes shortest paths. Un-
fortunately, this does not guarantee that Algorithm 2 finds a shortest possible
synchronizing sequence, since the order in which states to merge are picked may
not be optimal. It is possible to pick the states that provide for the shortest
merging sequence without increasing the asymptotic running time, but there are
machines where this strategy is not the best. In fact, we will see in Section 1.4.1

1 Homing and Synchronizing Sequences 19

that finding shortest possible sequences is NP-hard, meaning that it is extremely
unlikely that a polynomial time algorithm exists.

Note that each merging sequence has length at most n(n − 1)/2 because it
is a simple path inM′; thus the length of the synchronizing sequence is at most
n(n − 1)2/2. We now derive a slightly sharper bound.

Theorem 1.16. If a machine has a synchronizing sequence, then it has one of
length at most n3/3.

Proof. At any iteration of Algorithm 2, among all states in Q def= δ(S , x), find
two that provide for a shortest merging sequence. We first show that when
|Q | = k , there is a pair of states in Q with a merging sequence of length at
most n(n − 1)/2− k(k − 1)/2 + 1. Every shortest sequence passes through each
node in the shortest path forest at most once: otherwise we could cut away
the sub-sequence between the repeated nodes to get a shorter sequence. Also,
it cannot visit any node in the forest that has both states in Q , because those
two states would then have a shorter merging sequence. There are n(n − 1)/2
nodes in the shortest path forest (not counting singletons)4, and k(k − 1)/2 of
them correspond to pairs with both nodes in δ(S , x). Thus, there is a merging
sequence of length at most n(n − 1)/2− k(k − 1)/2 + 1.

The number |δ(S , x)| of possible states is n initially, and in the worst case
it decreases by only one in each iteration until it reaches 2 just before the last
iteration. Thus, summing the length of all merging sequences, starting from the
end, we get

n∑

i=2

(
n(n − 1)

2
− i(i − 1)

2
+ 1
)

,

which evaluates to n3/3− n2 + 5
3n − 1 < n3/3. ��

This is not the best known bound: Klyachko, Rystsov, and Spivak [KRS87]
improved it to (n3−n)/6. Similarly to the proof above, they bound the length of
each merging sequence, but with a much more sophisticated analysis they achieve
the bound (n − k +2) · (n − k +1)/2 instead of n(n − 1)/2− k(k − 1)/2+1. The
best known lower bound is (n − 1)2, and it is an open problem to close the gap
between the lower quadratic and upper cubic bounds. Černý [Čer64] conjectured
that the upper bound is also (n − 1)2.

Exercise 1.5. Consider the problem of finding a synchronizing sequence that ends
in a specified final state. When does such a sequence exist? Extend Algorithm 2
to compute such a sequence.

Exercise 1.6. Show how to modify the algorithm of this section, so that it tests
whether a machine has a synchronizing sequence without computing it, in time
O(n2 · |I |).

A similar algorithm for the problem in Exercise 1.6 was suggested by Imreh
and Steinby [IS95].
4 Recall that |S ′ \ {singletons}| = the number of two-element subsets of S =

(
n
2

)
=

n(n − 1)/2.

20 Sven Sandberg

1.3.3 Computing Homing Sequences for General Machines

In this section we remove the restriction from Section 1.3.1 that the machine
has to be minimized. Note that for general machines, an algorithm to compute
homing sequences can be used also to compute synchronizing sequences: just
remove all outputs from the machine and ask for a homing sequence. Since there
are no outputs, homing and synchronizing sequences are the same thing. It is
therefore natural that the algorithm unifies Algorithm 1 of Section 1.3.1 and
Algorithm 2 of Section 1.3.2 by computing separating or merging sequences in
each step.

Recall Lemma 1.10, saying that the quantity
∑

B∈σ(x)|B | − |σ(x)| does not
increase as the sequence x is extended. Algorithm 3 repeatedly applies a sequence
that strictly decreases this quantity: it takes two states from the same block
of the current state uncertainty and applies either a merging or a separating
sequence for them. If the sequence is merging, then the sum of sizes of all blocks
diminishes. If it is separating, then the block containing the two states is split.
Since the quantity is n−1 initially and 0 when the algorithm finishes, it finishes
in at most n − 1 steps.

If the algorithm does not find either a merging or a separating sequence on
line 5, then the machine has no homing sequence. Indeed, any homing sequence
that does not take s and t to the same state must give different outputs for them,
so it is either merging or separating. This shows correctness of the algorithm.

Algorithm 3 Computing a homing sequence for a general machine.

1 function Homing(Mealy machineM)
2 x ← ε
3 while there is a block B ∈ σ(x) with |B | > 1
4 find two different states s , t ∈ B
5 let y be a separating or merging sequence for s and t

(if none exists, return Failure)
6 x ← xy
7 return x

Similar to Theorem 1.14, we have the following for homing sequences.

Theorem 1.17 ([Rys83]). A Mealy machine has a homing sequence if and only
if every pair of states either has a merging sequence or a separating sequence.

Note that, as we saw already in Section 1.3.1, every minimized machine has a
homing sequence.

Proof. Assume there is a homing sequence and let s , t ∈ S be any pair of states.
If the homing sequence takes s and t to the same final state, then it is a merging
sequence. Otherwise, by the definition of homing sequence, it must be possible

1 Homing and Synchronizing Sequences 21

to tell the two final states apart by looking at the output. Thus the homing
sequence is a separating sequence.

Conversely, if every pair of states has either a merging or a separating se-
quence, then Algorithm 3 computes a homing sequence. ��

We cannot hope for this algorithm to be any faster than the one to compute
synchronizing sequences, because they have to do the same job if there is no
separating sequence. But it is easy to see that it can be implemented not to be
worse either. By definition, two states have a separating sequence if and only if
they are not equivalent (two states are equivalent if they give the same output for
all input sequences: see Section 21). Hence, we first minimize the machine to find
out which states have separating sequences. As long as possible, the algorithm
chooses non-equivalent states on line 4 and only looks for a separating sequence.
Thus, the first half of the homing sequence is actually a homing sequence for
the minimized machine, and can be computed by applying Algorithm 1 to the
minimized machine. The second half of the sequence is computed as described in
Section 1.3.2, but only selecting states from the same block of the current state
uncertainty.

1.3.4 Computing Adaptive Homing Sequences

Recall that an adaptive homing sequence is applied to a machine as it is
being computed, and that each input symbol depends on the previous outputs.
An adaptive homing sequence is formally defined as a decision tree, where each
node is labeled with an input symbol and each edge is labeled with an output
symbol. The experiment consists in first applying the input symbol in the root,
then following the edge corresponding to the observed output, applying the input
symbol in the reached node and so on. When a leaf is reached, the final state can
be uniquely determined. The length of an adaptive homing sequence is defined
as the depth of this tree.

Using adaptive sequences can be an advantage because they are often shorter
than preset sequences. However, it has been shown that machines possessing the
longest possible preset homing sequences (of length n(n − 1)/2) require equally
long adaptive homing sequences [Hib61].

It is easy to see that a machine has an adaptive homing sequence if and only if
it has a preset one. One direction is immediate: any preset homing sequence cor-
responds to an adaptive one. For the other direction, note that by Theorem 1.17
it is sufficient to show that if a machine has an adaptive homing sequence, then
every pair of states has a merging or a separating sequence. Assume toward a
contradiction that a machine has an adaptive homing sequence but there are two
states s , t ∈ S that have neither a merging nor a separating sequence. Consider
the leaf of the adaptive homing sequence tree that results when the initial state
is s . Since s and t have no separating sequence, the same leaf would be reached
also if t was the initial state. But since s and t have no merging sequence, there
are at least two possible final states, contradicting that there must be only one
possible final state in a leaf.

22 Sven Sandberg

Algorithms 1 and 3 for computing preset homing sequences can both be
modified so that they compute adaptive homing sequences. To make the sequence
adaptive (and possibly shorter), note that it can always be determined from
the output which block of the current state uncertainty that the current state
belongs to. Only separating or merging sequences for states in this block need to
be considered. Algorithm 4 is similar to Algorithm 3, except we only consider the
relevant block of the current state uncertainty (called B in the algorithm). For
simplicity, we stretch the notation a bit and describe the algorithm in terms of
the intuitive definition of adaptive homing sequence, i.e., it applies the sequence
as it is constructed, rather than computes an explicit decision tree.

Algorithm 4 Computing an adaptive homing sequence.

1 function Adaptive-Homing(Mealy machine M)
2 B ← S
3 while |B | > 1
4 find two different states s , t ∈ B
5 let y be a separating or merging sequence for s and t

(if none exists, return Failure)
6 apply y toM and let z be the observed output sequence
7 B ← {u ∈ δ(B , y) : λ(B , y) = z}

The same arguments as before show correctness and cubic running time.
Algorithm 1 for minimized machines can similarly be made adaptive, resulting
in the same algorithm except with the words “or merging” on line 5 left out.
Although the computed sequences are never longer than the non-adaptive ones
computed by Algorithms 1 and 3, we stress once more that they do not have to
be the shortest possible.

Algorithm 4 occurred already in the paper by Moore [Moo56], even before
the algorithm of Section 1.3.1 for preset sequences.

Adaptive synchronizing sequences were suggested by Pomeranz and Reddy
[PR94]. They can be computed, e.g., by first applying a homing sequence (pos-
sibly adaptive), and then from the final known state find a sequence that takes
the machine to one particular final state.

1.3.5 Computing Minimal Homing and Synchronizing Sequences

The algorithms we saw so far do not necessarily compute the shortest possible se-
quences. It is of practical interest to minimize the length of sequences: the Mealy
machine may be a model of some system where each transition is very expensive,
such as a remote machine or the object pushing in Example 1.3 where making a
transition means moving a physical object, which can take several seconds. An
extreme example is the subway map in Exercise 1.1, where, for each transition, a
human has to buy a ticket and travel several kilometers. Moreover, the sequence

1 Homing and Synchronizing Sequences 23

may be computed once and then applied a large number of times. We will see
in Section 1.4.1 that finding a minimal length sequence is an NP-complete prob-
lem, hence unlikely to have a polynomial time algorithm. The algorithms in this
section compute minimal length sequences but need exponential time and space
in the worst case.

To compute a shortest synchronizing sequence, we define the synchronizing
tree. This is a tree describing the behavior of the machine for each possible input
string, but pruning off branches that are redundant when computing synchro-
nizing sequences:

Definition 1.18. The synchronizing tree (for a Mealy machine) is a rooted
tree where edges are labeled with input symbols and nodes with sets of states,
satisfying the following conditions.

(1) Each non-leaf has exactly |I | children, and the edges leading to them are
labeled with different input symbols.

(2) Each node is labeled with δ(S , x), where x is the sequence of input symbols
occurring as edge labels on the path from the root to the node.

(3) A node is a leaf iff:
(a) either its label is a singleton set,
(b) or it has the same label as a node of smaller depth in the tree. ��

By (2), the root node is labeled with S . To find the shortest synchronizing
sequence, compute the synchronizing tree top-down. When the first leaf satis-
fying condition (3a) is found, the labels on the path from the root to the leaf
form a synchronizing sequence. Since no such leaf was found on a previous level,
this is the shortest sequence and the algorithm stops and outputs it. To prove
correctness, it is enough to see that without condition (3b) the algorithm would
compute every possible string of length 1, then of length 2, and so on until it
finds one that is synchronizing. No subtree pruned away by (3b) contains any
shortest synchronizing sequence, because it is identical to the subtree rooted in
the node with the same label, except every node has a bigger depth.

The term “smaller depth” in (3b) is deliberately a bit ambiguous: it is not
incorrect to interpret it as “strictly smaller depth”. However, an algorithm that
generates the tree in a breadth-first manner would clearly benefit from making a
node terminal also if it occurs on the same level and has already been generated.

Example 1.19. Figure 1.6 depicts a Mealy machine and its synchronizing tree.
The root note is labeled with the set of all states. It has two children, one per
input symbol. The leftmost child is labeled with δ({s1, s2, s3}, a) = {s1, s2} and
the rightmost with δ({s1, s2, s3}, b) = {s1, s2, s3}. Thus, it is pointless for the
sequence to start with a b, and the right child is made a leaf by rule (3b) of the
definition. The next node to expand is the one labeled by {s1, s2}. Applying a
gives again δ({s1, s2}, a) = {s2, s2}, so we make the left child a leaf. Applying
b gives the child δ({s1, s2}, b) = {s1, s3}. Finally, we expand the node labeled
{s1, s3}, and arrive at the singleton δ({s1, s3}, a) = s3. It is not necessary to
expand any further, as the labels from the root to the singleton leaf form a
shortest synchronizing sequence, aba.

24 Sven Sandberg

s1 s2 s3

a b

a, ba
b

s1, s2, s3

s1, s2 s1, s2, s3

s1, s2 s1, s3

s2

ba

a b

a

Fig. 1.6. A machine and its corresponding synchronizing tree. Note that the rightmost
and leftmost nodes of the tree have been made leaves due to rule (3b) of Definition 1.18.
Since the lowest leaf is labeled with a singleton s2, the path leading to it from the root
indicates a shortest synchronizing sequence, aba.

It is possible to replace condition (3b) of Definition 1.18 with a stronger one,
allowing to prune the tree more: stipulate that a node becomes a leaf also if its
label is a superset of some node of smaller depth. This clearly works, because if
P ⊆ Q ⊆ S are the node labels, then δ(P , x) ⊆ δ(Q , x) for all sequences x . The
drawback is that it can be more costly to test this condition.

The homing tree is used analogously to compute shortest homing sequences.

Definition 1.20. The homing tree (for a Mealy machine) is a rooted tree
where edges are labeled with input symbols and nodes with current state uncer-
tainties (i.e., sets of sets of states), satisfying the following conditions.

(1) Each non-leaf has exactly |I | outgoing edges, labeled with different input
symbols.

(2) Each node is labeled with σ(x), where x is the sequence of input symbols
occurring as edge labels on the path from the root to the node.

(3) A node is a leaf iff:
(a) either each block of its label is a singleton set,
(b) or it has the same label as a node of smaller depth. ��

Condition (3b) can be strengthened in a similar way for the homing tree as
for the synchronizing tree. Here we turn a node into a leaf also if each block of
its label is a superset of some block in the label of another node at a smaller
depth.

The homing tree method was introduced by Gill [Gil61] and the synchronizing
tree method has been described by Hennie [Hen64]. Synchronizing sequences are
sometimes used in test generation for circuits without a reset (a reset, here,
would be an input symbol that takes every state to one and the same state,

1 Homing and Synchronizing Sequences 25

i.e., a trivial synchronizing sequence). In this application, the state space is
{0, 1}k and typically very big. Rho, Somenzi and Pixley [RSP93] suggested a
more practical algorithm for this special case based on binary decision diagrams
(BDDs).

1.4 Complexity

This section shows two hardness results for related problems. First, Section 1.4.1
shows that it is NP-hard to find a shortest homing or synchronizing sequence.
Second, Section 1.4.2 shows that it is PSPACE-complete to determine if there
is a homing or synchronizing sequence when the initial state is known to be in
a specified subset Q ⊆ S of the states.

1.4.1 Computing Shortest Homing and Synchronizing Sequences Is
NP-hard

If a homing or synchronizing sequence is going to be used in practice, it is natural
to ask for it to be as short as possible. We saw in Section 1.3.1 that we can always
find a homing sequence of length at most n(n−1)/2 if one exists and the machine
is minimized, and Sections 1.3.2 and 1.3.3 explain how to find synchronizing
or homing sequences of length O(n3), for general machines. The algorithms
for computing these sequences run in polynomial time. But the algorithms of
Section 1.3.5 that compute minimal-length homing and synchronizing sequences
are exponential. In this section, we explain this exponential running time by
proving that the problems of finding homing and synchronizing sequences of
minimal length are significantly harder than those of finding just any sequence:
the problems are NP-hard, meaning they are unlikely to have polynomial-time
algorithms.

The Reduction Since only decision problems can be NP-complete, formally
it does not make sense to talk about NP-completeness of computing homing or
sequences. Instead, we look at the decision version of the problems: is there a
sequence of length at most k?

Theorem 1.21 ([Epp90]). The following problems, taking as input a Mealy ma-
chine M and a positive integer k, are NP-complete:

(1) Does M have a homing sequence of length ≤ k?
(2) Does M have a synchronizing sequence of length ≤ k?

Proof. To show that the problems belong to NP, note that a nondeterministic
algorithm easily guesses a sequence of length ≤ k (where k is polynomial in the
size of the machine) and verifies that it is homing or synchronizing in polynomial
time.

To show that the problems are NP-hard, we reduce from the NP-complete
problem 3SAT [GJ79]. Recall that in a boolean formula, a literal is either a

26 Sven Sandberg

variable or a negated variable, a clause is the “or” of several literals, and a
formula is in conjunctive normal form (CNF) if it is the “and” of several
clauses. In 3SAT we are given a boolean formula ϕ over n variables v1, . . . , vn
in CNF with exactly three literals per clause, so it is on the form ϕ =

∧m
i=1(l

i
1 ∨

l i2 ∨ l i3), where each l ij is a literal. The question is whether ϕ is satisfiable, i.e.,
whether there is an assignment that sets each variable to either T or F and
makes the formula true.

Given any such formula ϕ with n variables and m clauses, we create a machine
with m(n + 1) + 1 states. The machine gives no output (or one and the same
output on all transitions, to formally fit the definition of Mealy machines), so
synchronizing and homing sequences are the same thing and we can restrict
the discussion to synchronizing sequences. There will always be a synchronizing
sequence of length n + 1, but there will be one of length n if and only if the
formula is satisfiable. The input alphabet is {T,F}, and the i ’th symbol in the
sequence roughly corresponds to assigning T or F to variable i .

The machine has one special state s , and for each clause (l i1∨l i2∨l i3) a sequence
of n + 1 states s i

1, . . . , s
i
n+1. Intuitively, s i

j leads to s i
j+1, except if variable vj is

in the clause and satisfied by the input letter, in which case a shortcut to s is
taken. The last state s i

n+1 leads to s and s has a self-loop. See Figure 1.7 for an
example.

s i
1 s i

2 s i
3 s i

4 s i
5 s i

6 s
T,F F T T,F F T,F

T

T

F

T,F

Fig. 1.7. Example of the construction for the clause (v2∨¬v3∨v5), where the formula
has five variables v1, . . . , v5. States s i

1 and s i
4 only have transitions to the next state,

because they do not occur in the clause. States s i
2, and s i

5 have shortcuts to s on input
T because v2 and v5 occur without negation, and s i

3 has a shortcut to s on input F

because it occurs negated. Note that such a chain is constructed for each clause, and
they are all different except for the last state s.

Formally, we have the following transitions, for all 1 ≤ i ≤ m:

• The last state goes to s , s i
n+1

T, F−−−→s , and s has a self-loop, s T, F−−−→s .
• If vj does not occur in the clause, then s i

j
T, F−−−→s i

j+1.
• If vj occurs positively in the clause, i.e., one of l i1 , l

i
2, or l i3 is vj , then s i

j
T−−→s

and s i
j

F−−→s i
j+1.

• If vj occurs negatively in the clause, i.e., one of l i1, l
i
2 , or l i3 is ¬vj , then s i

j
F−−→s

and s i
j

T−−→s i
j+1.

To finish the proof, we have to show that the machine thus constructed has a
synchronizing sequence of length n if and only if ϕ is satisfiable. First, assume

1 Homing and Synchronizing Sequences 27

ϕ is satisfiable and let ν be the satisfying assignment, so ν(vi) ∈ {T,F}. Then
the corresponding sequence ν(v1)ν(v2) . . . ν(vn) ∈ I ∗ is synchronizing: starting
from any state s i

j with j ≥ 2 or from s , we reach s in ≤ n steps. Consider state
s i
1 and recall that at least one of the literals in the i ’th clause is satisfied. Thus,

if this literal contains variable vj , the shortcut from s i
j to s will be taken, so also

from s i
1 will s be reached in ≤ n steps.

Conversely, assume there is a synchronizing sequence b = b1b2 . . . bk of length
k ≤ n. Hence δ(t , b) = s for every state t . In particular, starting from s i

1 one of
the shortcuts must be taken, say from s i

j to s . Thus vj occurs in the i :th clause
and setting it to bj makes the clause true. It follows that the assignment that
sets vj to bj , for 1 ≤ j ≤ n, makes all clauses true. This completes the proof. ��

Rivest and Schapire [RS93] mention without proof that it is also possible to
reduce from the problem exact 3-set cover.

Exercise 1.7. Show that the problem of computing the shortest homing sequence
is NP-complete, even if the machine is minimized and the output alphabet has
size at most two.

1.4.2 PSPACE-Completeness of a More General Problem

So far we assumed the biggest possible amount of ignorance – the machine can
initially be in any state. However, it is sometimes known that the initial state
belongs to a particular subset Q of S . If a sequence takes every state in Q to the
same final state, call it an Q-synchronizing sequence. Similarly, say that an Q-
homing sequence is one for which the output reveals the final state if the initial
state is in Q . In particular, homing and synchronizing are the same as S -homing
and S -synchronizing. Even if no homing or synchronizing sequence exists, a ma-
chine can have Q -homing or Q -synchronizing sequences (try to construct such
a machine, using Theorem 1.14). However, it turns out that even determining
if such sequences exist is far more difficult: as we will show soon, this problem
is PSPACE-complete. PSPACE-completeness is an ever stronger hardness result
than NP-completeness, meaning that the problem is “hardest” among all prob-
lems that can be solved using polynomial space. It is widely believed that such
problems do not have polynomial time algorithms, not even if nondeterminism is
allowed. It is interesting to note that Q -homing and Q -synchronizing sequences
are not polynomially bounded: as we will see later in this section, there are ma-
chines that have synchronizing sequences but only of exponential length. The
following theorem was proved by Rystsov [Rys83]. It is similar to Theorem 3.2
in Section 3.

Theorem 1.22 ([Rys83]). The following problems, taking as input a Mealy ma-
chine M and a subset Q ⊆ S of its states, are PSPACE-complete:

(1) Does M have an Q-homing sequence?
(2) Does M have an Q-synchronizing sequence?

28 Sven Sandberg

Proof. We first prove that the problems belong to NPSPACE, by giving polyno-
mial space nondeterministic algorithms for both problems. It then follows from
the general result PSPACE = NPSPACE (in turn a consequence of Savitch’s
theorem [Sav70, Pap94]) that they belong to PSPACE. The algorithm for syn-
chronizing sequences works as follows. Let Q0 = Q , nondeterministically select
one input symbol a0, apply it to the machine and compute Q1 = δ(Q0, a0).
Iterate this process, in turn guessing a1 to compute Q2 = δ(Q1, a1), a2 to com-
pute Q3 = δ(Q2, a2), and so on until |Qi | = 1, at which point we verified that
a0a1 . . . ai−1 is synchronizing (because Qi = δ(Q , a0a1 . . . ai)). This needs at
most polynomial space, because the previously guessed symbols are forgotten,
so only the current Qi needs to be stored. The algorithm for homing sequences
is similar, but instead of keeping track of the current δ(Q , a1a2 . . . ai), the algo-
rithm keeps track of the current state uncertainty σ(a0a1 . . . ai) and terminates
when it contains only singletons.

To show PSPACE-hardness, we reduce from the PSPACE-complete problem
Finite Automata Intersection [Koz77, GJ79]. In this problem, we are given
k finite, total, deterministic automata A1,A2, . . . ,Ak (all with the same input
alphabet) and asked whether there is a string accepted by all Ai , i.e., whether
the intersection of their languages is nonempty. Recall that finite automata are
like Mealy machines, except they do not produce outputs, they have one distin-
guished initial state and a set of distinguished final states. We construct a Mealy
machineM with the same input alphabet as the automata, and specify a subset
Q of its states, such that a sequence is Q -synchronizing forM if and only if it is
accepted by all Ai . As in Theorem 1.21,M does not give output, so a sequence
is homing if and only if it is synchronizing, and the rest of the discussion will be
restricted to synchronizing sequences. To construct M, first take a copy of all
Ai . Add one new input symbol z , and two new states, Good and Bad. Make
z -transitions from each accepting state of the automata to Good and from each
non-accepting state to Bad, and finally make self-loops on Good and Bad:
Good

I ∪ {z}−−−−−→Good and Bad
I ∪ {z}−−−−−→Bad. See Figure 1.8 for an example.

Let Q be the set of all initial states of the automata, together with Good.
We will show that all the automata accept a common word x if and only if M
has an Q -synchronizing sequence (and that sequence will be xz). First assume all
automata accept x . Then xz is an Q -synchronizing sequence ofM: starting from
the initial state of any automaton, the sequence x will take us to a final state. If
in addition we apply the letter z , we arrive at Good. Also, any sequence applied
to Good arrives at Good. Thus δ(Q , xz) = Good so xz is an Q -synchronizing
sequence.

Conversely, assume M has an Q -synchronizing sequence. Since we can only
reach Good from Good, the final state must be Good. In order to reach Good

from any state in Q \{Good}, the sequence must contain z . In the situation just
before the first z was applied, there was one possible current state in each of the
automata. If any of these states was non-accepting, applying z would take us to
Bad, and afterward we would be trapped in Bad and never reach Good. Thus

1 Homing and Synchronizing Sequences 29

GoodBad

A2

A1

Fig. 1.8. Example of the reduction in Theorem 1.22. We are given two (in general
many) automata, A1 and A2, and asked if there is a string accepted by all of them.
Add a new input symbol z and make z -transitions from accepting and nonaccepting
states to the new states Good and Bad, respectively, as in the picture. The new states
only have self-loops. Let Q be the set of all initial states, together with Good; thus a
sequence is Q-synchronizing iff it takes every initial state to a final state of the same
automaton and then applies z . Thus it corresponds to a word accepted by all automata.

all the automata were in a final state, so the word applied so far is accepted by
all automata. This finishes the proof. ��

This result also implies that Q -homing and Q -synchronizing sequences may
be exponentially long, another indication that they are fundamentally different
from the cubically bounded homing and synchronizing sequences. First, a poly-
nomial upper bound would imply that the sequence can be guessed and checked
by an NP-algorithm. So the length is superpolynomial unless PSPACE equals
NP. Second, Lee and Yannakakis [LY94] gave a stronger result, providing an
explicit family of sets of automata, such that the shortest sequence accepted
by all automata in one set is exponentially long. Since, in the reduction above,
every Q -synchronizing or Q -homing sequence corresponds to a sequence in the
intersection language, it follows that these are also of exponential length.

Theorem 1.23 ([LY94]). The shortest sequence accepted simultaneously by n
automata is exponentially long in the total size of all automata, in the worst case
(even with a unary input alphabet).

Proof. Denote by pi the i ’th prime. We will construct n automata, the i ’th of
which accepts sequences of positive length divisible by pi . Thus, the shortest
word accepted by all automata must be positive, and divisible by p1p2 · · · pn >
2n . The input alphabet has only one symbol. The i ’th automaton consists of a
loop of length pi , one state of which is accepting. To assure that the empty word
is not accepted, the initial state is an extra state outside the loop, that points
to the successor of the accepting state: see Figure 1.9. By Gauss’ prime number

30 Sven Sandberg

theorem, each automaton has size O(n log n), so the total size is polynomial in
n but the shortest sequence accepted by all automata is exponential. ��

Fig. 1.9. An automaton that accepts exactly the words of positive length divisible by
7. A similar automaton is created for all primes p1, . . . , pn .

Consider another generalization of synchronizing sequences, where we are
again given a subset Q ⊆ S but now the sequence has to end in Q , that is,
we want to find a sequence x such that δ(S , x) ⊆ Q . It is not more difficult
to show that this problem also is PSPACE-complete; however, it can be solved
in time nO(|Q|), so it is polynomial if the size of Q is bounded by a constant
[Rys83]. Rystsov shows in the same article that several related problems are
PSPACE-complete, and concludes the following result in another paper [Rys92].

Exercise 1.8. A nondeterministic Mealy machine is like a Mealy machine ex-
cept δ(s , a) is a set of states. The transition function δ is extended similarly,
so δ(Q , a) =

⋃
{δ(s , a) : s ∈ Q} and δ(Q , a1 . . . an) = δ(δ(Q , a1, . . . , an−1), an).

Show that the synchronizing sequence problem for nondeterministic Mealy ma-
chines is PSPACE-complete. Here, a sequence x is synchronizing for a nondeter-
ministic machine if |δ(S , x)| = 1.

Hint: Use Theorem 1.22.

1.5 Related Topics and Bibliography

The experimental approach to automata theory was initiated by the classical
article by Moore [Moo56], who introduces several testing problems, including
homing sequences and the adaptive version of Algorithm 1. He also shows the
upper bound of n(n − 1)/2 for the length of adaptive homing sequences. The
worst-case length of homing sequences for minimized automata was studied by
Ginsburg [Gin58] and finally resolved by Hibbard [Hib61]. The book by Kohavi
[Koh78] and the article by Gill [Gil61] contain good overviews of the problem.

1 Homing and Synchronizing Sequences 31

Length of Synchronizing Sequences and Černý’s Conjecture. Synchro-
nizing sequences were introduced a bit later by Černý [Čer64] and studied mostly
independently from homing sequences, with some exceptions [Koh78, Rys83,
LY96]. The focus has largely been on the worst-case length of sequences, except
an article by Rystsov that classifies the complexity of several related problems
[Rys83], the article by Eppstein, which introduces the algorithm in Section 1.3.2
[Epp90], and the survey by Lee and Yannakakis [LY96]. Černý [Čer64] showed
an upper bound of 2n − n − 1 for the length of synchronizing sequences and
conjectured that it can be improved to (n−1)2, a conjecture that inspired much
of the research in the area. The first polynomial bound was 1

2n3 − 3
2n2 + n + 1

due to Starke [Sta66], and as mentioned in Section 1.3.2 the best known bound is
1
6 (n3−n) due to Klyachko, Rystsov and Spivak [KRS87]. Already Černý [Čer64]
proved that there are automata that require synchronizing sequences of length
at least (n − 1)2, so if the conjecture is true then it is optimal.

Proving or disproving Černý’s conjecture is still an open problem, but it has
been settled for several special cases: Eppstein [Epp90] proved it for monotonic
automata, which arise in the orientation of parts that we saw in Example 1.3;
Kari [Kar03] showed it for Eulerian machines (i.e., where each state has the
same in- and out-degrees); Pin [Pin78b] showed it when n is prime and the
machine is cyclic (meaning that there is an input letter a ∈ I such that the
a-transitions form a cycle through all states); Černý, Pirická and Rosenauerová
[ČPR71] showed it when there are at most 5 states. Other classes of machines
were studied by Pin [Pin78a], Imreh and Steinby [IS95], Rystsov [Rys97], Bog-
danović et al. [BIĆP99], Trakhtman [Tra02], Göhring [Göh98] and others. See
also Trakhtman’s [Tra02] and Göhring’s [Göh98] articles for more references.

Parallel Algorithms. In a series of articles, Ravikumar and Xiong study the
problem of computing homing sequences on parallel computers. Ravikumar gives
a deterministic O(

√
n log2 n) time algorithm [Rav96], but it is reported not to

be practical due to large communication costs. There is also a randomized algo-
rithm requiring only O(log2 n) time but O(n7) processors [RX96]. Although not
practical, this is important as it implies that the problem belongs to the complex-
ity class RNC. The same authors also introduced and implemented a practical
randomized parallel algorithm requiring time essentially O(n3/k), where the
number k of processors can be specified [RX97]. It is an open problem whether
there are parallel algorithms for the synchronizing sequence problem, but in the
special case of monotonic automata, Eppstein [Epp90] gives a randomized par-
allel algorithm. See also Ravikumar’s survey of parallel algorithms for automata
problems [Rav98].

Nondeterministic and Probabilistic Automata. The homing and synchro-
nizing sequence problems become much harder for some generalizations of Mealy
machines. As shown in Exercise 1.8, they are PSPACE-complete for nondeter-
ministic automata, where δ(s , a) is a subset of S . This was noted by Rystsov
[Rys92] as a consequence of the PSPACE-completeness theorem in another of

32 Sven Sandberg

his papers [Rys83] (our Theorem 1.22). The generalization to nondeterminis-
tic automata can be made in several ways; Imreh and Steinby [IS99] study al-
gebraic properties of three different formulations. For probabilistic automata,
where δ(s , a) is a random distribution over S , Kfoury [Kfo70] showed that the
problems are algorithmically unsolvable, by a reduction from the problem in a
related article by Paterson [Pat70].

Related Problems. As a generalization of synchronizing sequences, many au-
thors study the rank of a sequence [Rys92, Kar03, Pin78b]. The rank of a syn-
chronizing sequence is 1, and for a general sequence x it is |δ(S , x)|. Thus, Al-
gorithm 2 decreases the rank by one every time it appends a merging sequence.

A problem related to synchronizing sequences is the road coloring problem.
Here we are given a machine where the edges have not yet been labeled with
input symbols, and asked whether there is a way of labeling so that the machine
has a synchronizing sequence. This problem was introduced by Adler [AGW77]
and studied in relation to synchronizing sequences, e.g., by Culik, Karhumäki
and Kari [CKK02], and by Mateescu and Salomaa [MS99].

The parts orienting problem of Example 1.3 was studied in relation to au-
tomata by Natarajan [Nat86] and Eppstein [Epp90]. They have a slightly differ-
ent setup, but the setup of our example was considered by Rao and Goldberg
[RG95]. The field has been extensively studied for a long time, and many other
approaches have been investigated.

Synchronizing sequences have been used to generate test cases for sequential
circuits [RSP93, PJH92, CJSP93]. Here, the states of the machine is the set
of all length k bitstrings. This set is too big to be explicitly enumerated, so
both the state space and the transition function are specified implicitly. The
algorithm of Section 1.3.2 becomes impractical in this setting as it uses too much
memory. Instead, several authors considered algorithms that work directly with
this symbolic representation of the state space and transition functions [RSP93,
PJH92]. Pomeranz and Reddy [PR94] compute both preset and adaptive homing
sequences for the same purpose, the advantage being that homing sequences
exist more often than synchronizing do, and can be shorter since there is more
information available to determine the final state.

1.6 Summary

We considered two fundamental and closely related testing problems for Mealy
machines. In both cases, we look for a sequence of input symbols to apply to the
machine so that the final state becomes known. A synchronizing sequence takes
the machine to one and the same state no matter what the initial state was.
A homing sequence produces output, so that one can learn the final state by
looking at this output. These problems can be completely solved in polynomial
time.

Homing sequences always exist if the machine is minimized. They have at
most quadratic length and can be computed in cubic time, using the algorithm

1 Homing and Synchronizing Sequences 33

in Section 1.3.1, which works by concatenating many separating sequences. Syn-
chronizing sequences do not always exist, but the cubic time algorithm of Sec-
tion 1.3.2 computes one if it exists, or reports that none exists, by concatenating
many merging sequences. Synchronizing sequences have at most cubic length, but
it is an open problem to determine if this can be improved to quadratic. Combin-
ing the methods of these two algorithms, we get the algorithm of Section 1.3.3
for computing homing sequences for general (non-minimized) machines.

It is practically important to compute as short sequences as possible. Unfor-
tunately, the problems of finding the shortest possible homing or synchronizing
sequences are NP-complete, so it is unlikely that no polynomial algorithm exists.
This was proved in Section 1.4.1, and Section 1.3.5 gave exponential algorithms
for both problems. Section 1.4.2 shows that only a small relaxation of the prob-
lem statement gives a PSPACE-complete problem.

2 State Identification

Moez Krichen

VERIMAG
moez.krichen@imag.fr

2.1 Introduction

In this chapter, we deal with the problem of state identification of finite-state
Mealy machines. Before defining the problem formally, let us illustrate it with a
few examples and point out its differences with the similar problem of finding a
homing sequence.

Informally, the state identification problem is the following. We are given a
(deterministic) Mealy machine for which we know its behavior but not its current
state. We want to find an input/output experiment (i.e., an experiment during
which we apply inputs on the considered machine and observe the corresponding
outputs it produces) such that at the end of the experiment we know which
state the machine occupied at the beginning of the experiment. In other words,
we know the transition and output functions of the given machine, but we do
not know its current state and we want to find the latter by performing the
experiment.

Notice the difference with the problem of finding a homing sequence, pre-
sented in the previous chapter. There, we want to know the state occupied by
the machine after the experiment, whereas in state identification we are inter-
ested in the state before the experiment.

A solution to the state identification problem is also a solution to the homing
problem: since the machine is deterministic, if we are able to determine its state
before the experiment then we also know its state after the experiment. However,
as we shall see later, a solution to the homing problem is not necessarily a solution
to the identification problem.

Let us consider a simple example. Consider the machine M1 shown in Fig. 2.1.
According to this figure, M1 has two states s1 and s2. M1 has two inputs, a and
b, and two outputs, 0 and 1. The transition and output functions of the machine
are illustrated by directed arrows labeled with corresponding input and output
symbols. For instance, applying input b on M1 when it is at state s1 will cause
the machine to output 1 and move to state s2.

Now, suppose we do not know which state M1 is currently occupying. We can
determine this by applying input a and observing the response. If the observed
output symbol is 0 then we can deduce that the machine was initially at state
s1 otherwise the initial state has been s2. The input sequence a (consisting of a
single symbol, in this case) has allowed us to distinguish between the two states
s1 and s2 of M1. It is a distinguishing sequence for this machine.

Of course, the situation is not always as easy, and more complicated ex-
periments may be necessary. Indeed, the state identification problem comes in

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 35-67, 2005.
 Springer-Verlag Berlin Heidelberg 2005

36 Moez Krichen

s2

s1

a/1
b/1

b/1

a/0

Fig. 2.1. Machine M1.

many versions, depending on which types of experiments are allowed. A first
classification can be made between simple experiments and multiple experi-
ments [Moo56, Gil61]. In a simple experiment we dispose of a single copy of
the machine whereas in a multiple experiment we dispose of multiple identical
copies of the machine which occupy the same initial (unknown) state. We will
only consider simple experiments in this chapter called distinguishing sequences.

Another classification can be made between preset and adaptive distinguish-
ing sequences. A preset distinguishing sequence (PDS) is a sequence of inputs
whereas an adaptive distinguishing sequence (ADS) is really a tree where inputs
may be different depending on the outputs (thus, the term “sequence” can be
considered a misnomer, but it is kept for reasons of tradition). Thus, a PDS
models an experiment where the sequence of inputs is determined in advance,
independently of the responses of the machine. On the other hand, an ADS mod-
els an experiment where at each step the experimenter decides which input to
apply next based on the observed output. Clearly, an ADS is a more powerful
experiment than a PDS. Indeed, as we will see, there are cases where a machine
has an ADS but has no PDS. Thus, it makes sense to make a distinction between
the two.

This brings us to another difference between the problem of finding a hom-
ing sequence and the state identification problem. We know that for minimal
machines a homing sequence always exists. Such a sequence is, by definition,
a “preset homing sequence”. Indeed, there is no need to consider adaptive se-
quences since they do not add to the power of the experimenter. On the other
hand, a minimal machine may not have a PDS; in fact, it may not have an ADS
either. Thus, contrary to the homing problem, there are machines for which the
state identification problem cannot be solved, even though these machines are
minimal.

As a last difference between the two problems, notice the following. When
a machine is not minimal, we are not sure whether it has a homing sequence

2 State Identification 37

or not. However, we can be sure that it has no distinguishing sequence: there
is no way to distinguish equivalent states because such states produce the same
output sequence for any applied input sequence.

Let us illustrate the above differences with a few examples.

a/0

s2

b/0

a/0

a/0b/1

b/0

s3

s1

Fig. 2.2. Machine M2.

Consider, first, machine M2 shown in Fig. 2.2. This machine is not minimal:
its two states s2 and s3 are equivalent. As explained above, M2 cannot have
a distinguishing sequence (neither a PDS nor an ADS) because for any input
sequence, s1 and s2 produce the same output. Thus, the problem of state iden-
tification is to be studied only for minimal machines. When a machine is not
minimal, we can start by reducing it and then consider the problem of state
identification for the obtained reduced machine.

s1

s3 s2

a/0

a/0b/1

b/0

a/0
b/0

Fig. 2.3. Machine M3.

38 Moez Krichen

Now, even for minimal machines, the existence of a distinguishing sequence
(PDS or ADS) is not guaranteed. For instance, consider machine M3 shown in
Fig. 2.3. M3 is a minimal machine. Indeed, state s1 can be distinguished from
states s2 and s3 by input b, and states s2 and s3 can be distinguished by input
sequence ab. However, machine M3 has no distinguishing sequence. We can see
this by arguing as follows. If we start by applying input symbol a on M3 and
then observe output symbol 0 we can only deduce that the initial state of the
machine is either s1 or s2. Next, whatever we apply in the future the machine
will have the same behavior independently of whether its initial state has been
s1 or s2. Thus, there is no distinguishing sequence for M3 which starts with input
symbol a, because all these input sequences cannot distinguish the two states s1
and s2. In the same manner, a distinguishing sequence of M3 cannot start with
input symbol b because such a sequence cannot distinguish the two states s2 and
s3. So a distinguishing sequence of M3 can start neither with input a nor with
input b. The conclusion is that M3 has no distinguishing sequence.

s4

s2

a/1

s3

s1

a/1

b/0

b/0 b/1

a/0a/0

b/0

Fig. 2.4. Machine M4.

Let us finally give an example of a machine which has an adaptive distin-
guishing sequence but no preset distinguishing sequence. Consider machine M4

shown in Fig. 2.4. The reader can check that M4 is a minimal machine, by veri-
fying that for every pair of states there is an input sequence that distinguishes
them. The machine M4 has no PDS. We can see this by arguing as follows. First,
it is clear that a sequence made only by input symbol a cannot be a PDS for M4,
since such a sequence cannot distinguish neither between s1 and s2 nor between
s3 and s4. On the other hand, a sequence which contains symbol b cannot be a

2 State Identification 39

PDS either, because it “merges” s1 and s2. Indeed, let k be the number of a’s
applied before the first b. If k is even and the automaton was initially in s1 or s2,
it will still be in s1 or s2 after applying ak , and no information is gained (notice
that, since the sequence is preset, we are not allowed to look at the output at
that point). Then, when b is applied, 0 will be output and M4 will move to s1. At
this point, there is no longer hope of knowing whether the machine was initially
in s1 or s2. If k is odd and the automaton was initially in s3 or s4 then, after
applying ak , we still end up at s1 or s2 and the previous argument again applies.
Thus, we can conclude that M4 has no PDS.

However, M4 has an ADS. One such ADS is shown in Fig. 2.5. It tells us to
proceed as follows, when executing the test. Initially, apply a. If the machine
outputs 0 then apply b, otherwise, apply a second a, followed by b. The rationale
is as follows. If the machine outputs 0 after the initial a, then we can deduce
that it was initially at state s1 or s2 and it has moved to s3 or s4, respectively.
We can then distinguish s3 and s4 simply by applying b. If, on the other hand,
the machine output 1 after the initial a, then we can deduce that it was initially
at s3 or s4 and has now moved to s1 or s2. In this case, we apply sequence ab to
distinguish the two latter states.

a

0

0

0

1

1

0 1

ab

bs1 s2

s3 s4

Fig. 2.5. One possible ADS for machine M4.

History and results There is a lot of literature on the state identification prob-
lem and the related homing sequence and state verification problems (Chapters 1
and 3). The earliest work in this field is the seminal 1956 paper by Edward F.
Moore [Moo56]. Then in the 60’s, many papers on these problems followed this
work. These papers were mainly motivated by automata theory and switching
circuits. An overview of the major results of these earlier works is in [Koh78]
by Zvi Kohavi. Later on, works were also motivated by communication protocol
design. Before the work of Lee and Yannakakis [LY94], the proposed algorithms
for solving these problems take exponential time and there was no algorithm for
computing adaptive distinguishing sequences with polynomial length. The algo-
rithms proposed in these works had exponential time worst-case complexity and

40 Moez Krichen

the algorithms for computing adaptive distinguishing sequences were not guar-
anteed to yield sequences of polynomial length. According to [LY94], in [Sok71]
Sokolovskii proved a quadratic upper bound for ADSs in a non-constructive way.

The complexity issues were settled by Lee and Yannakakis in [LY94]. There
it is shown that solving the preset distinguishing sequence problem is PSPACE-
complete. The authors also give examples of machines that have such sequences
but only of exponential length. Besides, they present positive results for the
adaptive distinguishing sequence problem. They propose deterministic polyno-
mial time algorithms for checking the existence and computing such sequences.
The resulting sequences are of length at most polynomial in the size of the ma-
chine (i.e., number of states). In this chapter, we report mostly on the results of
Lee and Yannakakis.

Chapter Structure: the main goals of this chapter are the following:

• To define preset and adaptive distinguishing sequences.
• To give algorithms for checking existence and constructing such sequences.
• To discuss the complexity of these algorithms.
• To illustrate the algorithms on some simple examples.

The remaining part of this chapter is structured as follows. Section 2.2 re-
calls the definition of Mealy machine and notation. Section 2.3 deals with preset
distinguishing sequences: the mathematical definition of a preset distinguishing
sequence, its main properties, the way for checking the existence of such se-
quences and finally the complexity of doing that. Then, Section 2.4 is devoted
to adaptive distinguishing sequences: definition, main properties, algorithm for
existence, algorithm for construction and the complexity of each. And finally,
Section 2.5 gives a summary of the main results of this chapter.

The main sources for this chapter have been [LY94] by David Lee and Mihalis
Yannakakis and Chapter 13 of [Koh78] by Zvi Kohavi. A very valuable source
has also been the survey [LY96] by Lee and Yannakakis.

2.2 Brief Recall on Mealy Machines and Used Notation

A Mealy machine M is a quintuple

M = (I ,O ,S , δ, λ)

where:

• I , O and S are finite and non-empty sets of input symbols, output symbols
and states, respectively;
• δ : S × I → S is the state transition function; λ : S × I → O is the output

function.

The fact that both δ and λ are total functions from S×I to S and O , respectively,
follows from the fact that we only consider deterministic and completely specified

2 State Identification 41

FSMs (finite-state machines). These are machines, the response of which for any
initial state and for any applied input is known and unique.

An input sequence of the machine M is a finite sequence of input symbols.
Similarly, an output sequence is a finite sequence of output symbols. An input
or output sequence may be empty. The (input or output) empty sequence is
denoted by ε.

We introduce the following extensions of the transition and output functions
of a Mealy machine M = (I ,O ,S , δ, λ). First, we extend the functions λ and
δ from input symbols to input sequences. For an initial state s0 and an input
sequence x = a1a2 · · · al , we have:

λ(s0, x) = b1b2 · · · bl and δ(s0, x) = sl ;

where:

bi = λ(si−1, ai) and δ(si−1, ai) = si for i = 1, · · · , l .

The transition function is also extended from single states to sets of blocks of
states. By definition, a block of states is a nonempty subset of states. For the
block of states B we have:

δ(B , x) = {δ(s , x) | s ∈ B}.

Furthermore, we introduce the following notations. For some given input
sequence x , δ(·, x) denotes the mapping defined from S to S such that:

∀ s ∈ S : δ(·, x)(s) = δ(s , x).

Similarly, λ(·, x) denotes the mapping from S to O∗ such that:

∀ s ∈ S : λ(·, x)(s) = λ(s , x).

For some input or output sequence x , |x | denotes the length of the considered
sequence. In the same manner, |B | denotes the cardinality of B a given subset
of S .

More details on Mealy machines are given in Appendix 21.

2.3 Preset Distinguishing Sequences

Here, we deal with preset distinguishing sequences (PDS). We first give the
mathematical definition of a PDS. Then, we list the main properties it matches.
Finally, we deduce the way for checking the existence and constructing a PDS.

2.3.1 What Is a PDS?

Here is the formal definition of a PDS.

Definition 2.1. An input sequence x is a PDS for a Mealy machine M =
(I ,O ,S , δ, λ) if:

42 Moez Krichen

∀ s , s ′ ∈ S : s �= s ′ ⇒ λ(s , x) �= λ(s ′, x).

i.e., for any two distinct initial states in S , M produces distinct output sequences
after executing x . ��

So, in practice, if we want to check if x is a PDS of M then we need to
compute the list of responses (output sequences) M may produce on x for all
its possible initial states. If an output sequence is observed more than once (the
same output sequence for distinct initial states) then x is not an PDS of M .
Equivalently, we deduce that x is a PDS of M if and only if all the responses
are distinct from each other.

a/0

b/1

b/0b/1

a/0

s1

s2s3

a/1

Fig. 2.6. Machine M5.

Example. Table 2.1 gives the responses of the machine M5 (Fig. 2.6) on ab. The
obtained responses ({01, 00, 11}) are distinct from each other, so ab is a PDS of
M5.

s λ(s, ab)

s1 01

s2 00

s3 11

Table 2.1. Possible responses of machine M5 for the input sequence ab.

Remark 2.2 (A PDS is a homing sequence). Since we are dealing with deter-
ministic machines, when the initial state of the machine is known, it is easy to

2 State Identification 43

determine its final state (i.e., the state after the experiment): if the initial state
is s and the PDS is x then final state will be δ(s , x). Thus, every PDS is also a
homing sequence.

What about the converse? Is any homing sequence a PDS? That is not gener-
ally true, since (in the general case) the backward exploration of Mealy machines
is not deterministic. In Section 2.1, we explain why M2 (Fig. 2.6) has no distin-
guishing sequence. However, it has a homing sequence (a for example).

2.3.2 Properties of a PDS

In this subsection, we introduce some definitions and main properties of preset
distinguishing sequences. First, we give the definition of the initial and current
uncertainties.

Definition 2.3. For some given machine M = (I ,O ,S , δ, λ) and x an input
sequence of it, the initial and current uncertainties of M with respect to x are
defined as follows:

(1) Initial uncertainty: π(x) is the partition {C1,C2, · · · ,Cr} of S such that
s and s ′ ∈ S are in the same block Ci if and only if λ(s , x) = λ(s ′, x).

(2) Current uncertainty: σ(x) = {δ(C , x) | C ∈ π(x)}.
��

According to the definition above, the initial uncertainty π(x) is the partition
of the set of states S induced by the function λ(·, x). This means that π(x) groups
states which produce the same output sequence on input x .

In terms of distinguishing sequences, this means that two distinct states s
and s ′ in the same block of states C in π(x) cannot be distinguished by x . Thus,
by applying x and observing the corresponding output sequence we can identify
only the block of π(x) to which the initial state of the machine belongs and not
the initial state itself. So, we say that our uncertainty about the initial state of
the machine has been reduced to a block of states. However, if this block is a
singleton then our uncertainty is totally reduced.

For example, for machine M5 (Fig. 2.6) and for the input sequence a we have

π(a) = {{s1, s2}0, {s3}1}.

This means that if, on input a, M5 outputs 0 then our uncertainty about its
initial state is reduced to {s1, s2}. Otherwise, if it outputs 1 then its initial state
is completely identified and it is s3.

Note that the subscripts 0 and 1 in {s1, s2}0 and {s3}1 are used to indicate the
corresponding output sequence of each block. However, this piece of information
is not actually included in π(x).

From the preceding, it is easy to see why the following proposition holds.

Proposition 2.4. For a given input sequence x of a machine M =(I ,O ,S , δ, λ):

x is a PDS of M if and only if π(x) is the discrete partition of S .

44 Moez Krichen

In this proposition, the discrete partition of S means the partition in which
all blocks are singletons. The proof of the proposition follows immediately from
the definitions of a PDS and the initial uncertainty of x .

Now let us explain a bit about the current uncertainty. First, it provides us
with the possible final states of the machine at the end of the distinguishing
experiment. For example for machine M5 (Fig. 2.6), we have:

σ(ab) = {{s3}01, {s1}00, {s2}11}

But, that is not very important since, here, our goal is to identify the initial
state of the machine and not its final state.

However, our knowledge about the current uncertainty of the intermediary
steps of the experiment may help in computing a PDS. Let us consider machine
M5 again for better explaining this. After executing the input symbol a, we have:

σ(a) = {{s1, s2}0, {s3}1}

That tells us that if on a M5 outputs 0 then we deduce that the machine is
currently occupying either s1 or s2. Similarly, if it outputs 1 we deduce that M5

is currently occupying s3. Thus, computing a PDS for M5 becomes a bit easier.
All what remains to do is to find a sequence (b for example) which distinguishes
s1 and s2. If such a sequence is found then a possible PDS of the machine will
be the input sequence obtained by appending this sequence to a.

From the preceding, we deduce that computing a PDS for a given machine
can be done recursively by consecutive refinements of the current uncertainty:
at each step, we choose an input symbol which refines at least one block of the
current uncertainty. We keep on doing that till reaching an uncertainty made
only by singletons. In that case, a PDS for the machine is the one obtained by
appending the consecutive used input symbols.

Now, the difficulty is with how to choose the suitable input symbol at each
step. The idea is that there are some “bad” inputs that must not be used. Let
us consider machine M3 (Fig. 2.3) for explaining this. M3 is a minimal machine,
however, it has no PDS. The problem is that both a and b cause irrevocable loss
of information about its initial state. For example, s1 and s2 are merged when
applying input symbol a. This means that independently on whether the initial
state is s1 or s2, on input a M3 outputs 0 and moves to the same final state
s1. Consequently, whatever we will apply next, we will be unable to determine
whether M3 was initially at s1 or s2. The input a is said to be invalid for the
block {s1, s2}. The following gives the mathematical definition of valid inputs.

Definition 2.5. For a given Mealy machine M = (I ,O ,S , δ, λ):

• An input a ∈ I is a valid input for a set of states C ⊆ S if:

∀ s , s ′ ∈ C :s �= s ′ ⇒ λ(s , a) �= λ(s ′, a) or δ(s , a) �= δ(s ′, a).

i.e., on input a, the states s and s ′ either produce distinct output symbols
or move to distinct states.

2 State Identification 45

• An input sequence x is a valid input sequence for C if:

∀ s , s ′ ∈ C : s �= s ′ ⇒ λ(s , x) �= λ(s ′, x) or δ(s , x) �= δ(s ′, x).

• a (resp., x) is a valid input (resp., valid input sequence) for a collection of
sets of states τ if a (resp., x) is valid for each member of τ .

��

Let us illustrate this notion of validity on machine M5 (Fig. 2.6). It has been
already shown that ab is a PDS of this machine. When executing this input
sequence on M5, the current uncertainty evolves as follows

{{s1, s2, s3}} a−→{{s1, s2}0, {s3}1} b−→{{s3}01, {s1}00, {s2}11}.

First, it is easy to check that both a and ab are valid for {s1, s2, s3} and that b
is valid for {s1, s2}. More precisely, b is valid for {{s1, s2}, {s3}}, but since {s3}
is singleton then that it is equivalent to say that it is valid for {s1, s2}.

The second thing to notice is that the total number of states contained in
each of the three uncertainties of the example above equals 3 the number of
states of the machine. In particular, the last uncertainty is made of as many
singletons as the number of states of the machine.

Proposition 2.6, below, argues that these observations remain true in the
general case. The proposition uses the following notation:

• Super(M) is the set of multisets of non-empty blocks of states such that
W = {B1,B2, · · · ,Bl} is in Super(M) if and only if

∑
Bi∈W |Bi | = |S |.

• Singleton(M) is the subset of Super(M) the members of which are sets of
singletons.
• For a given multiset of blocks τ and a given input symbol a, µ(τ, a) is

obtained by partitioning each member C of τ w.r.t λ(·, a), then applying
δ(·, a) on each block of the obtained partition.

For instance, if S = {s1, s2} then:

Super(M) = [{{s1}, {s2}}; {{s1}, {s1}}; {{s2}, {s2}}; {{s1, s2}}].

and

Singleton(M) = [{{s1}, {s2}}; {{s1}, {s1}}; {{s2}, {s2}}] 1 .

Moreover, for machine M5 we have:

µ({{s1, s2, s3}}, a) = {{s1, s2}0, {s3}1}

and

µ({{s1, s2}0, {s3}1}, b) = {{s3}01, {s1}00, {s2}11}.

1 Here, we use the notation [C1; C2] instead of the classical notation {C1,C2} for
making things more readable.

46 Moez Krichen

Proposition 2.6. If x is a PDS of M = (I ,O ,S , δ, λ) then

(1) Each prefix x ′ of x is a valid input sequence for S .
(2) For each prefix x ′′a of x , a is a valid input symbol for σ(x ′′) and σ(x ′′a) =

µ(σ(x ′′), a).
(3) For each prefix x ′ of x , σ(x ′) ∈ Super(M).
(4) σ(x) ∈ Singleton(M).

We give only indications for making the proof of the proposition.

Proof. (1) We make it by contradiction: we assume that x ′ is invalid for S and
we deduce that x cannot be a PDS of M .

(2) For proving validity, we proceed just as previously. The second point follows
directly from the definitions of function µ and of the current uncertainties.

(3) Can easily be proved by induction.
(4) Follows from Proposition 2.4. ��

2.3.3 Checking the Existence of a PDS

The classical approach ([Koh78]) for checking the existence of a PDS for a given
machine is based on the construction of the so-called successor tree. The latter
is an infinite tree, the root of which is labeled with the set of states of the con-
sidered machine. Each node of the successor tree has exactly as many outgoing
edges as the number of inputs of the machine. An internal node is labeled with
the current uncertainty corresponding to the input sequence spelt by the path
from the node of the tree to the considered node.

Fig. 2.7 shows (a portion of) the successor tree of machine M5 (Fig. 2.6).
Clearly, according to this successor tree, both ab, ba and bb are PDSs of M5

(since the corresponding current uncertainties are made only by singletons).

a

{s1, s2}0, {s3}1

{s1, s2}00, {s3}11 {s1}01, {s1}00, {s2}11

a b

{s1}00, {s2}10, {s3}11

b

{s1}0, {s2, s3}1

{s3}01, {s1}00, {s2}11

a b

{s1, s2, s3}

Fig. 2.7. A portion of the successor tree of machine M5 (Fig. 2.6).

Here, we use a similar structure which is the super graph of a Mealy machine
and which is inspired from [LY94].

2 State Identification 47

Definition 2.7. The super graph of a Mealy machine M is a directed graph
S which is denoted Super -G(M):

• The set of vertices of Super -G(M) is Super(M),
• The initial vertex of Super -G(M) is V0 = {S},
• The edges of Super -G(M) are labeled by the input symbols of M ,
• For an input symbol a and V ,V ′ ∈ Super(M) : V a−→V ′ if and only if a is

valid for V and V ′ = µ(V , a).
��

A portion of the super graph of machine M6 (Fig. 2.8) is shown in Fig. 2.11.
The main differences between the successor tree and the super graph are the
following. First contrary to the successor tree, the super graph is a finite struc-
ture. Besides for a given node, the super graph considers only valid inputs for
the label of the considered node while the successor tree considers all inputs.

The super graph informs about the existence of a PDS as follows.

Theorem 2.8. Let x be an input sequence of a Mealy Machine M . One sequence
x is a PDS of M if and only if x traces a path in Super-G(M) from V0 = {S}
(the initial vertex of Super-G(M)) to V ′ in Singleton(M).

The sequence x traces a path in Super -G(M) means that if we have x =
ai1ai2 · · · ail then there exist vertices Vi0 ,Vi1 , · · · ,Vil of Super -G(M) such that

Vi0

ai1−→Vi1

ai2−→· · ·
ail−1−→Vil−1

ail−→Vil is an accepted path by Super -G(M).

Proof. It is not difficult to see that both directions of the theorem follow imme-
diately from Propositions 2.4 and 2.6. ��

Obviously for checking whether a machine has a PDS or not, we do not need
to compute its whole super graph. An on-the-fly exploration of the later suffices
to inform about the existence or the non-existence of a PDS for the considered
machine. The way for doing this is given by Algorithm 5. As just mentioned it
consists of a reachability analysis on the super graph of the considered machine.

More precisely, the algorithm maintains a set E of pairs of the form σ =
({B1,B2, · · · ,Bl}, x), where {B1,B2, · · · ,Bl} is the current uncertainty corre-
sponding to the input sequence x . For some pair σ = ({B1,B2, · · · ,Bl}, x) ∈ E ,
σ·unc and σ·seq denote {B1,B2, · · · ,Bl} and x , respectively. Furthermore for some
input sequence x and input symbol a, concat(x , a) denotes the input sequence
xa obtained by appending a to x . At each iteration, Algorithm 5 computes the
successors of the elements of E with respect to valid inputs. If one of the com-
puted successors is in Singleton(M) then a PDS for the machine M is found.
Otherwise, we shall wait until no new element may be added to E (i.e., when
E ′ = E) for announcing that the machine has no PDS.

Remark 2.9 (How to compute the shortest PDSs?). It is possible to compute a
shortest PDS for the considered machine by a breadth-first search throughout
its super graph.

48 Moez Krichen

Algorithm 5 Checking the existence of a PDS
• Initialization:

(1) σ0 := ({S}, ε) (S the set of states and ε the empty sequence)
(2) E := {σ0}
(3) Mark σ0 as non-treated

• Iterations: repeat until E = E ′

(1) E ′ := E
(2) ∀ σ ∈ E marked as non-treated, ∀ a valid input for σ ·unc

– mark σ as treated
– σ′ := (µ(σ ·unc, a), concat(σ ·seq , a))
– if σ′ ·unc ∈ Singleton(M) then declare “σ′ ·seq is a PDS” and STOP
– otherwise, if ∀σ′′ ∈ E ′ : σ′ ·unc �= σ′′ ·unc then E ′ := E ′ ∪ {σ′}

(and mark σ′ as non-treated)
(3) if E ′ �= E then E := E ′, otherwise declare “no PDS” and STOP

2.3.4 Complexity

Here, we give an estimation of how difficult checking the existence of a PDS for
some given machine is.

Theorem 2.10. ([LY94]) Testing whether a given Mealy machine has a PDS
is PSPACE-complete.

Proof. First, we show that this problem belongs to PSPACE. By Theorem 2.8,
we know that the problem of checking whether a machine M has a PDS can
be reduced to a reachability problem in the super graph Super -G(M) of this
machine. Moreover, it is clear that every vertex is polynomially bounded in
size. Thus, it can be tested whether V0 (the initial vertex of Super -G(M)) can
reach some vertex of Singleton(M) using a nondeterministic polynomial space
machine by guessing the path from V0 to Singleton(M) vertex by vertex. Thus
the problem is in NPSPACE, and therefore, also in PSPACE (since PSPACE =
NPSPACE).

In [LY94] for proving the PSPACE-hardness of the problem, Lee and Yan-
nakakis reduce from the following problem (Finite Automata Intersection):
given m deterministic finite automata (language acceptors) over the same input
alphabet Σ, determine whether they accept a common word. This problem is
known to be PSPACE-complete [Koz77]. ��

In [LY94], Lee and Yannakakis show that the result given by the theorem
above remains true for Mealy machines with binary input and output alphabets.
Moreover, about bounds on the length of the shortest PDS of a machine, the
two authors give the following result.

Theorem 2.11. ([LY94]) There are machines for which the shortest PDS has
exponential length.

2 State Identification 49

Proof. It suffices to apply the reduction used in the proof of Theorem 2.10 on
the following n automata on the unary input alphabet Σ = {0}. The transitions
of the i th automaton form a cycle of length pi , the i th prime, and the only
accepting state is the predecessor of the initial state. Then the shortest word
accepted by all the automata has length (Πn

i=1pi) − 1. Thus the length of this
common word is exponential in the size of the considered automata. ��

2.4 Adaptive Distinguishing Sequences

In this section, we deal with the second kind of distinguishing sequences: the
adaptive distinguishing sequences. The acronym ADS is used as a short-
hand for adaptive distinguishing sequence. As with PDS, we first give the math-
ematical definition of an ADS. Then, we list the main properties of ADS. We
deduce the way for checking the existence (and computing) an ADS. Finally, we
estimate the complexity of doing that.

Next, we refer more than once to machine M6 shown in Fig. 2.8. It is taken
from [LY94].

b/0

b/0

a/0
a/0

a/1

b/0

b/0

s4

a/1

a/1

b/0

a/0

s3

s1

s6

s2

b/0

s5

Fig. 2.8. Machine M6 ([LY94]).

2.4.1 What Is an ADS?

Formally, the definition of an ADS is given by the following.

Definition 2.12. An ADS of a Mealy machine M = (I ,O ,S , δ, λ) is a rooted
tree T such that:

(1) The number of leaves of T equals the cardinality of S ,
(2) The leaves of T are labeled with states of M ,
(3) The internal nodes of T are labeled with input symbols (from I),
(4) The edges of T are labeled with output symbols (from O),

50 Moez Krichen

(5) Edges emanating from a common node are labeled with distinct output sym-
bols,

(6) For each leaf u of T , if su is the label of u, xu and yu are respectively the
input and output sequences formed by the concatenation of the node and
edge labels on the path from the root to the leaf u, then λ(su , xu) = yu .

The length of an ADS is the depth of its corresponding tree T . ��

The execution of an ADS given as mentioned in the definition above is done
as follows: first, we execute the input symbol label of the root of the tree. Then,
we observe the response of the machine. Among the outgoing edges of the current
node of the tree we choose the one labeled by the observed output. Then, we
execute the label of the node to which this edge leads. We keep on repeating this
until we meet a node (leaf) labeled by a state of the machine. In that case, we
terminate the experiment by declaring that the initial state of the machine was
the label of that node.

Let us consider an example of an ADS for better understanding this.

a

1

0

0

00

1

a

a

aa

s3 s2 s4

s6 b01

0

1 0 1 0

b

b s5

s1

a

b

0

1

Fig. 2.9. An ADS for machine M6 ([LY94]).

Example. Consider machine M6 shown in Fig. 2.8. A possible ADS for this ma-
chine is given in Fig. 2.9. Suppose that the initial state of M6 is s6. Then, the
execution of this ADS will be as follows. We first apply a which is the label of the
root of the ADS. The machine returns 1 and moves to s1. Since 1 is observed,
the tester follows the right branch and applies b. The machine returns 0 and

2 State Identification 51

remains at s1. Notice that here the ADS has only one branch, that is, we know
that no matter what the initial state was, after the input sequence ab the second
output will certainly be 0. The next input given by the tester is a, which causes
the machine to move to state s2 and to output 0. Observing the latter, the tester
moves to the leaf node labeled by s6, which indicates that the initial state was
s6 and we are done.

It can be said that s6 corresponds to the branch (i.e., path from the root
to a leaf of the tree) of the ADS labeled by the input sequence aba and the
output sequence 101. Then in the same manner, each other state of the machine
corresponds to a different branch of the ADS. The input and output sequences
corresponding to the other states of the machine are given in Table. 2.2.

Input sequence Output sequence Initial state

aababa 010101 s1
aababa 010100 s3
aaba 0100 s5
aba 100 s6
ababa 10101 s2
ababa 10100 s4

Table 2.2. The different branches of the ADS shown in Fig. 2.9.

The length of this ADS is 6 which is the length of the input sequence aababa.

Remark 2.13 (From a PDS to an ADS). It is easy to see that when a machine
has a PDS, then this PDS can be considered as an ADS of this machine too.
For example from the PDS ab of machine M5 (Fig. 2.6), we can deduce the
ADS shown by Fig. 2.10. The PDS and the obtained ADS have the same length.
Moreover, the internal nodes at the same depth are labeled with the same input
symbol.

b

s2 s1 s3

a

b

1

11

0

0

a

s3

s2 s1

b

1

10

0

s1

s2

s3

s λ(s, ab)

PDS=ab

01

00

11

Fig. 2.10. From a PDS to an ADS.

Now about the converse. When a machine has an ADS, we cannot deduce
whether it has a PDS or not. For instance, machine M6 (Fig. 2.8) has an ADS
(the one shown in Fig. 2.9). However, by computing Super -G(M6) the super

52 Moez Krichen

graph of this machine, we deduce that it has no PDS. The super graph Super -
G(M6) is shown in Fig. 2.11. The only reachable vertices from the initial node
V0 = {{s1, s2, s3, s4, s5, s6}} in Super -G(M6) are V0 itself and V1 = µ(V0, a) =
{{s1, s3, s5}, {s2, s4, s6}}. Input b is invalid for both V0 and V1 since it merges
s2 and s6. In addition, there is no other reachable vertex since a makes a loop
on V1. That is because we have

{s1, s3, s5}
a/0−→{s2, s4, s6} and {s2, s4, s6}

a/1−→{s1, s3, s5}.
Consequently from V0, there is no reachable vertex in Singleton(M6). Thus,
although M6 admits an ADS it has no PDS.

a

ab not valid

b not valid

{s1, s2, s3, s4, s5, s6}

{s1, s3, s5}

{s2, s4, s6}

V0

V1

Fig. 2.11. Super-G(M6).

2.4.2 Properties of an ADS

Here, we study the main properties of ADSs. First, we adapt the definitions of
initial and current uncertainties (introduced in the previous section) for the case
of adaptive experiments 2 .

Definition 2.14. For each node u of a given adaptive experiment T associated
with a Mealy machine M = (I ,O ,S , δ, λ), we associate two sets of states I (u)
the initial set and C (u) the current set which are defined as follows:

• I (u) = {s ∈ S | yu = λ(s , xu)},
• C (u) = {δ(s , xu) | s ∈ I (u)} = δ(I (u), xu),

2 An adaptive experiment is a decision tree which is not necessarily a complete ADS
(The mathematical definition is given in Appendix 21).

2 State Identification 53

where xu and yu are respectively the input and output sequences formed by the
concatenation of the node and edge labels on the path from the root to the node
u (excluding u itself). ��

According to the definition, for some node u of an adaptive experiment, the
initial set I (u) informs about the set that may contain the initial state of the
machine and the current set C (u) about the set containing the state the machine
is currently occupying after applying xu and observing yu . Thus, the initial state
of the machine is identified if and only if I (u) is a singleton. Otherwise, the goal
of the subsequent steps shall be the reduction of this uncertainty about the initial
state.

It is not difficult to see that the current sets of the leaves of an adaptive
experiment form a partition of the set of states. For some adaptive experiment
T , let π(T) denotes this partition. It is easy to see that the following proposition
holds.

Proposition 2.15. For a given adaptive experiment T of a machine M =
(I ,O ,S , δ, λ): T is an ADS of M if and only if π(T) is the discrete partition
of S .

Proposition 2.16. Let T be an ADS of a Mealy machine M and u an internal
node of T

(1) The input symbol label of u is valid for C (u),
(2) |I (u)| = |C (u)|,
(3) The initial sets of the nodes children of u form a partition of I (u) the initial

set of u,
(4) I (u) contains exactly the labels of the leaves of the subtree of T starting from

node u.

Proof. Similar to the proof of Proposition 2.6. ��

From this proposition, we can deduce that there exist machines which have
no ADS. In fact, if there exists no valid input symbol for the set of states then the
considered machine has no ADS. For example, consider machine M3 (Fig. 2.3),
it has no ADS since both a and b are invalid inputs for its set of states.

Example. The Initial and Current sets of the proposed ADS of machine M6 are
shown in Fig. 2.12. For each node of this ADS the initial and current sets are put
within a box. The corresponding initial set is I and the corresponding current
set is C . For internal nodes, we also indicate the input symbol label of the
corresponding node. Clearly, Propositions 2.15 and 2.16 hold for this example.

2.4.3 Checking the Existence of an ADS

In Section 2.3, we have seen that checking the existence of a PDS can be reduced
to finding each time a valid input sequence which refines the current uncertainty

54 Moez Krichen

01

0

0

0

1 0

v13

v14

v8

v3

v7

I = {s4}
C = {s2}

I = {s2}

I = C = {s1, s2, s3, s4, s5, s6}
a

I = {s1, s3, s5}

a
C = {s2, s4, s6}

I = {s2, s4, s6}
C = {s1, s4, s6}

a

C = {s1, s5}
b

a
a

v1

v2

v4

v5

v6

v11

v12

v9

v15

I = {s1, s3}

b
C = {s1, s3, s5}
I = {s1, s3, s5}

I = {s2, s4, s6}
C = {s1, s3, s5}

b

I = {s2, s4}
C = {s1, s5}

b

I = {s6}
C = {s2}

I = {s2, s4}
C = {s1, s6}

C = {s1}

I = {s1, s3}
C = {s1, s6}

I = {s5}
C = {s2}

0 1

1 0

0
0 1

v10

v16

1

I = {s1}
C = {s1}

I = {s3}
C = {s2}

I = {s1, s3, s5}
C = {s1, s4, s6}

a

Fig. 2.12. An ADS of machine M6 with its associated Initial and Current sets.

(with no loss of information). In that case, if the uncertainty is reduced to
singletons then we are done. Now for ADS, things are a bit similar. First as for
PDS, only valid input symbols are to be considered too, otherwise there will be
an irrevocable loss of information. Also at each step, our goal is still to reduce
the uncertainty about the initial state. However by difference with PDS, for ADS
this is to be done locally. That is, we no longer need to look for a valid refining
input sequence for the whole current uncertainty but rather only to the current
set of some node of the adaptive experiment.

Consequently, checking the existence of an ADS is equivalent to checking
whether for any given block of states a valid input symbol for this block and
which distinguishes some of its states exists. This is what Algorithm 6 aims to
do.

The algorithm moves from a partition of the set of states to another. It starts
with the one block partition. Then at each step, it refines the current partition
by executing an input symbol which is valid for one of the blocks of the partition.
The considered block is split with respect to both the observed output symbols
and the blocks of the partition containing the arrival states due to the execution

2 State Identification 55

of the considered input symbol: two states of this block will be in the same
subblock if they produce the same output symbol and move to states which are
in the same block of this partition. When no more refinement is possible, the
algorithm terminates.

In this algorithm, Partition(B , π′) denotes the partition of B grouping states
which produce the same output and move to the same block of π′ under all
possible inputs.

Algorithm 6 Checking whether an machine M has an ADS([LY94]).
• Initialization: π := {S}

• Iterations: while ∃B ∈π, a∈I valid input for B and s1, s2∈B such that λ(s1, a) �=
λ(s2, a) or δ(s1, a) and δ(s2, a) not in the same block from π

(1) π′ := π
(2) π := π/B (we omit B from π)
(3) π := π ∪ Partition(B , π′)

Depending on whether the last obtained partition is the discrete one or not,
the conclusion about the existence of an ADS for the considered machine is given
by Theorem 2.17.

Theorem 2.17. ([LY94]) A given machine M has an ADS if and only if Al-
gorithm 6 applied on it ends with the discrete partition of the set of states of
M .

We sketch a proof for this theorem. The proof is split into two parts. We
start with the “only if” direction.

Proof. (“only if” direction) We do it by contradiction: we assume that M has an
ADS T and that the partition π with which Algorithm 6 terminates is not the
discrete one. We consider a block B in π with maximal cardinality (i.e., |B | � 2).
We assume that the initial state of the machine is in B and we try to identify
it by executing T . By induction on the length of the experiment, it is easy to
prove that for the current node u of T there exists a block of states Bu such
that

|Bu | = |B | and Bu ⊆ C (u).

In particular, this remains true when the distinguishing experiment T termi-
nates. Thus, there exists a leaf of T the current set of which contains more than
one state. So, we come to a contradiction with the fact that T is an ADS (by
Proposition 2.15). ��

For proving the “if” direction, we need to introduce some extra definitions.
Given a partition π of the set of states of the considered machine, we distinguish
between three types of valid inputs: a-valid, b-valid and c-valid. For some block

56 Moez Krichen

B of π, a is a-valid for B if it is valid for B and there are two states of B which
produce different outputs on a. The input a is b-valid for B with respect to π
if it is valid for B and all the states of B produce the same output on a and
move to the same block of π. Finally, a is c-valid for B w.r.t π if it is valid for
B and it is neither a-valid nor b-valid for B .

Moreover, we define the implication graph of a given machine correspond-
ing to a partition π of the set of states of this machine as the directed graph Gπ

the nodes of which are the blocks of π and such that B
a/b−→B ′ is an arc of Gπ if

a is c-valid for B and each state in B produces b and moves to a state in B ′ on
a.

Finally, we introduce the notion of closed experiments. An experiment T is
said to be closed if the current set of each of its leaves is contained in the initial
set of some (possibly different) leaf.

Proof. (“if” direction) We assume that Algorithm 6 terminates with the discrete
partition and we construct an ADS T for M . First, T is initialized to the one
node tree. At each step, every node of T is assigned some initial and current
sets. Due to the initialization step, the root of T is assigned S the whole set of
states as both initial and current sets.

• If T is not closed then we choose a leaf u of T the current set of which
intersects the initial sets of more than one leaf. We identify v the lowest
common ancestor (in T) of all such leaves. The tree T is then updated by
applying on the current set of u the input sequence spelt by the path from
the root of T to v .
• It is when T is closed that the partitioning resulted in by Algorithm 6 is

going to be helpful. In that case, we choose a leaf u of T such that I (u) is
of maximal cardinality in π(T).
It is not difficult to see that there exists a block B in π(T) such that
C (u) = B (since T is closed and I (u) is of maximal cardinality). On the im-
plication graph Gπ(T), we identify the blocks B1,B2, · · · ,Bk of π(T) which
are reachable from B . It is not difficult to see that B1,B2, · · · ,Bk are of the
same cardinality as B .
Now, since Algorithm 6 terminates with the discrete partition we deduce
that there exists a step of the execution of the algorithm which splits for the
first time some block Bi . Let a be the valid input symbol used during this
step and τ a possible path in Gπ which is from B to Bi . The string τa is the
input sequence we are going to apply on B the current set of u and update
correspondingly the tree T .
The input a can only be either a-valid or b-valid for Bi and not c-valid
(w.r.t π(T)). It can not be so because all the other blocks Bj �= Bi (the only
possible successors of Bi on c-valid inputs) are not split yet at that step. If
a is a-valid for Bi then the new obtained tree T has necessarily more leaves
than the old one (i.e., π(T) has been refined). Otherwise, if a is b-valid for
Bi then it is easy to see that the updated tree T is not closed.

Thus, after a finite number of iterations an ADS for the considered machine
is obtained. ��

2 State Identification 57

The following example allows to better understand the preceding proof.

Example. We apply Algorithm 6 on machine M6 (Fig. 2.9). Initially, we start
with the one block partition

π = {{s1, s2, s3, s4, s5, s6}}.

Only a is valid for {s1, s2, s3, s4, s5, s6} (b merges s2 and s6). It refines π to

π = {{s1, s3, s5}, {s2, s4, s6}},

where {s1, s3, s5} corresponds to output 0 and {s2, s4, s6} to 1. Now, {s1, s3, s5}
can be refined to {s1} and {s3, s5} by use of input symbol b since under b which
is valid for {s1, s3, s5} s1 stays at the same block whereas s3 and s5 move to
the block {s2, s4, s6} of the old partition. Thus, due to the execution of b the
partition π is refined to

π = {{s1}, {s3, s5}, {s2, s4, s6}}.

In a similar way, a refines {s2, s4, s6} to {s2} and {s4, s6} since a is valid for
{s2, s4, s6} and under a s2 moves to the block {s1} whereas the states s4 and s6
move to the block {s3, s5} of the old partition. Thus, π is refined to

π = {{s1}, {s3, s5}, {s2}, {s4, s6}}.

Now, b becomes valid for {s3, s5} and it can refine it into {s3} and {s5}. Partition
π becomes

π = {{s1}, {s3}, {s5}, {s2}, {s4, s6}}.

Finally, {s4, s6} can be refined either by a or by b into {s4} and {s6}. Thus, we
end with the discrete partition of the set of states of machine M6 and conse-
quently we verify that it has an ADS.

A summary of the different steps of the execution of Algorithm 6 on machine
M6 is given in Table 2.3.

i B valid partition π
input of B

0 {s1, s2, s3, s4, s5, s6} a {s1, s3, s5}, {s2, s4, s6} {s1, s3, s5}, {s2, s4, s6}
1 {s1, s3, s5} b {s1}, {s3, s5} {s1}, {s3, s5}, {s2, s4, s6}
2 {s2, s4, s6} a {s2, s4}, {s6} {s1}, {s3, s5}, {s2, s4}, {s6}
3 {s3, s5} a {s3}, {s5} {s1}, {s3}, {s5}, {s2, s4}, {s6}
4 {s2, s4} a {s2}, {s4} {s1}, {s3}, {s5}, {s2}, {s4}, {s6}

Table 2.3. Different steps of the execution of Algorithm 6 on machine M6.

Now from the preceding calculations, we show how a new ADS (Fig. 2.13)
for machine M6 can be constructed. The nodes of this new ADS are numbered
in order to explain how it is computed.

58 Moez Krichen

1

0

u7

0

1

0

1

0

1

0

0

b

a

0

a

u21

u20

u19

u18

u17u16

0 1

u15

u22

u14

u13

u3

u1

1

1

1

0
u8

1
u9

0
u10

0
u11u12

u6

u5

u4

u2

0

C = {s5}
I = {s2}

I = {s1, s2, s3, s4, s5, s6}
C = {s1, s2, s3, s4, s5, s6}

a

I = {s2, s4, s6}
C = {s1, s3, s5}

a

I = {s1, s3, s5}
C = {s2, s4, s6}

a

I = {s2, s4, s6}
C = {s2, s4, s6}

a

I = {s2, s4, s6}
C = {s1, s3, s5}

b

I = {s2, s4, s6}
C = {s1, s4, s6}

I = {s1, s3, s5}
C = {s1, s4, s6}

C = {s1, s3, s5}
I = {s1, s3, s5}

C = {s2}
I = {s5}

I = {s1, s3}
C = {s1, s5}

a

I = {s1, s3}
C = {s2, s6}

a

I = {s1, s3}
C = {s1, s3}

b

I = {s1, s3}
C = {s1, s4}

I = {s3}
C = {s5}

I = {s1}
C = {s2}

I = {s4}
C = {s2}

I = {s2, s6}
C = {s1, s5}

a

I = {s2, s6}
C = {s2, s6}

a

I = {s2, s6}
C = {s1, s3}

b

I = {s2, s6}
C = {s1, s4}

a

I = {s6}
C = {s2}

a

Fig. 2.13. Another ADS for machine M6.

It is constructed as follows:

• Step 0: T is initialized to the one node tree. The initial and current sets of
the root of T are assigned {s1, s2, s3, s4, s5, s6}. At this step, T contains only
node u1 of the tree shown in Fig. 2.13.
• Step 1: T due to step 0 is not closed. According to the execution of Algo-

rithm 6, the current set {s1, s2, s3, s4, s5, s6} of node u1 can be refined by
applying a. Thus, node u1 is labeled by a and nodes u2 and u3 are added to
T (with their corresponding current and initial sets).
• Step 2: T due to step 1 is closed since the current set of u2 equals the initial

set of u3 and vice versa. At this step, we have

π(T) = {{s1, s3, s5}, {s2, s4, s6}},

2 State Identification 59

and

{s2, s4, s6}
a/1−→{s1, s3, s5}.

According to the execution of Algorithm 6, b allows to refine {s1, s3, s5} since
it makes its states move to distinct blocks of π(T). Thus, T can be extended
by executing the input sequence ab from u2. As a result, nodes u4 and u5

are added to T and node u2 is labeled by a and node u4 by b. The suitable
current and initial sets are assigned to each new node.
• Step 3: the so far obtained T is not closed since the current set {s1, s4, s6} of

u5 intersects both the initial set of u3 and u5 (the current leaves of T). The
lowest common ancestor of these two nodes is u1. So, the input sequence to
be used is a. Thus at this step, we add to T u6 and u7 and to each of them
we assign the corresponding current and initial sets.
• Step 4: T is not closed since the current set {s1, s5} of node u7 intersects both

the initial set of nodes u7 and u9. The lowest common ancestor of u7 and u9

is u5. So, the input sequence to be used is aaba (spelt by the path from u1

to u5). T is consequently formed by nodes u1 to u12. Due to this step the
two extra states s1 (node u11) and s3 (node u12) have become identifiable.
• Step 5: T is not closed since the current set {s1, s3, s5} of node u3 is the

union of the initial sets of the nodes u6, u11 and u12. The lowest common
ancestor of these nodes is u5. So as in step 4, we apply aaba on the current
set of u3. Consequently, we append to T nodes from u13 to u17.
• Step 6: T is not closed since the current set {s1, s5} of node u17 is the union

of the initial sets of the nodes u6 and u11. The lowest common ancestor of
these nodes is still u5. So as in step 4, we apply aaba on the current set of
u3. At this step, nodes from u18 to u22 are appended to T .

It is easy to see that the obtained T due to step 6 is an ADS for machine M6.

Remark 2.18. There is a similarity between Algorithm 6 and the classical al-
gorithm for FSM minimization. The only difference between them is that Al-
gorithm 6 uses only valid inputs, whereas the minimization algorithm uses all
input symbols.

2.4.4 Computing a Polynomial ADS

In the proof of Theorem 2.17, we gave a first method for constructing an ADS
(when Algorithm 6 terminates with the discrete partition of some given ma-
chine). This method may give exponential ADSs. For example, the ADS of ma-
chine M6 resulted in by this method (Fig. 2.13) is not optimal (it is longer than
the one shown in Fig. 2.9).

In [LY94], Lee and Yannakakis propose methods for computing ADSs with
polynomial size and in polynomial time. For computing “optimal” ADSs, they
introduce an intermediary structure: the splitting tree. The latter is defined as
follows.

60 Moez Krichen

Definition 2.19. A splitting tree associated with a Mealy machine M =
(I ,O ,S , δ, λ) is a rooted tree T such that:

• Each node of T is labeled by a subset of S and the root of T is labeled with
S ,
• The children’s labels of an internal node of T are disjoint and the label of

an internal node of T is the union of its children’s labels,
• With each internal node of T is associated an input sequence,
• With each internal node u of T , with associated set-label Su and input string-

label xu , is associated a mapping fu : Su → S such that fu (s) = δ(s , xu) for
each s in Su ,
• Each edge of T is labeled with an output symbol from O .

Let π(T) denotes the collection of sets of states formed by the labels of the leaves
of the splitting tree T (it is easy to see that π(T) is a partition of S). T is a
complete splitting tree if π(T) is the discrete partition of S . ��

{s6}
u6

{s5}
u8 u9

{s3}
u10

{s2} {s4}
u11

u1
{s1, s2, s3, s4, s5, s6}

a

aba
{s2, s4, s6}

u3u2

ba
{s1, s3, s5}

{s2, s4}
bba

u7

{s1}
u4

aaba
{s3, s5}

u5

0

0

0

0

0

1

1

1

1

1

Fig. 2.14. A complete splitting tree of machine M6.

Example. A complete splitting tree for machine M6 (Fig. 2.8) is shown in Fig. 2.14.
The mappings fu associated with this splitting tree are given in Table 2.4.

The way for computing such a complete splitting tree is given by Algorithm 7.
The Algorithm uses the following notation:

• ST0 is the tree with a single node whose root is labeled with S .
• πd is the discrete partition of S .

2 State Identification 61

fu1 = (s1, s2), (s3, s5), (s4, s5), (s5, s6), (s6, s1)

fu2 = (s1, s2), (s2, s3), (s5, s1)

fu3 = (s2, s5), (s4, s1), (s6, s2)

fu5 = (s3, s1), (s5, s2)

fu7 = (s2, s2), (s4, s1)

Table 2.4. The mappings fu of the splitting tree of machine M6 (Fig. 2.14).

• u(B) is the leaf of ST with set-label B .
• u ·set and u ·string are the set and string-labels of the node u, respectively.
• append(ST , u,B ′, a) is ST to which we append a new node v from u such

that the set-label of v is B ′ and the edge from u to v is labeled by input
symbol a.
• λ(s ∈ B ′, a)= λ(s , a) for any arbitrary s in B ′.
• label(v ,w) is the label of the edge of ST which is from v to w .

The algorithm proceeds as follows. It starts with the one node splitting tree.
At each iteration, it considers a block B from R the set of blocks of π with largest
cardinality. B is the set-label of one of the leaves of the current splitting tree.
Then, it looks for the shortest input sequence that may refine B . Three ways are
then possible for finding such an input sequence. If B has an a-valid input symbol
(“case 1”) then the searched input sequence is the found a-valid input symbol. If
no such leaf exists then we look for a leaf which has a b-valid input symbol (w.r.t
to π the partition of states induced by the current splitting tree). If such a leaf
is found (“case 2”), then we identify the node of the current splitting tree whose
set-label contains δ(B , a), where a is the b-valid input symbol. If σ is the input
string-label associated with this node then it is clear that B can be refined by
executing aσ. Now, if the set-label of the considered leaf has neither an a-valid
nor a b-valid input symbol then we check whether there exists a sequence of
c-valid inputs for B (w.r.t π) which makes the states of B (the set-label to be
refined) move to another set-label C which has just been refined by the execution
of an input sequence τ . If such a path σ exists (“case 3”) then it is clear that
στ can refine the set-label B .

If none of the three ways works, we conclude that the considered machine
has no ADS. In the third case, for obtaining the shortest input sequence which
refines B we shall look for the shortest path σ which goes from B to some other
possible set-label C . This can be done by performing a reachability analysis on
Gπ[R] the subgraph of Gπ (the implication graph corresponding to the partition
π) induced by R to find a path from B to some possible block C .

For each of the three cases, the splitting tree is updated as follows: we assign
the found input sequence to the input string-label of the considered leaf then
new leaves are attached to this (old) leaf. The number of attached leaves equals
the number of subsets to which B is refined.

Example. We apply Algorithm 7 to M6 to obtain the complete splitting tree
shown in Fig. 2.14.

62 Moez Krichen

Algorithm 7 Computing a complete splitting tree ST ([LY94]).
• Initialization:

(1) ST := ST0

(2) π := {S}

• Iterations: while π �= πd , ∀B ∈R

– case 1: If ∃ a ∈ I a-valid input for B then
(1) u(B)·string := a
(2) ∀B ′ ∈ π(B) :

ST := append(ST , u(B),B ′, λ(s ∈ B ′, a))

(3) ∀ s ∈ B : fu(B)(s) := δ(s, a)

– case 2: Otherwise, if ∃ a ∈ I b-valid for B w.r.t π then
(1) v := the lowest node of ST such that δ(B ,a) ⊆ v ·set
(2) σ := v ·string
(3) u(B)·string := aσ
(4) ∀w child of v such that δ(B , a) ∩ w ·set �= ∅ :

ST := append(ST , u(B),B ∩ δ−1(·, a)(w ·set), label(u,w))

(5) ∀ s ∈ B : fu(B)(s) := fv(δ(s, a))

– case 3: Otherwise, if ∃C ∈ π that has fallen under “case 1” or “case 2” and

such that B
σ/β−→C is a path in Gπ[R] then

(1) τ := u(C)·string
(2) u(B)·string := στ
(3) ∀w child of v such that δ(B , σ) ∩ w ·set �= ∅ :

ST := append(ST , u(B),B ∩ δ−1(·, σ)(w ·set), label(u,w))

(4) ∀ s ∈ B : fu(B)(s) := fu(C)(δ(s, σ))

– Otherwise, no ADS

• Step 0: ST is initialized to ST0, it contains only u1. The set-label of this
node is assigned S1 = S the whole set of states.

• Step 1: we are in “case 1” since a is a-valid for S the set-label of u1. The
input symbol a refines S1 into S2 = {s1, s3, s5} and S3 = {s2, s4, s6}. Thus,
we assign a to the string-label u1, we attach the two new leaves u2 and u3 to
this node and assign S2 to the set-label of u2 and S3 to the set-label of u3.
• Step 2: we are not in “case 1” since neither S2 nor S3 has an a-valid input

symbol. The input b is b-valid for S2 since δ(S2, b) = {s1, s4, s6} intersects
both S2 and S3. Thus, we are in “case 2”. In ST , we look for the lowest node
whose set-label contains δ(S2, b). This node is u1. Since the string-label of
this node is a and b is the b-valid input symbol for S1, S2 can be refined by
applying ba. The latter refines S2 into S4 = {s1} and S5 = {s3, s5}. Thus,
we update ST by assigning ba the string-label of u2, attaching u4 and u5 to
u2 and assigning S4 and S5 to the set-labels of u4 and u5, respectively.

2 State Identification 63

• Step 3: at this step, we refine S3 the set-label of u3. The block S3 has neither
a-valid nor b-valid inputs. However, a is c-valid for S3 and δ(S3, a) = S2.
Thus, we are in “case 3” and S3 can be refined by the input sequence ob-
tained by the concatenation of a with the input string-label of u3 (ba).
Consequently, we deduce that S3 can be refined by the input sequence aba
into S6 = {s6} and S7 = {s2, s4}. These two blocks are the set-labels of u6

and u7 the so far attached nodes to u2. We also assign aba to the input
string-label of u2.
• Step 4: at this step, the set-labels with maximal cardinality are S5 and S7.

First, we refine S5, the latter has no a-valid input symbol. We are in “case 2”
since a is b-valid for S5. The block {s2, s6} = δ(S5, a) intersects the set-labels
of both u6 and u7. The input string-label by which S5 is refined is aaba. It is
the concatenation of a the b-valid input of S5 and aba the input string-label
of u3 the lowest common ancestor of u6 and u7. The input sequence aaba
refines S5 into S8 = {s5} and S9 = {s3}. Thus, we update ST by assigning
aaba to the input string-label of u5 and attaching u8 and u9 to u5. The
set-labels of u8 and u9 are respectively S8 and S9.
• Step 5: now, it only remains to refine S7 for obtaining a complete splitting

tree. We are in “case 2” again since S7 has no a-valid input symbol, b is
b-valid for S7 and {s1, s5} = δ(S7, b) intersects the set-labels of both u4 and
u5. The lowest common ancestor node of u4 and u5 is u1 with input string-
label ba. Thus, S7 can be refined by bba into S10 = {s2} and S11 = {s4}.
Finally, we assign bba to the input string-label of u7 and we attach u10 and
u11 to this node.

All the set-labels of the leaves of the obtained splitting tree ST are singletons.
Consequently, ST is a complete splitting tree.

Theorem 2.20. ([LY94]) Algorithm 7 results in a complete splitting tree of
some machine M if and only if M has an ADS.

Proof. Similar to the proof of Theorem 2.17. In particular for the second direc-
tion (“only if”), the way for computing an ADS from a complete splitting tree
is given by Algorithm 8. ��

In Algorithm 8, we use the following notation (in addition to the ones used
in Algorithm 7):

• T0 is the one node tree whose root has its initial and current sets equal to
the whole set of states.
• τ−1 is the prefix of τ with length |τ | − 1 (λ−1 is defined similarly).
• hang ·sequence(T ,w , τ−1, λ−1) is T to which we hang |τ−1| new degree-two

nodes from w , we label w and the new added nodes in a way such that the
labels read from w to the new leaf spell τ−1 and we finally label the new
added edges in a way such that the labels read from the outgoing edge from
w to the end of the path spell λ−1.

64 Moez Krichen

Algorithm 8 Computing an ADS T given a complete splitting tree ST ([LY94]).
• Initialization: T := T0

• Iterations: while ∃w a leaf of T such that |C (w)| � 2

(1) u := the lowest node of ST such that C (w) ⊆ u ·set
(2) τ := u ·label
(3) λ−1 := λ(s ∈ C (w), τ−1)
(4) T := hang ·sequence(T , w , τ−1, λ−1)
(5) v := the new obtained leaf of T
(6) ∀ ui child of u such that C (w) ∩ ui ·set �= ∅

(a) T := hang ·node(T , v , vi , label(u, ui))
(b) C (vi) := fu(C (w) ∩ ui ·set)
(c) I (vi) :=the initial states associated with the states of C (w) ∩ ui ·set at

node w

• hang ·node(T , v , vi , a) is T to which we hang the node vi from v and label
the new outgoing edge from v with a.

Example. We explain how the ADS of M6 shown in Fig. 2.12 (and Fig. 2.9 too)
can be deduced from the complete splitting tree ST shown in Fig. 2.14.

• Step 0: we initialize T to T0. The experiment T contains only v1 with S as
initial and current sets for this node (i.e., I1 = C1 = S).
• Step 1: for reducing the uncertainty about C1, we apply a the string-label

of node u1 of ST since C1 ⊆ S1. The nodes v2 and v3 are added due to this
step. We also calculate the initial and current sets (I2, I3, C2 and C3) of
these two nodes and the labels of the added edges.
• Step 2: we reduce the uncertainty about C2 = {s2, s4, s6} the current set of

v2. The node u3 is the lowest node of ST whose set-label contains C2. So,
from v2 we apply the input sequence aba (string-label of u3). Consequently,
we add nodes v4 to v7. The node v2 is labeled by a, v4 by b and v5 by a, so
that together they spell aba. The corresponding initial and current sets are
assigned to the added nodes.
• Step 3: we reduce the uncertainty about C3 = {s1, s3, s5}. The lowest node of

ST whose set-label contains C3 is u2. Thus, we use ba at this step. Nodes v8,
v9 and v10 are added and are assigned the corresponding initial and current
sets.
• Step 4: similarly, we reduce the uncertainty about C6 = {s1, s5} by applying

ba the string-label of u2. Nodes v11, v12 and v13 are added due to this step.
• Step 5: finally as in step 4, ba is used again for reducing the uncertainty

about C10 = {s1, s5}. At this step, nodes v14, v15 and v16 are attached to T .

The obtained adaptive experiment T is clearly an ADS.

2 State Identification 65

2.4.5 Complexity

In this section, for a machine M = (I ,O ,S , δ, λ), we let n stand for the number
of states of M and p the number of its input symbols (i.e., n = |S | and p = |I |).

Theorem 2.21 below summarizes the main complexity results of Lee and
Yannakakis [LY94] about ADSs.

Theorem 2.21. ([LY94]) For the considered machine M

(1) A straightforward implementation of Algorithm 6 takes time O(pn2).
(2) If Algorithm 7 succeeds in constructing a complete splitting tree ST then its

time complexity is O(pn2) and the size of ST is O(n2).
(3) If Algorithm 7 succeeds in constructing a complete splitting tree ST then

the decision tree T of the ADS derived by Algorithm 8 has length at most
n(n−1)/2 and O(n2) nodes. Moreover, T can be constructed in time O(n2)
from ST.

The proof of this theorem given in [LY94] is mainly based on the following
lemmas.

Lemma 2.22. ([LY94]) Suppose that f (·) is a function from the set of states to
a finite set Y that can be evaluated in constant time. If R is a subset of states
stored in a list then we can partition the elements of R according to their value
under f in time O(|R|) using workspace O(n + |Y |).

Lemma 2.23. ([LY94]) Suppose that Algorithm 7 succeeds in constructing a
complete splitting tree ST, then:

• Each internal node u of ST has at least two children,
• The label L(u) of u is the union of the labels of its children,
• All states of L(u) produce the same output except for the last symbol,
• Two states of L(u) agree in the last output symbol if and only if they belong

to the label of the same child of u, furthermore, this output symbol is the
label of the edge connecting u to its child.

Lemma 2.24. ([LY94]) If u is the internal node of a splitting tree whose label
L(u) has cardinality i, then its associated input sequence ρ(u) has length at most
n + 1− i.

In order not to overload the chapter, we give neither the proof of the theorem
nor of the three lemmas. Interested readers are referred to [LY94].

About the time complexity of checking the existence of an ADS for a given
machine, Lee and Yannakakis [LY94] propose an implementation of Algorithm 6
which takes O(pnlogn) time inspired by Hopcroft’s algorithm [Hop71] allowing to
minimize FSMs in O(pnlogn) time. The main idea behind this implementation
consists on splitting blocks by examining transitions in the reverse direction
instead of forward.

66 Moez Krichen

The two authors also argue a more general problem, similar to the problem
of checking the existence of an ADS for some given machine. It consists of iden-
tifying the initial state of a given machine with the extra assumption that this
initial state belongs to a subset of the set of states. It is shown that this problem
is harder than the initial problem of checking the existence of an ADS as stated
by the following.

Theorem 2.25. ([LY94]) Given an FSM M and a set of possible initial states
Q, It is PSPACE-complete to tell whether there is an (adaptive) experiment that
identifies the initial state of M .

2.5 Summary

In this chapter, we addressed the state identification problem for Mealy ma-
chines. It consists in checking whether it is possible to determine the initial state
of a given Mealy machine by applying inputs on it and observing the correspond-
ing outputs. A solution of this problem is called a distinguishing sequence.

Not all Mealy machines have distinguishing sequences. In particular, non-
minimal machines have no distinguishing sequences, since there is no way for
distinguishing their equivalent states. In this chapter, we have only considered
Mealy machines which are minimal, deterministic and fully specified.

Distinguishing sequences can be either preset or adaptive. A PDS is a se-
quence of inputs whereas an ADS is a decision tree where inputs may be different
depending on the observed outputs during the experiment. If a machine has a
PDS then it has an ADS (because a PDS is an ADS), however, the converse is
not true.

Main results about PDSs: it is PSPACE-complete to test whether a given FSM
has a PDS. In [LY94], Lee and Yannakakis show that this remains true even for
Mealy machines with binary input and output alphabets. Checking the existence
of a PDS can be reduced to a reachability analysis in the super graph of the
considered machine. The size of this graph is exponential with respect to the
number of states of the corresponding machine. It is possible to compute a
shortest PDS of a given machine by performing a breadth-first search throughout
the super graph of the machine. In [LY94], Lee and Yannakakis also show that
there are machines for which the shortest PDS has exponential length.

Main results about ADSs: it can be checked whether a given Mealy machine has
an ADS in time O(pn2), where n and p are the number of states and inputs
of the considered machine, respectively. This can be done by executing an algo-
rithm similar to the classical minimization algorithm. O(pn2) can be reduced to
O(pnlogn) by executing an algorithm inspired by Hopcroft’s minimization algo-
rithm [Hop71]. For computing “optimal” ADSs, in [LY94], Lee and Yannakakis
define the so-called splitting tree. The latter provides for some subset of states
an input sequence which allows to reduce the uncertainty about this subset. A

2 State Identification 67

given machine has an ADS if and only if it has a complete splitting tree. The al-
gorithm (Algorithm 7) for checking the existence and computing a splitting tree
takes time O(pn2). The size of the splitting tree it results in is O(n2). Finally, if
a complete splitting tree is found, then an ADS for the corresponding machine
can be deduced from it in time O(n2). Moreover, the obtained ADS has O(n2)
nodes and length at most n(n − 1)/2.

Sources: the main sources for this chapter have been [LY94, LY96] by David Lee
and Mihalis Yannakakis and Chapter 13 of [Koh78] by Zvi Kohavi.

3 State Verification

Henrik Björklund

Computer Science Department
Uppsala University
henrikbj@it.uu.se

3.1 Introduction

State verification is a more restricted problem than state identification, dis-
cussed in Chapter 2. As in state verification, we know the state diagram of the
system under test. The difference is that we have an assumption about which
state the system is currently in, and the objective is to check that this assump-
tion is correct. The basic idea is that when testing a machine, we can give it an
input sequence, and then use state verification to verify that the sequence took
the machine under test to the expected state.

Definitions of many of the concepts used in this chapter can be found in
Appendix 21.

In a state verification experiment, we want to find out whether a Mealy
machine M = (I ,O ,S , δ, λ) is in a particular state s ∈ S . An input sequence is
applied to the machine, and we observe the output.

Given a Mealy machineM = (I ,O ,S , δ, λ) and a state s ∈ S , it is possible to
verify thatM is in state s by only observing the input-output behavior ofM if
and only if there is an input sequence x = (a1, . . . , ak) such that λ(s , x) �= λ(s ′, x)
for all s ′ �= s .1 Since only the input-output behavior of the machine is observable,
state verification for state s is possible if and only if s has a unique input-output
sequence, or UIO sequence for short.

Definition 3.1 (UIO sequence). Given a Mealy machine M = (I ,O ,S , δ, λ)
and a state s ∈ S , a UIO sequence for s is an input sequence x such that
λ(s , x) �= λ(s ′, x) for every state s ′ �= s .

These sequences were introduced by Hsieh [Hsi71],2 and algorithms for find-
ing them have been studied by, e.g., Kohavi [Koh78], Sabnani and Dahbura
[SD88], Lee and Yannakakis [LY94], and Naik [Nai97]. The presentation in this
chapter builds mainly on the results from these papers.

Not all states of all machines have UIO sequences. Consider for example the
machine in Figure 3.1, with input alphabet I = {a, b} and output alphabet
O = {0, 1}. For state s1 the singleton sequence b is a UIO sequence, since s1 is
the only state that produces output 1 on input b. Similarly, a is a UIO sequence
for s2 since it is the only state that produces output 1 on input a. State s3,
however, does not have a UIO sequence. On input a, states s1 and s3 will both
1 For extensions of λ and δ to sequences of input symbols, see Appendix 21.
2 Hsieh uses the term simple I/O sequence rather than UIO sequence [Hsi71].

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 69-86, 2005.
 Springer-Verlag Berlin Heidelberg 2005

70 Henrik Björklund

give output 0, and in both cases the machine will be taken to the same state,
s2. Thus for any input sequence starting with an a, states s1 and s3 will give
the same output. Similarly, both s2 and s3 give output 0 on input b, and the
machine is in both cases taken to s3. Thus s2 and s3 give the same output on
all input sequences starting with a b. Since all input sequences start either with
an a or a b, state s3 cannot have a UIO sequence. Notice that for any one of s1
and s2, there is a sequence that separates it from s3. There is, however, no one
sequence that separates s3 from both s1 and s2.

s1

s2 s3

b/1

a/0

a/1

b/0

a/0

b/0

Fig. 3.1. A Mealy machine in which states s1 and s2 have UIO sequences, but s3 does
not.

There are machines such that all, some, or no states have UIO sequences. In
any machine with only one state, all states have UIO sequences. As we saw above,
the machine in Figure 3.1 has UIO sequences for some, but not all states. In
contrast, there is no state that has a UIO sequence in the machine in Figure 3.2.

A distinguishing sequence for a machine is a more powerful sequence,
that can be used for state identification. A preset distinguishing sequence for
a machineM is an input sequence x such that for all states s , s ′ ofM, if s �= s ′

then λ(s , x) �= λ(s ′, x); see Chapter 2 for an extensive treatment. If a machine
has a distinguishing sequence, then all its states have UIO sequences. In fact, if
x is a preset distinguishing sequence for M, then x is also a UIO sequence for
every state s ofM.

Even though UIO sequences do not always exist, there are cases when there
are no distinguishing sequences, but all states have UIO sequences [Koh78, Lal85,
ADLU91]. This is one of the main reasons for studying state verification. Ideally,
we would like to have distinguishing sequences, preferably short, for all machines,
but since this is not possible, we often have to settle for something less ambitious,
namely trying to find UIO sequences. Consider the machine in Figure 3.3. It has
no preset distinguishing sequence,3 since states s2 and s3 give the same output

3 In fact, the machine has no preset or adaptive distinguishing sequence. For more
about adaptive distinguishing sequences, see Chapter 2.

3 State Verification 71

s1

s3

s2

s4

b/1a/1

a/0

b/0

a/1
b/0

a/0

b/1

Fig. 3.2. A Mealy machine in which no state has a UIO sequence.

for any input starting with an a, and s1 and s4 give the same output when the
input starts with a b. All states do, however, have UIO sequences:

• UIO sequence for s1: ab
• UIO sequence for s2: ba
• UIO sequence for s3: b
• UIO sequence for s4: a

We will return to the machine in Figure 3.3 as an example later in the chapter.

s1

s3

s2

s4

a/0a/0

a/0

b/0

a/1
b/1

b/1

b/1

Fig. 3.3. A Mealy machine in which all states have UIO sequences. There is no preset
distinguishing sequence for the machine.

A Mealy machine M is minimized if it has no equivalent states; see Ap-
pendix 21. If a Mealy machine is not minimized, there are always states that

72 Henrik Björklund

do not have UIO sequences, since there are at least two states that produce the
exact same outputs for every input sequence. In the sequel we will therefore
assume that we are dealing with minimized machines.

The main use for state verification is as a part of algorithms for conformance
testing, that is, the problem of determining whether a machine in a black box is
a correct implementation of a given specification machine. Many suggested algo-
rithms for this problem use UIO sequences as parts of sequences for conformance
testing; see Chapter 4 and papers by, e. g., Hsieh [Hsi71], Aho et. al. [ADLU91],
Sabnani and Dahbura [SD85, SD88], Naik [Nai97], and Miller and Paul [MP93].

3.2 Complexity of Finding UIO Sequences

Finding UIO sequences for states in large Mealy machines is no trivial task.
The problem was studied in the 1970s, but no efficient algorithms were found
[Hsi71, Koh78].

It is not only difficult to find UIO sequences, even determining whether they
exist has proved to be challenging. In 1994, Lee and Yannakakis proved that this
decision problem is PSPACE-complete. We here reproduce and flesh out their
proof.

Theorem 3.2 (Lee and Yannakakis [LY94]). For Mealy machines M, the fol-
lowing three problems are PSPACE-complete.

(1) Does a specific state s of M have a UIO sequence?
(2) Do all states of M have UIO sequences?
(3) Is there any state of M that has a UIO sequence?

Proof. The proof of the theorem is structured as follows. We first show mem-
bership in PSPACE for problem (1), by reduction to a graph search problem.
The result is then extended to membership proofs for problems (2) and (3). We
then show PSPACE-hardness, again first for problem (1) and then for (2) and
(3). All hardness results are obtained by reducing the PSPACE-hard problem
Finite Automata Intersection to the problem of finding UIO sequences in
Mealy machines.

To show membership of problem (1) in PSPACE we reduce it to reachability
in an exponentially large graph. Given a Mealy MachineM = (I ,O ,S , δ, λ) we
construct a directed graph G = (V ,E) with labeled edges in the following way.
The vertex set V is S×P(S), where P(S) is the powerset of S . Thus, all pairs of
a state s and a subset Q ⊆ S are vertices of G. This means that G has | S | ·2|S |

vertices, and is exponentially larger than M. There is an edge from (s ,Q) ∈ V
to (t ,P) ∈ V labeled with a ∈ I if and only if

t = δ(s , a), and (3.1)
P = {δ(r , a) | r ∈ Q and λ(r , a) = λ(s , a)}. (3.2)

3 State Verification 73

Thus (s ,Q) a−→(t ,P) if and only if t is reachable from s with an a-transition in
M, and P is the subset of δ(Q , a) that can be reached by an a-transition from
Q with the same output as the a-transition from s to t .

Consider a vertex (s ,Q) of G, and an input sequence x ∈ I ∗. It is straight-
forward to prove by induction on the length of x that if Q ′ is the subset of Q
that produces the same output as s on input x , then the unique path in G that
starts in (s ,Q) and is labeled with x ends in (δ(s , x), δ(Q ′, x)).

If a vertex (s ,S \ {s}) in G can reach a vertex (t , ∅), for some state t , via
a directed path labeled x , then it follows from the above that it has a UIO
sequence. Indeed, the subset of S \ {s} that gives the same output as s on input
x is empty. Thus s can be uniquely identified by its output on x . On the other
hand, if there is no such path, then there is no input sequence x such that s
gives a different output than all other states on x . Thus s does not have a UIO
sequence.

In problem (1) we are given a state s and want to know if it has a UIO
sequence. Thus what we need to do is to determine whether some vertex (t , ∅) is
reachable from the vertex (s ,S \{s}) in G. This can be done in nondeterministic
polynomial space. There is no need to explicitly compute the whole graph G,
which would require exponential space. Instead, the search procedure keeps track
only of the current vertex, and for each step computes all its successors and
nondeterministically chooses to proceed to one of them. Representing a vertex
only requires polynomial space, and each vertex has at most one successor for
each symbol in the input alphabet. As Chapter 1.4.2 explains, a consequence
of Savitch’s theorem is that PSPACE=NPSPACE, and the membership of
problem (1) in PSPACE follows. The result for problem (1) extends to problems
(2) and (3), since they can be solved by applying the nondeterministic polynomial
space procedure for problem (1) once for each state.

(1) We now proceed to showing that the problem of determining whether a
specific state s of a given machine M has a UIO sequence is PSPACE-hard.
This is achieved by reduction from the following problem. In Finite Automata
Intersection we are given k deterministic total finite automata, A1, . . .Ak , all
defined over the same alphabet Σ. The question is whether the intersection of
the languages accepted by the automata is nonempty, i.e., if there is some string
in Σ∗ that is accepted by all k automata. As seen in Chapter 1.4.2, this problem
is PSPACE-complete.

The reduction composes the automata to a Mealy machineM in the following
way. The machine has the same input alphabet as the automata, plus two letters,
r (reset) and f (finish). Its output alphabet is {0, 1}. The states of the machine
are the states of the automata plus one additional state s . Every transition in one
of the automata is a transition ofM, with the same input as in the automaton,
and output 0. Also, every state t of an automaton Ai gets a transition to the
initial state of Ai with input r and output 0, and a transition to s with input f .
This transition has output 1 if t is accepting in Ai and 0 if it is non-accepting.
Finally, s has a transition to itself for every input, including r and f , with

74 Henrik Björklund

output 0. An example of the construction for two small automata, accepting the
common string a is shown in Figure 3.4.

s

f /0

a/0

f /1

b/0

r , b/0 a, b/0

a, b/0r,a/0

Σ ∪ {r , f }/0

r/0

f /0

r/0

f /1

A1

A2

Fig. 3.4. An example of the reduction. The automata A1 and A2 over the alphabet
Σ = {a, b} are combined into a Mealy machine with input alphabet I = {a, b, r , f }
and output alphabet O = {0, 1}. The automata both accept the string a from their
initial states (the leftmost state of each automaton), and the input-output sequence
raf is a UIO sequence for state s of the machine.

The state s in the constructed Mealy machine has a UIO sequence if and only
if the automata accept a common string x . We first show the if direction. Suppose
all the automata accept x = a1 . . . ak . Then ra1 . . . ak f is a UIO sequence for s .
From state s , input rxf will obviously give a sequence of only zeroes as output.
If the machine is initially in some state t �= s , then the first symbol, r , will take
it to the initial state of the automaton Ai that t belongs to. The sequence x will
then lead to an accepting state of Ai . Finally, the symbol f will give a transition
to s with output 1. Thus no other state can have an output of only zeroes on
input rxf .

For the other direction, assume that there is a UIO sequence x for s . Then
x must contain an f , because input f is the only symbol that can produce an
output different from 0. Assume that no r appears before the first occurrence
of f in x . Consider the prefix x ′ = a1a2 . . . ak f of x that cuts x after the first
f . We claim that λ(q, x ′) = 0k1 for all q �= s . This is because δ(q, f) = s for
all states, so if the f produces output 0, then all subsequent outputs will be

3 State Verification 75

0, and x cannot be a UIO sequence for s . This means that from every state
except s , input sequence a1a2 . . . ak leads to an accepting state. This includes
the initial states of the automata, and we conclude that a1a2 . . . ak is accepted
by all automata. If x contains an r before the first occurrence of f , a similar
argument shows that the part of x between the last occurrence of r before the
first f and the first f is a string accepted by all automata.

(2) To show that it is PSPACE-hard to find out whether all states of a given
machineM have UIO sequences, we again use the Finite Automata Intersection
problem, with a very similar reduction. The same transitions as above are used,
plus some more, as described below. Add a new symbol at to the input alphabet
for every state t of every automaton. State t gets a transition on input at to s
with output 0. Every state u �= t , belonging to automaton Ai gets a transition
to the initial state of Ai on input at , with output 0. State s gets a transition
with input at to the initial state of the automaton which t belongs to, also with
output 0.

If the automata do not accept a common string, state s does not have a UIO
sequence, by the same argument as for problem (1) above. On the other hand, if
all automata accept the string x = a1 . . . ak , then ra1 . . . ak f is a UIO sequence
for s , and for every other state t , the sequence ata1 . . . ak f is a UIO sequence.

(3) Finally, we show that it is PSPACE-hard to determine whether any state
of a given machine has a UIO sequence. The same construction as in the proof
of claim (1) is used, except that two identical copies of each automaton Ai are
used. This means that only state s can have a UIO sequence, and as above, if
all automata accept string x = a1 . . . ak then ra1 . . . ak f is a UIO sequence for s ,
and otherwise there is none. This finishes the proof of Theorem 3.2.

In fact, Theorem 3.2 holds even if we consider only Mealy machines with
binary input and output alphabets [LY94].

The proof of Theorem 3.2 also yields an upper bound on the length of the
shortest UIO sequence for a given state. Since paths in the exponentially large
graph constructed in the PSPACE membership proof correspond directly to
input-output sequences with attached output sequences, it follows that if there
is a path of length m in the constructed graph from vertex (s ,S \ {s}) to some
vertex (s ′, ∅), for some states s , s ′, then s has a UIO sequence of length m. Since
no simple path in the graph can be longer than the number of vertices in the
graph, this shows that if s has a UIO sequence, then it has a UIO sequence of
length at most |S | · 2|S |.

Lee and Yannakakis proved a lower bound on the length of UIO-sequences as
well, showing that even if a state has a UIO sequence, it does not always have
one of polynomial length.

Theorem 3.3 (Lee and Yannakakis [LY94]). There are machines with states
that have UIO sequences, but only of exponential length.

76 Henrik Björklund

Proof. Consider n deterministic finite automata A1, . . . ,An over the alphabet
{0}, such that the transitions of Ai form a cycle of length pi , where pi is the ith
prime number. The only accepting state of Ai is the predecessor of the initial
state. Thus Ai accepts 0k if and only if pi | (k +1). This means that the shortest
string accepted by all automata has length m =

∏n
i=1 pi − 1. If there was a

string of length m ′ < m, accepted by all automata, then for all i ∈ {1, . . . ,n},
we have pi | (m ′ + 1). Thus, by unique prime factorization, m ′ + 1 =

∏n
i=1 pi , a

contradiction.
Now note that

∏n
i=1 pi − 1 ≥ 2n is exponential in the total representation

size of the automata, which is polynomial in n by Gauss’ prime number theorem,
and apply the reduction used in the proof of Theorem 3.2.1. The sequence r0m f
will be the shortest UIO sequence for state s , since for any shorter string, the
states of at least one automaton will produce an output of all zeroes.

3.3 Convergence and Inference Graphs

Since we saw in Section 3.2 that it is in general PSPACE-hard to determine
whether a state has a UIO sequence, it is interesting to identify subclasses of
machines and states, for which the question can be answered efficiently. Using
the concept of convergence, first made explicit by Miller and Paul [MP93], Naik
presents a number of results of this kind [Nai97], which are surveyed in this
section.

Definition 3.4 (Convergence [MP93]). Let Mealy machineM have states
t1, t2, . . . , tk that all have edges to the state s with the same edge label a/b. Say
that

• states t1, . . . , tk are converging states,
• state s is a convergent state,
• edges (t1, s), . . . , (tk , s) with label a/b are converging edges.

If a machine has some converging states it is a converging machine. Otherwise,
the machine is nonconverging.

Using these concepts, Naik invented a way of using a UIO sequence for one
state to infer sequences for other states. The basic construction used is the
following.

Definition 3.5 (Inference Graph [Nai97]). Let G be the transition graph of a
Mealy machine M. The inference graph of M is the graph GI , obtained from
G by removing all converging edges.

Given graph G for machineM, the inference graph GI is computable in time
O(|E |2), where E is the set of edges of G.

Figure 3.5 shows the inference graph for the machine in Figure 3.3. We see
that the two edges (s3, s1) and (s2, s1) have been taken away. Since they both
end in the same state and have the same label they are converging. The same is
true for the edges (s1, s4) and (s4, s4).

The inference graph is used as follows.

3 State Verification 77

s1

s3

s2

s4

a/0

b/0

a/1

b/1

Fig. 3.5. The inference graph of the machine in Figure 3.3.

Proposition 3.6 (Inference [Nai97]). Let G be the transition graph of a Mealy
machine M. If state si is reachable from state sj in the inference graph GI , and
si has a UIO sequence, then sj has a UIO sequence.

Proof. Let x be a UIO sequence for state si , and x ′ the sequence of inputs
along a path from sj to si in GI . The claim is that x ′ · x is a UIO sequence
for sj .4 Suppose this is not the case, i.e., λ(sk , x ′ · x) = λ(sj , x ′ · x) for some
state sk �= sj . We first show that the unique path with label x ′ from sk must
end in si . If it ended in some other state sl �= si , then λ(sl , x) = λ(si , x), since
λ(sk , x ′ · x) = λ(sj , x ′ · x), but this is impossible, since x is a UIO sequence for
si .

Next, we show that in fact there can be no state sk �= sj such that λ(sk , x ′ ·
x) = λ(sj , x ′ · x). Again assume that there is. Let sj = sj1 , sj2 , . . . , sjm = si and
sk = sk1 , sk2 , . . . , skm = si be the two paths with input label x ′from sj and sk ,
respectively. Consider the smallest i such that sji and ski are identical. The edges
from sji−1 to sji and from ski−1 to sji in G must have the same label and end up
in the same state. Therefore, they are converging, and none of them belongs in
the inference graph GI . This means that si cannot be reachable from sj along a
path with input label x ′ and output label λ(sj , x ′) in GI . This is a contradiction,
and we conclude that λ(sj , x ′ · x) �= λ(sk , x ′ · x) for all sk �= sj . Thus x ′ · x is a
UIO sequence for sj .

As an example, once we know that b is a UIO sequence for s3 in the machine
from Figure 3.3, we can use the inference graph in Figure 3.5 to conclude that
ab must be a UIO sequence for state s1.

The inference graph can also be used to obtain negative answers to the ques-
tion whether a state has a UIO sequence.

4 The dot operator for sequences (X ·Y) denotes concatenation.

78 Henrik Björklund

Proposition 3.7 ([Nai97]). If GI is the inference graph of Mealy machine M,
and state s does not have any outgoing edges in GI , then s does not have a UIO
sequence.

Proof. In the transition graph G ofM, all outgoing edges from s must be con-
verging, since none of them appear in GI . This means that for every transition
from s to some state t , there is another state s ′ �= s such that s ′ has a transition
with the same label that also leads to t . Thus for any input sequence, there is
some state other than s that produces the same output as s , so s cannot have a
UIO sequence.

3.4 Algorithms

In Section 3.2 it was shown that the problem of determining whether a given
state of a Mealy machine has a UIO sequence is PSPACE-complete. Thus there
is presumably no efficient, polynomial time, algorithm for the general state ver-
ification problem. However, it turns out that in practice, it is solvable for many
machines, and UIO sequences are used as parts of many conformance testing
algorithms. In this section, algorithms for finding UIO sequences are discussed.
The first two have exponential worst-case complexity, but work better in many
practical applications. The third is a genetic algorithm, that is not always guar-
anteed to find all UIO sequences.

3.4.1 The Sabnani-Dahbura Algorithm

In 1988 Sabnani and Dahbura presented a test generation procedure for con-
formance testing [SD88]. It uses state verification, and includes a procedure for
computing UIO sequences. For their purposes, it is enough to compute sequences
of length at most 2n2, where n is the number of states, if they exist, but the
procedure can be extended to compute longer sequences.

The basic idea when trying to find a UIO sequence for a given state s is
to naively generate all input sequences, in order of ascending length. For each
sequence x , the algorithm then computes λ(s , x) and tests it for uniqueness,
until a UIO sequence for s is found. The search space of all possible input-output
sequences is thus examined in a breadth-first manner. Since the test generation
procedure of Sabnani and Dahbura [SD88] is only interested in sequences of
length at most 2n2, the search is terminated at this depth, even if a UIO sequence
has not been found. If we are also interested in longer sequences, another upper
bound, e.g., the n · 2n from Section 3.2, must be supplied to ensure termination.

The algorithm searches the tree of all possible input-output sequences breadth
first, without trying to take advantage of any structural properties of the ma-
chine under test.

Since the problem is PSPACE-complete, we cannot hope to solve the prob-
lem quickly in the general case. The algorithms are, however, intended for prac-
tical use, and therefore it seems like a good idea to analyze the input machine
in order to take advantage of any particularities that can help us. The next
algorithm we consider tries to do this.

3 State Verification 79

3.4.2 Naik’s Algorithm

Naik’s algorithm for computing UIO sequences was presented in 1997 [Nai97],
when the problem was already known to be PSPACE-complete [LY94]. The
algorithm is complete, in the sense that it computes a UIO sequence for every
vertex that has one, and always terminates. The basic idea is still to examine
all possible input sequences, but it is augmented by a number of other ideas,
including:

(1) Techniques for ensuring termination.
(2) Inference rules to extend a sequence for one state to sequences for other

states.
(3) Heuristics that under some circumstances provide UIO sequences for some

states in polynomial time.
(4) A modified depth-first search to find UIO sequences for some states.
(5) Techniques for shortening found sequences.

We will examine the first four items in this list.
Naik uses UIO trees, which are trees with edges labeled by input-output

pairs, and nodes labeled by vectors that represent paths in the machine that
exhibit the input-output behavior indicated by the edges from the root to the
node.

Definition 3.8 (Path Vectors). Given a Mealy machine M, a path vector is a
vector of state pairs PV =< s1/s ′1, . . . , sk/s ′k > satisfying the following. There
is an input sequence x and an output sequence y such that λ(si , x) = y and
δ(si , x) = s ′i for every pair si/s ′i in PV . The vector IV (PV) =< s1, . . . , sk >
consisting of the first components of the pairs in PV is called the initial vector of
PV . The vector CV (PV) =< s ′1, . . . , s

′
k > consisting of the second components

is called the current vector.

Given a Mealy machine M = (I ,O ,S , δ, λ), its IO tree is an infinite tree in
which every node has |I | · |O | children, one for each possible input-output pair in
M. The edges to the children are labeled by distinct input-output pairs. Thus
the nodes of the tree correspond to every possible input-output sequence.

Definition 3.9 (Full UIO Tree). Let M = (I ,O ,S , δ, λ) be a Mealy machine.
The full UIO tree ofM is a labeling of the IO tree by path vectors. The root of
the tree is labeled by < s1/s1, . . . , sn/sn >, where n is the number of states of
M. If a node in the tree is reachable from the root by a path labeled by input
sequence x and output sequence y, and has label PV =< s1/s ′1, . . . , sk/s

′
k >,

then for every si/s ′i in PV , it must hold that λ(si , x) = y and δ(si , x) = s ′i .
Furthermore, PV contains all pairs si/s ′i such that λ(si , x) = y and δ(si , x) = s ′i .
Notice that some nodes may be labeled by empty path vectors.

It immediately follows that if a node, labeled by a singleton < s/s ′ >, is
reachable from the root by a path labeled with input sequence x and output
sequence y, then x is a UIO sequence for s . This is because s must be the only

80 Henrik Björklund

state that produces output y on input x . If we search the full UIO tree, looking
for nodes labeled by singletons, we will eventually find a UIO sequences for every
state that has one, but unless all states have UIO sequences, the search will never
terminate.

Ensuring Termination. A vector < s1/s ′, s2/s ′, . . . , sk/s ′ >, where all the second
components of the pairs are identical, is called homogeneous. In particular, any
singleton path vector is homogeneous. If a node v in the UIO tree, reachable by
a path labeled with input sequence x and output sequence y from the root, is
labeled by a homogeneous vector PV , then there is no need to search the subtree
rooted at v . If PV is a singleton, then a UIO sequence for the only vertex s such
that λ(s , x) = y has already been found. If, on the other hand, PV is not a
singleton, then no extension of x can be a UIO sequence for any state of M,
since for all s such that λ(s , x) = y, the machine ends up in the same state after
this sequence.

Also, if node v in the UIO tree is labeled by PV and on the path from the root
to v , there is a node v ′ labeled by PV ′ such that PV ⊆ PV ′, there is no need to
search the subtree rooted at v . Suppose the path from the root to v ′ is labeled
by the input sequence x ′, and the path from v ′ to v by x . Let s1/s ′1 and s2/s ′2 be
two pairs that appear in PV , and suppose that λ(s1, x ′ ·x ·x ′′) �= λ(s2, x ′ ·x ·x ′′).
Then λ(s1, x ′ · x ′′) �= λ(s2, x ′ · x ′′). In particular, if x ′ · x · x ′′ is a UIO sequence
for s1, then so is x ′ ·x ′′. Thus if s1 has a UIO sequence with x ′ as a prefix, such a
sequence can be found by searching the subtree rooted at v ′, without descending
into the subtree rooted at v .

Call the label of node v in the full UIO tree a repeated label if a superset of
the label appears in a node on the path from the root to v .

Any node in the full UIO tree with a homogeneous or repeated label is called
terminal. Since it is now clear that there is no point in searching the subtrees
rooted at terminal nodes, we may cut away all children of terminal nodes. We
also remove all subtrees rooted at nodes with empty path vectors as labels. All
vertices in such subtrees have empty labels. The result is called the pruned UIO
tree of the machine. Note that the pruned UIO tree is finite, since there are
only finitely many possible path vectors, and no path vector appears more than
once on any path from the root. Figure 3.6 shows the pruned UIO tree for the
machine in Figure 3.3.

If we search the pruned UIO tree for nodes labeled by singletons, we are still
guaranteed to find a UIO sequence for every state that has one, and can also be
sure that the search terminates.

To further improve efficiency, we can also define vertices labeled with path
vectors such that no state appears exactly once in the current vector as terminal.
It is clear that the input sequence labeling the path to such a vertex cannot be
a prefix of a UIO sequence for any state.

The pruned UIO trees described here bear some resemblance to the splitting
trees used to compute distinguishing sequences; see [LY96] and Chapter 2. The
details of the two data structures are quite different, however. The UIO tree
is labeled by a set of pairs of states, rather than a set of states. Thus it does

3 State Verification 81

s1 s2 s3 s4
s1 s2 s3 s4

s4
s2

s3
s4

s1 s2 s3
s1 s3 s3

s1 s2 s4
s4 s2 s4

s1 s2 s3
s1 s3 s3

s1
s4

s2 s3
s4 s4

s2
s1

s1 s4
s2 s2

s1 s2 s4
s4 s2 s4

s1 s2 s3
s3 s1 s1

s2 s3
s4 s4

s1
s1

a/0

a/1 b/0

b/1

a/0
b/0

b/1 a/0

a/1
b/1

a/0
b/0

b/1

Fig. 3.6. The pruned UIO tree for the machine in Figure 3.3. Each node in the tree
is labeled by the corresponding path vector. Path vectors are depicted with two lines,
where the first is the initial vector, and the second is the current vector. For instance, it
can be read from the figure that the input sequence ab gives output 01 for initial states
s2 and s3. In both cases, it takes the machine to state s4. The node that is reached
from the root by following the path labeled (a/0)(b/1) has a homogeneous path vector
and is thus terminal. Therefore, it is a leaf in the tree.

not only keep track of the states for which a certain input-output sequence is
consistent, but also the states the machine is taken to by the sequence. In each
internal node, the UIO tree branches for every input-output label such that there
is a state in the current vector of the node that has the label on one of its
outgoing edges. The splitting tree, on the other hand, branches only on one
input symbol per interior node, and splits the states in the node label according
to their behavior on this input. This means that there are many different possible
splitting trees, while the UIO tree is unique for each machine. The splitting tree
is used to find adaptive distinguishing sequences. If such a sequence exists, there
is always one of at most quadratic depth. Thus we never have to build very deep
splitting trees. In fact it is enough to construct trees of total size O(n2); see
Chapter 2. Since UIO trees are used to find UIO sequences, which may have
superpolynomial length, we might have to build exponentially large trees.

Inference Rules. In many cases, it is possible to infer UIO sequences for one
state, given a UIO sequence for some other state, as discussed in Section 3.3.

82 Henrik Björklund

This sometimes makes it unnecessary to search the whole pruned UIO tree, which
is still prohibitively big.

The basic observation is that if (si , sj) is the only incoming edge to sj with
label a/b, and x is a UIO sequence for sj , then a · x is a UIO sequence for si . An
edge such as (si , sj) is called a unique predecessor edge. The inference graph GI

of machineM, defined in Section 3.3, can also be described as the edge-induced
subgraph of M’s transition graph G that is induced by all unique predecessor
edges.

As seen in Section 3.3, if sj is reachable in GI from si , along a path with
input labels x ′, and x is a UIO sequence for sj , then x ′ · x is a UIO sequence for
si .

Projection Graphs for Computing Initial UIO Sequences. In order to get any
profits from the inference graph, some initial UIO sequences to infer from are
needed. For this purpose, Naik uses the concept of projection graphs. If successful,
this method produces some sequences in polynomial time. Otherwise, we must
resort to searching the pruned UIO tree.

Definition 3.10. Given a graph G for machineM, and an edge label a/b, the
projection graph G(a/b) of G with respect to a/b is the graph obtained from
G by removing all edges that are not labeled by a/b.

Figure 3.7 shows the projection graph with respect to a/0 for the machine
in Figure 3.3.

s1

s3

s2

s4

a/0a/0

a/0

Fig. 3.7. The projection graph with respect to label a/0 for the machine from Fig-
ure 3.3.

Thus all edges in the projection graph G(a/b) have the same label. If for
some label a/b, the projection graph has only one edge (si , sj), then trivially a
is a UIO sequence for si .

3 State Verification 83

Since the machineM is assumed to be deterministic, there is only one possi-
ble path from each state in G(a/b). If this path ends in a sink it is called linear,
otherwise it is cyclic.

Proposition 3.11 (Naik [Nai97]). If the path from state s in G(a/b) is linear
and of length k, and no other state has a linear path of length ≥ k, then s has
a UIO sequence of length k or k + 1.

Proof. Suppose that G(a/b) has no cycles. If we apply input ak to s , then the
output produced will be bk . This is not true for any other state, since all other
paths in G(a/b) have length smaller than k . Thus ak is a UIO sequence of length
k for s .

If, on the other hand, G(a/b) has cycles, consider the input sequence ak+1.
Applied to states with cyclic paths in G(a/b), it will produce output bk+1. For
s , the output produced will be bkb′, for some output symbol b′ different from b.
For all other states, the output produced will have fewer than k initial copies of
b. Thus ak+1 is a UIO sequence for s .

It is also easy to see from the first part of the above proof that if all paths in
G(a/b) are linear, then every vertex with a unique path length different from 0
has a UIO sequence.

Depth-First Search in the Pruned UIO Tree. Analysis of the projection graphs
may not produce any UIO sequences at all, or it may, even when combined with
the inference rules, not produce conclusive results for all states of the machine.
In these cases, the pruned UIO tree must be searched. The search can be aborted
as soon as UIO sequences have been found for all vertices except those that were
found to have none during the analysis of the inference graph.

Every time a UIO sequence is found, the inference rules are applied to gen-
erate sequences for other states, and a check is made to determine whether the
search must be continued.

In order to make maximal use of the inference rules, it is desirable to find
at least some sequences as soon as possible. To achieve this, Naik suggests that
the tree be searched depth first, rather than breadth first. This is because if all
states have UIO sequences of approximately the same length, then the breadth-
first search would go through more or less the whole pruned tree before finding
even one sequence.

The problem with the depth first approach is that longer sequences may be
found before shorter ones for the same state, and when using UIO sequences for
conformance testing (see Chapter4), it is desirable to find sequences that are as
short as possible.

In order to at least partially get around this drawback, Naik suggests what
he calls a hybrid search, which runs in the following way:

(1) Let φ be the root node of the pruned UIO tree.
(2) Visit every child of φ. If a child is terminal, mark it as such. If it represents a

UIO sequence for some state, use the inference rules and determine whether
the search can be terminated.

84 Henrik Björklund

(3) If φ has at least one nonterminal child φ′, let φ ← φ′ and restart from step
2. If φ has no nonterminal children that have not been searched, and φ is
the root of the tree, then terminate. If φ has no nonterminal children that
have not been searched but φ is not the root, then set φ ← parent(φ) and
restart from step 3.

In other words, the procedure looks one step ahead before deepening the
search. Naik [Nai97] claims that this approach mostly solves the major problem
with pure depth first search, that longer sequences are found before shorter
sequences for the same state. While this is true in some cases, it somewhat
overstates the merit of the method. For some machines, the procedure will still
be likely to find long sequences before much shorter ones.

If we are only interested in relatively short sequences, like in the conformance
testing algorithm by Sabnani and Dahbura discussed in Section 3.4.1 [SD88], the
search depth of Naik’s algorithm can of course be limited.

3.4.3 Genetic Algorithms

Guo, Hierons, Harman, and Derderian recently suggested the use of genetic
algorithms to find UIO sequences [GHHD04]. The basic idea of genetic algo-
rithms is to mimic the process of natural selection in nature. An algorithm keeps
a collection of possible solutions to the problem at hand, called the population,
and measures the quality of its members using a fitness function. The best in-
dividuals in the population are paired together using recombination to form the
next generation. Random changes of individuals, called mutations, can also be
applied to individuals. For a survey on the theory of genetic algorithms, see
[Müh97].

In more detail, an individual is assumed to be a sequence of some kind,
and all individuals are generally assumed to have the same length. To start
computation, an initial population is generated randomly, and the fitness of each
individual is computed using the fitness function. To form the next generation,
two individuals are selected in some way that gives preference to high fitness
values. The algorithm has a set value for crossover probability p. With this
probability, the two parents are mixed to form an offspring. With probability
1−p, a copy of one of the parents are instead added to the next generation. This
is repeated until the new population is full. According to some other probability
distribution, each individual in the new generation is mutated, i.e., randomly
changed. This is intended to prevent the process from getting stuck in local
minima. The algorithm proceeds to create a preset number of further generation,
and then returns the final population. Ideally, all individuals are then identical
and represent an optimal solution to the problem.

In the approach of Guo et al. [GHHD04], the population is a set of input
sequences, all of the same length. The idea is to use a fitness function that
rewards sequences whose prefixes are the input components of UIO sequences
for many states, while punishing unnecessarily long sequences. All sequences
in the population are assumed to have the same length k . Given a sequence

3 State Verification 85

x = a1a2 . . . ak ∈ I ∗, let ui be the number of states for which a1a2 . . . ai is a UIO
sequence (u0 = 0). For i ≥ 1, let ∆ui = ui − ui−1. Also, let vi be the number
of sets in the initial state uncertainty5 for a1a2 . . . ai and ∆vi = vi − vi−1. Now,
for each i ∈ {1, . . . , k} we define

fi(a1 . . . ai) = α
uieui+∆ui

iγ
+ β

vi +∆vi
i

, (3.3)

where α, β, and γ are constants. It is clear that when the number of states a
prefix uniquely identifies grows, the value of the prefix grows exponentially. On
the other hand, an increase in length gives a polynomial reduction in value. The
second term in the function definition rewards having many sets in the initial
state uncertainty, even when not so many UIO sequences have been found yet.
We can now define the fitness of a sequence as the average of the fi -values of its
prefixes:

f (a1 . . . ak) =
1
k

k∑

i=1

fi(a1 . . . ai). (3.4)

After creating an initial population randomly, Guo et al. suggest using roulette
wheel selection to find the parents that are recombined. This means that each
individual has a probability of being selected that is proportional to its fitness
value. Further, uniform crossover is used, which means that in each position,
the value for the offspring is selected with uniform probability from the values
of the parents at the corresponding positions. In order for the population not to
stagnate too quickly, Guo et al. suggest using wild-card characters in the strings
representing sequences.

One drawback of the approach is that the length k of the sequences used
must be set in advance, and the algorithm will not find UIO sequences of length
> k .

Guo et al. only present tests of the algorithm on two small machines, with
reportedly good results. It remains to be be seen in larger scale tests whether
the method is practical.

3.5 Summary

State verification is the problem of verifying that a Mealy machine, placed in a
black box, is in a specified state s . The state diagram of the machine is assumed
to be known. The only way of doing this, short of opening the box, is to feed
input to the machine, and study the output. Therefore, state verification for state
s is only possible if there is an input sequence x such that the output produced
by the machine when it is in state s and is given input x is unique, i.e., there is
no other state that would produce the same output on input x . Such an input
5 The initial state uncertainty of sequence x is a partitioning of the states in the

machine such that if s and t belong to the same set, then λ(s, x) = λ(t , x); see
Chapter 1.

86 Henrik Björklund

sequence is called a unique input-output, or UIO sequence. Thus the problem of
state verification reduces to that of computing UIO sequences for the states to
be verified.

Unfortunately, not all states of all Mealy machines have UIO sequences. How-
ever, they are frequent enough in many practical test settings to be a valuable
tool in conformance testing of Mealy machines; see Chapter 4. Specifically, UIO
sequences are more common than distinguishing sequences, either adaptive or
preset; see Chapter 2.

Computing UIO sequences is a hard problem. In fact, even determining
whether a given state has a UIO sequence is PSPACE-complete [LY94]. Thus
there is most probably no polynomial time algorithm for computing the se-
quences. Also, some states have UIO sequences, but none of polynomial length
[LY94], which is a problem in testing applications.

Still, some algorithms have been proposed and tried in practice. They have
exponential worst case complexity, but use heuristics that allow efficient com-
putations for many relevant problem instances. The most elaborate algorithm is
that of Naik [Nai97]. It tries to compute sequences for some states quickly, and
then use them to infer sequences for other states. Guo et al. suggest a genetic al-
gorithm, where a fitness function is used to evaluate candidate sequences, which
are then paired using crossover and mutated, for a certain number of generations
[GHHD04].

The research field is still open for new algorithmic ideas and better analysis
of performance on interesting subclasses of Mealy machines.

4 Conformance Testing

Angelo Gargantini

Dipartimento di Matematica e Informatica
University of Catania
gargantini@dmi.unict.it

4.1 Introduction

In this chapter we tackle the problem of conformance testing between finite
state machines. The problem can be briefly described as follows [LY96]. Given
a finite state machine MS which acts as specification and for which we know
its transition diagram, and another finite state machine MI which is the al-
leged implementation and for which we can only observe its behavior, we want
to test whether MI correctly implements or conforms to MS . The problem of
conformance testing is also called fault detection, because we are interested in
uncovering where MI fails to implement MS , or machine verification in the
circuits and switching systems literature.

We assume that the reader is familiar with the definitions given in Chapter
21, that we briefly report here. A finite state Mealy machine (FSM) is a quintuple
M = 〈I ,O ,S , δ, λ〉 where I , O , and S are finite nonempty sets of input symbols,
output symbols, and states, respectively, δ : S × I → S is the state transition
function, λ : S × I → O is the output function. When the machine M is a
current state s in S and receives an input a in I , it moves to the next state
δ(s , a) producing the output λ(s , a). An FSM can be represented by a state
transition diagram as shown in Figure 4.1. n = |S | denotes the number of states
and p = |I | the number of inputs. An input sequence x is a sequence a1, a2, . . . , ak

of input symbols, that takes the machine successively to states si+1 = δ(si , ai),
i = 1, . . . , k , with the final state sk+1 that we denote by δ(s1, x). The input
sequence x produces the output sequence λ(s1, x) = b1, . . . , bk , where bk =
λ(si , ai), i = 1, . . . , k . Given two input sequences x and y, x .y is the input
sequence obtained by concatenating x with y.

The detection of faults in the implementation MI can be performed by the
following experiment. Generate a set of input sequences from the machine MS .
By applying each input sequence to MS , generate the expected output sequences.
Each pair of input sequence and expected output sequence is a test and the set
of tests is a test suite (according to the definitions given in Chapter 20). Apply
each input sequence to MI and observe the output sequence. Compare this actual
output sequence with the expected output sequence and if they differ, then a
fault has been detected. As well known, this procedure of testing, as it has been
presented so far, can only be used to show the presence of bugs, but never to
show their absence1. The goal of this chapter is to present some techniques and

1 Dijkstra, of course

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 87-111, 2005.
 Springer-Verlag Berlin Heidelberg 2005

88 Angelo Gargantini

s1

a/0

b/1

s2
b/1

a/1 s3 a/0

b/0

Fig. 4.1. Machine MS [LY96]

algorithms able to detect faults of a well defined class, and to eventually prove,
under some assumptions, that an implementation conforms to its specification.
This chapter presents methods leaning toward the definition of ideal testing
criteria as advocated in [GG75], i.e. test criteria that can discover any fault in the
implementation (under suitable assumptions). Although this approach is rather
theoretical, Section 4.8 presents the justifications for theoretical assumptions
and the practical implications of the presented results.

Conformance is formally defined as equivalence or isomorphism (as defined in
Chapter 21): MI conforms to its specification MS if and only if their initial states
are equivalent, i.e. they will produce the same output for every input sequence.
To prove this equivalence we look for a set of input sequences that we can apply
to MI to prove that it is equivalent to its specification. Note that successively
applying each input sequence in the test set is equivalent to applying one input
sequence that is obtained concatenating each input sequence in the set. Such an
input sequence is called checking sequence.

Definition 4.1. (Checking sequence) A checking sequence for MS is an input
sequence that distinguishes the class of machines equivalent to MS from all other
machines.

Although all the presented methods share the unique goal to verify that MI

correctly implements MS , generating a checking sequence (or a set of sequences,
that concatenated act as a unique checking sequence), they differ for their cost
to produce test sequences, for the total size of the test suite (i.e. the total length
of the checking sequence), and for their fault detection capability. In fact, test
suites should be rather short to be applicable in practice. On the other hand
a test suite should cover the implementation as much as possible and detect
as many faults as possible. The methods we present in this chapter differ with
respect to the means and techniques they use to achieve these two opposite
goals. However, the main difference among the methods we present regards the
assumptions they make about the machines MS and MI . Some methods are
very efficient to produce a checking sequence but usable only under very strong
assumptions. Others produce exponentially long checking sequences, but perform

4 Conformance Testing 89

the test under more general assumptions. Therefore, the choice of one method
instead of another is driven more by the facts we know or assume about the
machines MS and MI , and these assumptions are of great importance.

4.2 Assumptions

Developing a technique for conformance testing without any assumption is im-
possible, because for every conformance test one can build a faulty machine that
would pass such test. We have to introduce some assumptions about the ma-
chines we want to verify. These first four assumptions are necessary for every
method we present in this chapter.

(1) MS is reduced or minimal : we have to assume that machines are reduced,
because equivalent machines have the same I/O behavior, and it is impossible
to distinguish them by observing the outputs, regardless the method we use
to generate the checking sequence. If MS it is not minimal, we can minimize
it and obtain an equivalent reduced machine (algorithms can be found in
literature [Moo56, LY96] as well as in Chapter 21). In a minimal machine
there are no equivalent states. For every pair of states s and t , there exists
an input sequence x , called separating sequence, that can distinguish s from
t because the outputs produced by applying x to s and t , λ(s , x) and λ(t , x)
differ (see Section 1.3).

(2) MS is completely specified : the state transition function δ and the output
function λ are total: they are defined for every state in S and every input in
I .

(3) MS is strongly connected : every state in the graph is reachable from ev-
ery other state in the machine via one or more state transitions. Note that
some methods require only that all states are reachable from the initial one,
allowing machines with deadlocks or states without any exiting transition.
However these methods must require a reset message (Assumption 7) that
can take the machine back to its initial state, otherwise a deadlock may stop
the test experiment. The reset message makes de facto the machine strongly
connected.

(4) MI does not change during testing. Moreover it has the same sets of inputs
and outputs as MS . This implies that MI can accept and respond to all input
symbols in I (if the input set of MI is a subset of the input set of MS , we
could redefine conformance).

The four properties listed above are requirements. Without them a conformance
test of the type to be discussed is not possible. Unlike the first four requirements,
the following assumptions are convenient but not essential. Throughout this
chapter we present methods that can successfully perform conformance testing
even when these assumptions do not hold.

(5) Initial state: machines MI and MS have an initial state, and MI is in its
initial state before we conduct a conformance test experiment. If MI is not

90 Angelo Gargantini

s1

a/0

b/1

s2
b/1

a/1 s3 a/0

b/1

s1

b/0

a/0

s2
a/1

b/1 s3 b/1

a/0

MI1 MI2

Fig. 4.2. Two faulty implementations of MS

in its initial state we can apply a homing sequence (presented in Section
1.1.3) and then start the conformance test. If the machine MI does not
conform to its specification and the homing sequence fails to bring MI to its
initial state, this will be discovered during the conformance test. We denote
the initial state by s1.

(6) Same number of states : MI has the same number of states as MS , hence
faults do not increase the number of states. Due to this assumption, the
possible faults in MI are of two kinds: output faults, i.e. a transition in
the implementation produces the wrong output, and transfer faults, i.e. the
implementation goes to a wrong state. Figure 4.2 shows two faulty imple-
mentations of the specification machine MS given in Figure 4.1. Machine
MI1 contains only one output fault for the transition from s3 to s1 with the
input b: the output produced by MI1 is 1 instead of 0. Machine MI2 has
several transfer faults: every transition moves the machine to a wrong final
state. Moreover the transitions in MI2 from state s3 and s1 with input b
produce wrong outputs.
Although this assumption is very strong, we show in Section 4.7 that many
methods we present work well with modifications under the more general
assumption that the number of states of MI is bounded by an integer m,
which may be larger than the number of states n in MS .

(7) reset message: MI and MS have a particular input reset (or briefly r) that
from any state of the machine causes a transition which ends in the initial
state s1 and produces no output. Formally, for all s ∈ S , δ(s , reset) = s1 and
λ(s , reset) = −. Starting from Section 4.5 we present some methods that do
not need a reset message.

(8) status message: MI and MS have a particular input status and they respond
to a status message with an output message that uniquely identifies their
current state. Since we label the states s1, s2, ..., sn , we assume that status
outputs the index i when applied to state si . The machines do not change

4 Conformance Testing 91

state. Formally for all si ∈ S , λ(si , status) = i and δ(si , status) = si . This
rather strong assumption is relaxed starting from Section 4.4.

(9) set message: the input set I contains a particular set of inputs set(sj) and
when a set(sj) message is received in the initial system state, the machines
move to state sj without producing any output. Formally for all t ∈ S ,
δ(reset , set(t)) = t and λ(s , set(t)) = −.

Given a machine with all the properties listed above, a simple conformance
test can be performed as described by the simple Algorithm 9 (Chapter 9 of
[Hol91]).

Algorithm 9 Conformance testing with a set message
For all s ∈ S , a ∈ I :

(1) Apply a reset message to bring the MI to the initial state.
(2) Apply a set(s) message to transfer MI to state s.
(3) Apply the input message a.
(4) Verify that the output received conforms to the specification MS , i.e. is equal to

λS (s, a)
(5) Apply the status message and verify that the final state conforms to the specifica-

tion, i.e. it is equal to δS (s, a)

This algorithm verifies that MI correctly implements MS and it is capable
to uncover any output or transfer fault. An output fault would be detected by
step 4 while a transfer fault would be uncovered by step 5. Note that should the
set of input signals I to be tested include the set, reset, and status messages,
the algorithm must test also these messages. To test the status message we
should apply it twice in every state si after the application of set(si). The first
application, given in step 3, is to check that in si the status message correctly
outputs i (if also set is faulty and sets the current state to sj instead of si and the
status message in sj has the wrong output i , we would discover this fault when
testing sj). The second application of status, given by step 5, is to check that the
first application of status did not change the state. Indeed, if the first application
of status in si did change the state to sj and in sj status is wrongly implemented
and outputs i instead of j , we would discover this fault when testing sj . Once
that we are sure that status is correctly implemented, we can test set and reset
applying them in every state and then applying status to check that they take
the machine to the correct state.

Note that the resulting checking sequence obtained by Algorithm 9 is equal
to the concatenation of the sequence reset, set(s), a, and status, repeated for
every s in S and every a in I. The length of the resulting checking sequence is
exactly 4 · p · n where p = |I | is the number of inputs and n = |S | is the number
of states.

The main weakness of Algorithm 9 is that it needs the set message, which
may be not available. To avoid the use of set and to possibly shorten the test

92 Angelo Gargantini

suite, we can build a sequence that traverses the machine and visits every state
and every transition at least once without restarting from the initial state after
every test and without using a set message. Such sequence is called transition
tour. Formally

Definition 4.2. An input sequence x = a1a2 . . . an that takes the machine to
the states s1, s2,. . ., sn such that for all s ∈ S there exists j such that sj = s (x
visits every state) and such that for all b ∈ I and for all s ∈ S there exists j
such that aj = b and sj = s (every input b is applied to each s), is a transition
tour.

In the next section we present some basic techniques for the generation and use
of transition tours for conformance testing that does not assume anymore the
existence of a set message, i.e. relaxing Assumption 9.

4.3 State and Transition Coverage

By applying the transition tour (TT) method, the checking sequence is obtained
from a transition tour, by adding a status message, that we assume reliable, after
every input. Formally if x = a1a2 . . . an is a transition tour, the input sequence
is equal to a1status a2status . . . an status . This is a checking sequence. Indeed,
since every state is checked with its status message after every transition, this
input sequence can discover any transfer fault. Furthermore, every output fault
is uncovered because every transition is tested (by applying the input aj) and
its output observed explicitly.

At best this checking sequence starts with a reset and exercises every tran-
sition exactly once followed by a status message. The length of such sequence
is always greater than 2 · p · n. The shortest transition tour that visits each
transition exactly once is called Euler tour. Since we assume that the machine
is strongly connected (Assumption 3), a sufficient condition for the existence of
an Euler tour is that the FSM is symmetric, i.e. every state is the start state
and end state of the same number of transitions. In this case, an Euler tour
can be found in a time that is linear in the number of transitions, pn [EJ73].
This is a classical result of the graph theory and algorithms for generating an
Euler tour can be found in an introductory book about graphs [LP81] and in
the Chapter 9 of [Hol91]. In non symmetric FSMs searching the shortest tour is
another classical direct graph problem, known as the Chinese Postman Problem,
that can be solved in polynomial time. It was originally introduced by a Chinese
mathematician [Kwa62] and there exist several classical solutions [EJ73] for it.

Example. For the machine in Fig. 4.1 the following checking sequence is obtained
from the transition tour bababa (that is, more precisely, an Euler tour).

checking sequence b status a status b status a status b status a status
start state 1 2 2 2 2 3 3 3 3 1 1 1
output 1 2 1 2 1 3 0 3 0 1 0 1
end state 2 2 2 2 3 3 3 3 1 1 1 1

4 Conformance Testing 93

This checking sequence is able to detect the faults in the machines shown in
Figure 4.2. The fault in MI1 is detected by the application of a b message in
state s3, while the faults in MI2 are immediately detected by the first status
message.

If the status message is unreliable, we have to test it too. Assume that the
status message may produce a wrong output or it may erroneously change the
machine state. Both faults are detected by applying a status message twice in
every state, the first one to test that the previous message has taken the machine
to the correct state and to check that status message produces the correct output
and the second one to verify that the first status message did not change the
state of the machine.

Note the TT method was originally proposed without using a status message
[NT81]. In this case the TT methods achieves only transition coverage. A test
that visits only all the states, but not necessarily all the transitions, is often called
state tour (ST) method [SMIM89] and achieves only state coverage. The coverage
of every transition and the use of a status message are needed to discover every
fault. Indeed, simply generating input sequences covering all the edges of MS

and test whether MI produces the same outputs is not enough, as demonstrated
by the following example.

Example. Consider the machines in Figure 4.2 as alleged equivalent machines
to MS in Figure 4.1. The sequence ababab is an Euler tour. Applying this tour
to MI1 without using the status message, we would discover the output fault of
the transition from s3 to s1: MI1 produces the output sequence 011101 instead
of 011100. However, if we apply this Euler tour to MI2, we do not discover
the faults: MI2 produces the output sequence 011100, identical to the expected
output sequence produced by MS . However MI2 is a faulty implementation of
MS as demonstrated by another tour, namely bababa. This demonstrates that
transition coverage is not capable to detect all the faults, in particular, to detect
transfer faults.

Unfortunately, a status message is seldom available. In the next section we learn
how not to rely on a status message to determine the current state during a test.

4.4 Using Separating Sequences Instead of Status
Messages

We assume now that the machines have no status message (but they still have
a reset message), and we wish to test whether MS is equivalent to MI only
observing the external behavior. In the following we present some methods that
can be unified as proposed by Lee and Yannakakis [LY96]. All these methods
share the same technique to identify a state: they replace the use of the status
message with several kinds of sequences that we can generally call separating
sequences [LY96] and that are able to identify the state to which they have been
applied. Remember that, since MS is minimal, it does not contain two equivalent
states, i.e. for every pair of states si , sj there exists an input sequence x that we

94 Angelo Gargantini

call separating sequence and that distinguishes them because produces different
outputs, i.e. λ(si , x) �= λ(sj , x). Section 1.3 presents a classical algorithm to
compute a separating sequence for two states.

4.4.1 W Method

The W method [Cho78] uses a particular set of separating sequences that is
called characterizing set and another set to visit each transition in the machine,
that is called transition cover set or P set for short, and is defined as follows.

Definition 4.3. (Transition Cover Set) the transition cover set of MS is a
set P of input sequences such that for each state s ∈ S and each input a ∈ I
there exists an input sequence x ∈ P starting from the initial state s1 and ending
with the transition that applies a to state s . Formally for all s ∈ S and for all
a ∈ I there exist an input sequence x ∈ P and an input sequence y ∈ P such
that x = y.a and δ(s1, y) = s .

A P set forces the machine to perform every transition and then stop. A P set
can be built by using a normal breadth-first visit of the transition diagram of
the machine MS . Note that a P set is closed under the operation of selecting a
prefix: if x belongs to P, then any prefix of x is in P too. One way of constructing
P [Cho78] is to build first a testing tree T of MS as explained in Algorithm 10
and then to take the input sequences obtained from all the partial paths of T . A
partial path of T is a sequence of consecutive branches, starting from the root
of T and ending in a terminal or non terminal node. Since every branch in T is
labeled by an input symbol, the input sequence obtained from a partial path q
is the sequence of input symbols on q. The empty input sequence ε is considered
to be part of any P set. Note that Algorithm 10 terminates because the number
of states is finite.

Algorithm 10 Building a test tree
(1) Label the root of the tree T with s1, the initial state of MS . This is the level 1 of

T
(2) Suppose that we have already built the tree T up to the level k . Now we build the

k + 1st level.

(a) consider every node t at level k from left to right
(b) if the node t is equal to another node in T at level j , with j � k , then t is

terminated and must be considered a leaf of T
(c) otherwise, let si be the label of the node t . For every input x , if the machine

MS goes from state si to state sj , we attach to t a branch with label x and a
successor node with label sj

Example. A test tree for MS of Fig. 4.1 is shown in Fig. 4.3. From this test tree
we obtain P = {ε, a, b, ba, bb, bba, bbb}.

4 Conformance Testing 95

s1

a b

s1 s2

a b

s2 s3

a b

s3 s1

Fig. 4.3. A test tree for MS of Figure 4.1

The W method uses a P set to test every transition of MI and uses another set,
called characterizing set of MS or W set, instead of the status message, to verify
that the end state of each transition is the one expected. A characterizing set is
defined as follows.

Definition 4.4. (Characterizing Set) a characterizing set of MS is a set W
of input sequences such that for every pair of distinct states s and t in S , there
exists an input sequence x in W such that λ(s , x) �= λ(t , x)

The characterizing set is briefly called W set or sometimes separating set. The
input sequences in the W set are also called separating sequences. A W set exists
for every machine that is minimal (Assumption 1). The choice of a W set is not
unique and the fewer are the elements in the W set the longer are the separating
sequences in the W set. An algorithm for building a W set follows.

Partition the set of states S into blocks Bi with i = 1, . . . , r . Initially W
is ∅, B1 = S and r = 1. Until every Bi is a singleton, take two distinct states
s and t in a Bi (that contains at least two states) and build their separating
sequence x by means of the algorithm presented in Section 1.3. Add x to W
and partition the states sik in every Bj into smaller blocks Bj1, . . . ,Bjh based
on their different output λ(sik , x). Repeat the process until each Bi becomes
a singleton and r becomes n. For every pair of states si and sj , the resulting
W set contains an input sequence x that separates si from sj . Note that there
are no more than n − 1 partition and therefore W set has no more than n − 1
separating sequences.

The W method consists in using the entire W set instead of the status mes-
sage to test that the end state of each transition is the one expected. Since W
may contain several sequences, we have to visit the same end state of every tran-
sition several times to apply all the separating sequences in a W set and for this
goal we can use a reset message and the sequences in a P set. The set of input
sequences is simply obtained concatenating every input sequence in a P set with
every input sequences in a W set and apply them in order after a reset message
to take the machine back to the initial state. In this way each input sequence pij

96 Angelo Gargantini

is the concatenation of the i-th sequence of a P set (to test the i-th transition)
with the j -th sequence of a W set, with an initial reset input.

Formally, given two sets of input sequences X and Y, we denote with X.Y
the set of input sequences obtained concatenating all the input sequences of X
with all the input sequences of Y. The set of input sequences produced by the
W method is equal to {reset}.P.W.

If we do not observe any fault, the implementation is proved to be correct
[Cho78]. Indeed, any output fault is detected by the application of a sequence
of P, while any transfer fault is detected by the application of W.

Example. For the machine in Fig. 4.1 a characterizing set W is {a,b} (equal to
the input set I). In fact we have:

For state s1, transitions a/0 b/1
For state s2, transitions a/1 b/1
For state s3, transitions a/0 b/0
a distinguishes s1 from s2 and s3 from s2. b distinguishes s1from s3.
P = {ε, a, b, ba, bb, bba, bbb}
The set of test sequences P.W is reported in the following table, where we

indicate with r the reset message.
P ε a b ba bb bba bbb
r.P.W ra rb raa rab rba rbb rbaa rbab rbb rbbb rbbaa rbbab rbbba rbbbb

trans. to
test

s1 ε−→ s1
a/0−−−→ s1 s1

b/1−−−→ s2 s2
a/1−−−→ s2 s2

b/1−−−→ s3 s3
a/0−−−→ s3 s3

b/0−−−→ s1

output 0 1 00 11 11 11 111 111 110 110 1100 1100 1100 1101

The total length of the checking sequence is 52.
The fault in machine MS1 of Figure 4.2 is detected by the input sequence

rbbb, while the transfer faults in machine MS2 are detected by the pair of input
sequences that tests the end state of the transition: for example the fact the
transition from s1 with input a erroneously moves the machine to s2 is detected
by the input sequences raa and rab.

4.4.2 Wp Method

The partial W or Wp method [FvBK+91] has the main advantage of reducing
the length of the test suite with respect to the W method. This is the first
method we present that splits the conformance test in two phases. During the
first phase we test that every state defined in MS also exists in MI , while during
the second phase we check that all the transitions (not already checked during
the first phase) are correctly implemented.

For the first phase, the Wp method uses a state cover set instead of a tran-
sition cover set. The state cover set or Q set, for short, covers only the states, is
smaller than the transition cover set, and it is defined as follows.

Definition 4.5. (State Cover Set) the state cover set is a set Q of input
sequences such that for each s ∈ S , there exists an input sequence x ∈ Q that
takes the machine to s , i.e. δ(s1, x) = s

4 Conformance Testing 97

Using a Q set we can take the machine to every state. A Q set can be built
using a breadth first visit of the transition graph of MS . For the second phase,
the Wp method uses an identification set Wi for state si instead of a unique
characterizing set W for all the states. Wi is a subset of W and is defined as
follows.

Definition 4.6. (Identification Set) an identification set of state si is a set
Wi of input sequences such that for each state sj in S (with i �= j) there exists
an input sequence x of Wi such that λ(si , x) �= λ(sj , x) and no subset of Wi has
this property.

Note that the union of all the identification sets Wi is a characterizing set W.

Wp Method Phase 1 The input sequences for phase one consist in the concate-
nation of a Q set with a characterizing set (W set) after a reset. Formally, the
set of input sequences is {reset}.Q .W . In this way every state is checked in the
implementation with a W set.

We say that a state qi in MI is similar to state si if it produces the same
outputs on all the sequences in a W set. A state qi in MI can be similar to at
most one state of MS , because if we suppose that qi is similar to states si and
sj then si and sj produce the same output for each sequence in a W set, that is
against Definition 4.4. We say that the machine MI is similar to MS if for every
state si of MS , the machine MI has a state similar to si . If MI is similar, since
it has n states (Assumption 6), then there exists a one-to-one correspondence
between similar states of MS and MI .

If the input sequences do not uncover any fault during the first phase, we
can conclude that every state in MS has a similar state in the implementation
and we can say that MI is similar to MS . Note that is not sufficient to verify
that it is also equivalent. The equivalence proof is obtained by the next phase.

Wp Method Phase 2 The second phase tests all the transitions. To this aim,
Wp method uses the identification sets. For every transition from state sj to
state si on input a, we apply a sequence x (after a reset message) that takes the
machine to the state sj along transitions already verified, then we apply the input
a, which takes the machine to si and we apply one identification sequence of Wi .
We repeat this test for every identification sequence in Wi and if these tests do
not uncover any fault, we have verified that the transition in the machine MI

from a state that is similar to sj on input a produces the right output (there is no
output fault) and goes to a state that is similar to si (there is no transfer fault).
By applying these tests to every transition, we can verify that MI conforms to
its specification.

The set of input sequences that covers every transition (and that is closed un-
der the operation of selecting a prefix) is a P set. Therefore, the input sequences
of phase 2 consist of the sequences of a P set ending in state si that are not
contained in the Q set used during phase 1, concatenated with all the sequences
contained in the identification set Wi. Formally if R = P −Q and xi in R ends
in si , the set of sequences applied during the second phase is {reset}.R.Wi .

98 Angelo Gargantini

A complete formal proof of correctness for the Wp method is given in the
paper that introduced the Wp method [FvBK+91].

Example. The machine in Fig. 4.1 has the following state cover set Q = {ε, b,
bb}.

During the first phase we generate the following test sequences:

state to test 1 2 3
Q ε b bb
r.Q.W ra rb rba rbb rbba rbbb
output 0 1 11 11 110 110

During the second phase, we first compute the identification sets.
W1 = {a,b} all the sequences in W are needed to identify s1
W2 = {a} distinguishes the state s2 from all other states
W3 = {b} distinguishes the state s3 from all other states
R = P −Q ={ a, ba, bba, bbb}

R a ba bba bbb
start state 1 2 3 1 1
r.R.Wi raa rab rbaa rbbab rbbba rbbbb
output 00 01 111 1100 1100 1101
end state 1 2 2 1 1 2

The total length of the checking sequence is 44 (note that Wp method yields
a smaller test suite than the W method).

The output fault in machine MI1 of Figure 4.2 is detected during the first
phase again by the input sequence rbbb. Some transfer faults in machine MI2 are
detected during the first phase, while others, like the transfer fault from state s3
with input a is detected only by the input sequences rbbab during phase 2.

4.4.3 UIO Methods

If a Wi set contains only one sequence, this sequence is called state signature
[YL91] or unique input/output (UIO) sequence [SD88] , that is unique for the
state si . UIO sequences are extensively studied in Chapter 3 for state verification.
Remember that applying a UIO sequence we can distinguish state si from any
other state, because the output produced applying a UIO sequence is specific
to si . In this way a UIO sequence can determine the state of a machine before
its application. A UIO sequence has the opposite role of a homing sequence or
a synchronizing sequence, presented in Chapter 1: it identifies the first state in
the sequence instead of the last one. Note that not every state of a FSM has
UIOs and algorithms to check if a state has a UIO sequence and to derive UIOs
provided that they exist, can be found in Chapter 3. If an UIO sequence exists
for every state si , then UIOs can be used to identify each state in the machine; in

4 Conformance Testing 99

this case the UIO sequence acts as status message, except it moves the machine
to another state.

The original UIO method [SD88] builds a set of input sequences that visit
every transition from si to sj by applying a transition cover set P and then check
the end state sj by applying its UIO sequence. In this case the UIO sequence is
used instead of a status message.

Although used in practice, the UIO method does not guarantee to discover
every fault in the implementation [VCI90] because the uniqueness of the UIO
sequences may not hold in a faulty implementation. A faulty implementation
may contain a state s ′ that has the same UIO as another state s (because of
some faults) and a faulty transition ending in s ′ instead of s may be tested as
correct. Note that for this reason the Wp method uses the Wi sets only in the
second phase, while in the first phase it applies the complete W instead.

A modified version of the UIO method, called UIOv, generates correct check-
ing sequences [VCI90]. The UIOv method builds the test suite in three phases:

(1) Uv process : for every state s in MS , apply an input sequence x that begins
with a reset and reaches s and then apply the UIO sequence of s . To reach
each state use a Q set. The set of input sequences consist of the concatenation
of Q with the UIO sequence of the final state of the sequence in Q with an
initial reset.

(2) ¬Uv process : visit every state s and apply the input part of the UIO se-
quences of all other states and check that the obtained output differs from
the output part of the UIO sequence applied. Skip UIO sequences that have
the input part equal to a prefix α of the input part of the UIO sequence of
s . Indeed, in this case, we have already applied α during the Uv process and
we know that the output differs, because two states cannot have the same
input and output part of their UIO sequences. At the end of Uv and ¬Uv
process we have verified that MI is similar to MS .

(3) Transition test phase: check that every transition not already verified in 1
and 2 produces the right output and ends in the right state by applying its
UIO sequence.

Note that the UIOv method can be considered as a special case of Wp method,
where the W set is the union of all the UIO sequences and phase 1 of the Wp
method includes both Uv process and ¬Uv process and phase 2 is the transition
test phase.

Example. For the machine in Fig. 4.1 the UIO sequences are:
UIO1 = ab/01 distinguishes the state s1 from all other states
UIO2 = a/1 distinguishes the state s2 from all other states
UIO3 = b/0 distinguishes the state s3 from all other states
1. Uv process

Q ε b bb
state to test 1 2 3
r.Q.UIO rab rba rbbb
output 01 11 110

100 Angelo Gargantini

2. ¬Uv process

state to test 1 2 3
r.Q.¬UIO rb rbab rbb rbbab rbba
output 1 111 11 1100 110

3. Transition test phase:

transition to test s1
a/0−−−→ s1 s2

a/1−−−→ s2 s3
b/0−−−→ s1 s3

a/0−−−→ s3
input sequence raab rbaa rbbbab rbbab
output 001 111 11001 1100

The output fault of machine MI1 of Figure 4.2 is detected during the Uv process
again by the input sequence rbbb. Some transfer faults in machine MI2 are
detected during the first phases, while others, like the transfer fault from state s3
with input a is detected only by the input sequences rbbab during the transition
test phase.

4.4.4 Distinguishing Sequence Method

In case we can find one sequence that can be used as UIO sequence for every state,
we call such sequence distinguishing sequence (DS) (defined and extensively
studied in Chapter 2). In this situation we can apply the DS method using the
reset message [SL89]. Note that this DS method can be viewed as a particular
case of the W method when the characterizing set W contains only a preset
distinguishing sequence x . The test sequences are simply obtained combining a
P set with x .

Example. For the machine in Fig. 4.1 we can take the sequence x = ab as a
preset distinguishing sequence. In fact

λMs(s1, x) = 01
λMs(s2, x) = 11
λMs(s3, x) = 00

P ε a b ba bb bba bbb
r.P.x rab raab rbab rbaab rbbab rbbaab rbbbab

trans. to test s1 ε−→ s1
a/0−−−→ s1 s1

b/1−−−→ s2 s2
a/1−−−→ s2 s2

b/1−−−→ s3 s3
a/0−−−→ s3 s3

b/0−−−→ s1
output 01 001 111 1111 1100 11000 11001

4 Conformance Testing 101

4.4.5 Cost and Length

All the methods presented in Section 4.4 share the same considerations about
the length of the checking sequence and the cost of producing it. For the W
method, the cost to compute a W set is O(pn2) and a W set contains no more
than n − 1 sequences of length no more than n. The cost to build the tree T set
using the Algorithm 10 is O(pn) and its maximum level is n. The generation
of a P set, by visiting T, takes time O(pn2) and produces up to pn sequences
with the maximum length n. Since we have to concatenate each transition from
in a P set with each transition in a W set, we obtain up to pn2 sequences of
length n + n, for a total length of O(pn3) and a total cost of O(pn3). The Wp
method has the same total cost O(pn3) and same length O(pn3). Experimental
results [FvBK+91] show that checking sequences produced by the Wp method
are generally shorter than the checking sequences produced by the W method.

The UIO method and the method using a preset distinguishing sequence are
more expensive, because determining if a state has UIO sequences or a preset
distinguishing sequence was proved to be PSPACE hard (as shown in Sections
3.2 and 2.3). Note that in practice UIO sequences are more common than distin-
guishing sequences (as explained in Chapter 3). However, as shown in Section 2.4,
finding an adaptive distinguishing sequences has cost O(n2) and adaptive dis-
tinguishing sequences have maximum length n2. We can modify the method of
Section 4.4.4 by using adaptive distinguishing sequences instead of preset dis-
tinguishing sequences. Because there are pn transitions, the total length for the
checking sequence is again pn3.

There are specification machines with a reset message, that require checking
sequences of length Ω(pn3) [Vas73].

4.5 Using Distinguishing Sequences Without Reset

If the machine MS has no reset message, the reset message can be substituted by
a homing sequence, already introduced in Section 1.1.3. However this can lead
to very long test suites and it is seldom used in practice.

On the other hand, since methods like UIO (Section 4.4.3) and DS (Section
4.4.4) require the application of a single input sequence for each state, instead of
a set of separating sequences as in W and Wp methods, they can be easily opti-
mized for the use without reset, using instead a unique checking sequence similar
to a transition tour. These methods can substitute the transition tour method
when a status message is not available and they are often used in practice. The
optimized version of the UIO method without reset is presented by Aho et al.
[ADLU91], while the optimized version of the DS method [Hen64] without reset
is presented in this section. Some tools presented in Chapter 14 are based on
these methods.

To visit the next state to be verified we can use transfer sequences, that are
defined as follows.

Definition 4.7. (Transfer Sequence) A transfer sequence τ(si , sj) is a se-
quence that takes the machine from state si to sj

102 Angelo Gargantini

Such a transfer sequence exists for each pair of states, since MS is strongly
connected (by Assumption 3) and cannot be longer than n − 1. Moreover, if the
machine has a distinguishing sequence x , this sequence can be used as unreliable
status message because it gives a different output for each state. It is like a status
message, except that it moves the machine to another state when applied.

The method presented in this section has, as many methods presented in the
previous section, two phases. It first builds an input sequence that visits each
state using transfer sequences instead of reset and then applies its distinguishing
sequence to test whether MI is similar to MS . It then builds an input sequence
to test each transition to guarantee that MI conforms to MS .

Phase 1 Let ti be the final state when applying the distinguishing sequence
x to the machine from state si , i.e. ti = δ(si , x) and τ(ti , si+1) the transfer
sequence from ti to si+1. For the machine in the initial state s1, the following
input sequence checks the response to the distinguishing sequence in each state.

x τ(t1, s2) x τ(t2, s3) x . . . τ(tn , s1) x (4.1)

This sequence can be depicted as follows.

s1 x t1
τ(t1,s2) s2 x t2

τ(t2,s3) τ(tn ,s1)s1 x

Starting from s1 the first application of the distinguishing sequence x tests
s1 and takes the machine to t1, then the transfer sequence τ1 takes the machine
to s2 and the second application of x tests this state and so on till the end of of
the state tour. At the end, if we observe the expected outputs, we have proved
that every state of MS has a similar state in MI , since we have tested that every
state in MI correctly responds to its distinguishing sequence.

Phase 2 In the second phase, we want to test every transition. To test a transition
from si to sj with input a we can take the machine to si , apply a, observe the
output, and verify that the machine is in sj by applying x . Assuming that the
machine is in state t , to take the machine to si we cannot use τ(t , si) because
faults may alter the final state of τ(t , si). Therefore, we cannot go directly from
t to si . On the other hand, we have already verified by (4.1) that xτ(ti−1, si)
takes the machine from si−1 to si . We can build an input sequence that takes
the machine to si−1 , verifies that the machine is in si−1 applying x and moves
to si using τ(ti−1, si), then applies a, observes the right output, and verifies that
the end state is sj by applying again the distinguishing sequence x :

τ(t , si−1)xτ(ti−1, si)ax (4.2)

4 Conformance Testing 103

t
τ(t,si−1)si−1

xτti−1,si si a sj x tj

Therefore, the sequence (4.2) tests the transition with input a from state si
to sj and moves the machine to tj . We repeat the same process for each transition
to obtain a complete checking sequence.

Example. A distinguishing sequence for the machine in Fig. 4.1 is x = ab and the
corresponding responses from state s1, s2, and s3 are: 01 11, and 00 respectively.
The distinguishing sequence, when applied in states s1, s2, and s3 takes the
machine respectively to t1 = s2, t2 = s3 and t3 = s1. the transfer sequences are
τ(t1, s2) = τ(t2, s3) = τ(t3, s1) = ε.

The sequence (4.1) becomes

x τ(t1, s2) x τ(t2, s3) x τ(t3, s1) x
checking sequence ab ab ab ab
output 01 11 00 01

This input sequence ends in state t1 = s2
The input sequences (4.2) can be concatenated to obtain:

trans. to test s3
b/0−−−→ s1 s2

a/1−−−→ s2 s3
a/0−−−→ s3 s1

a/0−−−→ s1 s2
b/1−−−→ s3 s1

b/1−−−→ s2
τ(t1, s3)bx τ(t1, s2)ax τ(t2, s3)ax τ(t3, s2)ax τ(t1, s2)bx τ(t3, s1)bx

input sequence bbab aab aab aab bab bab
end state 2 3 1 2 1 3
output 1001 111 000 001 100 111

The total length of the checking sequence is 27.
Note that the first input sequence is not able to find the faults in machine MI2

of Fig. 4.2, since MI2 when we apply the input sequence abababab produces the
expected output 01110001. Only during the second phase the faults are detected.

Adaptive DS Instead of using a unique preset distinguishing sequence for
all the states, we can use an adaptive distinguishing sequence as explained in
the following. An adaptive distinguishing sequence (ADS) is a decision tree that
specifies how to choose the next input adaptively based on the observed output to
identify the initial state. Adaptive distinguishing sequences are studied in Section
2.4. In that Chapter, the reader can find the definition (2.12), an algorithm to
check the existence of an ADS and to build an ADS if it exists.

Example. An adaptive distinguishing sequence for the machine in Fig. 4.1 is
depicted in Figure 4.4. We apply the input a and if we observe the output 1 we
know that the machine was in the state s2. If we observe the output 0, we have
to apply b and if we observe the output 1 the machine was in s1 otherwise we
observe 0 and the machine was in s3.

Using adaptive distinguishing sequence for our example, we obtain x1 = ab,
x2 = a, x3 = b, and τ = ε and the sequence (4.1) becomes

104 Angelo Gargantini

x1 τ(t1, s2) x2 τ(t2, s3) x3 τ(t3, s1) x1

input sequence ab a b ab ab

a

0 1

b

0 1

s2

s3 s1

Fig. 4.4. Adaptive distinguishing sequence of machine in Fig. 4.1

Length and Cost An adaptive distinguishing sequence has length O(n2), and
a transfer sequence cannot be longer than n . The sequence (4.1) is long O(n3).
Because there are pn transitions, and every sequence (4.2) has length O(n2),
the cost is again O(pn3) to find the complete checking sequence. Therefore, all
the methods presented in Section 4.4 and in this section, have the same cost.
The advance of the method presented in this section, is that it does not need a
reset message. A comparison among methods from a practical point of view is
presented in Section 4.8.

Minimizing the Sequence Length Note that there exist several techniques
to shorten the length of the checking sequence obtained by applying the distin-
guishing sequence method [UWZ97], but still resulting checking sequences have
length O(pn3). The problem of finding the shortest transition tour covering all
the transitions and then applying an extra sequence, that is a UIO or a DS
sequence in this case, to their end state is called the Rural Chinese Postman
Problem [ADLU91].

4.6 Using Identifying Sequences Instead of Distinguishing
Sequences

Not every finite state machine has distinguishing sequences (as shown in Sec-
tion 2.1). In case the machine has no reset message, no status message, no UIO
sequences, and no distinguishing sequences, we cannot apply the methods pro-
posed so far. We can still use the Assumption 1 and exploit the existence of
separating sequences, that can distinguish a state from any other state in MS .
In this case, conformance testing is still possible [Hen64], although the resulting
checking sequences may be exponentially long.

4 Conformance Testing 105

is
1

3

2

w2

w1 it

2
i

s
i

s’

1 w1

3

w2

i
t

a: in MS b: in MI

Fig. 4.5. Using two separating sequences to identify the state

As usual, we first check that MI is similar to MS . We display for each state si
the responses to all the separating sequences in a characterizing set W (Defini-
tion 4.4). Suppose that W has two separating sequences w1 and w2. We want to
apply the steps shown (in square boxes) in Figure 4.5 (a) : take MI to si , apply
w1 (step 1), take the machine back again to si (step 2) and then apply w2 (step
3). If we observe the right output, we can say that the machine MI has a state qi
similar to si . We can start from i = 1 and proceed to verify all the states with-
out using neither reset nor a distinguishing sequence. The problem is that we do
not know how to bring the machine MI back to si in a verifiable way, because
in a faulty machine, as shown in Figure 4.5 (b), the transfer sequence τ(ti , si)
(step 2) may take the machine to another state s ′i where we could observe the
expected output applying the w2 sequence, without being able to verify that s ′i
is si and without able to apply again w1. We use now the Assumption 6 on page
90, namely that MI has only n states. Let x be an input sequence and n be an
integer, xn is the concatenation n times of x .

Theorem 4.8. Let s be a state of MI , x be an input sequence, o the expected
output sequence produced applying x to s, i.e. o = λ(s , x), τ a transfer sequence
from t = δ(s , x) back to s, and o′ the expected output produced applying τ to t.
By applying the input sequence (x τ)n to state s in MI , if we observe the output
sequence (o o′)n , then the machine ends in a state where applying again x we
observe the same output o.

s

x/o

t

τ/o′
s

xτ/oo′
q1

xτ/oo′ xτ/oo′
qn

x/ o

In MS In MI

Fig. 4.6. Applying n times x and τ

Proof. The scenario described in theorem is shown in Figure 4.6. Suppose that
MI is initially in state s . Applying x τ the machine should come back to s .
However, due to some faults, the machine MI may go to another state q1 even if

106 Angelo Gargantini

the output we observe is the one expected, i.e. o o′. Assume that applying n times
x τ , we observe every time the same output o o′. Let qr be the state of MI after
the application of (x τ)r . Note that even if the n applications of x τ produce n
times the same correct output o o′, we are not sure that s , q1, . . . , qn are the same
state yet. However the n+1 states s , q1, . . . , qn cannot be all distinct, because
MI has n states. Hence qn is equal to some qr with r < n and, therefore, it
would produce the same output o if we apply x .

Example. Consider the machine in Figure 4.1 and take any alleged implementa-
tion MI . Apply the input a (in this case τ = ε) to the initial state s1 of MI and
check that the output is 0. We are not sure that MI is now in state s1 as well. We
can apply again a and observe the output 0 and so on. When we have applied
aaa and observed the output 000, MI may have traversed states s1, q1,q2, and
the final state q3. Because MI has only 3 states, q3 is equal to one of s1, q1, or
q2 and we are sure that if we applied again a we would observe 0.

We use Theorem 4.8 as follows. Assume that MS has the characterizing set
W = {w1,w2} and let si be the state we are going to verify. Let τ be the
transfer sequence that takes MS back to si from ti = δ(w1, si). We first apply
(w1τ)

n to si . If we observe a wrong output we have proved that MI does not
conform to MS . Otherwise we can apply theorem with x = w1 and we are sure
that MI ends in a state that would produce the same output as if we applied w1.
We apply w2 instead. If we observe the specified output we can conclude that si
has a similar state in MI .

We can generalize this method when the characterizing set W contains m
separating sequences. Suppose that the characterizing set is W = {w1, . . . ,wm}.
Let τj be the transfer sequence that takes the machine back to s after the
application of wj , i.e. τj = τ(δ(s ,wj), s). We can define inductively the sequences
βr as follows:

β1 = w1

βr = (βr−1τr−1)nwr (4.3)

By induction, one can prove that applying βr−1 after applying (βr−1τr−1)n

would produce the same output. Considering how βi are defined, this means
that applying w1, . . . ,wr−1 would produce the same output . For this reason we
apply wr after (βr−1τr−1)n . Therefore, one can prove that βm is an identifying
sequence of si , in the following sense: if the implementation machine MI applying
βm produces the same output as that produced by the specification machine
starting from si , then MI has a state that is similar to si and such state is the
state right before the application of the last wm (regardless of which state MI

started from). We indicate the identifying sequence for state si with Ii .
Once we have computed the identifying sequence for every state, we can apply

a method similar to that explained in Section 4.5 to visit each state, verify its
response to the identifying sequence, and then transfer to the next state. Let Ii
be the identifying sequence of state si and τ(ti , si+1) the transfer sequence from

4 Conformance Testing 107

ti = δ(si , Ii) to si+1, by applying the following input sequence we can verify that
MI is similar to MS .

I1 τ(t1, s2) I2τ(t2, s3) . . . I1 (4.4)

s1
I1 t1

τ(t1,s2) s2
I2 t2

τ(t2,s3)
s1

I1

Once we have proved that MI is similar to MS we have to verify the transi-
tions. To do this we can use any Ii as reliable reset. For example, we can take
I1 as reset to the state t1 = δI (s1,wm) and use t1 as the initial state to test
every transition. Indeed, we are sure that if we do not observe any fault, I1 takes
the machine to t1. If we want to reset the machine from the state sk to t1 we
apply τ(sk , s1)I1 and even if τ(sk , s1) fails to take the machine to s1, we are sure
that I1 will take it to t1. Now we proceed as explained in Section 4.4. To test a
transition from si to sj we apply a pseudo reset I1 to t1, then a transfer sequence
along tested transitions to si , then we apply the input, observe the output, and
apply the identifying sequence Ij to check that the end state is sj .

Example. Consider the machine MS in Fig. 4.1. W = {a, b}.
For s1, τ1 = ε, I1 = (w1τ)3w2 = aaa b
For s1, τ1 = ε, I2 = (w1τ)3w2 = aaa b
For s1, τ1 = ε, I3 = (w1τ)3w2 = aaa b
The sequence (4.4) becomes

I1 τ(t1, s2) I2 τ(t2, s3) I3 τ(t3, s1) I1
input sequence aaab ε aaab ε aaab ε aaab

Length and Cost The length of an identifying sequence grows exponentially
with the number of separating sequences and with n the number of the states.
Indeed, by equation 4.3, every βi is n times longer than βi−1, the identifying
sequence I is equal to βm and m is the number of separating sequences that
can be up to n. The resulting checking sequence is exponentially long. The IS
method can be optimized using a different separating family Zi for every state
si [LY96].

4.7 Additional States

The Assumption 6, that the implementation has the same number of states as
the specification, may not hold in general. The problem of testing each edge
in a finite state machine with arbitrary extra states, is similar to the classical
problem of traversing an unknown graph, that is called the universal traversal
problem [LY96].

108 Angelo Gargantini

qs i q2 qK

2

K+1

1

a

K
aa

1

a

Fig. 4.7. A faulty machine MI with K extra states

Assume that a faulty machine MI , depicted in Figure 4.7, is identical to MS

except it has K extra states q1, . . . , qk and except for the transition from state si
on input a1 where MI moves to the extra state q1. Moreover MI moves from q1 to
q2 on input a2, from q2 to q3 on input a3, and so on. Assume the worst case, that
only the transition from state qk on input aK+1 has a wrong output or moves
to a wrong next state. To be sure to test such transition, the input sequence
applied to state si must include all possible input sequences of length K+1, and
thus it must have length pK+1. Such input sequence is also called combination
lock because in order to unlock the machine, it must reach the state qK and
apply the input aK+1. Vasilevski [Vas73] showed that also the lower bound on
the input sequence is multiplied by pK ; i.e. it becomes Ω(pK+1n3) (discussed
also in Section 5 of Chapter 19). Note that such considerations hold for every
state machine MI with K extra state: to test all the transitions we need to try
all possible input combinations of length K+1 from all the states of MI , and
thus the input sequence must have length at least pK+1n.

Using similar considerations, many methods we have presented can be easily
extended to deal with implementations that may add a bounded number of
states. This extension, however, causes an exponential growth of the length of
the checking sequence.

In this section we present how the W method presented in Section 4.4.1 is
extended to test an implementation machine with m states with m > |SS | = n
[Cho78]. Let Q be a set of input sequences and k be an integer, Qk is the
concatenation k times of Q . Let W be a characterizing set (Definition 4.4). The
W method in this case uses instead of a W set another set of sequences called the
distinguishing set Y = (ε∪I ∪I 2∪. . .∪Im−n).W . Therefore, we apply up to m-n
inputs before applying W. The use of Y instead of W has the goal to discover
states that may be added in MI . Let P be a transition cover set. The resulting
set of input sequences is equal to {reset}.P.Y. Each input sequence starts with a
reset, then applies a sequence to test each transition, applies up to m−n inputs,
then applies a separating sequence of W. The set of input sequences P.Y detects
any output or transfer error as long as the implementation has no more than m
states. The proof is given in [Cho78]. If m = n then Y=W and we obtain the W
method of Section 4.4.1.

4 Conformance Testing 109

Example. Consider the machine in Fig. 4.8 as faulty implementation of the spec-
ification machine MS of Fig. 4.1 with one state more, namely s4. The original
sequences generated with the W method assuming that the machine has the
same number of states are not capable to discover the fault. If we use the W
method with m = 4, we generate for bbb in P , b in I and b in W the sequence
rbbbbb that is able to expose the fault.

s1

a/0

b/1

s4

a/0

b/1

s2
b/1

a/1 s3 a/0

b/0

Fig. 4.8. A faulty implementation of machine MS with 4 states

4.8 Summary

In this chapter we have presented several methods, which can uncover any fault
in an implementation under different assumptions and producing checking se-
quences of different length and with different cost. We have initially supposed
that all the assumptions of Section 4.2 hold, mainly that the machines are min-
imal, that the implementation does not add extra states, and that the machines
have reset, status and set messages. Throughout the chapter we have presented
the following methods which are capable to discover faults under a successively
restricted subset of assumptions.

• The method of Section 4.3, the Transition Tour (TT) method, exploits all
the assumptions, except the set message. It uses a status message to check
that the implementation is in the correct state. The checking sequence has
length and cost linear with pn. Without a status message this method does
not guarantee the detection of transfer faults.
• If even a status message is not available, but the machine has still a reset

message, one can use one of the methods proposed in Section 4.4, namely
the W method, the Wp method, the unique input output (UIO) sequence
method, the UIOv method, and the method using distinguishing sequences
(DS) with reset. The DS method requires a distinguishing sequence, the
UIO methods need UIOs, while W and Wp method are always applicable
for minimized machines. The W, Wp, UIOv, and DS methods detect faults

110 Angelo Gargantini

of any kind, while the UIO method may miss some faults. The W, Wp,
and DS method with an adaptive distinguishing sequence produce checking
sequences of length O(pn3) with cost O(pn3). The others have greater cost.
• If even a reset message is not available, but a machine has a distinguishing

sequence, the method presented in Section 4.5 uses transfer sequences instead
of reset, produces checking sequences of length O(pn3) and has cost O(pn3)
when used in conjunction with adaptive distinguishing sequences.
• If the machine has not even a distinguishing sequence nor UIOs, the iden-

tifying sequences (IS) method, presented in Section 4.6, still works. The IS
method uses only the assumptions that the implementation does not add
states and that the machines are minimized and therefore they have sepa-
rating sequences. It produces exponentially long checking sequences.
• The problem of testing finite state machines with extra states is discussed

more in general in Section 4.7, where the method originally presented by
Chow [Cho78] is introduced.

It is of practical interest to compare the fault detection capability of the methods
when the assumptions under which they should be applied, do not hold [SL88,
ZC93]. Indeed, assumptions like the equal number of states for implementation
may be not verifiable in practice. The assumption of the existence of a reset
message is more meaningful, but empirical studies suggest to avoid the use of
the methods using reset messages for the following reason. As shown in Section
4.7, faults in extra states are more likely to be discovered when using long input
sequences. The use of a reset message may prevent the implementation to reach
such extra states where the faults are present. For this reason methods like UIO
or DS method without reset are better in practice than the UIOv method or the
DS method with reset.

Although the study presented in this chapter is rather theoretical, we can
draw some useful guidelines for practice testing for FSMs or for parts of models
that behave like finite state machine and the reader should be aware that many
ideas presented in this chapter are the basics for tools and case studies presented
in Chapters 14 and 15. Such practical suggestions can improve the fault detection
capability of the testing activity.

• Visiting each state in a FSM (like a statement coverage) using a ST method,
should not be considered enough. One should at least visit every transition
using a transition tour (TT) method, that can be considered as a branch
coverage.
• Transition coverage should be used in conjunction of a status message to

really check that the end state of every transition is the one expected. The
presence of a status message in digital circuits is often required by the tester
because it is of great help to uncover faults. If a status message may be not
reliable, a double application of it helps to discover when it fails to reveal
the correct state.
• If a status message is not available (very often in software black box testing),

one should use some extra inputs to verify the states. Such inputs should be
unique, like in Wp, UIO and DS.

4 Conformance Testing 111

• If one suspects that the implementation has more states than the implemen-
tation, he/she should prefer methods that produce long input sequences, like
the DS and the IS method. However, only methods like the W method with
extra states [Cho78], that add some extra inputs after visiting the transition
and before checking the state identity, can guarantee to detect faults in this
case.

Part II

Testing of Labeled Transition Systems

This part of the book is concerned with the theory of model-based testing where
real systems are assumed to be modeled as labeled transition systems (and ex-
tensions thereof). Labeled transition systems were proposed by Keller [Kel76]
and are widely used as underlying models for data-intensive systems (sequential
and concurrent programs) as well as hardware circuits. The starting point of this
form of model-based testing is a precise, unambiguous model description of the
system under test. Based on this formal specification, test generation algorithms
generate provably valid tests, i.e., tests that test what should be tested and no
more than that. These algorithms provide automatic, faster and less error-prone
test generation facilities. A sketch of the testing approach is given in Figure 9.

By hypothesis, it is assumed that for any implementation a model does ex-
ist. This assumption allows for reasoning about implementations as if they were
formal objects. Consequently, it allows to express conformance – is the imple-
mentation under test a correct implementation of the specification? – as a formal
relation, denoted imp, between models of implementations and specifications.
Such a relation is called an implementation relation (sometimes also called con-
formance relation). An implementation i is said to be correct with respect to
specification s if and only if the model of i is related to s by the implementation
relation: model of (i) imps. Implementation relatiuons are typically preorder
relations, i.e., relations that are reflexive and transitive (but not necessarily
symmetric).

The behaviour of an implementation under test (IUT, for short) is inves-
tigated by performing experiments on the implementation and observing the

114 Part II. Testing of Labeled Transition Systems

Test Execution

pass fail

Test Generation

specification

implementation

test suite

conforms to

Fig. 9. Schematic view of model-based testing of labeled transition systems

reactions that the implementation produces to these experiments. The specifi-
cation of such experiment is called a test case, and the process of applying a
test to an implementation under test is called test execution. During test ex-
ecution a number of observations will be made, e.g., occurring events will be
logged, or the respondse of the implementation to a particular stimulus will be
recorded. The basic concept of formal testing is now that if the IUT and its
model are put into black boxes and we would perform all possible test cases,
then it would not be possibel to distinguish between the IUT and its model.
This is formally represented by testing equivalences, as originated by De Nicola
and Hennessy [HN83].

Based on the observations, it is decided whether the IUT is correct (verdict
“pass”) or not (verdict “fail”). A set of test cases is sound whenever all cor-
rect implementations, and possibly some incorrect ones, will pass the test cases.
Stated differrently, any detected erroneous implementation is indeed not a cor-
rect implementation. Ideally, a set of test cases is exhaustive if all non-conforming
implementations will be detected. This theoretical notion is typically too strong
in practice as exhaustiveness requires infinitely many test cases. An important
requirement for test generatiikn algorithms therefore is that they produce sound
test cases.

Implementation relations and test generation algorithms are the key concepts
of this part of this book. In particular, we focus on:

• Implementation relations for labeled transitions systems and their relation-
ship
• Test generation algorithms for labeled transition systems

Part II. Testing of Labeled Transition Systems 115

• Extensions of implementation relations and their corresponding test genera-
tion algorithms for extensions of labeled transitions systems with input and
output actions, real-time, and probabilities.

This part is further organised as follows. Chapter 5 surveys several preorder
relations that have been proposed as implementation relations for testing of la-
beled transition systems. It defines and justifies seven implementation relations
and studies how these notions are related. Chapter 6 presents test generation
methods for labeled transition systems. It details a technique that maps labeled
transition systems onto finite state machines allowing the use of algorithms as
described in the first part of this book. Whereas these algorithms are focused on
using trace inclusion as implementation relation, alternative – and compositional
– algorithms are described for more interesting implementation relations such as
refusal testing. Chapter 7 distinguishes between inputs and outputs. For test-
ing, this is of particular interest as actions are typically directed: on stimulating
the IUT (i.e., input), its output is observed. The chapter describes alternative
ways to deal with inputs and outputs, defines several confromance relations,
and detail out test generation algorithm for the major techniques. Chapters 5
through 7 focus on the functional aspects of implementations and abstract from
non-functional aspects such as the timing of events – is an output produced
in time? – or probability. The last two chapters of this part consider exten-
sions of implementation relations and necessary adaptations to test generation
algorithms when such aspects are taken into account. Chapter 8 surveys some
existing approaches towards the testing of timed automata, an important exten-
sion of labeled transition systems with clock variables that are aimed to record
the passage of time. Chapter 9 presents the most prominent approaches towards
testing of probabilistic systems, in particular discrete-time (and continuous-time)
Markov chains and Markov decision processes.

5 Preorder Relations
∗

Stefan D. Bruda

Department of Computer Science
Bishop’s University
Lennoxville, Quebec J1M 1Z7, Canada
bruda@cs.ubishops.ca

5.1 Introduction

The usefulness of formalisms for the description and the analysis of reactive sys-
tems is closely related to the underlying notion of behavioral equivalence. Such
an equivalence should formally identify behaviors that are informally indistin-
guishable from each other, and at the same time distinguish between behaviors
that are informally different.

One way of determining behavioral equivalences is by observing the systems
we are interesting in, experimenting on them, and drawing conclusions about
the behavior of such systems based on what we see. We refer to this activity
as testing. We then consider a set of relevant observers (or tests) that interact
with our systems; the tests are carried out by human or by machine, in many
different ways (i.e., by using various means of interaction with the system being
tested).

In this context, we may be interested in finding out whether two systems are
equivalent; for indeed two equivalent (sub)systems can then be replaced with
each other without affecting the overall functionality, and we may also want
to compare the specification of a system with its implementation to determine
whether we actually implemented what we wanted to implement. We could then
create an equivalence relation between systems, as follows: two systems are equiv-
alent (with respect to the given tests) if they pass exactly the same set of tests.
Such an equivalence can be further broken down into preorder relations on
systems, i.e., relations that are reflexive and transitive (though not necessarily
symmetric).

Preorders are in general easier to deal with, and one can reconstruct an
equivalence relation by studying the preorder that generates it. Preorders are
also more convenient—indeed, more meaningful—than equivalences in compar-
ing specifications and their implementation: If two systems are found to be in a
preorder relation with each other, then one is the implementation of the other,
in the sense that the implementation is able to perform the same actions upon
its computational environment as the other system (by contrast with equiva-
lences the implementation may be now able to perform more actions, but this

∗
This work was supported by the Natural Sciences and Engineering Research Council
of Canada, and by the Fond québécois de recherche sur la nature et les technologies.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 117-149, 2005.
 Springer-Verlag Berlin Heidelberg 2005

118 Stefan D. Bruda

is immaterial as far as the capacity to implement is concerned). Preorders can
thus be practically interpreted as implementation relations.

Recall from the first paragraph that we are interested in a formal approach
to systems and their preorders. We are thus not interested how this system is
built, whether by system we mean a reactive program or a protocol, they are all
representable from a behavioral point of view by a common model. We shall refer
to the behavior of a system as a process, and we start this chapter by offering a
formal definition for the notion of process.

Depending on the degree of interaction with processes that we consider al-
lowable, many preorder relations can be defined, and many have been indeed
defined. In this chapter we survey the most prominent preorder relations over
processes that have been developed over time. We leave the task of actually using
these preorders to subsequent chapters.

Preorders are not created equal. Different preorders are given by varying the
ability of our tests to examine the processes we are interested in. For example we
may restrict our tests and only allow them to observe the processes, but we may
also allow our tests to interact with the process being observed in some other
ways. By determining the abilities of the tests we establish a testing scenario,
under the form of a set of tests. By varying the testing scenario—i. e., the capa-
bilities of tests to extract information about the process being tested—we end
up with different preorders. We start with a generic testing scenario, and then
we vary it and get a whole bunch of preorders in return.

It is evident that one testing scenario could be able to extract more informa-
tion about processes (and thus to differentiate more between them). It is however
not necessarily true that more differentiation between processes is better, simply
because for some particular application a higher degree of differentiation may be
useless. It is also possible that one testing scenario may be harder to implement1

than another. In our discussion about various testing scenarios and their associ-
ated preorders we shall always keep in mind these practical considerations, and
compare the preorders in terms of how much differentiation they make between
processes, but also in terms of the practical realization of the associated test-
ing scenario. In other words, we keep wondering how difficult is to convince the
process being tested to provide the information or perform the actions required
by the testing scenario we have in mind. For instance, it is arguably harder to
block possible future action of the process under test (as we need to do in the
testing scenario inducing the refusal preorder and presented in Section 5.6 on
page 137) than to merely observe the process and write down the actions that
have been performed (as is the case with the testing scenario inducing trace
preorders presented in Section 5.3 on page 127). The increase in differentiation

1 Implementing a testing scenario means implementing the means of interaction be-
tween a process and a test within the scenario. Implementing a preorder then means
implementing an algorithm that takes two processes and determines whether they
are in the given preorder relation or not by applying tests from the associated testing
scenario.

5 Preorder Relations 119

power of refusal preorder over trace preorder comes thus at a cost which may or
may not be acceptable in practice.

One reason for which practical considerations are of interest is that preorders
are a key element in conformance testing [Tre94]. In such a framework we are
given a formal specification and a possible implementation. The implementation
is treated as a black box (perhaps somebody else wrote a poorly commented
piece of code) exhibiting some external behavior. The goal is then to deter-
mine by means of testing whether the implementation implements correctly the
specification. Such a goal induces naturally an implementation relation, or a
preorder. Informally, the practical use of a preorder relation � consists then in
the algorithmic problem of determining whether s � i for two processes i (the
implementation) and s (the specification) by means of applying on the two pro-
cesses tests taken from the testing scenario associated with �. If the relation
holds then i implements (or conforms to) s (according to the respective testing
scenario). The formal introduction of conformance testing is left to the end of
this chapter, namely to Section 5.9 on page 145 to which we direct the interested
reader for details. For now we get busy with defining preorders and analyzing
their properties.

Where we go from here We present in the next section the necessary prelimi-
naries related to process representation and testing (including a first preorder to
compare things with). Sections 5.3 to 5.8 are then the main matter of this chap-
ter; we survey here the most prominent preorders and we compare them with
each other. We also include a presentation of conformance testing in Section 5.9.

5.1.1 Notations and Conventions

It is often the case that our definitions of various sets (and specifically inductive
definitions) should feature a final item containing a statement along the line that
“nothing else than the above constructions belong to the set being defined.” We
consider that the presence of such an item is understood and we shall not repeat
it over and over. “Iff” stands for “if and only if.” We denote the empty string,
and only the empty string by ε.

We present a number of concepts throughout this chapter based on one par-
ticular paper [vG01] without citing it all the time, in order to avoid tiresome
repetitions.

Many figures show processes that are compared throughout the paper using
various preorders. We show parenthetically in the captions of such figures the
most relevant relations established between the depicted processes. Parts of these
parenthetical remarks do not make sense when the figures are first encountered,
but they will reveal themselves as the reader progresses through the chapter.

5.2 Process Representation and Testing

Many formal descriptions for processes have been developed in the past, most
notably under the form of process algebraic languages such as CCS [Mil80] and

120 Stefan D. Bruda

LOTOS [BB87]. The underlying semantics of all these descriptions can be de-
scribed by labeled transition systems. We will use in what follows the labeled
transition system as our semantical model (feeling free to borrow concepts from
other formalisms whenever they simplify the presentation).

Our model is a slight variation of the model presented in Appendix 22 in
that we need a notion of divergence for processes, and we introduce the concept
of derived transition system; in addition, we enrich the terminology in order
to blend the semantic model into the bigger picture on an intuitive level. For
these reasons we also offer here a short presentation of labeled transition systems
[vG01, Abr87]. Our presentation should be considered a complement to, rather
than a replacement for Appendix 22.

5.2.1 Processes, States, and Labeled Transition Systems

Processes are capable of performing actions from a given, countable set Act. By
action we mean any activity that is a conceptual entity at a given, arbitrary
level of abstraction; we do not differentiate between, say input actions and out-
put actions. Different activities that are indistinguishable on the chosen level of
abstraction are considered occurrences of the same action.

What action is taken by a process depends on the state of the process. We
denote the countable set of states by Q. A process goes from a state to another by
performing an action. The behavior of the process is thus given by the transition
relation −→ ⊆ Q× Act×Q.

Sometimes a process may go from a state to another by performing an internal
action, independent of the environment. We denote such an action by τ , where
τ �∈ Act.

The existence of partially defined states stem from (and facilitate) the se-
mantic of sequential computations (where Ω is often used to denote a partial
program whose behavior is totally undefined). The existence of such states is also
useful for reactive programs. They are thus introduced by a divergence predicate
↑ ranging over Q and used henceforth in postfix notation; a state p for which
p ↑ holds is a “partial state,” in the sense that its properties are undefined; we
say that such a state diverges (is divergent, etc.). The opposite property (that a
state converges) is denoted by the postfix operator ↓.

Note that divergence (and thus convergence) is a property that is inherent to
the state; in particular, it does not have any relation whatsoever with the actions
that may be performed from the given state. Consider for example state x from
Figure 5.4 on page 130 (where states are depicted by nodes, and the relation −→
is represented by arrows between nodes, labeled with actions). It just happens
that x features no outgoing actions, but this does not make it divergent (though it
may be divergent depending on the definition of the predicate ↑ for the respective
labeled transition system). Divergent states stand intuitively for some form of
error condition in the state itself, and encountering a divergent state during
testing is a sure sign of failure for that test.

5 Preorder Relations 121

To summarize all of the above, we offer the following definition:

Definition 5.1. A labeled transition system with divergence (simply la-
beled transition system henceforth in this chapter) is a tuple (Q,Act∪{τ}, −→ , ↑),
where Q is a countable set of states, Act is a countable set of (atomic) actions,
−→ is the transition relation, −→ ⊆ Q× (Act∪{τ})×Q, and ↑ is the divergence
predicate. By τ we denote an internal action, τ �∈ Act.

For some state p ∈ Q we write p ↓ iff ¬ (p ↑). Whenever (q, a, p) ∈ −→
we write p a−−→ q (to be read “p offers a and after executing a becomes q”).
We further extend this notation to the reflexive and transitive closure of −→ as
follows: p ε−→ p for any p ∈ Q; and p σ−−→ q, with σ ∈ Q∗, iff σ = σ1σ2 and there
exists q ′ ∈ Q such that p σ1−−→ q ′ σ2−−→ q. 	

We use the notation p σ−−→ as a shorthand for “there exists q ∈ Q such that
p σ−−→ q,” and the notation −−→/ as the negation of −→ (p a−−→/ q iff it is not the
case that p a−−→ q, etc.).

Assume now that we are given a labeled transition system. The internal
action τ is unobservable. In order to formalize this unobservability, we define an
associated derived transition system in which we hide all the internal actions;
the transition relation ⇒ of such a system ignores the actions τ performed by
the system. Formally, we have:

Definition 5.2. Given a transition system B = (Q,Act ∪ {τ}, −→ , ↑B), its de-
rived transition system is a tuple D = (Q,Act ∪ {ε}, ⇒ , ↑), where ⇒ ⊆
Q× (Act ∪ {ε})×Q and is defined by the following relations:

p
a⇒ q iff p τ∗a−−−→ q

p
ε⇒ q iff p τ∗−−→ q

The divergence predicate is defined as follows: p ↑ iff there exists q such that
q ↑B and p

ε⇒ q, or there exists a sequence (pi)i≥0, such that p0 = p and for
any i > 0 it holds that pi

τ−−→ pi+1. 	

In passing, note that we deviate slightly in Definition 5.2 from the usual
definition of ⇒ (p

a⇒ q iff p τ∗aτ∗−−−−−→ q, see Appendix 22), as this allows for a
clearer presentation.

Also note that a state can diverge in two ways in a derived transition system:
it can either perform a number of internal actions and end up in a state that
diverges in the associated labeled transition system, or evolve perpetually into
new states by performing internal actions. Therefore this definition does not
make distinction between deadlock (first case) and livelock (second variant).
We shall discuss in subsequent sections whether such a lack of distinction is a
good or a bad thing, and we shall distinguish between these variants using the
original labeled transition system (since the derived system is unable to make
the distinction).

It is worth emphasizing once more (this time using an example) that the
definition of divergence in a derived transition system is different from the cor-
respondent definition in a labeled transition system. Indeed, consider state y

122 Stefan D. Bruda

a c

b c

b c

b c

b . . .

(a)

a

b

c

(b)

Fig. 5.1. Representation of infinite process trees: an infinite tree (a), and its graph
representation (b).

from Figure 5.6 on page 133 (again, states are depicted by nodes, and the rela-
tion −→ is represented by arrows between nodes, labeled with actions). It may
be the case that y is a nice, convergent state in the respective labeled transition
system (i.e., y ↓B). Still, it is obviously the case that y ↑ in the derived transition
system (we refer to this as “y may diverge” instead of “y diverges,” given that y
may decide at some time to perform action b and get out of the loop of internal
actions).

Again, we shall use in what follows natural extensions of the relation ⇒
such as p

a⇒ and �⇒ . We also use by abuse of notation the same operator for
the reflexive and transitive closure of ⇒ (in the same way as we did for −→).

A transition system gives a description of the actions that can be performed
by a process depending on the state that process is in. A process does in addition
start from an initial state. In other words, a process is fully described by a
transition system and an initial state. In most cases we find it convenient to
fix a global transition system for all the processes under consideration. In this
setting, a process is then uniquely defined by its initial state. We shall then blur
the distinction between a process and a state, often referring to “the process
p ∈ Q.”

Finally, a process can be represented as a tree in a natural way: Tree nodes
represent states. The root node is the initial state. The edges of the tree will
be labeled by actions, and there exists an edge between nodes p and q labeled
with a iff it holds that p a−−→ q in the given transition system (or that p

a⇒ q
if we talk about a derived transition system). We shall not make use of this
representation except when we want to represent a process (or part thereof)
graphically for illustration purposes. Sometimes we find convenient to “abbrevi-
ate” tree representation by drawing a graph rather than a tree when we want
to represent infinite trees with states whose behavior repeats over and over (in
which case we join those states in a loop). The reader should keep in mind that
this is just a convenient representation, and that in fact she is in front of a finite
representation of an infinite tree. As an example, Figure 5.1 shows such a graph
together with a portion of the unfolded tree represented by the graph.

5 Preorder Relations 123

Two important properties of transition systems are image-finiteness and
sort-finiteness. A transition system is image-finite if for any a ∈ Act, p ∈ Q
the set {q ∈ Q | p a−−→ q} is finite, and is sort-finite if for any p ∈ Q the set
{a ∈ Act | ∃σ ∈ Act∗, ∃ q ∈ Q such that p σ−−→ q a−−→} is finite. This definition
also applies to derived transition systems.

In all of the subsequent sections we shall assume a transition system (Q,Act∪
{τ}, −→ , ↑B) with its associated derived transition system (Q,Act∪{τ}, ⇒ , ↑),
applicable to all the processes under scrutiny; thus a process shall be identified
only by its initial state.

5.2.2 Processes and Observations

As should be evident from the need of defining derived transition systems, we
can determine the characteristics of a system by performing observations on it.
Some observations may reveal the whole internal behavior of the system being
inspected, some may be more restricted.

In general, we may think of a set of processes and a set of relevant observers
(or tests). Observers may be thought of as agents performing observations. Ob-
servers can be viewed themselves as processes, running in parallel with the pro-
cess being observed and synchronizing with it over visible actions. We can thus
represent the observers as labeled transition systems, just as we represent pro-
cesses; we prefer however to use a different, “denotational” syntax for observers
in our presentation.

Assume now that we have a predefined set O of observers. The effect of
observers performing tests is formalized by considering that for every observer
o and process p there exists a set of runs Runs(o, p). If we have r ∈ Runs(o, p)
then the result of o testing p may be the run r .

We take the outcomes of particular runs of a test as being success or failure
[Abr87, dNH84] (though we shall differentiate between two kinds of failure later).
We then represent outcomes as elements in the two-point lattice

O
def=

|
⊥

The notion of failure incorporates divergence, so for some observer o and some
process p, the elements of O have the following meaning:

• the outcome of o testing p is if there exists r ∈ Runs(o, p) such that r is
successful;
• the outcome of o testing p is ⊥ if there exists r ∈ Runs(o, p) such that

either r is unsuccessful, or r contains a state q such that q ↑ and q is not
preceded by a successful state.

Note that for the time being we do not differentiate between runs with a deadlock
(i.e., in which a computation terminates without reaching a successful state) and
runs that diverge; the outcome is ⊥ in both cases.

124 Stefan D. Bruda

Processes may be nondeterministic, so there may be different runs of a given
test on a process, with different outcomes. In effect, the (overall) outcome of an
observer testing a process is a set, and therefore we are led to use powerdomains
of O. In fact, we have three possible powerdomains:

Pmay
def=
{} = {⊥,}
|
{⊥}

Pconv
def=

{}
|

{⊥,}
|
{⊥}

Pmust
def=
{}
|
{⊥} = {⊥,}

The names of the three powerdomains are not chosen haphazardly. By consid-
ering Pmay as possible outcomes we identify processes that may pass a test in
order to be considered successful. Similarly, Pmust identifies tests that must be
successful, and by using Pconv we combine the may and must properties. The
partial order relations induced by the lattices Pmay, Pmust, and Pconv shall be
denoted by ⊆may, ⊆must, and ⊆conv, respectively.

We also need to introduce the notion of refusal. A process refuses an action
if the respective action is not applicable in the current state of the process, and
there is no internal transition to change the state (so that we are sure that the
action will not be applicable unless some other visible action is taken first).

Definition 5.3. Process p ∈ Q refuses action a ∈ Act, written p ref a, iff p ↓B ,
p τ−−→/ , and p a−−→/ . 	

We thus described the notions of test and test outcomes. We also introduce
at this point a syntax for tests. In fact tests are as we mentioned just processes
that interact with the process under test, so we can represent tests in the same
way as we represent processes. Still, we find convenient to use a “denotational”
representation for tests since we shall refer quite often to such objects. We do
this by defining a set O of test expressions.

While we are at it, we also define the “semantics” of tests, i.e., the way tests
are allowed to interact with the processes being tested. Such a semantics for tests
is defined using a function obs : O × Q → P , where P ∈ {Pmay,Pconv,Pmust}
such that obs(o, p) is the set of all the possible outcomes.

To concretize the concepts of syntax and semantics, we introduce now our first
testing scenario (i.e., set of test expressions and their semantics), of observable
testing equivalence2[Abr87]. This is a rather comprehensive testing model, which
we will mostly restrict in order to introduce other models—indeed, we shall
restrict this scenario in all but one of our subsequent presentations. A concrete
model for tests also allows us to introduce our first preorder.

For the remainder of this section, we fix a transition system (Q,Act∪{τ}, −→ ,
↑B) together with its derived transition system (Q,Act ∪ {ε}, ⇒ , ↑).
2 Just testing equivalence originally [Abr87]; we introduce the new, awkward termi-

nology because the original name clashes with the names of preorders introduced
subsequently.

5 Preorder Relations 125

∧ ⊥ �
⊥ ⊥ ⊥
� ⊥ �

∧ {⊥} {⊥,�} {�}
{⊥} {⊥} {⊥} {⊥}
{⊥,�} {⊥} {⊥,�} {⊥,�}
{�} {⊥} {⊥,�} {�}

∀
{⊥} {⊥}
{⊥,�} {⊥}
{�} {�}

∨ ⊥ �
⊥ ⊥ �
� � �

∨ {⊥} {⊥,�} {�}
{⊥} {⊥} {⊥,�} {�}
{⊥,�} {⊥,�} {⊥,�} {�}
{�} {�} {�} {�}

∃
{⊥} {⊥}
{⊥,�} {�}
{�} {�}

Fig. 5.2. Semantics of logical operators on test outcomes.

Definition 5.4. The set O of test expressions inducing the observable testing
equivalence contains exactly all of the following constructs, with o, o1, and o2

ranging over O:

o def= Succ (5.1)
| Fail (5.2)
| ao for a ∈ Act (5.3)
| ão for a ∈ Act (5.4)
| εo (5.5)
| o1 ∧ o2 (5.6)
| o1 ∨ o2 (5.7)
| ∀ o (5.8)
| ∃ o (5.9)

	

Intuitively, Expressions (5.1) and (5.2) state that a test can succeed or fail by
reaching two designated states Succ and Fail, respectively. A test may check
whether an action can be taken when into a given state, or whether an action
is not possible at all; these are expressed by (5.3) and (5.4). We can combine
tests by means of boolean operators using expressions of form (5.6) and (5.7).
By introducing tests of form (5.5) we allow a process to “stabilize” itself through
internal actions. Finally, we have universal and existential quantifiers for tests
given by (5.8) and (5.9). Nondeterminism is introduced in the tests themselves
by the Expressions (5.7) and (5.9), the latter being a generalization of the former.

Definition 5.5. With the semantics of logical operators as defined in Figure 5.2,
the function obs inducing the observable testing equivalence, obs : O × Q →
Pconv, is defined as follows:

126 Stefan D. Bruda

obs(Succ, p) = {}
obs(Fail, p) = {⊥}

obs(ao, p) =
⋃
{obs(o, p′) | p a⇒ p′} ∪ {⊥ | p ↑} ∪ {⊥ | p ε⇒ p′, p′ ref a}

obs(ão, p) =
⋃
{obs(o, p′) | p a⇒ p′} ∪ {⊥ | p ↑} ∪ { | p ε⇒ p′, p′ ref a}

obs(εo, p) =
⋃
{obs(o, p′) | p ε⇒ p′} ∪ {⊥ | p ↑}

obs(o1 ∧ o2, p) = obs(o1, p) ∧ obs(o2, p)
obs(o1 ∨ o2, p) = obs(o1, p) ∨ obs(o2, p)

obs(∀ o, p) = ∀ obs(o, p)
obs(∃ o, p) = ∃ obs(o, p)

	

The function from Definition 5.5 follows the syntax of test expressions faith-

fully, so most cases should need no further explanation. We note that tests of
form (5.3) are allowed to continue only if the action a is available to, and is
performed by the process under test; if the respective action is not available, the
test fails. In contrast, when a test of form (5.4) is applied to some process, we
record a success whenever the process refuses the action (the primary purpose of
such a test), but then we go ahead and allow the action to be performed anyway,
to see what happens next (i.e., we remove the block on the action; maybe in ad-
dition to the noted success we get a failure later). As we shall see in Section 5.7
such a behavior of allowing the action to be performed after a refusal is of great
help in identifying crooked coffee machines (and also in differentiating between
processes that would otherwise appear equivalent).

As a final thought, we note again that tests can be in fact expressed in the
same syntax as the one used for processes. A test then moves forward synchro-
nized with the process under investigation, in the sense that the visible action
performed by the process should always be the same as the action performed
by the test. This synchronized run is typically denoted by the operator |, and
the result is itself a process. We thus obtain an operational formulation of tests,
which is used as well [Abr87, Phi87] and is quite intuitive. Since we find the
previous version more convenient for this presentation, we do not insist on it
and direct instead the reader elsewhere [Abr87] for details.

5.2.3 Equivalence and Preorder Relations

The semantics of tests presented in the previous section associates a set of out-
comes for each pair test–process. By comparing these outcomes (i.e., the set
of possible observations one can make while interacting with two processes, or
the observable behavior of the processes) we can define the observable testing
preorder3 �. Given the preorder one can easily define the observable testing
equivalence �.
3 Recall that this was originally named testing preorder [Abr87], but we introduce the

new name because of name clashes that developed over time.

5 Preorder Relations 127

Definition 5.6. The observable testing preorder is a relation �⊆ Q ×Q,
where p � q iff obs(o, p) ⊆ obs(o, q) for any test o ∈ O. The observable testing
equivalence is a relation �⊆ Q×Q, with p � q iff p � q and q � p. 	

If we restrict the definition of O (and thus the definition of the function obs),
we obtain a different preorder, and thus a different equivalence. In other words, if
we change the set of possible tests that can be applied to processes (the testing
scenario), then we obtain a different classification of processes.

We will present in what follows various preorder relations under various test-
ing scenarios. These preorders correspond to sets of changes imposed on O and
obs, and we shall keep comparing various scenarios with the testing scenario
presented in Section 5.2.2. As it turns out, the changes we impose on O are in
all but one case restrictions (i.e., simplification of the possible tests).

We will in most cases present an equivalent modal characterization corre-
sponding to these restrictions. Such a modal characterization (containing a set
of testing formulae and a satisfaction operator) will in essence model exactly the
same thing, but we are able to offer some results that are best shown using the
modal characterization rather than other techniques.

When we say that a preorder �α makes more distinction than another pre-
order �β we mean that there exist processes that are distinguishable under �α

but not under �β . This does not imply that �α and �β are comparable, i.e., it
could be possible that �α makes more distinction than �β and that �β makes
more distinction than �α. Whenever �α makes more distinction than �β but
not the other way around we say that �α is coarser than �β, or that �β is finer
than �α.

5.3 Trace Preorders

We thus begin our discussion on preorder and equivalence relations with what
we believe to be the simplest assumption: we compare two processes by their
trace, i.e., by the sequence of actions they perform. In this section we follow
roughly [vG01, dN87].

We consider that the divergence predicate ↑B of the underlying transition
system is empty (no process diverges). The need for such a strong assumption
will become clear later, when we discover that trace preorders do not cope well
with divergence.

The trace preorder is based on the following testing scenario: We view a
process as a black box that contains only one interface to the real world. This
interface is a window displaying at any given moment the action that is currently
carried out by the process. The process chooses its execution path autonomously,
according to the given transition system. As soon as no action is carried out, the
display becomes empty. The observer records a sequence of actions (a trace), or
a sequence of actions followed by an empty window (a complete trace). Internal
moves are ignored (indeed, by their definition they are not observable). We
regard two processes as equivalent if we observe the same complete trace using
our construction for both processes.

128 Stefan D. Bruda

p

a

b c

q

a a

b c

r

a a

b c

Fig. 5.3. Three sample processes (p �CT q �CT r ; q �	B p).

Specifically, σ ∈ Act∗ is a trace of a process p iff there exists a process q
such that p

σ⇒ q. A complete trace σ ∈ Act∗ is a trace such that p
σ⇒ q and

q �⇒ .
The set LCT of complete trace formulae is inductively defined as follows:

• ∈ LCT (marks the end of a trace);
• 0 ∈ LCT (0 marks the end of a complete trace);
• if ψ ∈ LCT and a ∈ Act then aψ ∈ LCT .

A modal characterization for trace formulae is given by the satisfaction oper-
ator �⊆ Q× LCT inductively defined by:

• p � for all p ∈ Q;
• p � 0 if p �⇒ ;
• p � aψ if p

a⇒ q and q � ψ for some q ∈ Q.

We can now define the complete trace preorder �CT and implicitly the
complete trace equivalence �CT :

Definition 5.7. p �CT q iff p � ψ implies q � ψ for any ψ ∈ LCT . 	

The complete trace preorder induces the equivalence used in the theory of
automata and languages. Indeed, consider the processes as language generators
and then the trace preorder is given by the inclusion of the language of complete
traces generated by one process into the language of complete traces generated
by the other process. Take for instance the processes shown in Figure 5.3. We
notice that p �CT q since they both generate the language {, a, ab0, ac0},
and that q �CT r (since r generates the larger language {, a, ab0, ac0, a0}).

We note in passing that an even weaker (in the sense of making less dis-
tinction) preorder relation can be defined [vG01] by eliminating the distinction
between traces and complete traces (by putting whenever we put 0). Under
such a preorder (called trace preorder), the three processes in Figure 5.3 are
all equivalent, generating the language {, a, ab, ac}. (We note however
that the complete trace preorder is quite limited so we do not find necessary to
further elaborate on an even weaker preorder.)

5 Preorder Relations 129

For one thing, trace preorder (complete or not) does not deal very well with
diverging processes. Indeed, we need quite some patience in order to determine
whether a state diverges or not; no matter how long we wait for the action
to change in our display window, we cannot be sure that we have a diverging
process or that we did not reach the end of an otherwise finite sequence of internal
moves. We also have the problem of infinite traces. This is easily fixed in the
same language theoretic spirit that does not preclude an automaton to generate
infinite words, but then we should arm ourselves with the same immense amount
of patience. Trace preorders imply the necessity of infinite observations, which
are obviously impractical.

Despite all these inconveniences, trace preorders are the most elementary
preorders, and perhaps the most intuitive (that’s why we chose to start our
presentation with them). In addition, such preorders seem to capture the finest
differences in behavior one would probably like to distinguish (namely, the dif-
ference between observable sequences of actions). Surprisingly, it turns out that
other preorders make an even greater distinction. Such a preorder is the subject
of the next section.

5.4 Observation Preorders and Bisimulation

As opposed to the complete trace preorder that seems to capture the finest
observable differences in behavior, the observation preorder [Mil80, HM80],
the subject of this section, is the finest behavioral preorder one would want to
impose; i.e., it incorporates all distinctions that could reasonably be made by
external observation. The additional discriminating power is the ability to take
into account not only the sequences of actions, but also some of the interme-
diate states the system goes through while performing the respective sequence
of actions. Indeed, differences between intermediate states can be exploited to
produce different behaviors.

It has also been argued that observation equivalence makes too fine a distinc-
tion, even between behaviors that cannot be really differentiated by an observer.
Such an argument turns out to be pertinent, but we shall postpone such a dis-
cussion until we introduce other preorder relations and have thus something to
compare.

The observation preorder �B is defined using a family of preorder rela-
tions �n , n ≥ 0 [Abr87]:

(1) it is always the case that p �0 q;
(2) p �n+1 q iff, for any a ∈ Act it holds that

• for any p′ such that p
a⇒ p′ there exists q ′ such that q

a⇒ q ′ and p′ �n

q ′, and
• if p ↓ then (i) q ↓ and (ii) for any q ′ such that q

a⇒ q ′ there exists p′

such that p
a⇒ p′ and p′ �n q ′;

(3) p �B q iff for any n ≥ 0 it holds that p �n q.

130 Stefan D. Bruda

p

u

x

a

b c

q

v w

a a

b c

Fig. 5.4. Processes not equivalent under observation preorder (p ��B q ; p �CT q ;
p �R q).

The equivalence �B induced by �B (p �B q iff p �B q and q �B p) is called
observation equivalence.

The observation equivalence is often called (weak) bisimulation equiv-
alence, hence the B subscript (the other logical–and often used–subscript O
having the inconvenience of being easily confused with a zero).

It is clear that the observation preorder makes more distinction than trace
preorders. Consider the processes p and q from Figure 5.3, shown again in Fig-
ure 5.4 this time with names for some of the extra states. It is immediate that
v �1 u, and that w �1 u. It follows that q �2 p. However, it is not the case
that u �1 v , and thus q ��2 p. We have a strict implementation relation between
q and p. Recall however that these two processes are equivalent under trace
preorders.

Observation preorder corresponds to a testing scenario identical with the
general scenario presented in Definitions 5.4 and 5.5 (in Section 5.2.2). As is
the case with trace preorder we can inspect the sequence of actions performed
by the process under scrutiny. This is given by expressions of form (5.1), (5.2),
and (5.3).

As a side note, we mentioned at the beginning of this section that observation
preorder makes more distinction than trace preorder. The expressions we allow
up to this point are enough to show this: Then the tests only have the form
a1a2 . . . anSucc or a1a2 . . . anFail for some n ≥ 0. This way we can actually
distinguish between processes such as p and q from Figure 5.4. Indeed, we notice
that

obs(abSucc, p) = {}

whereas

obs(abSucc, q) = {,⊥}

(we can start on the ac branch of q, which will produce ⊥). In other words, we
are able to distinguish between distinct paths in the run of a process, not only
between different sequences of actions.

5 Preorder Relations 131

We close the side remark and go on with the description of the testing sce-
nario for observation preorder. The addition of expressions of form (5.4) intro-
duces the concept of refusals, which allow one to obtain information about the
failure of the process to perform some action (as opposed to its ability to per-
form something). The expressions of form (5.6) and (5.7) allows us to copy the
process being tested at any time during its execution, and to further test the
copies by performing separate tests. Global testing is possible given expressions
of form (5.8) and (5.9). This is a generalization of the two copy operations, in
the sense that information is gathered independently for each possible test, and
the results are then combined together. Finally, nondeterminism is introduced
in the tests themselves by Expression (5.5). Such a nondeterminism is however
controlled by the process being tested; indeed, if the process is convergent then
we will eventually perform test o from an εo construction. By this mechanism
we allow the process to “stabilize” before doing more testing on it.

Proposition 5.8. With the set O of tests as defined in the above testing sce-
nario, p �B q iff obs(o, p) ⊆ obs(o, q) for any test o ∈ O.

In other words, observation preorder and observable testing preorder are the
same, i.e., observation equivalence corresponds exactly to indistinguishability
under testing.

A modal characterization of observation equivalence can be given in terms
of the set LHM of Hennessy-Milner formulae:

• ,⊥ ∈ LHM ;
• if φ, ψ ∈ LHM then φ ∧ ψ, φ ∨ ψ, [a]ψ, 〈a〉φ ∈ LHM for some a ∈ Act.

The satisfaction operator �∈ Q× LHM is defined in the following manner:

• p � is true;
• p � ⊥ is false;
• p � φ ∧ ψ iff p � φ and p � ψ;
• p � φ ∨ ψ iff p � φ or p � ψ;
• p � [a]φ iff p ↓ and for any p′ such that p

a⇒ p′ it holds that p′ � φ;
• p � 〈a〉φ iff there exists p′ such that p

a⇒ p′ and p′ � φ.

The following is then the modal characterization of the observation equivalence
[Abr87]:

Proposition 5.9. In an underlying sort-finite derived transition system, p �B

q iff p � ψ implies q � ψ for any ψ ∈ LHM .

The translation between expressions in LHM and tests is performed by the
function (·)∗ : LHM → O defined as follows [Abr87]:

()∗ = Succ (⊥)∗ = Fail

(ψ ∧ φ)∗ = (ψ)∗ ∧ (φ)∗ (ψ ∨ φ)∗ = (ψ)∗ ∨ (φ)∗

([a]ψ)∗ = ∀ ã(ψ)∗ (〈a〉ψ)∗ = ∃ a(ψ)∗

([ε]ψ)∗ = ∀ ε(ψ)∗ (〈ε〉ψ)∗ = ∃ ε(ψ)∗
(5.10)

132 Stefan D. Bruda

p

τ τ

a a

b c

q

a a

b c

Fig. 5.5. More processes not equivalent under observation preorder (p ��B q ; p �CT q ;
p �must q ; p �R q).

Essentially all the testing techniques from the general testing scenario are
combined together in a rather comprehensive set of testing techniques to create
observation preorder. The comprehensiveness of the testing scenario itself is a
problem. While it has an elegant proof theory (which is not presented here, the
interested reader is directed elsewhere [Abr87]), observation preorder induces a
too complex testing scenario. We have constructed indeed a very strong notion of
observability; most evidently, according to Expressions (5.8) and (5.9) we assume
the ability to enumerate all possible operating environments, so as to guarantee
that all the nondeterministic branches of the process are inspected. The number
of such branches is potentially infinite. It is not believed that global testing is
really acceptable from a practical point of view. Preorder relations that will be
presented in what follows place restrictions in what we can observe, and thus
have a greater practical potential.

It is also the case that observation preorder makes too much of a distinction
between processes. One example of distinction not made in trace preorder has
been given in Figure 5.4. One can argue that such a distinction may make sense in
some cases, but such an argument is more difficult in the case of processes shown
in Figure 5.5, which are slight modifications of the processes from Figure 5.4.
Under (any) trace preorder the two processes p and q are equivalent, and we
argue that this makes sense; for indeed by the very definition of internal moves
they are not manifest to the outside world, and besides internal moves the two
processes behave similarly. However, it is not the case that q �B p. Indeed,
notice that q ref b, whereas it is not the case that p ref b (since p can move
ahead by means of internal actions, and thus the refusal does not take place
according to Definition 5.3). Then the test b̃Succ introduces a outcome in
q but not in p according to Definition 5.5; the non-equivalence follows. This
certainly looks like nitpicking; we shall introduce below preorders that are not
that sensitive to internal moves.

We observe on the other hand that the processes s and t from Figure 5.6 are
equivalent under observation preorder. We saw observation preorder giving too
much weight to internal moves; now we see the same preorder ignoring this kind
of moves altogether. The reason for this is that the internal move never changes

5 Preorder Relations 133

s
a b

t
y

a b

τ

Fig. 5.6. Processes equivalent under observation preorder (s �B t ; s �R t ; s ��must t ;
s �fmust t).

the state, so no matter how many times we go through it we end where we left
from. Still, the τ -loop is not without significance in practice since such a loop
may produce divergence (if the process keeps iterating through it). However, it
can also be argued that the τ -loop is executed an arbitrary but finite number of
times and so the process executes b eventually (under some notion of fairness).
We shall actually argue back and forth about these two processes as we go along
with the description of other preorder relations, so you do not have to make up
your mind just yet.

5.5 Testing Preorders

Testing preorders [dNH84] are coarser than observation preorder. Essentially,
testing preorders differentiate between processes based on differences in deadlock
behavior. We may differentiate by the ability to respond positively to a test, or
the ability to respond negatively to a test, or both. In practical cases this is often
sufficient.

Recall the concept of outcome of a test presented in Section 5.2.2. For a test
o and a process p the result of applying o to p is the set of runs Runs(o, p)
with outcomes from the set {⊥,}. Also recall the lattices Pmay, Pmust, and
Pconv over the powerset of {⊥,}, together with the corresponding partial order
relations.

We then have the following testing scenario for testing preorders: We run
a test in parallel to the process being tested, such that they perform the same
actions. If the test reaches a success state, then the test succeeds; if on the other
hand the process reaches a deadlock state (i.e., a state with no way out), or if
the process diverges before the test has reached a success state, the test fails.
Sometimes we are interested in running the same test repeatedly and collect all
of the possible outcomes; we need this when we want to make sure that a test
succeeds no matter what.

Formally, we change in what follows (simplify in fact) the semantics of Ex-
pression (5.3) from Definition 5.4 on page 125 to

obs(ao, p) =
⋃
{obs(o, p′) | p a⇒ p′} ∪ {⊥ | p ↑} ∪ {⊥ | p �⇒ } (5.11)

Then we look at two alternative ways to restrict the set of tests O:

(1) Let Omay be defined only by expressions of form (5.1), (5.3), and (5.5). We
do not need any test that signifies failure; instead, failure under test happens

134 Stefan D. Bruda

whenever we reach a deadlock, according to Expression (5.11). Indeed, we
are not allowed to combine different testing outcomes at all (there are no
boolean operators such as ∧, ∨ on outcomes), so a test that fails does not
differentiate between anything (it fails no matter what); therefore these tests
are excluded as useless. According to the same Expression (5.11) we do not
differentiate between deadlock and divergence—both constitute failure under
test.
Incidentally, the inability to combine test outcomes makes sense in practice;
for indeed recall our criticism with respect to the “global testing” allowed in
the observation preorder and that we considered impractical. As it turns out
it may also be a too strong restriction, so we end up introducing it again in
our next set of tests.

(2) We are now interested in all the possible outcomes of a test. First, let Omust

be defined only by expressions of form (5.1), (5.2), (5.3), and (5.5). This time
we do like to combine tests, but only by taking the union of the outcomes
without combining them in any smarter way. This is the place where we
deviate from (i.e., enhance) our generic testing scenario, and we add the
following expression to our initial set of tests O:

o = o1 + o2 (5.12)

with the semantics

obs(o1 + o2, p) = obs(o1, p) ∪ obs(o2, p)

(3) A combination between these two testing scenarios is certainly possible, so
put O = Omay ∪ Omust.

In order to complete the test scenario, we define the following relations be-
tween processes and tests:

Definition 5.10. Process p may satisfy test o, written p may o iff∈ obs(o, p).
Process p must satisfy test o, written p must o iff {} = obs(o, p). 	

The two relations introduced in Definition 5.10 correspond to the lattices
Pmay and Pmust, respectively. When we use the may relation we are happy with
our process if it does not fail every time; if we have a successful run of the test,
then the test overall is considered successful. Relation must on the other hand
considers failure catastrophic; here we accept no failure, all the runs of the test
have to be successful for a test to be considered a success. An intuitive compar-
ison with the area of sequential programs is that the may relation corresponds
to partial correctness, and the must relation to total correctness. We have one
lattice left, namely Pconv; this obviously corresponds to the conjunction of the
two relations.

Based on this testing scenario, and according to our discussion on the rela-
tions may and must we can now introduce three testing preorders4 �may,�must

,�conv⊆ Q×Q:
4 These preorders were given numerical names originally [dNH84]. We choose here to

give names similar to the lattices they come from in order to help the intuition.

5 Preorder Relations 135

(1) p �may q if for any o ∈ Omay, p may o implies that q may o.
(2) p �must q if for any o ∈ Omust, p must o implies that q must o.
(3) p �conv q if p �may q and p �must q.

The equivalence relations corresponding to the three preorders are denoted by
�may, �must, and �conv, respectively. We shall use �T (for “testing preorder”)
instead of �conv in subsequent sections.

Note that the relation �conv is implicitly defined in terms of observers from
the set O = Omay ∪Omust. Also note that actually we do not need three sets of
observers, since all the three preorders make sense under O. The reason for intro-
ducing these three distinct sets is solely for the benefit of having different testing
scenarios for the three testing preorders (that are also tight, i.e., they contain
the smallest set of observers possible), according to our ways of presenting things
(in which the testing scenario defines the preorder).

The most discerning relation is of course �conv. It is also the case that in
order to see whether two processes are in the relation �conv we have to check
both the other relations, so our subsequent discussion will deal mostly the other
two preorders (since the properties of �conv will follow immediately).

One may wonder what we get out of testing preorders in terms of practical
considerations. First, as opposed to trace preorders, we no longer need to record
the whole trace of a process; instead we only distinguish between success and
failure of tests. It is also the case that we do not need to combine all the outcomes
of test runs as in observation preorder. We still have a notion of “global testing,”
but the combination of the outcomes is either forbidden (in �may) or simplified.
In all, we arguably get a preorder that is more practical. We also note that, by
contrast to trace preorders we can have finite tests (or observers) even if the
processes themselves consist in infinite runs. Indeed, in trace preorders a test
succeeds only when the end of the trace is reached, whereas we can now stop
our test whenever we are satisfied with the behavior observed so far (at which
time we simply insert a Succ or Fail in our test).

In terms of discerning power, recall first the example shown in Figure 5.5 on
page 132, where the two processes p and q are not equivalent under observa-
tion preorder. We argued that this is not necessarily a meaningful distinction.
According to this argument testing preorders are better, since they do not differ-
entiate between these two processes. Indeed, p and q always perform an action
a followed by either an action b or an action c, depending on which branch of
the process tree is taken (recall that the distinction between p and q under ob-
servation preorder was made in terms of nitpicking refusals, that are no longer
present in testing preorders). We thus revert to the “good” properties of trace
preorders.

Recall now our argument that the processes from Figure 5.6 on page 133
should be considered the same. We also argued the other way around, but for
now we stick with the first argument because we also have s �may t . Indeed,
it is always the case that processes such as the ones depicted in Figure 5.7 are
equivalent under �may, and the equivalence of s and t follows. In other words,
we keep the “good” properties of observation preorder.

136 Stefan D. Bruda

τ

Fig. 5.7. Processes equivalent under �may.

u

τ

τ

τ

a

b

c

v

τ

τ τ

τ

b c

b a

a c

Fig. 5.8. Two processes not equivalent under testing preorder (u ��must v ; u �CT v).

α β

a
a

α β α β

a
a

a

Fig. 5.9. Processes equivalent under any testing preorder.

In general,�may ignores the tree structure of processes, which shows that this
preorder is a very weak relation. This is not the case with �must. It is now the
time to argue that the two processes depicted in Figure 5.6 should be considered
different. They are so under �must, for indeed one branch of t diverges while
no divergent computations are present in s . A suitable test such as abSucc

will exploit this property under the must operator. In general, the presence of
divergence in the form of an infinite path of internal moves will ruin a test under
�must. Whether this is desired or not depends on one’s interpretation of such an
infinite path of internal moves.

Continuing with examples for �must, consider the processes shown in Fig-
ure 5.8. No matter what internal move is chosen by v , it can always perform either
a or b. It follows that v must (aSucc+bSucc). On the other hand, at its point
of choosing which way to go, u has the choice of performing c. It thus follow that
u may (aSucc+bSucc), but it is not the case that u must (aSucc+bSucc).
In general, it is easy to see that u �may v , but that u ��must v . Incidentally, these
processes are equivalent in trace preorders.

We should emphasize that, though �must takes into consideration the tree
structure of the process under scrutiny, it does so in a more limited way. This

5 Preorder Relations 137

p′

τ b

a

p′′

τ τ

a a b

Fig. 5.10. More processes equivalent under testing preorders (p′ �T p′′; p′ ��R p′′).

was shown in our discussion based on Figure 5.5. More generally, the processes
depicted in Figure 5.9 are equivalent under any testing preorder.

Finally, an example that will come in handy when we compare testing pre-
orders with refusal preorders (that is the subject of the next section) is given by
the two processes shown in Figure 5.10, which are equivalent under �conv.

All of the examples presented here allow us to conclude the following: The
preorder �may is a very weak relation, but has the advantage of needing no
global testing. The other testing preorders do make use of global testing, but in
a restricted way compared with observation preorder. The distinctions they make
are not as rich as in the case of observation preorder, but they are nonetheless
quite rich. On the principle that the most distinction we can make between
processes the better we are, one now wonders whether we can do better in
distinctions without the complexity of observation preorder.

Since �conv is clearly the testing preorder that makes the most distinctions,
we shall henceforth understand this preorder when we refer simply to testing
preorder. Recall that we also decided to denote it by �T in subsequent sections
(with �T as the name of the induced equivalence).

5.6 Refusal Testing

The only reasonable way in which one can obtain information about a process
is by communicating with it by means of actions. This is precisely what we
modeled in all this chapter. For example, we just inspect the actions performed
by a process in trace preorders; we then take it one step further in the testing
preorder, where we request sequences of actions that depend on the information
gained about the process as the test progresses. In our generic testing scenario
presented in Section 5.2.2 we go even further by adding to tests the ability of
refusing actions. This is an interesting feature, that looks powerful and arguably
practically feasible. Recall on the other hand that we definitely did not see
observation preorder (the only preorder involving the concept of refusals) as
practical, at least not as practical as testing preorders.

So on one hand we have refusals, that look promising (and practical enough),
and on the other hand we have testing preorders, that look practical. We now

138 Stefan D. Bruda

combine them. While we are at it, we also differentiate between failure by dead-
lock (no outgoing actions) and divergence. We thus obtain the refusal pre-
orders [Phi87].

Refusal preorders rely on the following testing scenario: We start from the
scenario of complete trace semantics, i.e., we view a process as a black box with
a window that displays the current action and becomes empty when a deadlock
occurs. We now equip our box with one switch for each possible action a ∈ Act.
By flipping the switch for some action a to “on” we block a; the process continues
to choose its execution path autonomously, but it may only start by executing
actions that are not blocked by our manipulation of switches. The configuration
of switches can be changed at any time during the execution of the process.

Formally, we restrict our set of tests O introduced in Definition 5.4 on
page 125 by allowing only expressions of form (5.1)–(5.5), and a restricted variant
of (5.12) on page 134 as follows:

o = ao1 + ão2 (5.13)

The semantics of this kind of expressions is immediately obtained by the seman-
tics of Expressions (5.12) and (5.4) (since we are starting here from the scenario
of the testing preorder, the semantics of tests of form (5.4) is given by Expres-
sion (5.11)). This is our “switch” that we flip to blocks a (and then we follow
with o2) or not.

We also differentiate between deadlock and divergence. We did not make such
a differentiation in the development of previous preorders, because we could not
do this readily (and in those cases when we could, we would simply express this
in terms of the divergence predicate). However, now that we talk about refusals
we will need to distinguish between tests that fail because of divergent processes,
and tests that fail because all the actions are blocked. We find it convenient to
do this explicitly, so we enrich our set of test outcomes to {, 0,⊥}, with ⊥ now
signifying only divergence, while 0 stands for deadlock. In order to do this, we
alter the semantics of expressions of form (5.2), (5.3), and (5.4) to

obs(Fail, p) = {0}
obs(ao, p) =

⋃
{obs(o, p′) | p a−−→ p′} ∪ {⊥ | p ↑} ∪ {0 | p a−−→/ }

obs(ão, p) =
⋃
{obs(o, p) | p a−−→/ , p τ−−→/ } ∪ {⊥ | p ↑} ∪ {0 | p a−−→ or p τ−−→}

Note that in the general testing scenario we count a failure whenever we learn
about a refusal. In this scenario, a refusal generates a failure only when no other
action can be performed. Also note that this scenario imposes further restric-
tions on the applicable tests by restricting the semantics of the allowable test
expressions. As a further restriction, we have the convention that test expres-
sions of form (5.5) shall be applied with the highest priority of all the expressions
(i.e., internal actions are performed before anything else, such that the system
is allowed to fully stabilize itself before further testing is attempted—this is also
the reason for replacing relation ⇒ with the stronger −→ in the semantics of
the tests ao and ão).

5 Preorder Relations 139

It should be mentioned that the original presentation of refusal testing [Phi87]
allows initially to refuse sets of actions, not only individual actions. In this setting
we can flip sets of switches as opposed to one switch at a time as we allow by
the above definition of O. However, it is shown later in the same paper [Phi87]
that refusing sets of actions is not necessary, hence our construction. Now that
the purpose of our test scenario is clear, we shall further restrict the scenario.
Apparently this restriction is less expressive, but the discussion we mentioned
above [Phi87] shows that—against intuition—we do not lose anything; although
the language is smaller, it is equally expressive. In the same spirit as for testing
preorders, we restrict our set of tests in two ways, and then we introduce a new
version of the operators may and must.

(1) Let the set O1 contain exactly all the expressions of form (5.1) and a re-
stricted version of form (5.13) where either o1 = Fail or o2 = Fail.
Let then p may o iff ∈ obs(p, o).

(2) Let the set O2 contain exactly all the expressions of form (5.2) and a re-
stricted version of form (5.13) where either o1 = Succ or o2 = Succ.
Let then p must o iff {} = obs(p, o).

(3) As usual, put O = O1 ∪ O2.

In other words, at any given time we either block an action and succeed or fail
(as the case may be), or we follow the action we would have blocked otherwise
and move forward; no other test involving blocked actions is possible. One may
wonder about the cause of the disappearance of form (5.5). Well, this expression
was not that “real” to begin with (we never wrote ε down in our test expressions,
we provided it instead to allow the process to “stabilize” itself), and we can now
replace the expression εo by eFail + ẽo, where e is a new action we invent
outside Act (thus knowing that the process will never perform it).

With these helper operators and sets of tests we now define the refusal
preorder �R as follows: p �R q iff (a) p may o implies q may o for any
o ∈ O1, and (b) p must o implies q must o for any o ∈ O2. The induced
refusal equivalence �R is defined in the usual way.

The alert reader has noticed that the refusal preorder is by far the most
restricted preorder we have seen. Let us now take a look at its power of discrimi-
nation. Since it has been shown that the generic refusal testing scenario (that we
started with) and our restricted variant are in fact equally expressive, we shall
feel free to use either of them as it suits our needs.

We now compare refusal preorder with the testing preorder. First, it is im-
mediate that processes depicted in Figures 5.4 on page 130, 5.5 on page 132,
and 5.9 on page 136 continue to be equivalent under refusal preorders.

On the other hand, consider the processes shown in Figure 5.10 on page 137
which are equivalent under testing preorder. We then notice that under refusal
preorder we have obs(bSucc, p′) = {0}, for indeed the internal action is per-
formed first to stabilize the process, and after this no b action is possible. How-
ever, it is immediate that obs(bSucc, p′′) = {, 0}. We do not even use refusals
here, the two processes become non-equivalent because our convention that test
expressions of form (5.5) shall always be performed first.

140 Stefan D. Bruda

p

a a

b a a a

a

q

a a

b a a

a

Fig. 5.11. Processes not equivalent under refusal preorder (p ��R q ; p �T q).

Even in the absence of such a convention we have a more precise preorder.
Consider for instance the processes from Figure 5.11. They are immediately
equivalent under testing preorder, but not so under refusal preorder. Indeed, it
holds that obs(ab̃aãSucc, p) = {, 0} and obs(ab̃aãSucc, q) = {0} (the path
circled in the figure is the only successful path under this test).

It is then apparent that refusal preorder makes more distinction than the
testing preorder. We shall tackle the reverse comparison by giving a precise
comparison of refusal preorder with the observation preorder. Such a comparison
is possible by developing a modal characterization for the refusal preorder. As
it turns out, this characterization can also be given in terms of a subset of LHM

(which is the set of formulae corresponding to observation preorder). This subset
(denote it by LR) is the domain of the following partial function (·)∗ : LHM → O
translating between expressions in LHM and tests and given by:

()∗ = Succ (⊥)∗ = Fail

([a]ψ)∗ = a(ψ)∗ ([a]ψ)∗ = ã(ψ)∗

(〈ε〉([a]⊥ ∧ [ε]ψ))∗ = ã(ψ)∗ ([ε](〈a〉 ∨ 〈ε〉ψ))∗ = a(ψ)∗
(5.14)

For succinctness we abbreviated ao+ãFail by ao, aFail+ão by ão, ao+ãSucc

by ao, and aSucc + ão by ão. We have [Phi87]:

Proposition 5.11. For any process p ∈ Q and for any expression ψ ∈ LR, it
holds that p � ψ iff p may (ψ)∗, and that p � ψ iff p must (ψ)∗. It then follows
that p �R q iff p � ψ implies q � ψ for any expression ψ ∈ LR.

It then follows that:

Theorem 5.12. For any two processes p and q, p �B q implies p �R q, but
not the other way around.

Proof. The implication is immediate from Proposition 5.11 given that LR is a
strict subset of LHM . That observation preorder is strictly finer than refusal
preorder is shown by the example depicted in Figure 5.5 on page 132. 	

5 Preorder Relations 141

e

coin

coin

c

coin

coin τ

coin

coffee

Fig. 5.12. Two vending machines (e 	R c; e �	FT c).

So we find that refusal preorder is coarser than observation preorder. This also
allows us to compare refusal and testing preorders. Indeed, recall that the infinite
processes shown in Figure 5.6 on page 133 are equivalent under observation
preorder (and then according to Proposition 5.12 under refusal preorder). We
have shown in the previous section that these processes are not equivalent under
testing preorder. Given that on the other hand refusal preorder distinguishes
between processes indistinguishable in testing preorder, we have

Corollary 5.13. The preorders �T and �R are not comparable.

We note here an apparent contradiction with results given elsewhere [Phi87]
that the two preorders are comparable. This contradiction turns out to be caused
by the unfortunate (and incorrect) terminology used in [Phi87].

In practical terms, refusal preorder is clearly more appealing than observation
preorder. Arguably, it is also more appealing than testing preorder, because of
the simplicity of tests; indeed, we eliminated all nondeterminism from the tests
in O1 and O2 (and thus in O). The only possible practical downside (of refusal
preorder compared with testing preorder) is that we need the ability to block
actions.

5.7 Failure Trace Testing

In refusal testing, whenever we observe a process that cannot continue because
we blocked all of its possible actions we have a failed test. This seems a reasonable
testing strategy, but we end up with surprising preorder relations because of it.
Consider for example the rather instructive example [Lan90] of the two vending
machines c and e depicted in Figure 5.12. Machine c may give us coffee if we

142 Stefan D. Bruda

insert two coins, while machine e eats up our money, period. In terms of refusal
preorder, it is immediate that c passes strictly more tests than e, so e �R c. In
other words, e is an implementation of c! Clearly, this contradicts most people’s
idea of a working coffee machine.

Such a strange concept of correct implementation is corrected by the fail-
ure trace preorder [Lan90]. This preorder is based on the following testing
scenario: We have the same black box we did in the testing scenario for refusal
preorder. The only difference is in our actions; when we observe the deadlock
(by the empty window) we record such an occurrence (as a failure) and then we
are allowed to flip switches off to allow the process to continue.

Formally, we allow exactly the same test expressions for the set O as we
did initially in the previous section, but we revert the semantics of expressions
of form (5.4) to its original form (continuing to make the distinction between
failure as deadlock versus failure as divergence), i.e.,

obs(ão, p) =
⋃
{obs(o, p′) | p a⇒ p′} ∪ {⊥ | p ↑} ∪ {0 | p ε⇒ p′, p′ ref a}

We then define the operators may and must exactly as we did in the previous
section, i.e., p may o iff ∈ obs(p, o), and p must o iff {} = obs(p, o).
Finally, the failure trace preorder �FT is defined as p �FT q iff for all o ∈ O
it holds that p may o implies q may o and p must o implies q must o. As
usual, the failure trace preorder induces the failure trace equivalence �FT .

Let us go back to our vending machines from Figure 5.12, and consider the
test

o = coin c̃oin coin coffee Succ

As opposed to refusal testing, we now have obs(o, e) = {0} (the action “coffee”
is not available for the test), whereas obs(o, c) = {, 0} (we record a failure
when we block action “coin” and then we move on to obtain a successful test on
the right side branch). We thus notice that c may o but that it is not the case
that e may o; a machine that does not give us coffee does not pass this test.
Our two vending machines become thus incomparable (and justly so).

Failure trace preorder thus makes more distinction than refusal preorder. It
is also easy to see that refusal preorder does not distinguish between processes
that are not distinguishable under failure trace. Indeed, it is enough to place a
Fail test after each action that is blocked in the tests and those tests become
tests for the refusal preorder.

It is immediate to see that observation preorder is strictly finer than failure
trace preorder. Indeed, we introduced on top of refusal order a semantics that is
otherwise included in the semantics of observation preorder. So we have:

Proposition 5.14. For any two processes p and q, p �B q implies p �FT q
(but not the other way around), and p �FT q implies p �R q (but not the other
way around).

Using the failure trace preorder we can make distinctions that cannot be
made using refusal preorder. However, this increase does not necessarily come

5 Preorder Relations 143

for free. Indeed, the tests in the sets O1 and O2 described in the previous sections
are sequential, in the sense that unions always occur between a test whose result
that is immediately available (Succ or Fail) and some other, possibly longer
test. In testing preorders as well as in failure trace preorder we need to copy the
process while it runs; indeed, we may need to combine the outcomes of two (or
more) different runs of the process, which means that we need to run two copies
of the process to obtain these outcomes independently from each other. Because
of the sequential tests used by refusal preorder copying is no longer necessary
(but it becomes necessary once more in failure trace preorder). This being said,
the definition of the must operator from refusal preorder implies that processes
need to be copied anyway (since we have to apply many tests on them), so the
failure trace testing scenario is not that bad after all.

5.8 Fair Testing

Recall the processes depicted in Figure 5.6 on page 133 and our back and forth
argument that they should be considered equivalent (or not). When we consid-
ered them under the testing preorder, s and t were not equivalent, whereas they
are so under the other preorders. Testing preorder, with its habit that the pres-
ence of divergence may ruin a test, will differentiate between these two processes
as opposed to all the other preorders we have seen so far. As we mentioned,
whether such a behavior is a good or bad thing depends on one’s opinion about
divergences.

For those who prefer to ignore divergences as long as there is a hope that
the process will continue with its visible operation, i.e., for those who prefer to
consider the processes shown in Figure 5.6 equivalent, fair testing is available
[BRV95].

We have the same testing scenario for fair testing as the one used in Sec-
tion 5.5, except that the operator must is enhanced, such that it chooses a visible
action whenever such an action is available. With the same set O of observers as
the one used to define the testing preorder, the new operator fmust is defined
as follows:

p fmust o iff for any σ ∈ Act∗ and o′ ∈ O with o = σo′, it holds that:
obs(o′, p′) = obs(o, p) for some p′ ∈ Q, p

σ⇒ p′, implies that there
exists a ∈ Act ∪ {Succ} such that o′ = ao′′, o′′ ∈ O ∪ {ε}.

The preorder �fmust, as well as the equivalence �fmust induced by the oper-
ator fmust are defined in the usual manner.

The operator fmust is the “fair” variant of the operator must of testing
preorder lineage. It ignores the divergences as long as there is a visible action (a
in the above definition) accessible to the observer. The following characterization
of �fmust in terms of other preorders is easily obtained from the results presented
elsewhere [BRV95]:

144 Stefan D. Bruda

p

a a

b c

a

a

q

a a

b c

a a

Fig. 5.13. Processes different after hiding {a}.

Proposition 5.15. For any two processes p and q, p �R q implies p �fmust q
(but not the other way around), and p �must q implies p �fmust q (but not the
other way around).

The modification of the testing preorder introduced by the preorder �fmust

brings us back into the generic testing scenario. In the following we go even
further and tackle a problem that we did not encounter up to this point, but
that is common to many preorders. This problem refers to the process of hiding
a set of actions.

Given a transition system B = (Q,Act∪{τ}, −→ , ↑B) and some set A ⊆ Act,
the result of hiding A is a transition system B/A = (Q,Act \A∪ {τ}, −→ h , ↑B),
where −→ h is identical to −→ except that all the transitions of form p a−−→ q for
some a ∈ A are replaced by p τ−−→ hq.

Under a suitable transition system B , consider now the processes depicted
in Figure 5.13, and the equivalent processes in B/{a}; the processes become
non-equivalent under �R. Similar examples can be found for the other preorders
presented in this chapter. These preorders are not pre-congruence relations under
hiding.

A preorder based on the testing preorder and that is pre-congruent can also be
introduced [BRV95]. Call such a preorder should-testing. The testing scenario
is again the same as the one presented in Section 5.5, with the exception that
the operators must and may are replaced by the operator should defined as
follows (again, we have the same set O of observers as the one used to define the
testing preorder):

p should o iff for any σ ∈ Act∗ and o′ ∈ O with o = σo′, it holds that:
obs(o, p) = obs(o′, p′) for some p′ ∈ Q, p

σ⇒ p′, implies that there
exists σ′ ∈ Act∗ such that o′ = σ′

Succ and ∈ obs(o′, p′).

The preorder and the equivalence induced by the should operator are de-
noted by �should and �should, respectively.

The idea of should-testing is that in a successful test there is always a reach-
able successful state, so if the choices are made fairly that state will eventually
be reached. Fair testing states that a system passing the test may not dead-
lock unless success has been reported before; should-testing requires a stronger

5 Preorder Relations 145

condition in that a successful state must be reached from every state in the
system.

It is immediate that �should is coarser than�fmust (since the success condition
is stronger). This relationship is even stronger for processes with only finite
visible runs:

Proposition 5.16. For any two processes p and q, p �should q implies p �fmust

q (but not the other way around); for any two processes p and q for which all
the visible runs are finite p �should q iff p �fmust q.

In addition �should is a pre-congruence under hiding—as well as under pre-
fixing and synchronization [BRV95]; in fact we have:

Proposition 5.17. The relation �should is the largest relation contained in
�fmust that is a pre-congruence under synchronization and hiding.

5.9 Conformance Testing, or Preorders at Work

This section is different from the previous ones, because it does not introduce
new testing scenarios and new preorders. Instead, it puts the existing scenarios
in a formalization of the concept of conformance testing [Tre94]. The description
of such an environment in which preorders are put to good use is indeed a nice
wrap up of our presentation.

We mentioned at least two times that preorders can be interpreted as imple-
mentation relations. In this sections we elaborate on this idea. We thus present
here the application of everything we talked about before.

Conformance testing consists in testing the implementation of a system
against that system’s specification. Formally, we are given a formal specifica-
tion language LFDT (such as CCS [Mil80] or even labeled transition systems),
and we have to determine for some specification s ∈ LFDT what are the imple-
mentations that conform to s (i.e., are a correct implementation of s). Of course,
implementations are physical objects, so we analyze their properties by means
of formal models of such implementations, that are also members of LFDT . We
assume that any concrete implementation can be modeled in LFDT .

There usually are more than one correct implementation of some specifica-
tion, so we actually work with a set CONFORMs of implementations conforming
to a specification s . This set can be defined using either a behavior (or model-
based) specification, or a requirement (or logical) specification.

In the behavior specification approach the set CONFORMs is defined by
means of an implementation relation imp, such that i imp s iff i conforms
to s :

CONFORMs = {i ∈ LFDT | i imp s}.

In the requirement specification approach we define the set CONFORMs by
giving all the properties that should hold for all of its elements. Such properties,

146 Stefan D. Bruda

or requirements are specified in a formal language LRQ , and if an implementation
i has property r we say that i satisfies r and we write i sat r . A conforming
implementation will have to satisfy all the properties from a set R ⊆ LRQ , so
we have:

CONFORMs = {i ∈ LFDT | for all r ∈ R, i sat r}.

If a suitable specification language has been chosen, we can define a specifica-
tion relation spec ⊆ LFDT × LRQ which expresses the requirements that are
implicitly specified by a behavior specification. Our definition for CONFORMs

then becomes:

CONFORMs = {i ∈ LFDT | for all r ∈ LRQ , s spec r implies i sat r}.

Both these approaches to the definition of CONFORMs are valid and they
can be used independently from each other. They are both useful too: if we want
to check an implementation against a specification the behavioral specification is
appropriate; if on the other hand we want to determine conformance by testing
the implementation, it is typically more convenient to derive requirements from
the specification and then test them.

Of course, the two descriptions of CONFORMs should be compatible to each
other, i.e., they should define the same set. We then have the following restriction
on the relations imp, sat, and spec:

for all i ∈ LFDT , i imp s iff (for all r ∈ LRQ , s spec r implies i sat r).

We note that the formal specification s is in itself not enough to allow for con-
formance testing. We need instead either a pair s and imp, or the combination
of s , LRQ , sat, and spec.

Consider now our definition of processes, tests, and preorders, and pick one
particular preorder �α. We clearly have a specification language LFDT given
by the set of processes and the underlying transition system. We then model s
using our language and we obtain a specification. Then the relation imp is pre-
cisely given by the preorder �α. The preorder gives us the tools for conformance
testing using the behavior specification. If we provide a modal characterization
for the preorder we can do testing using requirement specification too. Indeed,
the set LRQ is the set of formulae that constitute the modal characterization,
the relation sat is our satisfaction predicate �, and the function (·)∗ defines the
relation spec.

It turns out that our theory of preorders has an immediate application in
conformance testing. Indeed, all we did in this section was to translate the nota-
tion used elsewhere [Tre94] into the notation that we used in this chapter, and
presto, we have a framework for formal conformance testing.

However, our framework is not fully practical because of the number of tests
one needs to apply in order to check for conformance, which is often countably
infinite. Elegant proof systems are not enough from a practical point of view,
we also need to test implementations in a reasonable amount of time. We come

5 Preorder Relations 147

�←→�B −→ �FT −→ �R −→ �fmust −→�should

↗
�T

Fig. 5.14. Relations between preorders. The arrows 	α−→	β stand for “p 	α q
implies p 	β q , but not the other way around.”

back to our discussion on practical considerations. The observation preorder for
instance, with its strong notion of observability, is unlikely in our opinion to
create a realistic framework for conformance testing.

In any case, testing and test case generation in particular are also the subject
of subsequent chapters, so our discussion about applications ends here.

5.10 Summary

We now conclude our presentation of preorder relations. We have surveyed quite
a number of preorders, so before going any further a summary is in order. We
have talked throughout this chapter about the following preorders:

� the observational testing preorder, as a general framework
presented in Section 5.2.3

�CT the complete trace preorder, presented in Section 5.3;
�B observation preorder, the subject of Section 5.4;
�T (aka �conv, together with �may and �must), surveyed in Sec-

tion 5.5;
�R refusal preorder, presented in Section 5.6;
�FT failure trace preorder, in Section 5.7;
�fmust fair testing preorder, the subject of Section 5.8;
�should should-testing preorder, a variant of �fmust, also a pre-

congruence.

In addition, we have defined a generic testing scenario and the associated
observable testing preorder �. There exist preorders we did not consider specif-
ically, such as Darondeau’s preorder, because they were shown to coincide with
preorders presented here [dN87]. We introduced trace preorders only because we
had to start with something (and we decided to start with something simple),
and because sometimes they make for useful comparison tools. However, trace
preorders are awkward to work with, so we do not give too much thought to
them henceforth.

One of the comparison criteria between preorders is their power of discrimi-
nation. In this respect, the observation preorder has been shown to coincide with
the generic preorder �. The remaining preorders are strictly less discriminating
and arrange themselves in a nice hierarchy. The only exception is the testing
preorder, which is not comparable with the observation, failure trace, and re-
fusal preorders. This is one reason for the introduction of �fmust, which has its

148 Stefan D. Bruda

place in the hierarchy alright. This comparison has been shown throughout the
chapter by examples and propositions, and is summarized in Figure 5.14.

The relation �fmust was also introduced because of fairness considerations
(hence the name fair testing preorder). Specifically, the testing preorder deals
unfairly with divergence, in the sense that divergence is reported as failure. In
contrast, the fair interpretation of divergence implies that the tests succeed in
presence of divergences as long as the system has a chance to eventually perform
a visible action despite divergences. Since �fmust is not a pre-congruence relation,
the variant �should (which is the largest pre-congruence included in �fmust) has
also been defined.

Of course, the presence of fairness, or the greater power of discrimination
are not an a priori good thing; it all depends on the desired properties one is
interested in. The unfair interpretations of divergence in particular are useful
in differentiating between livelock and deadlock, i.e., in detecting whether the
system under test features busy-waiting loops and other such behaviors that are
not deadlocked but are nonetheless unproductive (and undetectable under the
fair testing scenario).

In terms of power of discrimination, we have noticed in Section 5.4 that the
most discriminating preorder differentiates between processes that are for all
practical purposes identical (see for example the processes shown in Figures 5.4
on page 130 and 5.5 on page 132). This is not to say that more differentiation
is bad either, just look at the coffee machine examples from Figure 5.12 on
page 141, which are in a strange implementation relation under refusal testing
(only a crooked merchant would accept this) but are not comparable under
failure trace preorder.

Another comparison of preorders can be made in terms of the complexity
of the tests and their practical feasibility. It is no surprise that the most dis-
criminating preorder, namely the observation preorder, appears to be the least
practical of them all. In this respect the award of the most practically realizable
preorder seems to go to refusal preorder. This is the only preorder based exclu-
sively on sequential tests. This being said, we are not necessarily better off since
in the general case we need a number of tests to figure out the properties of the
system, so that the advantage of the tests being sequential pales somehow.

Another practical issue in refusal preorder is the concept of refusal itself.
One can wonder how practical such a concept is. Recall that actions are an
abstraction; in particular, they do not necessarily represent the acceptance of
input. So how does one refuse an action without modifying the process under
scrutiny itself? This does not seem realizable in the general case (whenever we
cannot access the internals of the process under test). Do we take away the award
from refusal preorder?

In all, practical considerations do differentiate between the preorders we
talked about, especially for the observation preorder which combines results in
a more complex way than other preorders (that simply take the union of the
results of various runs and tests) and requires a rather unrealistic concept of
global testing. However, when testing systems we are in the realm of the halting
problem, so practical considerations cannot ever make an a priori distinction.

5 Preorder Relations 149

The utility of various preorders should thus be estimated by taking all of their
features into consideration.

In the same line of thought, namely practical applications, we have presented
a practical framework for conformance testing based on the theory of preorders.

Finally, it is worth pointing out that our presentation has been made in
terms of labeled transition systems, as opposed to most of the literature, in
which process algebraic languages such as CCS, LOTOS, and variants thereof
are generally used. Labeled transition systems define however the semantics of
all these languages, so the translation of the results surveyed here into various
other formalisms should not be a problem. The upside of our approach is the
uniform and concise characterization of the preorders, although we lose some
expressiveness in doing so (however the literature cited therein always offers a
second, most of the time process algebraic view of the domain).

As well, we did not pay attention to contexts. Contexts admit however a
relatively straightforward approach once the rest of the apparatus is in place.

6 Test Generation Algorithms Based on

Preorder Relations

Valéry Tschaen

IRISA / Université Rennes I
Valery.Tschaen@irisa.fr

6.1 Introduction

Testing theory has been studied for a long time. Based on finite state machines at
the beginning, it has been extended to conformance testing of transition systems.
Test generation methods have been developed for both of these models.

In this section, we are interested in test generation for transition systems.
The goal of test generation is to produce a test suite. A test suite is a set of test
cases that a tester process will run to exercise an implementation (the system
under test) in order to check its conformance to a specification (the expected
behavior). The conformance criterion is a relation that must hold between an
implementation and its specification.

First, the models and notations used to describe the algorithms are intro-
duced in Section 6.2. Then, in Section 6.3, we present generation algorithms
inspired by finite state machine testing. Next, methods based on the notion
of canonical tester are explained in Section 6.4. Finally, Section 6.5 is a brief
summary of this chapter.

6.2 Models and Their Relations

This section introduces the two models used in the test generation methods
presented in the sequel: labeled transition systems and finite state machines. For
each of these models we also define some practical notations and relations. The
intentional goal of this section is to be a reference for definitions while reading
the description of the test generation methods.

6.2.1 Labeled Transition Systems

The main model of this chapter is Labeled Transition Systems.

Definition 6.2.1 (Labeled Transition Systems) A labeled transition sys-
tem (LTS for short) is a 4-tuple M = (Q ,L,→, q0) where:

• Q is a countable, non-empty set of states;
• q0 ∈ Q is the initial state;
• L is a countable set of labels;
• →⊆ Q × (L ∪ {τ})×Q is the transition relation.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 151-171, 2005.
 Springer-Verlag Berlin Heidelberg 2005

152 Valéry Tschaen

The labels represent the observable events (or actions) of the system, whereas
τ represents an internal event. The LTSs considered in this chapter correspond
to rooted LTSs defined in Appendix 22 (as all LTSs of this chapter are rooted
LTSs, they are simply called LTSs).

We recall standard notations concerning LTS. Let a, ai ∈ L; µ, µi ∈ L ∪
{τ}; σ ∈ L∗; q, q ′, qi ∈ Q ; Q ′,Q ′′ ⊆ Q :

• general transitions:

q
µ→ q ′ =def (q, µ, q ′) ∈ →

q
µ1... µn−→ q ′ =def ∃ q0, . . . , qn : q = q0

µ1→ q1
µ2→ . . .

µn→ qn = q ′

q
µ1... µn−→ =def ∃ q ′ : q

µ1... µn−→ q ′

q
µ1... µn−→/ =def �q ′ : q

µ1... µn−→ q ′

• observable transitions:
q ε⇒ q ′ =def q = q ′or q τ...τ−→ q ′

q a⇒ q ′ =def ∃ q1, q2 : q ε⇒ q1
a→ q2

ε⇒ q ′

q a1...an=⇒ q ′ =def ∃ q0, . . . , qn : q = q0
a1⇒ q1

a2⇒ . . .
an⇒ qn = q ′

q σ⇒ =def ∃ q ′ : q σ⇒ q ′

q σ=⇒/ =def �q ′ : q σ⇒ q ′

Q ′ σ⇒ Q ′′ =def ∀ q ′′ ∈ Q ′′, ∃ q ′ ∈ Q ′ : q ′ σ⇒ q ′′

• traces:
Traces(q) =def {σ ∈ L∗ | q σ⇒}
Traces(M) =def Traces(q0)

• event sets:
Act(q) =def {µ ∈ L ∪ {τ} | q µ→}
Out(q) =def Act(q) \ {τ}
init(q) =def {a ∈ L | q a⇒}
init(Q ′) =def

⋃

q∈Q′
init(q)

• state sets:
q after σ =def {q ′ ∈ Q | q σ⇒ q ′}
Q ′ after σ =def

⋃

q∈Q′
q after σ

• refusal sets:
Ref (q) =def L \ init(q)
Ref (q, σ) =def {Ref (q ′) | q ′ ∈ (q after σ)}
Ref (M , σ) =def Ref (q0, σ)

Most of the notations are illustrated by the example given in Fig. 6.1.
A state of an LTS is stable if it cannot perform an internal action. Roughly

speaking, leaving a stable state is observable as it can only be done by means
of an observable event. Concerning the LTS given in Fig. 6.1, q0 is unstable,
whereas q2 is stable.

6 Test Generation Algorithms Based on Preorder Relations 153

q0

q1 q2 q3

q4 q5 q6

q7

a b τ

τ a c c

b

q0
b→ q2

q0
c⇒ q6

q0
ab

=⇒ q7

Act(q0) = {a, b, τ}
init(q0) = {a, b, c}
q0 after a = {q1, q4}
Ref (q2) = {b}
Ref (q0, b) = {Ref (q2)} = {{b}}

Fig. 6.1. An LTS and some corresponding notations

Definition 6.2.2 (Stable state and stable LTS) A state q is unstable if
q τ→, otherwise it is stable. An LTS is stable if it has no unstable state, otherwise
it is unstable.

LTSs can be compared with respect to several relations. Relations used to
compare the behavior of an implementation (assumed to be an LTS) to its spec-
ification are called conformance relations. The relations used in the sequel are
defined below. See Chapter 5 for further details.

Definition 6.2.3 (Trace equivalence) The trace equivalence relation between
two LTSs I and S, written I =tr S, holds iff Traces(I) = Traces(S).

The trace equivalence relation only requires that I and S have the same
traces.

Definition 6.2.4 (Failure reduction) The failure reduction relation between
two LTSs I and S, written I red S, holds iff ∀σ ∈ L∗,Ref (I, σ) ⊆ Ref (S, σ).

Intuitively, the failure reduction relation requires, for every trace σ of I, that
σ is also a trace of S and that, after σ, an event set may be refused by I only if it
may also be refused by S. The failure reduction relation is a preorder. Brinksma
uses this relation to define an equivalence [Bri89]:

Definition 6.2.5 (Testing equivalence) The testing equivalence relation
(also known as failure equivalence) between two LTSs I and S, written I =te S,
holds iff ∀σ ∈ L∗,Ref (I, σ) = Ref (S, σ).

The testing equivalence relation requires that I and S have the same refusal
sets after each trace. This implies that I and S have the same traces and thus
I =te S⇒ I =tr S.

Finally, we will consider the conf relation defined by Brinksma [Bri89]:

Definition 6.2.6 (conf) Let I and S be LTSs. Then:

I conf S =def ∀σ ∈ Traces(S),Ref (I, σ) ⊆ Ref (S, σ)

154 Valéry Tschaen

Intuitively, the conf relation holds between an implementation I and a spec-
ification S if, for every trace in the specification, the implementation does not
contain unexpected deadlocks. That means that if the implementation refuses
an event after such a trace, the specification also refuses this event. Note that
the implementation is allowed to accept traces not accepted by the specification
(contrary to the failure reduction relation). For instance, considering the LTS
given in Fig. 6.1 as the implementation I and the LTS given in Fig. 6.2 as the
specification S, the conf relation does not hold because {a, b} ∈ Ref (q0, ε) for I

but {a, b} �∈ Ref (q0, ε) for S.

q0

q1 q2 q3

q4 q5

q6

a b c

τ a c

b

Fig. 6.2. A specification given by an LTS

To test whether an implementation conforms to its specification or not,
Brinksma introduces the notion of canonical tester [Bri89]. A canonical tester for
conf is an LTS with the same traces as the traces of the specification. Moreover,
every deadlock of the concurrent execution of a conformant implementation and
the canonical tester has to be a deadlock of the canonical tester.

Definition 6.2.7 (Canonical tester) Given an LTS S = (Q ,L,→, q0), the
canonical tester T (S) is defined as the solution satisfying the following equations:

• Traces(T (S)) = Traces(S)
• ∀ I, I conf S iff ∀σ ∈ L∗,

L ∈ Ref (I ‖ T (S), σ)⇒ L ∈ Ref (T (S), σ)

The ‖ operator denotes the synchronous (w.r.t. observable events) composi-
tion of the LTSs.

Definition 6.2.8 (LTSs synchronous composition) Let M1 =(Q1,L,→1, q1
0
)

and M2 = (Q2,L,→2, q2
0
) be two LTSs. The synchronous composition of M1 and

M2, denoted M1 ‖ M2, is the LTS M = (Q ,L,→, q0) where:

• Q = Q1 ×Q2;
• q0 = (q1

0 , q
2
0);

6 Test Generation Algorithms Based on Preorder Relations 155

• → is the minimal relation verifying:
– (q1, q2)

a→ (q ′
1, q ′

2) if q1

a→1 q ′
1 ∧ q2

a→2 q ′
2 ∧ a ∈ L;

– (q1, q2)
τ→ (q ′

1, q2) if q1

τ→1 q ′
1;

– (q1, q2)
τ→ (q1, q ′

2) if q2

τ→2 q ′
2.

A trace of I ‖ T (S) corresponds to an execution of the tester T (S) concur-
rently with an implementation I. One execution of the tester concurrently with
an implementation only exercises one trace of the specification. The tester has
to be rerun until all the traces of the specification have been tested in order to
test conformance.

6.2.2 Finite State Machines

The finite state machines model has been already introduced in previous chap-
ters. We briefly recall important definitions in this section.

Definition 6.2.9 (Finite State Machine) A finite state machine (FSM for
short) is a 5-tuple M = (S ,X ,Y , h, s0) where:

• S is a finite non-empty set of states;
• s0 ∈ S is the initial state;
• X is a finite set of inputs;
• Y is a finite set of outputs, and it may include Θ which represents the null

output;
• h is a behavior function h : (S×X)→ P(S×Y) \ {∅}.

We recall some notations. Let a ∈ X , b ∈ Y , vi ∈ X×Y and γ ∈ (X×Y)∗:

s
a/b−→ s ′ =def (s ′, b) ∈ h(s , a)

s ε⇒ s ′ =def s = s ′ (i.e. ε is the empty sequence)
s v0...vn=⇒ s ′ =def ∃ s0, . . . , sn : s = s0

v0→ s1 . . .
vn→ sn = s ′

s
γ⇒ =def ∃ s ′ : s

γ⇒ s ′

Traces(s) =def {γ | s
γ⇒}

γin =def input sequences obtained by deleting all outputs in γ
Traces in(s) =def {γin | s γ⇒} : input sequences of s

Now we can define two useful relations for test generation.

Definition 6.2.10 (Reduction relation) An FSM I (with initial state i0) is a
reduction of an FSM S, (with initial state s0), written I ≤ S, iff i0 is a reduction
of s0. Given two FSM states, i and s, i is a reduction of s, written i ≤ s, iff
Traces in(s) ⊆ Traces in(i) and for all γ ∈ Traces(i) : γin ∈ Traces in(s) ⇒ γ ∈
Traces(s).

That is, if I ≤ S, every input sequence of S is an input sequence of I and a trace
γ of I is also a trace of S if γin is an input sequence of S. Roughly speaking,
an implementation I and a specification S must have the same behavior for the
input sequences of S, but I may have more input sequences than S.

The reduction relation is a preorder and can be used to define an equivalence:

156 Valéry Tschaen

Definition 6.2.11 (Equivalence) Two FSMs I and S are equivalent, written
I ∼ S, iff I ≤ S and S ≤ I. Two FSM states i and s are equivalent, written
i ∼ s, iff i ≤ s and s ≤ i.

In other words, two equivalent FSMs have the same traces (and thus the same
input sequences).

We can differentiate between two kinds of test generation algorithms. The first
one is directly inspired from former research on test generation for FSMs. The
second one is based on the conf relation and on the notion of canonical tester
(Definition 6.2.7).

6.3 FSM-like Methods

We present two test generation methods based on FSM testing. These methods
try to take advantage of years of research in FSM testing. The first method is
a transformation of the LTS model into the FSM model. The second one is an
adaptation of the FSM test generation techniques to LTS.

6.3.1 Transforming the Model into FSM

Tan, Petrenko and Bochmann present a method that is mainly an LTS to FSM,
and vice versa, transformation method [TPvB96]. Using the presented transfor-
mations, the test generation method for LTSs is quite simple. The main steps of
this method are:

• transformation of the model of the specification into an FSM;
• classical generation of tests on the obtained FSM;
• transformation of the test cases back to the LTS world.

Testing of FSMs has already been explained in previous chapters. We will
focus on the transformation of the LTS of the specification into an FSM and on
the transformation of test cases into LTSs.

From LTS to FSM The transformation depends on the LTS equivalence con-
sidered, but the principle is identical. The goal is to derive an FSM such that
the FSM equivalence (Definition 6.2.11) corresponds exactly to the LTS equiv-
alence considered, either the trace equivalence (Definition 6.2.3) or the testing
equivalence (Definition 6.2.5): two LTSs I and S are equivalent iff the two FSMs
obtained by transformation of I and S are equivalent.

Trace equivalence For the trace equivalence (Definition 6.2.3), the idea is to
construct an FSM that produces, as output sequences, all the traces of the LTS.
For input actions that do not belong to traces of the LTS, the FSM produces
the null output Θ. In each state of the FSM, for each action a of the LTS, there

is either a transition
a/a−→ or a transition

a/Θ−→. The former means that a is a

6 Test Generation Algorithms Based on Preorder Relations 157

valid continuation of the output sequences leading to that state while the latter
means that a is an invalid continuation. Moreover, transitions labeled with a null
output go into a sink state, sΘ, that produces a null output for every input. The
FSM corresponding to an LTS is called a Trace Finite State Machine (TFSM).

Definition 6.3.1 (TFSM: Trace Finite State Machine) For an LTS M =
(Q ,L,→, q0), let Π = {q0 after σ | σ ∈ Traces(q0)}, its corresponding TFSM is
an FSM TraceFSM (M) = (S ,L,L ∪ {Θ}, h, s0) such that:

• S is a finite set of states, containing the sink state sΘ.
• There exists a one-to-one mapping ψ : Π → S \ {sΘ} and for all Qi ∈ Π

and all a ∈ L:
(ψ(Qj), a) ∈ h(ψ(Qi), a) iff Qi

a⇒ Qj (α)
(sΘ, Θ) ∈ h(ψ(Qi), a) iff a ∈ L \Out(Qi) (β)
{(sΘ, Θ)} = h(sΘ , a) (γ)

More intuitively, an element of Π is a set of states reachable after a trace of

M , (α) means that there is a transition ψ(Qi)
a/a−→ ψ(Qj) in TraceFSM (M) iff

Qi
a⇒ Qj in M . (β) means that ψ(Qi)

a/Θ−→ sΘ in TraceFSM (M) iff Qi
a=⇒/ in

M . Finally, (γ) states that sΘ is a sink state. This definition can be seen as an
algorithm for the construction of a corresponding TFSM of an LTS. An example
of TFSM is given in Fig. 6.3.

q0

q1

q2 q3

q4

a

τ b

a

s0

s1

s2 s3

sΘ

a/a

a/a b/b

b/Θ

a, b/Θ a, b/Θ

a, b/Θ

Fig. 6.3. An LTS and its corresponding TFSM [TPvB96]

It was shown that the trace equivalence for LTSs corresponds to the FSM
equivalence for the corresponding TFSMs [TPvB96].

Theorem 6.3.1 ([TPvB96]) For any given two LTSs I, S, and their corre-
sponding TFSMs I

′, S
′ : I =tr S iff I

′ ∼ S
′

158 Valéry Tschaen

By this theorem, tests derived from a corresponding TFSM TraceFSM (M) are
also relevant to check the trace equivalence of the LTS M (provided that they
are transformed into LTSs).

Testing equivalence The transformation for testing equivalence (Definition 6.2.5)
is based on the same idea as the one for trace equivalence. The difference is that
input of the FSM are sets of actions, not only single actions. In a state, the null
output, Θ, indicates that a set of actions belongs to the refusal set of the LTS
after traces leading to this state. The FSM corresponding to an LTS is called a
Failure Finite State Machine (FFSM).

Definition 6.3.2 (FFSM: Failure Finite State Machine) For an LTS M =
(Q ,L,→, q0), let Π = {q0 after σ | σ ∈ Traces(q0)}, its corresponding FFSM is
an FSM FailFSM (M) = (S ,X ,Y , h, s0) such that:

• X = P(L) \ {∅}.
• Y = L ∪ {Θ}, Θ represents the null output.
• S is a finite set of states, containing the sink state sΘ.
• There exists a one-to-one mapping ψ : Π → S \ {sΘ} and for all Qi ∈ Π

and all X ′ ∈ X :
(ψ(Qj), a) ∈ h(ψ(Qi),X ′) iff a ∈ X ′ and Qi

a⇒ Qj (α)
(sΘ, Θ) ∈ h(ψ(Qi),X ′) iff X ′ ∈ Ref (Qi) (β)
{(sΘ, Θ)} = h(sΘ ,X ′) (γ)

Given an LTS, the above definition directly gives an algorithm for the con-
struction of its corresponding FFSM. That is, for any state ψ(Qi) of the FFSM,
its transition relation is computed from its corresponding states Qi in the LTS,
according to the α, β and γ rules. For any X ′ ∈ X :

• (α) for every a ∈ X ′ such that there is a transition Qi
a⇒ Qj in the LTS,

add a transition ψ(Qi)
X ′/a−→ ψ(Qj) in the FFSM.

• (β) if X ′ ∈ Ref (Qi), add a transition ψ(Qi)
X ′/Θ−→ sΘ in the FFSM.

• (γ) sΘ is a sink state, add a transition sΘ

X ′/Θ−→ sΘ in the FFSM.

An example of FFSM is given in Fig. 6.4.
It was shown that the testing equivalence and the failure reduction relation

for LTS correspond to the FSM equivalence and reduction relation for corre-
sponding FFSM [TPvB96].

Theorem 6.3.2 ([TPvB96]) For any given two LTSs I, S, and their corre-
sponding FFSMs I

′, S
′: I red S iff I

′ ≤ S
′ and I =te S iff I

′ ∼ S
′.

As for trace equivalence, tests derived from a corresponding FFSM FailFSM (M)
are also relevant to check the testing equivalence of the LTS M (provided that
they are transformed into LTSs).

6 Test Generation Algorithms Based on Preorder Relations 159

q0

q1

q2 q3

q4

a

τ b

a

s0

s1

s2 s3

sΘ

{a}{ab}/a

{a}{ab}/a {b}{ab}/b

{b}/Θ

{b}/Θ

{ab}{a}{b}/Θ {ab}{a}{b}/Θ

{ab}{a}{b}/Θ

Fig. 6.4. An LTS and its corresponding FFSM [TPvB96]

Test Generation Once the LTS model of a specification has been transformed
into an FSM, classical test generation algorithms for FSM can be used. For
instance ([TPvB96]) a TFSM is minimized and a complete test suite, w.r.t.
a certain class of FSMs, is generated using the W-method [Cho78]. Using the
fact that a null output represents a deadlock, the test suite is then simplified.
It is shown that removing suffixes of each test case after the first null output
preserves the completeness of the test suite (a test suite is complete w.r.t. a class
of FSMs if it allows to detect any non conformant implementation of this class).
See Chapter 4 for more details.

From FSM to LTS Now, consider a test suite that has been generated from
a TFSM (the method is analogous for FFSMs). The test suite produced is a
set of test cases. A test case is a sequence of actions. The test cases have to
be transformed into LTSs with state verdicts. The transformation of a sequence
into an LTS is straightforward. q0

a1→ q1 . . . qn−1
an→ qn is the LTS corresponding

to a test case whose input sequence is a1.a2 . . . an . Let k be the minimal index

such that qk−1
ak /Θ−→ qk (i.e. the first null output), the state verdicts are assigned

as follows :

verdict(qi) =

inconc 0 ≤ i < k − 1
pass i = k − 1
fail i ≥ k

Intuitively:

• if the test execution stops in qk−1, this is OK because ak is not fireable.
• if ak is executed, the fail verdict indicates that the implementation is not

trace-equivalent to the specification.
• if the test execution stops before qk−1, inconc means that this test case

cannot determine whether this is OK or not.

160 Valéry Tschaen

The test suite obtained can be used to check if implementations are trace-
equivalent to the LTS of the specification.

We explained here test generation and transformation of the test suite only
for TFSM. The same method can be applied to FFSM to generate a test suite
for the testing equivalence.

6.3.2 Adapting FSM Methods to LTS

In order to re-use FSM testing knowledge, the method presented above is based
on the transformation of LTSs into FSMs. This section presents a method that
takes a different approach: well-known techniques in FSM testing are adapted
to LTS testing. To achieve this goal, the notion of state identification (see Chap-
ter 2) is defined for LTSs. Then, Tan, Petrenko and Bochmann show how test gen-
eration methods based on state identification can be adapted to LTSs [TPvB97].
This method is briefly described in the following.

State Identification State identification is based on the notion of distinguish-
able states. Two states are distinguishable (w.r.t. trace equivalence) if they are
not trace equivalent. In this case, there is a sequence of observable actions that
is a valid trace for one of the two states, and not for the other one. We say that
such a sequence distinguishes the two states. An LTS is said to be reduced if its
states are distinguishable.

Specification To be able to use state identification, the states of a specification
have to be distinguishable. If not, the specification must be transformed.

Definition 6.3.3 (TOS: Trace Observable System) Given an LTS M , a
deterministic (see Appendix 22) LTS M is said to be the trace observable system
corresponding to M , if M =tr M and M is reduced.

q0

q1 q2

q3 q5

q4

τ
a

a

b

b c

c

τ

q0

q1 q2

q3

a c

b
c

c

b

Fig. 6.5. An LTS (on the left) and its corresponding TOS (on the right)[TPvB97]

An example of TOS is given in Fig. 6.5. From any given LTS specification,
there exists algorithms (see e.g. [Koh78]) to compute its corresponding TOS

6 Test Generation Algorithms Based on Preorder Relations 161

(which is unique). Thus, we can assume that specifications are in their TOS
form. Based on this hypothesis, Tan, Petrenko and Bochmann present a set of
concepts for state identification:

• A distinguishable sequence, for a specification M , is a sequence that distin-
guishes any two different states of M . A sequence distinguishes two states
of an LTS M if the sequence has a prefix that is a trace for one of the two
states and not for the other one. A distinguishable sequence does not always
exist.
• A unique sequence for a state is a sequence that distinguishes this state

from all the others. A set of unique sequences for M , is a set containing a
unique sequence for each state of M . As for distinguishable sequences, a set
of unique sequences does not always exist.
• A characterization set for M is a set of observable sequences containing, for

any two different states, a sequence that distinguishes them. A characteriza-
tion set exists for any LTS in TOS form.
• A partial characterization set is a tuple of n sets of observable sequences,

where n is the number of states of the specification. For the nth state and a
different one, the nth set contains a sequence that distinguishes them. Partial
characterization sets always exist.
• A set of harmonized state identifiers is a partial characterization set such

that any two different sets have at least one sequence prefix in common.
They always exist.

Given a specification, the choice of one of the state identification means listed
above and its construction constitutes the first step of the test generation method.

For instance, harmonized state identifiers can be constructed for the example
of Fig. 6.5 : H0 = {a, b},H1 = {b.a},H2 = {b.a},H3 = {a, b} (where b.a denotes
the the sequence formed by the concatenation of b and a) [TPvB97].

Implementation The second step consists in checking whether the state iden-
tification facility can be applied to the implementation to properly identify its
states. In order to check this, it is assumed that the implementation is a TOS
with the same action alphabet as the specification, and that the number of its
states is bounded by a known integer m. The implementation is also supposed
to be resettable, which means that one can force the implementation to enter its
initial state.

The idea is to construct ”transfer” sequences that reach, starting from the
initial state, all the potential m states of the implementation (if the implementa-
tion has less than m states, several transfer sequences may lead to a same state).
The construction is based on a state cover for the specification. A state cover
for M is a set of sequences such that for each state of M , there is exactly one se-
quence (in the state cover) leading to this state. To be able to reach the possible
additional states of the implementation, the sequences of the state cover of the
specification have to be completed in order to be of length m. The completion
consists in considering every possible continuation for each sequence. That is,

162 Valéry Tschaen

each sequence (in the state cover) σ of length n (n < m) is concatenated with
each possible sequence σ′ of length m − n (thus, each sequence σ.σ′ is of length
m). These transfer sequences are used to bring the implementation in each of
its possible states. Then, the state identification facility is used to identify all
the states of the implementation. Each transfer sequence is concatenated with
each sequence used for state identification in order to identify the states reached
after the transfer sequences. This form a set of test sequences. This identification
phase is the first testing phase.

As we are interested in testing the trace equivalence, the second testing phase
consists in checking all the possible transitions. For each state qs

i of the specifi-
cation M , let f (qs

i) be the set of states of the implementation I that have been
identified to qs

i in the previous testing phase (thanks to the state identification
facility). In order to test trace equivalence, test cases have to check if:

• each transition qs
i

a→ qs
j is fireable from f (qs

i) and the state reached after
performing a is in f (qs

j);
• each action not fireable in M from qs

i , i.e. qs
i

a−→/ , is not fireable in I from
f (qs

i), i.e. q a=⇒/ for each q in f (qs
i).

Due to nondeterminism, f (qs) may be a set of states, not a single state. In this
case, test cases will have to be executed several times to exercise the different
possible behaviors. Using the transfer sequences constructed in the first phase,
the computation of test sequences for the second phase consists in firing all the
possible actions a after these sequences. If the action a is fireable in the speci-
fication, it is also necessary to identify the state reached in the implementation
after a.

The global test suite is the union of the test cases of the two phases. These
test cases are obtained from the test sequences computed, by transforming these
sequences into LTSs. The LTS corresponding to a sequence a1.a2 . . . ak is qt

0
a1→

qt
1

a2→ . . .
ak→ qt

k . Let (qs
i)0�i<n be the states of the specification and for all

σ ∈ Traces(qt
0), {qt

i } = qt
0 after σ. The verdicts are assigned as follows:

verdict(qt
i) =

pass if σ ∈ Traces(qs
0) ∧ init(qt

i) ∩Out(qs
0 after σ) = ∅

fail if σ �∈ Traces(qs
0)

inconc otherwise

Under the assumption that the number of states of the implementation is
bounded by m, the test suite computed is complete w.r.t. the trace equiva-
lence [TPvB97].

Consider the LTS in Fig. 6.5 as the specification and assume that the num-
ber of states of the implementation is bounded by 4. Using harmonized state
identifiers, a complete test suite can be constructed [TPvB97]:

TS = {b, a.a, c.a, a.b.b, a.b.a, a.c.a, a.c.b, a.c.c, c.b.a, c.b.b, c.c.a, c.c.b}

Fig. 6.6 shows the corresponding test cases.

6 Test Generation Algorithms Based on Preorder Relations 163

pass inconc inconc inconc inconc inconc inconc inconc

fail pass pass inconc inconc inconc inconc inconc

fail fail inconc pass pass pass pass

pass fail fail fail fail fail fail fail fail

b a

a

c

a

a

b

a

a

b

b

a

c

a b c

c

b

a b

c

c

a b

Fig. 6.6. Test cases for the LTS specification of Fig. 6.5 [TPvB97]

6.4 Test Generation for conf

The next three methods presented in this chapter are based on the notion of
canonical tester [Bri89]. They represent three different ways to generate tests for
the conf relation (roughly speaking, a canonical tester has no explicit verdicts
but is equivalent to a complete test suite). These methods are more or less
connected to the basic LOTOS language. Basic LOTOS is a restriction of the
LOTOS language ([ISO88]) where value passing is not considered. LTSs are
the basic semantics for LOTOS. In the sequel, only two LOTOS operators are
used: action prefix and choice. Below are the syntax of these operators and the
inference rules for the construction of the underlying LTSs. Let B ,B1,B1′,B2
and B2′ be LOTOS processes, let τ be an internal event, let a be an observable
event (a ∈ L from the LTS point of view) and let b1 and b2 be internal or
observable events:

• the action prefix operator is denoted τ ; B for an internal event and a; B
for an observable event. In terms of LTSs, it corresponds respectively to an
internal transition τ ; B τ→ B and to an observable transition a; B a→ B
• the choice operator is denoted B1[]B2. In terms of LTSs, it corresponds

to the union of the behaviors of B1 and B2. That is, B1 b1→ B1′ implies
B1[]B2 b1→ B1′ and B2 b2→ B2′ implies B1[]B2 b2→ B2′.

A more detailed presentation can be found in the introduction article to the
LOTOS language written by Bolognesi and Brinksma [BB87].

6.4.1 Derivation of Conformance Tests from LOTOS Specifications

The method presented by Pitt and Freestone [PF90] is a test generation method
directly based on the structure of LOTOS specifications. It consists in the com-
positional construction of a tester. The construction is compositional in the sense
that the construction of a tester for B1 ∗ B2, called Test(B1 ∗ B2), where B1

164 Valéry Tschaen

and B2 are LOTOS processes and ∗ is a LOTOS operator, is syntactically de-
rived from Test(B1) and Test(B2). Arguing that any LOTOS specification is
semantically equivalent to one involving only choice, guards, action prefix and
recursion, the authors do not consider other operators. Furthermore, they argue
that guards and recursion can be neglected without loss of generality. So, we
only have to deal with the choice and action prefix operators.

Tests Construction For each of these operators, the authors define a law for
the construction of a tester.

Action prefix This law is simple: Test(b; B) = b; Test(B). It means that
to test an implementation that accepts b and then behaves like B consists in
offering b and then testing that the implementation behaves like B .

Choice The test construction for the choice operator (denoted []) is more
complicated. Several cases have to be considered. The law to define Test(B1[]B2)
depends on the internal structure of B1 and B2. For instance, if the first actions
of B1 and B2 are different, the tester can exactly determine what the subsequent
behavior of the implementation should be. Moreover, as the implementation must
be able to perform the two actions, the choice is internal to the tester. Thus, if
b1 �= b2,

Test(b1; B1′[]b2; B2′) = (τ ; b1; Test(B1′)[]τ ; b2; Test(B2′))

But if the first action of each process is internal, the choice between the two
processes is no longer made by the tester. In this case, it is an internal choice of
the implementation and the tester has to take the two possibilities into account.
Thus, if b1 �= b2,

Test(τ ; b1; B1′[]τ ; b2; B2′) = b1; Test(B1′)[]b2; Test(B2′)

Finally, if the first action of B1 is the same as the one of B2, the tester has to
consider that after this action, the implementation can behave either like B1 or
like B2. That is:

Test(b; B1′[]b; B2′) = b; Test(τ ; B1′[]τ ; B2′)

Note that the computation of the right hand side still depends on the structure
of B1′ and B2′ (see the article for further details [PF90]). All these cases can be
grouped in one general case considering processes of the form:

B = []
U∈W

τ ;
(

[]
a∈U

a; B/<a>
)

(6.1)

where B/<a> denotes the behavior of process B after event a. Processes match-
ing (6.1) present an internal choice between sets of events. W is the set of the
sets of events available after a τ .

For such processes :

Test
(

[]
U∈W

τ ; []
a∈U

a; B/<a>
)

= []
V∈orth(W)

τ ; []
a∈V

a; Test(B/<a>) (6.2)

6 Test Generation Algorithms Based on Preorder Relations 165

where for a set of sets W �= {}, orth(W) is defined as the set of all sets which
can be formed by choosing exactly one member from each element of W .

Pitt and Freestone have shown that testers constructed in this way are canon-
ical testers (cf. Def. 6.2.7) [PF90]. As the considered processes may have infinite
behaviors, the authors present also a notion of n-testers which are testers con-
sidering traces of bounded length. An implementation passes a n-test if its traces
of length at most n conform to the specification. The implementations that pass
all n-tests are called n-implementations. As it is not possible to test infinite be-
haviors in practice, the notion of n-tester is a way to ensure finite testing. Thus,
n-testers can be seen as pragmatic approximations of canonical testers.

q0

q1 q2

q3 q4 q5 q6

τ τ

a b b c

Fig. 6.7. LTS of process B

q0

q1 q2 q3 q4

q5 q6 q7 q8 q9 q10 q11

τ
τ τ

τ

a b a c b b c

Fig. 6.8. LTS of Test(B)

Example Consider the process:

B = τ ; (a[]b) [] τ ; (b[]c)

Its LTS is given in Fig. 6.7. B is obviously of the form (6.1) with W = {{a, b},
{b, c}} and thus orth(W) = {{a, b}, {a, c}, {b}, {b, c}}. From (6.2), we get:

Test(B) = (τ ; (a[]b)) [] (τ ; (a[]c)) [] (τ ; b) [] (τ ; (b[]c))

The LTS corresponding to Test(B) (i.e. the canonical tester for B) is shown in
Fig. 6.8.

166 Valéry Tschaen

6.4.2 The CO-OP Method

As the method of Pitt and Freestone [PF90], the CO-OP method, presented
by Wezeman [Wez90], is a compositional method for the derivation of testers.
This method is defined on the general LTS model but is also applied to the
basic LOTOS language. This method produces a canonical tester for the conf
relation. It consists mainly in the construction of two sets : Compulsory and
Options. This is where the name of the method comes from. In the sequel, we
first explain the CO-OP method on LTS and then briefly see how it can be
adapted to the structure of the basic LOTOS language.

Compulsory Set Given an LTS state q, Compulsory(q) is a set of sets of
events. A set in Compulsory(q) is a set of events enabled in state q ′, internally
reachable from q, and such that q ′ is a stable state (Def. 6.2.2). A tester cannot
prevent a system to reach the state q ′ from q, and there is no internal action
enabled in q ′. Thus, to avoid deadlock, in the derivation of a test case for q, at
least one event from each set in Compulsory(q) must be kept.

Definition 6.4.1 (Compulsory) Let M = (Q ,L,→, q0) be a labeled transition
system,

Compulsory(M) = Compulsory(q0) = {Out(q) | q0
ε⇒ q τ−→/ }

Options Set Given an LTS state q, Options(q) is a set of events. An event in
Options(q) is an event enabled in an unstable state q ′ that is internally reachable
from q. Events in Options(q) may be kept or not when deriving a test case for
q.

Definition 6.4.2 (Options) Let M = (Q ,L,→, q0) be a labeled transition sys-
tem,

Options(M) = Options(q0) = {a ∈ Out(q) | q0
ε⇒ q τ→}

With these definitions, test cases for an LTS M can start by following one of
these rules (LOTOS notation is used for conciseness):

T1 = []
a∈V

a; . . .

T2 =
(

[]
a∈V

a; . . .
)

[]option; . . .

where V ∈ orth(Compulsory(M)) and option ∈ Options(M). Test cases be-
ginning as indicated by these rules are called basic test cases. Basic test cases
can be combined using the choice operator. The set containing the basic test
cases and all their possible combinations is a complete conformance test suite.
Note that if a deadlock is internally reachable in M from the initial state q0,

6 Test Generation Algorithms Based on Preorder Relations 167

∅ ∈ Compulsory(M) and thus orth(Compulsory(M)) is empty and test cases
have to be constructed according to the following rules:

T3 = τ ; stop

T4 = τ ; stop [] a; . . . for some a ∈ init(q0)

After a first interaction a, the behavior of a tester depends on the behavior
of the specification after a. In case of nondeterminism, the behavior of an LTS
M after a can be represented by a nondeterministic LTS written M /<a>. For
each state q reachable after a in M , there is an internal transition in M /<a>
leading to a state that have the same behavior as q. This representation of the
behavior of an LTS after an interaction has been chosen in order to keep the
definition of the Compulsory and Options sets as simple as possible.

The Method Then, the CO-OP method is inferred from the above notions.
Given an LTS M , it consists in constructing recursively its conformance tester
Test(M) as follows:

1 Construct Compulsory(M) and Options(M)
2 For each a ∈ init(q0), construct M /<a>
3 If ∅ �∈ Compulsory(M),

Test(M) = []
V∈orth(Compulsory(M))

τ ;
(

[]
a∈V

a; Test(M /<a>)
)

[]

(

[]
b∈Options(M)

b; Test(M /)

)

else,

Test(M) = τ ; stop []

(

[]
a∈init(q0)

a; Test(M /<a>)

)

Wezeman has shown that Test(M) is a canonical tester for M and explained
how a minimized set of basic test cases can be derived from Test(M) [Wez90].

Example Consider again the LTS specification given in Fig. 6.7. Then, the
attributes are:

• Options(B) = ∅
• Compulsory(B) = {{a, b}, {b, c}}
• orth(Compulsory(B)) = {{a, b, }, {a, c}, {b}, {b, c}}

Following the CO-OP method, the canonical tester Test(B) is given in
Fig. 6.9. This is exactly the same LTS as in the method described in Section 6.4.1.
In fact, when ∅ �∈ Compulsory(M) and Options(M) = ∅ (it is the case for this
example), the constructions given in these two methods are identical.

168 Valéry Tschaen

q0

q1 q2 q3 q4

q5 q6 q7 q8 q9 q10 q11

τ
τ τ

τ

a b a c b b c

Fig. 6.9. Test(B) following the CO-OP method

CO-OP for Basic LOTOS The application of the CO-OP method to basic
LOTOS is interesting because it allows a compositional construction of the Com-
pulsory and Options sets. For any basic LOTOS operator ∗, Compulsory(B) and
Options(B), such as B = B1∗B2, can be constructed from the Compulsory and
Options sets of B1 and B2. The construction of Test(B) is also based on two
other attributes : B/<a> and unstable(B). The construction of these two at-
tributes is also compositional. Thus, the CO-OP method offers a compositional
construction of a canonical tester for any basic LOTOS process. Wezeman gives
the compositional construction of each attribute for each basic LOTOS operator
[Wez90]. Compared to the method described in Section 6.4.1, this method can be
applied to all basic LOTOS processes, they do not have to match any particular
form.

6.4.3 Refusal Graph

In the two previous methods, a canonical tester is derived from specification
syntax. Drira, Azèma and Vernadat present a method with a different ap-
proach [DAV93]. It is based on the construction and transformation of a refusal
graph.

Definition 6.4.3 (RG: Refusal Graph) A refusal graph, denoted RG, is a
deterministic bilabeled graph represented by a 5-tuple (G,L, ∆,Ref , g0) where:

• G is a finite set of states;
• g0 ∈ G is the initial state;
• L is a finite set of actions;
• ∆ ⊆ (G×L×G) is a set of transitions. (g, a, g ′) ∈ ∆ is denoted g a⇒ g ′;
• Ref : G → P(P(L)) defines for each state, the sets of actions that may be

refused after the sequence leading to this state.

Refusal sets must be minimal. R is a minimal refusal set if all elements of R are
incomparable w.r.t. set inclusion ⊆. Furthermore, all E ∈ Ref (g) must either be
(i) a subset of init(g) or be (ii) saturated w.r.t. L\ init(g) (i.e. L\ init(g) ⊆ E).
As for LTSs, init(g) = {a ∈ L | ∃ g ′, g a⇒ g ′}. A refusal set Ref (g) in the first
form can be changed into a refusal set in the second form by the transformation:

�Ref (g)� = {E ∪ (L \ init(g)) | E ∈ Ref (g)}

6 Test Generation Algorithms Based on Preorder Relations 169

The reverse transformation is:

�Ref (g)� = {E ∩ init(g) | E ∈ Ref (g)}

From LTS to RG The first step of the method consists in the construction of
the refusal graph corresponding to the LTS of a specification. As for the CO-OP
method, we use LOTOS notation.

Definition 6.4.4 (RG associated with an LTS) The refusal graph rg(M)
associated to the LTS M =(Q ,L,→, q0) is defined by the 5-tuple (G,L, ∆,Ref , g0)
where:

• g0 = q0 after ε;
• (G ⊆ P(Q),L, ∆ ⊆ G×L×G) is the labeled graph rg(g0), where for all g ⊆ Q,

rg(g) is recursively defined by:

rg(g) = []
a∈init(g)

a; rg(g after a)

• for all g ∈ G, �Ref (g)� = Min({init(g) \ init(q) | q ∈ g}).

where for E ∈ P(P(L)), Min(E) = E \ {X | ∃Y ∈ L : X ⊆ Y and X �= Y }
and for R ⊆ P(P(L)), Min(R) = {Min(E) | E ∈ R}.

Consider again the LTS shown in Fig. 6.7, its associated refusal graph is
given in Fig. 6.10. The label of each node g is the value of �Ref (g)�. Intuitively,
the value of �Ref (g0)� means that, in the initial state of he specification, either
a or c may be refused, but not both.

g0 {{a}, {c}}

g1

{{}}
g2

{{}}
q3

{{}}

a b c

Fig. 6.10. Refusal graph G

Transformation of RG The second step of the method is to transform the
refusal graph constructed. The goal is to obtain a refusal graph from which a
canonical tester will be constructed. This transformation, denoted Tg , only acts
on the refusal sets. The transformation of a refusal graph G = (G,L, ∆,Ref , g0)
is a refusal graph Tg(G) = (G,L, ∆,Ref ′, g0) where:

• �Ref ′(g)� = {L} if �Ref (g)� = {L}
• �Ref ′(g)� = Min({L \ E | E ⊆ L,E �∈ �Ref (g)�}) if �Ref (g)� �= {L}

170 Valéry Tschaen

Concerning the refusal graph of Fig. 6.10:

• �Ref (g0)� = �Ref (g0)� = {{a}, {c}}
• �Ref (g1)� = �Ref (g2)� = �Ref (g3)� = {{a, b, c}}

And thus:

• �Ref ′(g0)� = {{b}, {a, c}}
• �Ref ′(g1)� = �Ref ′(g2)� = �Ref ′(g3)� = {{a, b, c}}

Then, Tg(G) is given in Fig. 6.11.

g0 {{b}, {a, c}}

g1

{{}}
g2

{{}}
q3

{{}}

a b c

Fig. 6.11. Tg(G)

Roughly speaking, the value of �Ref ′(g0)� means that a canonical tester has
to enable whether the event b or the events a and c to a conformant implemen-
tation to avoid blocking.

From RG to LTS Once the refusal graph has been transformed, it remains to
construct its corresponding LTS.

Definition 6.4.5 (LTS associated to a RG) From a refusal graph g0, the
LTS lts(g0) may be derived according to the following recursive definition :

lts(g) =

(

[]
E∈�Ref (g)�

τ ; []
a∈init(g) \ E

a; lts(g after a)

)

[]

 []
b∈
⋂

E∈�Ref (g)� E

b; lts(g after b)

For any LTS specification S, it has been shown that T (S) = lts(Tg(rg(S)))
is a canonical tester for S [DAV93].

Consider again the specification shown in Fig. 6.7, the canonical tester ob-
tained from the LTS specification given in Fig. 6.7 is shown in Fig. 6.12. This
canonical tester has less states and transitions than the canonical testers ob-
tained with the two previous methods.

6 Test Generation Algorithms Based on Preorder Relations 171

q0

q1 q2

q3 q4 q5

τ τ

b a c

Fig. 6.12. lts(Tg(rg(B)))

Simplification of Conformance Tester An interesting point of this method
is that it offers a simple and automatic way to generate simplified conformance
testers. Drira, Azèma and Vernadat show how to generate such testers [DAV93].
The transformation is based on a simplification of the refusal graph rg(S). The
idea of the simplification is to remove useless, w.r.t. conf, states and transi-
tions from rg(S). The authors argue that this is an interesting point as such a
simplification of a conformance tester using LTS cannot be automated.

6.5 Summary

Five test generation methods for LTSs have been presented in this chapter. This
is certainly not an exhaustive presentation. A lot more methods exist.

The first two methods have been chosen because they make an interesting
link between FSM testing and LTS testing. These methods take advantage of
former works concerning FSM and explain how to apply the FSM recipes to the
LTS world. A drawback of this approach is that the conformance relation con-
sidered is the FSM (trace or testing) equivalence and not conf, the ”standard”
conformance relation in the LTS world.

The other three methods presented in this chapter are well-known methods.
The goal of each of them is the construction of a canonical tester. The method
presented in Section 6.4.1 is compositional but limited to processes having a
certain form. The CO-OP method removes this limitation. Finally, the method
based on refusal graphs takes a different approach and allows us to construct
automatically simplified (contrary to other methods) canonical testers.

The main drawback is that, from a practical point of view, none of these
methods is very useful. In fact, they can hardly be applied to realistic systems
with many states and transitions. At best, they are limited to an academic use
in academic tools. For instance, the CO-OP method has been implemented in
a tool called Cooper (see 14.2.9 for further details). In order to tackle realistic
systems, we need more realistic models (that differentiate inputs and outputs for
instance) and methods that allow to handle huge (even infinite) systems. The
next chapter will give you a picture of such methods.

7 I/O-automata Based Testing

Machiel van der Bijl1 and Fabien Peureux2

1 Software Engineering
Department of Computer Science
University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands
vdbijl@cs.utwente.nl

2 Laboratoire d’Informatique (LIFC)
Université de Franche-Comté - CNRS - INRIA
16, route de Gray - 25030 Besançon, France
peureux@lifc.univ-fcomte.fr

7.1 Introduction

The testing theories on labeled transition systems, that we have seen so far, ab-
stract from input and output actions. They only use the general concept “action”
without a notion of direction. Although theoretically appealing, this may seem
strange from a practical perspective. As a tester, we stimulate the system under
test by providing inputs and observe its responses; the outputs of the system
under test.

This chapter introduces the concepts from the conformance testing frame-
work, as introduced in Part II (the section introducing “testing of labeled tran-
sition systems”), with the notion of inputs and outputs. We start with the intro-
duction of three models for specifications and/or implementations in Section 7.3.
After this we continue with several implementation relations in Section 7.4. Next
we show how these models and implementation relations can be put to practice
in Section 7.5. In this section we treat the derivation and execution of test cases
on a system under test. We finish with our conclusions in Section 7.6.

In this chapter we made a deliberate choice to restrict the number of theories
presented. We choose these theories, that –in our opinion– are relevant to get a
good introduction into the field of testing with inputs and outputs. As a result,
the chapter is centered around work from the following people (presented more
or less in historical order).

• Lynch and Tuttle, who introduced the Input-Output Automata model and
several implementation relations that use this model [LT87],
• Segala, who extended may and must testing with inputs and outputs [Seg92],
• Phalippou, who introduced the Input-Output State Machine and several

implementation relations that use this machine [Pha94b],
• Tretmans, who introduced the Input-Output Transition System model and

showed that his framework of ioco unifies several implementation rela-
tions [Tre96b]. Furthermore, Tretmans is one of the few that actually used
his input-output testing theory in practice and therefore we use the ioco
theory as the main example for test derivation and test execution,

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 173-200, 2005.
 Springer-Verlag Berlin Heidelberg 2005

174 Machiel van der Bijl and Fabien Peureux

• Petrenko, who developed a theory to test Input-Output Automata in a sim-
ilar way as Finite State Machines [TP98].

Although we do not treat symbolic testing in this chapter, we want to mention
that Rusu et al. developed a theory to enable symbolic test generation for Input-
Output Automata [RdBJ00].

7.2 Formal Preliminaries

In this section we introduce some standard notation for labeled transition sys-
tems. People that are familiar with this notation can skip this section.

Labeled Transition Systems. A labeled transition system (LTS) description
is defined in terms of states and labeled transitions between states, where the
labels indicate what happens during the transition. Labels are taken from a
global set L. We use a special label τ /∈ L to denote an internal action. For
arbitrary L ⊆ L, we use Lτ as a shorthand for L ∪ {τ}. We deviate from the
standard definition of labeled transition systems in that we assume the label set
of an LTS to be partitioned in an input and an output set and that the LTS is
rooted; see for example definition 22.1.

Definition 7.1. A labeled transition system is a 5-tuple 〈Q , I ,U ,T , q0〉 where
Q is a non-empty countable set of states ; I ⊆ L is the countable set of input
labels ; U ⊆ L is the countable set of output labels, which is disjoint from I ;
T ⊆ Q × (I ∪U ∪ {τ})×Q is a set of triples, the transition relation; q0 ∈ Q is
the initial state.

We use L as shorthand for the entire label set (L = I ∪U); furthermore, we use
Qp , Ip etc. to denote the components of an LTS p. We commonly write q λ−→ q ′ for
(q, λ, q ′) ∈ T . Since the distinction between inputs and outputs is important, we
sometimes use a question mark before a label to denote input and an exclamation
mark to denote output. We denote the class of all labeled transition systems over
I and U by LTS(I ,U). We represent a labeled transition system in the standard
way, by a directed, edge-labeled graph where nodes represent states and edges
represent transitions.

A state that cannot do an internal action is called stable. A state that cannot
do an output or internal action is called quiescent . We use the symbol δ (�∈ Lτ)
to represent quiescence: that is, p δ−→ p stands for the absence of any transition
p λ−→ p′ with λ ∈ Uτ . For an arbitrary L ⊆ L, we use Lδ as a shorthand for
L ∪ {δ}.

An LTS is called strongly responsive or strongly convergent if it always even-
tually enters a quiescent state; in other words, if it does not have any infinite
Uτ -labeled paths. For technical reasons we restrict LTS(I ,U) to strongly re-
sponsive transition systems.

A trace is a finite sequence of observable actions. The set of all traces over
L (⊆ L) is denoted by L∗, ranged over by σ, with ε denoting the empty se-
quence. If σ1, σ2 ∈ L∗, then σ1·σ2 is the concatenation of σ1 and σ2. We use

7 I/O-automata Based Testing 175

the standard notation with single and double arrows for traces: q a1···an−−−−−→ q
denotes q a1−−→ · · · an−−→ q ′, q ε=⇒ q ′ denotes q τ ···τ−−−→ q ′ and q a1·...·an======⇒ q denotes
q ε=⇒ a1−−→ ε=⇒ · · · an−−→ ε=⇒ q ′ (where ai ∈ Lτδ).

We will not always distinguish between a labeled transition system and its
initial state. We will identify the process p = 〈Q , I ,U ,T , q0〉 with its initial
state q0, and we write, for example, p σ=⇒ q1 instead of q0

σ=⇒ q1.
Below we give some often used definitions for transition systems. init(p) is

the set of actions for which there is a transition in p, p afterσ is the set of states
that can be reached by performing the trace σ in p, out(p) is the set of output
actions for which there is a transition in p. Finally, the set of suspension traces
of an LTS p, or Straces(p) for short, is the set of traces over the label set Lδ

that are possible in p.

Definition 7.2. Let p ∈ LTS(I ,U), let P ⊆ Qp be a set of states in p and let
σ ∈ L∗

δ .

(1) init(p) =def {µ ∈ Lτ | p µ−→}
(2) p after σ =def { p′ | p σ=⇒ p′ }
(3) P after σ =def

⋃
{ p after σ | p ∈ P }

(4) out(p) =def {x ∈ Uδ | p x−→}
(5) out(P) =def

⋃
{ out(p) | p ∈ P }

(6) Straces(p)=def {σ ∈ L∗
δ | p

σ=⇒}

7.3 Input Output Automata

We start with the introduction of several models for the specification and/or im-
plementation as explained in the conformance testing framework, introduced in
Part II. In model-based testing with inputs and outputs, input-output automata
are a popular model. Several models with inputs and outputs have been proposed
and all of these are quite similar. In this section we introduce the following three
models. We will use these models in the rest of this chapter.

• Input Output Automata (IOA) as introduced by Lynch and Tuttle [LT89].
• Input Output State Machines (IOSM) as introduced by Phalippou [Pha94b].
• Input Output Transition Systems (IOTS) as introduced by Tretmans [Tre96c].

The general notion underlying all of these models is the distinction between
actions that are locally controlled and actions that are not locally controlled.
The output and internal actions of an automaton are locally controlled. This
means that these actions are performed autonomously, i.e., independent of the
environment. Inputs on the other hand, are not locally controlled; they are under
control of the environment. This means that the automaton can never block an
input action; this property is called input-enabledness or input completeness.

Input-output automaton. The input-output automaton is the first model
with the notion of input completeness. It was introduced by Lynch and Tuttle
in 1987 [LT87]. After this paper, they wrote a paper dedicated to input-output

176 Machiel van der Bijl and Fabien Peureux

automata [LT89]. An automaton’s actions are classified as either ‘input’, ‘out-
put’ or ‘internal’. Communication of an IOA with its environment is performed
by synchronization of output actions of the environment with input actions of
the IOA and vice versa. Because locally controlled actions are performed au-
tonomously, it requires that input actions can never be blocked. Therefore an
IOA is input enabled (it can process all inputs in every state).

Definition 7.3 (I/O automaton).
An input-output automaton p = 〈sig(p), states(p), start(p), steps(p), part(p)〉
is a five-tuple, where

• sig(p) is the action signature. Formally an action signature sig(p) is a par-
tition of a set acts(p) of actions into three disjoint sets: in(p) input actions,
out(p) output actions and int(p) internal actions.
• states(p) is a countable, non-empty set of states.
• start(p) ⊆ states(p) is a non-empty set of start states.
• steps(p) ⊆ states(p) × acts(p) × states(p) is the transition relation with

the property: ∀a ∈ in(A), q ∈ states(p) : q a−→ . This means that for every
state q, there exists a state q ′, such that for every input action a, there is a
transition (q, a, q ′) ∈ steps(p) (input enabledness).
• part(p) is an equivalence relation that partitions the set local(p) = int(p) ∪
out(p) of locally controlled actions into at most a countable number of equiv-
alence classes.

The signature partitions the set of actions into input, output and internal
actions. The input actions are actions from the environment, the output actions
are actions to the environment and internal actions are actions that are not ob-
servable by the environment. The transition relation relates the actions to the
states; by performing an action the automaton goes from one state to another.
A possible problem with the input-output automata model is that an automaton
cannot give an output action, because it has to handle a never ending stream
of input actions. Since it is input-enabled it will synchronize on an input from
the environment. Lynch and Tuttle therefore introduce the notion of fairness for
IOA. In short this means that a locally controlled action cannot be blocked by
input actions forever. This is the reason that the set local(p) is introduced. The
partitioning part(p) of the locally controlled actions is used in the operational-
ization of fair testing. We will treat fairness in more detail in Section 7.4.1. Note
that the problem of fair testing exists for all models that implement the notion
of input enabledness. IOA implement strong input enabledness. This is formally
defined by ∀a ∈ in(p), q ∈ states(p) : q a−→ . For weak input enabling it is also
allowed to perform a number of internal actions before the input action can be
performed: ∀a ∈ in(p), q ∈ states(p) : q a=⇒ .

Example. In Figure 7.1 we show three transition systems: an IOA (left), an
IOSM (middle) and an IOTS (right). We will discuss the IOSM and the IOTS
later on, now we focus on the IOA. The IOA represents a coffee machine. We
can push two buttons: button1 and button2. After pushing button1 the machine

7 I/O-automata Based Testing 177

initializes and outputs coffee, and after pushing button2 the machine initializes
and outputs tea. button1 and button2 are input actions, coffee and tea are output
actions and init is an internal action. To make the picture easier to read, we have
abbreviated button1 and button2 to b1 and b2 respectively. The self-loops with
b1 and b2 in states q1 till q6 show that the automaton is input enabled in every
state. q0 does not need these self loops, since button1 and button2 are already
enabled in this state.

IOA

q0

q4q1

q2 q5

q3 q6

?b1

init

!coffee

?b2

init

!tea

?b1
?b2

?b1
?b2

?b1
?b2

?b1
?b2

?b1,?b2 ?b1,?b2

IOSM

q0

q4q1

q2 q5

q3 q6

?b1

τ

!coffee

?b2

τ

!tea

?b1
?b2

?b1
?b2

?b1
?b2

?b1
?b2

?b1,?b2 ?b1,?b2

IOTS

q0

q4q1

q2 q5

q3 q6

?b1

τ

!coffee

?b2

τ

!tea

?b1
?b2

?b1
?b2

?b1,?b2 ?b1,?b2

Fig. 7.1. Examples of an IOA, IOSM and IOTS

Input output state machine. This is the model as introduced by Phalip-
pou [Pha94b]. The model is quite similar with the input-output automaton.

Definition 7.4 (input-output state machine (IOSM)).
An input-output state machine is a 4-tuple M = 〈S ,L,T , s0〉 where:

• S is a finite, non-empty set of states.
• L is a finite, non-empty set of labels.
• T ⊆ S × (({?, !} × L) ∪ {τ}) × S is the transition relation. Every element

of T is a transition between a source and a target state. The associated
action is either observable (input (?) or output (!)) or internal, denoted by
τ . Furthermore, every state is strongly input-enabled.
• s0 ∈ S is the start state of the state machine.

These automata model systems whose operation can be interpreted in the
following way:

• transition (s1, !a, s2): the automaton, which is in the state s1, performs the
interaction a and goes to the state s2. The decision to start the transition is
local to the automaton.
• transition (s1, ?a, s2): the automaton, which is in the state s1, receives the

interaction a and goes to the state s2. The decision to start the transition is
external to the automaton, since the transition is started when the interac-
tion is received.
• transition (s1, τ, s2): the automaton, which is in the state s1, goes to the state

s2 after an internal decision, without performing any observable interaction.

178 Machiel van der Bijl and Fabien Peureux

The main difference between an IOSM and an IOA is that there is no equiv-
alence relation in the IOSM definition. Furthermore internal actions are ab-
stracted into one action τ . Another difference is that the sets of states, input
labels and output labels are restricted to be finite. Phalippou also uses the no-
tion of locally (output and internal) and exteriorly (input) controlled actions
and strong input-enabledness.

Example. In Figure 7.1, the transition system in the middle is an IOSM. It is
very similar to the IOA on the left. The only difference is that the internal action
‘init’ is replaced by τ .

Input output transition system. This is the model as introduced by Tret-
mans [Tre96c].

Definition 7.5. An input-output transition system is a 5-tuple 〈Q , I ,U ,T , q0〉
where

• Q is a countable, non-empty set of states.
• I is a countable set of input labels.
• U is a countable set of output labels, such that I ∩ U = ∅.
• T ⊆ Q × (I ∪ U ∪ {τ}) × Q is the transition relation, where τ /∈ I , τ /∈ U .

Furthermore, every state is weakly input-enabled: ∀ q ∈ Q , a ∈ I : q a=⇒ .
• q0 ∈ Q is the start state.

The input-output transition system (IOTS) is a more general version of the
IOSM. Like the IOSM it does not have the equivalence relation of the IOA and
it also models internal actions with the τ label. However, it does not restrict the
set of states and labels to be finite. Furthermore, there is a clean partitioning of
the label set in inputs and outputs, where the IOSM hides this in the transition
relation. A subtle but important difference with IOA is that an IOTS is weakly
input enabled: ∀a ∈ I , q ∈ Q : q a=⇒ . We denote the class of input-output
transition systems over I and U by IOTS(I ,U).

Example. In Figure 7.1, the transition system on the right is an IOTS. We see
that the internal action init is replaced by τ . Notice furthermore that the states
q1 and q4 do not have the self-loops with button1 and button2. This is allowed
because an IOTS is weakly enabled. With an internal action we can go from q1

to the input enabled state q2 (note that the same holds for q4 and q5).

7.4 Implementation Relations with Inputs and Outputs

In this section, we will introduce a number of implementation relations. As was
introduced in the conformance testing framework in Section II, an implemen-
tation relation (or conformance relation) is a relation that defines a notion of
correctness between an implementation and a specification. When the imple-
mentation relation holds we say that the specification is implemented by the
implementation or, in other words, that the implementation conforms to the

7 I/O-automata Based Testing 179

specification. Several implementation relations have been defined for the au-
tomata that were introduced in the previous section. In this section, we start
with implementation relations defined on IOA and continue with implementation
relations on labeled transition systems.

7.4.1 Preorders on IOA

In this section, we treat implementation relations on Input Output Automata.
Some of these implementation relations can also be expressed on labeled tran-
sition systems as we will explain in the next section. All of the implementation
relations that we treat in this section are preorders.

We first recapitulate some concepts that are used with IOA. An execution
fragment of an IOA p is an alternating, possibly infinite sequence of states and
actions α = q0a1q1a2q2 · · · such that (qi , ai+1, qi+1) ∈ steps(p). When q0 is a
start state of p we call the execution fragment an execution of p. An external
trace of an IOA p is an execution (fragment) that is restricted to the set of
external actions. We use the notation etraces(p) to denote the external traces
of IOA p, where etraces∗(p) denotes the set of finite external traces of p. We
use the notation a ∈ enabled(q) to denote that state q enables a transition with
action a. This means that there is a state q ′ for which (q, a, q ′) ∈ steps(p).
To denote the set of enabled external actions in a state q, we use the notation
wenabled(q). An IOA p is finitely branching iff each state of p enables finitely
many transitions.

We start with the trace inclusion preorder. This is a very weak relation. It
expresses that one system is an implementation of the other if its set of external
traces is a subset of the set of external traces of the specification.

Definition 7.6 (External trace inclusion). For IOA i and s :

i ≤tr s =def etraces(i) ⊆ etraces(s)

The above definition is defined in a so-called intentional way. Many imple-
mentation relations can also be defined in an extensional way in the style of
De Nicola and Hennessy [NH84]. The term extensional refers to an external ob-
server. The intuition behind this idea is that an implementation conforms to a
specification if no external observer can see the difference. We will not use the
extensional definition in this section, but we refer to Chapter 5 for more infor-
mation about extensional definitions of implementation relations and to [Tre96b]
for more information on extensional definitions of implementation relations with
inputs and outputs.

Example. We give an example of the external trace inclusion preorder in Fig-
ure 7.2. On the left hand side we see a specification of a coffee machine. It
prescribes that after pressing the button at least twice we expect to observe
either coffee or tea as output. We will reuse this coffee machine specification in
other examples. On the right hand side we see two implementations. The first

180 Machiel van der Bijl and Fabien Peureux

implementation does not implement coffee as an output. It is still correct, be-
cause the set of traces of the implementation is a subset of the set of traces of the
specification, even with the trace button·button·button∗·coffee·button∗ missing.
External trace inclusion is not a very realistic implementation relation, because
it also approves implementations that are intuitively incorrect. For example, the
implementation on the right only implements the pushing of the button, without
serving any drink. This is correct, because the set of traces button·button·button∗
is a subset of the external traces of the specification.

s

q1

q2

q3

q4 q5

?button

?button

!coffee !tea
?button

?button ?button

i1

q1

q2

q3

q4

?button

?button

!tea

?button

?button

i2

q1

q2

q3

?button

?button

?button

Fig. 7.2. Example of the external trace inclusion preorder

Lynch and Tuttle introduced the notion of fair execution for IOA. Remember
that IOA are (strong) input enabled. This means that an infinite stream of input
actions can prevent an output or internal action from occurring. Intuitively the
idea behind fair execution is that locally controlled actions cannot be blocked
by input actions for ever. This is expressed formally in the definition below.

The definition uses the concept of quiescent executions. Similar to transition
systems, for IOA an execution is quiescent if it ends in a quiescent state, i.e.,
a state that can only perform input actions (so no locally controlled actions).
A quiescent trace, is a trace that leads to a quiescent state. The set of quies-
cent traces is the set of finite external traces that lead to a quiescent state :
qtraces(p) = {σ ∈ etraces∗p∗ | ∃q ∈ states(p) : p σ=⇒ q ∧ enabled(q) = in(p)}.

An execution α of an IOA p is fair if either α is quiescent or α is infinite
and for each class c ∈ part(p) either actions from c occur infinitely often in α
or states from which no action from c is enabled appear infinitely often in α. A
fair trace of an IOA p is the external trace of a fair execution of p. The set of
fair traces of an IOA p is denoted by ftraces(p). Given the notion of fair traces
we can define a preorder over the sets of fair traces of IOA.

Definition 7.7 (Fair preorder). Given two IOA’s i and s with the same external
action signature, the fair preorder is defined as:

i �F s⇔ ftraces(i) ⊆ ftraces(s).

We will give examples of the fair preorder a little later in this section, because
we first want to introduce a preorder that is strongly related to the fair preorder,

7 I/O-automata Based Testing 181

namely the quiescent preorder introduced by Vaandrager [Vaa91]. It uses the
concept of quiescent traces, introduced above.

Definition 7.8 (Quiescent preorder). Given two IOA’s i and s with the same
external action signature, the quiescent preorder is defined as:

i �Q s⇔ etraces∗(i) ⊆ etraces∗(s)∧ qtraces(i) ⊆ qtraces(s).

The fair and quiescent preorders look much alike, but there are some im-
portant differences. The quiescent preorder uses finite traces to test for trace
inclusion, whereas the fair preorder includes infinite traces. The relation be-
tween the two preorders is easiest explained with an example (the examples are
reused with kind permission of Segala [Seg97]).

p1

q0 ?a

p2

t0

t1

t2

τ

?a

?a, !y

?a, !y

Fig. 7.3. Quiescent versus fair preorder, example 1

Example. Figure 7.3 shows two IOA p1 and p2, a is an input action, y is an
output action and τ is an internal action. The partition of locally controlled
actions for both IOA is a single class {y, τ}. Let us first illustrate the set of
external and quiescent traces. For p1 we have etraces(p1) = qtraces(p1) = a∗,
meaning a set of zero or more occurrences of a. For p2 we have etraces(p2) =
{a, y}∗·a·{a, y}∗, qtraces(p2) = {a, y}∗. With {a, y}∗ we mean an arbitrary
number of times, an arbitrary number of a’s followed by an arbitrary number
of y’s (or vice versa), like aayayya. Regarding the fair traces, for p1 it is trivial
that each finite sequence an is quiescent and therefore a fair trace. Also for p2,
the finite sequence an is a quiescent and fair trace. After looping n times in t0
we move to t1 by a τ transition. Therefore p1 �Q p2. However, the sequence aω

(infinite times a) is a fair trace of p1 but not of p2. The latter is because, we are
either infinitely often in t0 or t2 but neither {τ, y} is not enabled, nor {τ, y} is
occurring infinitely often. Thus p1 ��F p2.

p1

q0 q1

q2

?a

?a

?a
!y

!y

τ p2

t0

t1

!y
?a

?a

Fig. 7.4. Quiescent versus fair preorder, example 2

182 Machiel van der Bijl and Fabien Peureux

Example. Another similar difference is illustrated in Figure 7.4. We have the IOA
p1 and p2, both can perform an arbitrary number of a input actions followed
by one y output action, followed again by an arbitrary amount of a actions. p1

and p2 are equivalent according to the quiescent preorder (both p1 �Q p2 and
p2 �Q p1), because they have the same external traces and their quiescent traces
contain at least a y action. However, p1 and p2 are not equivalent according to
the fair preorder, when considering the same partitioning as before: {y, τ}. This
is because aω is a fair trace of p1 but not of p2. This might not be easy to see
at first glance, but remember that the partition of locally controlled actions is
{y, τ}. In p1 we can do the fair execution (q0·a·q1·τq0)ω (and thus the fair trace
aω).

q0

q1 q2

q3

!x !x

!y
τ

t0

t1

t2

!x

!y

Fig. 7.5. Quiescent versus fair preorder example 3

Divergence (i.e., the possibility for a system of to do an infinite number of
internal transitions) shows another difference between the quiescent and fair
preorder. Because of divergence, a fair trace is not necessarily a quiescent trace,
as is illustrated in the next example.

Example. In Figure 7.5, we have two IOA p1 and p2 with output actions x and
y. According to the quiescent preorder both automata are equivalent. But they
are not equivalent according to the fair preorder, since x is a fair trace of p1, but
not of p2.

As we can see from these examples, the fair preorder is a stronger relation
than the quiescent preorder. Because of the definition of the quiescent preorder,
this is not very surprising. As a side step, Segala shows a way to make the
quiescent preorder and the fair preorder equivalent by making some restrictions
on the IOA’s that we allow [Seg97]. Basically, the property we are looking for is
that we can approximate an infinite fair trace by a finite trace and can extend a
finite fair trace to an infinite fair trace. This is expressed by the properties fair
continuity and fair approximability. An IOA p is fair continuous if the limit of
any chain of fair traces of p is also a fair trace. Fair continuity is nicely illustrated
in Figure 7.3. The sequence an is a fair trace of p2, but if we take n to infinity
this is not the case. In other words the trace an is not fair continuous. An IOA
p is fair approximable if each infinite trace of p is the limit of a chain of fair
traces of p. This is illustrated in Figure 7.4. The trace aω is a fair trace of p1

but it is not fair approximable because the finite trace an is not fair.

7 I/O-automata Based Testing 183

Under the restrictions of fair approximability and fair continuity we can show
that the fair preorder and the quiescent preorder are equivalent for strongly
converging IOA (we need strong convergence to rule out divergence).

Theorem 7.9. Let i , s ∈ IOA be strongly convergent.

i �F s ⇒ i �Q s

If p1 is fair approximable, and p2 is fair continuous, then p1 �Q p2 ⇒
p1 �F p2

In the next part of this section we will introduce may and must testing for
systems with inputs and outputs. First we quickly recapitulate some of this
theory. The method for comparing transition systems that was initiated by De
Nicola and Hennessy is based on the observation of the interactions between a
transition system and an external experimenter as introduced in Chapter 5. An
experimenter e for a transition system p is a transition system that is compatible
with p. The input actions of e are the output actions of p (in(e) = out(p)) and
the output actions of e are the input actions of p, plus an action w called the
success action (out(e) = in(p) ∪ {w}). The experimenter e runs in parallel with
p and synchronizes its output actions with input actions of p and vice versa
(except w). An experiment x is an execution of p‖e which is infinite or ends in
a deadlocked state. We say that the experiment is successful if w is enabled in
at least one state of the execution x . If there is a successful experiment of p‖e
we use the notation p may e. If every experiment of p‖e is successful we use
the notation p must e. On this notion of may and must we can define preorder
relations. We will start with the may preorder.

Definition 7.10 (MAY preorder). Let i , s ∈ IOA:

s �MAY i⇔∀e : s may e ⇒ i may e

Hennessy has shown that the may preorder and external trace inclusion are
equivalent [Hen88].

Theorem 7.11. Let i , s ∈ IOA: s �MAY i⇔ etraces(s) ⊆ etraces(i)

For the must preorder we need a little more work. Segala uses the following
definition of the must relation [Seg97]:

Definition 7.12 (MUST). Given an IOA p, a set of states Q1 and a set of
external actions A.
Q1 must A⇔

(1) A ∩ in(p) �= ∅, or
(2) for each q ∈ Q1:

(a) wenabled(q) ∩ out(p) ⊆ A, and
(b) wenabled(q) ∩ A �= ∅

184 Machiel van der Bijl and Fabien Peureux

With this definition of the must relation on IOA we define the must preorder
in the following way.

Definition 7.13 (MUST preorder). Let i , s ∈ IOA:

s �MUST i⇔∀σ ∈ ext(s)∗,A ⊆ ext(s) : s after σ must A⇒ i after σ must A

Segala has shown that this definition of the must preorder is equivalent with
the quiescent preorder. The only restriction we need is that the IOA are strongly
converging and finitely branching.

Theorem 7.14. Let i and s be finitely branching and strongly convergent IOA.

s �MUST i⇔ i �Q s .

7.4.2 IOCO Based Testing

In this section, we introduce input-output variants of several pre-order based
testing relations that were introduced in Chapter 5. All the input-output testing
relations that we show in this section take an LTS with inputs and outputs as
a specification and assume the implementation to be an IOTS. We show that
all the implementation relations that we present in this chapter can be unified
in the ioco implementation relation, hence the name of this chapter. In order
to relate the implementation relations we use definitions that deviate from the
original definitions. The equivalence of our definitions with the original defini-
tions is proved in [Tre96b]. The way that our definitions differ is that we use an
intentional characterization of the implementation relations, i.e., a characteri-
zation in terms of properties of the labeled transition systems themselves. This
in contrast to an extensional characterization where an implementation relation
is defined in terms of observations that an external observer can make. In the
intentional characterization observations are expressed in possible outputs of the
labeled transitions system after performing a certain trace.

We will introduce the following input output implementation relations:

• The input-output variant of testing preorder, denoted by ≤iot.
• The input-output variant of the conf relation, denoted by ioconf .
• The input-output variant of refusal preorder, denoted by ≤ior.
• The ioco implementation relation.

Input-output testing relation The first implementation relation that we in-
troduce is the input-output testing relation. This is testing pre-order with a
notion of input and output actions. The set of traces with which we test are in
L∗. This means that we can use any trace to test with, even if its behavior is
not specified by the specification.

Definition 7.15 (Input output testing relation). Let i ∈ IOTS(I ,U), s ∈
LTS(I ,U)

i ≤iot s =def ∀σ ∈ L∗ : out(i after σ) ⊆ out(s after σ).

7 I/O-automata Based Testing 185

We can read this definition in the following way. An implementation i is
≤iot-correct with respect to a specification s if for all traces with which we test,
the set of outputs of the implementation after such a trace is a subset of the
set of outputs of the specification after the same trace. In terms of observations
this means that we should not be able to observe different or more behavior
from the implementation than from the specification. A possible output is the
absence of output or quiescence. We use the meta-label δ to denote quiescence.
It is interesting to know that the ≤iot relation is equivalent with the quiescent
preorder (and thus with the must preorder) [Tre96b].

Example. We will illustrate the input output testing relation with the example
of the trace inclusion preorder in Figure 7.2. The implementation i1 is ≤iot-
correct with respect to specification s . We see that it does not implement the
coffee output after pressing the button twice, so how can it be correct? Let us
take a look at the definition of ≤iot. The specification prescribes that the set of
outputs after the trace button·button = {coffee, tea}. When we take a look at
i1 we see that the set of outputs after button·button = {tea}. Because {tea} ⊆
{coffee, tea} it is correct behavior. So the intuition behind non deterministic
output is that we do not care which branch is implemented as long as at least one
is. We can do the same analysis for implementation i2. Here we find that after
pressing the button twice i2 does not give any output; it is quiescent. This means
that out(i2 after button·button) = {δ}. This is not a subset of {coffee, tea} and
there fore i2 �≤iot s . We see that ≤iot is a stronger implementation relation than
external trace inclusion and furthermore one that agrees more with our intuition.

ioconf relation The input-output variant of the conf relation is called ioconf
[Tre96b]. The difference with the input-output testing relation is that it uses
a different set of traces to test with, namely the set of all possible traces of
the specification: traces(s). This means that we will not test behavior that is
not specified. One way to interpret this is as implementation freedom: “We do
not know or care what the implementation does after an unspecified trace”.
The advantage of this is that we can test with incomplete specifications. Since
traces(s) ⊆ L∗, the ioconf relation is weaker than the ≤iot relation.

Definition 7.16 (ioconf). Let i ∈ IOTS(I ,U), s ∈ LTS(I ,U)

i ioconf s =def ∀σ ∈ traces(s) : out(i after σ) ⊆ out(s after σ).

Example. In Figure 7.6 we illustrate the ioconf relation. i1 is the same im-
plementation as in the examples for external trace inclusion and ≤iot. This
implementation is still correct under ioconf . This is easy to see, because
the trace button·button ∈ traces(s); it is a trace of the specification and
out(i1afterbutton·button) = {tea} ⊆ out(safterbutton·button) = {coffee, tea}.
Implementation i2 introduces new behavior. When we kick the coffee machine it
outputs soup. This kind of behavior is nowhere to be found in the specification;
the behavior of kicking the machine is underspecified. This kind of behavior
would be a problem for ≤iot since it will test on all possible behavior of the label

186 Machiel van der Bijl and Fabien Peureux

set: L∗. When we test the kicking of the machine with ≤iot we get the following
result: out(i2 after kick) = {soup} �⊆ out(s after kick) = ∅. This is the reason
that with ≤iot we need a completely specified specification. Else we know up
front that no implementation will conform to the specification. ioconf does not
have this restriction, because it will only test behavior that is specified. Since
kick /∈ traces(s), we will not test its behavior. Because all the other behavior of
i2 is identical to i1 we have i2 ioconf s . In case one does not like this kind of
implementation freedom, the specification can be made complete and as a result
the same testing power as the ≤iot relation is obtained.

s

q1

q2

q3

q4 q5

?button

?button

!coffee !tea
?button

?button ?button

i1

q1

q2

q3

q4

?button

?button

!tea

?button

?button

i2

q1

q2

q3

q4

q5

q6

?button

?button

!tea

?kick

!soup

?button

?button

?button

Fig. 7.6. Example of ioconf

Input-output refusal relation The next implementation relation, the input-
output refusal relation, is the input output version of the refusal preorder (Chap-
ter 5). What we saw with the ≤iot and ioconf implementation relations was that
they both used traces that did not have δ’s in them (no intermediate quiescence).
It was only possible to observe quiescence at the end of a trace. The input-output
refusal relation can do just that, it uses δ as an expected output in its set of
traces to test with; so called repetitive quiescence. Quiescence can be seen as
refusal to do an output action, hence the name of the implementation relation.
We can see this as follows in the definition of the input-output refusal relation
≤ior. The set of traces over which we test is: L∗

δ . Or, in other words, all possible
combinations of actions from the label set with δ (quiescence). This means that
it only makes sense to test with complete specifications as illustrated for ≤iot in
Figure 7.6. Again the correctness criterion is that an implementation does not
show more behavior than is allowed by the specification.

Definition 7.17 (Input output refusal). Let i ∈ IOTS(I ,U), s ∈ LTS(I ,U)

i ≤ior s =def ∀σ ∈ L∗
δ : out(i after σ) ⊆ out(s after σ).

We give an example of the ≤ior implementation relation together with ioco,
because these two implementation relations are closely related.

ioco relation The ioco testing theory is named after its implementation relation
ioco. The difference with the implementation relations that we have treated so

7 I/O-automata Based Testing 187

far lies again in the set of traces over which we test. Just like ≤ior, ioco also
uses the notion of quiescence. But the set of traces with which we test are the
so-called suspension traces of the specification. These are the traces (with or
without quiescence) that are specified in the specification. This set is smaller
than the set of traces of ≤ior. In other words, ioco is a weaker implementation
relation than ≤ior.

Definition 7.18 (ioco). Let i ∈ IOTS(I ,U), s ∈ LTS(I ,U).

i ioco s =def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ).

p1

q0

q1 q2

q3 q4

q5 q6

?button ?button

!coffee ?button

!tea !coffee

?button

?button

?button

?button ?button

p2

t0

t1 t2

t3 t4

t5

?button ?button

!coffee ?button

!tea

?button

?button

?button

?button

≤iot, ioconf
�≤ior, �ioco−−−−−−−−−−→

Fig. 7.7. Example of ioco

Example. We illustrate the ≤ior and ioco implementation relations in Figure 7.7.
The example is reused with kind permission of Tretmans [Tre96b]. We see two
IOTS’s p1 and p2 that model a coffee machine with peculiar behavior. p1 models
a machine where after pressing a button once, you get either coffee or nothing
(quiescence). If you got nothing and you press the button again you get either
tea or coffee. p2 models an almost identical machine, except after you press the
button again after obtaining nothing after the first button press you will only
get tea (so no coffee). If p1 is the implementation and p2 the specification we
can see that ≤iot and ioconf hold, whereas ≤ior and ioco do not. Let us begin
with ioco, ioco can see the difference between the transition systems because
of the following trace. After button·δ·button we will observe tea and coffee for
p1, whereas p2 prescribes that only tea is allowed. The same holds for ≤ior

since it is also capable of this same test case. However ≤iot and ioconf are
not capable of observing quiescence during testing and can therefore not tell
the difference between the trace button·button·coffee in the left branch of the
transition system or in the right branch of the transition system. In other words,
they are not powerful enough to see the difference.

When we take p2 as the implementation and p1 as the specification we see
that all implementation relations identify the implementation as correct. This is
logical since the only difference between p1 and p2 is that p2 does not offer the

188 Machiel van der Bijl and Fabien Peureux

possibility of coffee in the right branch. This is correct, since the specification
p1 gives the choice between implementing either one (or both).

The difference between ioco and ≤ior is the same difference as between ≤iot

and ioconf . ioco is capable of dealing with incomplete specifications, whereas
≤ior is not.

The input-output implementation relations that we have introduced so far
can be easily related. The only variable is the set of traces over which we
test. Based on the relations between the sets of tested traces we can relate the
strength of the implementation relations. This is easy to see since traces(s) ⊆
Straces(s),L∗ ⊆ L∗

δ . For reasons of completeness we have also added the pre-
orders of the previous section. We know that these are defined on IOA and not
on LTS’s and IOTS’s, but these relations can be easily converted to each others
realms. The fair testing preorder is not in this comparison. As far as we know,
nobody has made a comparison between the fair testing preorder and the other
implementation relations in this chapter. It is clear that the fair testing preorder
is stronger than the quiescent preorder, but it is not clear to what extent the
fair testing preorder is comparable to ioco.

Proposition 7.19. Comparison of expressiveness of the implementation rela-
tions.

{
�MAY

≤tr

}

⊂ ≤ior ⊂

�Q

�MUST

≤iot

ioco

⊂ ioconf

7.4.3 Work Introduced by M. Phalippou

We present in this section the implementation relations used in the method
introduced by M.Phalippou [Pha94b]. This method is defined on a particular
model of automata: input/output state machine (see IOSM definition 7.4).

Moreover, we are only interested in the states which are reachable from the
initial state by a finite number of transitions. We can thus remove the set of all
the states which do not verify this condition, or we only use the connex graph
of the automaton containing the initial state. In a more formal way, this connex
component of an automaton is defined as follows.

Definition 7.20 (Connex component of IOSM).
Let 〈S ,L,T , s0〉 be an IOSM. The connex component of this IOSM containing
the initial state is an IOSM CC (〈S ,L,T , s0〉) = 〈SC ,LC ,TC , s0C 〉 defined by:

(1) LC = L
(2) s0C = s0
(3) SC is recursively defined by the rules:

(a) s0C ∈ SC

(b) if s ∈ SC and (s , µ, s ′) ∈ T then s ′ ∈ SC

(4) TC = {(s , µ, s ′) ∈ T , s ∈ SC}

7 I/O-automata Based Testing 189

The properties relating to testing only depend on the traces of the handled
automata. In order to introduce a formal definition of the traces on IOSM, we
firstly need to define IOSM sequence and opposite sequence.

Definition 7.21 (Sequence and opposite sequence).
Given an IOSM S = 〈Ss ,Ls ,Ts , s0〉 and a sequence (σ = µ1...µn) ∈ ({!, ?}×Ls)∗.
The opposite sequence, noted

⇀
σ is defined by the sequence generated from σ by

reversing the output (!) and the input (?) in the different actions. The following
properties about sequence and opposite sequence can now be introduced:

(1) (s0, σ, sn) iff (∃(si)1≤i<n ∈ Sn
s)(∀ i , 1 ≤ i ≤ n)((si−1, µi , si) ∈ Ts)

(2) (S , σ, sn) iff (s0, σ, sn)
(3) (s0, ε, s1) iff s0 = s1 or (∃n ≥ 1)(s0, τn , s1)

(4) (s0,
⇀

µ, s1) iff (∃ s2, s3 ∈ Ss)((s0, ε, s2) ∧ (s2, µ, s3) ∧ (s3, ε, s1))

(5) (s0,
⇀
σ , sn) iff (∃(si)1≤i<n ∈ Sn

s)(∀ i , 1 ≤ i ≤ n)((si−1,
⇀

µ i , si) ∈ Ts)

Definition 7.22 (Trace).
An observable trace of S is a sequence σ of observable actions such as (∃ sn ∈
Ss)(s0,

⇀
σ , sn). The set of all the traces of S is denoted by Tr(S).

The concept of trace makes it possible to disregard internal action τ . Thus,
a trace is an observable behavior, i.e. visible from the interface of the IOSM. It
should be noted that the traces of an IOSM are the same ones as those of its
connex component containing the initial state.

Property 7.23. Tr(S) = Tr(CC (S))

To illustrate implementation relations on IOSM, we will use the example of
coffee machine. Its specification S is presented in figure 7.8.

Specification S

q1

q2

q3

q4 q5

?button

?button

!coffee !tea
?button

?button ?button

Fig. 7.8. IOSM specification of coffee machine

In the approach introduced by M. Phalippou, both the specification and the
implementation to be tested are represented by an IOSM. Four possible imple-
mentations (I1, I2, I3 and I4) of the coffee machine are described in figure 7.9.

190 Machiel van der Bijl and Fabien Peureux

Implementation I1

q1

q2

q3

q4

?button

?button

!tea

?button

?button

Implementation I2

q1

q2

q3

q4 q5

?button

?button

!coffee !tea
?button

?button ?button

Implementation I3

q1

q2

q3

q5q4 q6

?button

?button

!tea!coffee !soup

?button

?button?button ?button

Implementation I4

q1

q2

q3

?button

?button

?button

Fig. 7.9. Examples of IOSM implementation of coffee machine

The conformance is then defined as a relation, called implementation relation,
between the implementation and its relevant specification. The next definition
formally expresses this relation by means of IOSM as introduced by M. Phalip-
pou.

Definition 7.24 (Implementation relation on IOSM).
An implementation relation on IOSM is a relation R on IOSM × IOSM . Given
an implementation I and a specification S such as I ,S ∈ IOSM , if R(I ,S) holds
then we say that I conforms to S .

The choice of an implementation relation is generally arbitrary, although
some minimal properties have to be respected according to the conformance
objectives [PBD93]. To elaborate such relations, we place ourselves in a testing
situation where all that we can do is to send interactions towards a black box
system to be tested, and to analyze the outputs returned by the black box.

Definition 7.25 (Outputs authorized by the specification).
Given σ ∈ Tr(S) and L a finite non empty set of labels, O = (σ,S) = {a ∈ L |
σ!a ∈ Tr(S)} denotes the set of all the outputs authorized by the specification
S after the trace σ.

All the definitions needed to present implementation relations on IOSM are
now described. M. Phalippou defines five implementation relations adapted to
the IOSM (these examples illustrate the variety of the arbitrary choices) [Pha93].

A first idea, to ensure that an implementation conforms to a specification,
consists in verifying that the outputs returned by the implementation never
contradict what is envisaged by the specification when something is envisaged.
The goal of applying this kind of implementation relation, is not to know what
it occurs when interactions, that are not specified by the specification, are send
to the implementation. This implementation relation is known as R1.

Definition 7.26 (Relation R1).
R1(I ,S) iff (∀σ ∈ Tr(S))(σ ∈ Tr(I) ⇒ O(σ, I) ⊆ O(σ,S))

7 I/O-automata Based Testing 191

According to the implementation relation R1 and among the implementa-
tions of the figure 7.9, only I3 is considered not to be in conformance with the
specification of the figure 7.8. Indeed, the relation R1 authorizes an implementa-
tion to return no output even if the specification envisages one or more possible
behavior (see for example I4). To avoid this lack, M. Phalippou thus consider a
new implementation relation called R2.

Definition 7.27 (Relation R2).
R2(I ,S) iff
(∀σ ∈ Tr(S))(σ ∈ Tr(I) ⇒ {O(σ, I) ⊆ O(σ,S) ∧ (O(σ, I) = ∅) ⇔ (O(σ,S) =
∅)})

This new implementation relation does not change the conformance of the
implementation I1 and I2, and the non-conformance of I3, but the implementa-
tion I4 does not conform any more to the specification S . Indeed, according to
R2, an implementation conforms to a specification if the implementation gives
less possible outputs than the specification does. But, this view could not be
strong enough: it could be expected that the implementation must at least have
all the capacities envisaged by the specification (but has freedom to make some
more). The two following relations R3 and R4 express this idea : according to
R3 and R4, I1 does not conform to S while I3 does.

Definition 7.28 (Relation R3).
R3(I ,S) iff Tr(S) ⊆ Tr(I)

Definition 7.29 (Relation R4).
R4(I ,S) iff Tr(S) ⊆ Tr(I) ∧ (∀σ ∈ Tr(S))((O(σ, I) = ∅)⇔ (O(σ,S) = ∅))

Finally, we can choose to require that the implementation makes exactly
what is envisaged by the specification. The relation R5 is built on this principle:
it is built in fact by the conjunction of the implementation relations R1 and R3

(or R2 and R4). Using this last implementation relation, only I2 conforms to the
specification S .

Definition 7.30 (Relation R5).
R5(I ,S) iff (∀σ ∈ Tr(S))(σ ∈ Tr(I) ∧ (O(σ,S) = O(σ, I)))

It should be noted that the implementation relations R1, R2, R3 and R4

are expressed as preorder relations (see section 7.4.1). But, the most studied
relation about Input Output Automata is the equivalence relation. When input
complete specifications are used, the equivalence relation has to be modified,
and we naturally obtain the relation R5 introduced by M. Phalippou. Therefore,
this last implementation relation appears to be a major result in the domain of
Input Output Automata based testing. For example, G. Luo, A. Petrenko and
G. Bochmann used an implementation relation similar to R5 in order to select
test cases from nondeterministic Finite State Machine [LvBP94].

192 Machiel van der Bijl and Fabien Peureux

7.5 Testing Transition Systems

In the previous section, we have discussed several implementation relations. In
this section, we introduce two more concepts of the conformance testing frame-
work, namely test derivation and test execution. We will show the relation be-
tween the conformance relation and test generation and execution. The ioco
conformance relation is one of the few relations that is used for testing in prac-
tice. Apparently the other relations are more used for verification than testing.
Therefore we use the ioco implementation relation as the example implementa-
tion relation for the test derivation and test execution sections. For more infor-
mation about the practical application of the ioco theory we refer to Chapter 14.

Test cases Before we introduce test derivation, we first explain what a test case
is; see also Section 20. A test case is a specification of the experiment that an ex-
perimenter wants to conduct on an implementation. A test case can be described
by an LTS. In order to test according to implementation relations that have the
notion of quiescence we introduce a new label in the label set of the tester: θ;
θ is the tester’s counter part of δ. With the θ label the test case can observe
quiescence. So test cases will be in the domain LTS(U ∪ θ, I). We will add a
couple of restrictions to the behavior of a test case. To guarantee that a test case
finishes in finite time it should have finite behavior. Furthermore to ensure max-
imal control over the testing process we do not allow non-deterministic behavior.
We also do not allow choice between multiple input actions and between input
actions and output actions. This implies that a state in a test case is either a
terminal state, or a state that offers exactly one input to the implementation or
accepts all outputs of the implementation. To give a verdict over the success of
the test case we label terminal states with pass and fail. These restrictions are
formally expressed in the following definition of a test case. Note that a test case
could in principle be defined without these restrictions. It could be an arbitrary
LTS that synchronizes on the actions of the implementation under test. The
definition we introduce here has shown to be both theoretically and practically
useful.

Definition 7.31 (Test case).

• An LTS t = 〈Q ,U ∪ {θ}, I ,T , q0〉 ∈ LTS(U ∪ {θ}, I) is a test case if:
– t is deterministic and has finite behavior. t is deterministic if ∀σ ∈

L∗
θ , p after σ has at most one element.

– Q contains terminal states pass and fail, with init(pass) = init(fail) =
∅.

– For any state q ∈ Q of the test case, if q �= pass, fail then either
init(q) = {a} for some a ∈ I , or init(q) = U ∪ {θ}.

• The class of test cases over U and I is denoted as TEST (U , I).
• A test suite T is a set of test cases: T ⊆ TEST (U , I).

In the definition of a test case we can see that the label sets of the specification
are reversed: Inputs of the specification are outputs of the implementation and

7 I/O-automata Based Testing 193

vice versa. This makes it difficult to talk about inputs and outputs, since it is
not always clear if it is an input for the test case or for the implementation.
Therefore we will use the terms stimulus for an output of the test case (i.e., an
input of the implementation) and response for an input of the test case (i.e., an
output of the implementation).

t0

t1

!button

t2 t3 t4

?tea θ ?coffee

fail fail

t5

!button

t6 t7 t8

?tea θ ?coffee

pass fail pass

Fig. 7.10. Example test case

Example. In Figure 7.10 we show an example test case. With this test case we
can test our coffee machine as specified, for example, in Figure 7.6. We see that
the test case starts with the stimulus button in state t0. In state t1 we choose to
observe a response. The specification prescribes that there should be no output.
So if we observe coffee, or tea we add a fail label, like in t2 and t4. If we observe
quiescence (with θ) we continue testing. Again we choose stimulus button and
arrive in state t5. Now the specification prescribes that we should observe coffee
or tea as response. so, if we observe quiescence we add the fail verdict to state
t7. If we observe coffee or tea we stop testing and add pass as a verdict to states
t6 and t8.

Test execution A test run of a test case on an implementation is modeled
by synchronous parallel composition (denoted by ‖) of the test case with the
implementation under test. This means that inputs of the test case synchronize
on outputs of the implementation and vice versa. In case of quiescence, the test
case synchronizes on δ with its special θ action. The execution continues until the
test case reaches one of its terminal nodes. Because of the special structure of a
test case we are sure that the test case will always reach one of its terminal states.
An implementation passes the test run if the test case ends in a pass state, if it is
not we say that the implementation fails the test case. This means that we have
found a possible error. Because an implementation can have non-deterministic
behavior, different runs with the same test case can lead to different terminal
states (and possibly different verdicts). Therefore, an implementation passes a
test case if all possible test runs lead to the verdict pass.

194 Machiel van der Bijl and Fabien Peureux

Definition 7.32. Let t ∈ TEST (U , I) and i ∈ IOTS(I ,U).

(1) A test run of a test case t with an implementation i is a trace of the syn-
chronous parallel composition t‖i leading to a terminal state of t :

σ is a test run of t and i iff ∃i ′ : t‖i σ=⇒pass‖i ′ or t‖i σ=⇒ fail‖i ′.

(2) Implementation i passes test case t if all their test runs lead to the pass-state
of t :

i passes t =def ∀σ ∈ L∗
θ , ∀i ′ : t‖i /

σ=⇒ fail‖i ′.
(3) An implementation i passes a test suite T if it passes all test cases in T :

i passes T =def ∀t ∈ T : i passes t .

If i does not pass the test suite, it fails: i fails T =def ∃t ∈ T : i /passes t .

Test derivation All the parts of the conformance testing framework are now in
place: a conformance relation between implementations and specifications and
the execution of a test case on an implementation. We will finish the picture
with test derivation (also called test generation). It is especially important that
a test case is sound, i.e., if an implementation fails a test case it should be the
case that there is really an error according to the specification. If possible we
also want to generate a test suite that is exhaustive, i.e., if an implementation
has an error then the test suite will detect it. In practice the latter is often
impossible because of the (practically) infinite size of the test suite. Below we
give the formal definitions of completeness, soundness and exhaustiveness. In this
definition, we use ioco as the implementation relation. ioco can be replaced by
any of the implementation relations of the previous section.

Definition 7.33. Let s be a specification and T a test suite then:
T is complete =def ∀i : i ioco s⇔ i passes T
T is sound =def ∀i : i ioco s ⇒ i passes T
T is exhaustive =def ∀i : i ioco s ⇐ i passes T

It turns out that a relative simple algorithm can produce a complete test
suite for ioco. Test generation algorithms for the other implementation rela-
tions can be made in a similar way. For the completeness proof we refer to
Tretmans [Tre96b]. Note that completeness often means an (practically) infinite
test suite (one loop makes a complete test suite infinite). In the definition of
the test derivation algorithm we have chosen to use a behavioral definition to
make it easier to read (behavioral expression can be transformed to an LTS in
a straightforward manner). This means that we do not explicitly create an LTS.
To make it easier to understand the relation between the behavior and the LTS
we added pictures to represent the way a test case is build up (so the pictures
are test cases). Furthermore we give an example of a test case derivation after
the definition. Note that we use the notation σ for a trace in which all δ actions
have replaced by θ actions and all input actions have been changed to output
actions (only the direction).

7 I/O-automata Based Testing 195

Definition 7.34. Let s ∈ LTS(I ,U) be a specification with initial state q0.
Let S be a non-empty set of states, with initially S = {q0}. A test case t ∈
TEST (U ∪{θ}, I) is obtained from S by a finite number of recursive applications
of one of the following three non-deterministic choices:

(1) pass

t := pass

The test case with only the state pass is always a sound test case. This
rule stops the recursion in the algorithm.

(2)

a

�
�

�

�
�
�

t ′

t := a; t ′ where a ∈ I ,S after a �= ∅ and t ′ is obtained by recursively ap-
plying the algorithm for S ′ = S after a.

This step in the algorithm adds an input action a to the test case. After ap-
plying the input a, the test case behaves as t ′ which is obtained by applying
the test derivation algorithm recursively to S ′. t ′ is depicted as an abstract
subtree (triangle) in the figure above.

(3)

fail fail
x1 x2 x3 θ

�
�

�
��

�
�
�
��

t1

�
�
�

��

�
�
�
��

t2

t := Σ {x ; fail | x ∈ U , x �∈ out(S)}
+ Σ {θ; fail | δ �∈ out(S)}
+ Σ {x ; tx | x ∈ U , x ∈ out(S)}
+ Σ {θ; tθ | δ ∈ out(S)}

where tx and tθ are obtained by recursively applying the test derivation al-
gorithm for S ′ = S after x , S after δ, respectively. In this definition + and
Σ have the standard process algebraic meaning. + stands for choice and Σ
stands for the sum of all expressions in a set.

In this step we add expected outputs to the test case. If the output is in-
correct according to the specification we add a transition with the output
to a fail state, thus ending that part of the test case. The same holds for

196 Machiel van der Bijl and Fabien Peureux

the observation of quiescence where it is not allowed according to the speci-
fication. For outputs that are allowed, we continue the test derivation with
tx , tθ respectively.

Example. We illustrate the test derivation algorithm with our coffee machine
specification like the one shown on the left hand side in figure 7.6. We will show
how to derive an LTS with the algorithm. We use the same test case as used
to explain the test case definition, see Figure 7.10. When we start, the set S
consists of only the start state q1 of our specification. We choose one of the three
rules of the test derivation algorithm. Randomly, we start with applying rule 2 of
the test derivation algorithm and apply the input button. This is possible, since
q1 after button = {q2} (�= ∅). The result is the transition (t0, !button, t1) in our
test case. The set S is updated to S = {q2}. So we now have a test case with the
stimulus button. Now we choose to observe responses from the implementation
under test; we apply rule three. There are three possible responses: tea, coffee
and quiescence. We compute out(q1) = {δ} of the specification. So, the only
allowed output is quiescence. Therefore we add a transition with tea to a fail-
state (t1, ?tea, t2) and a transition with coffee to a fail state (t1, ?coffee, t4).
For the allowed response δ we add the transition (t1, θ, t3). We update S with
S after δ = {q2}. We again apply the stimulus button which results in the
transition (t3, button, t5) and S = {q3}. For rule 3 there are now two options,
either the response coffee or tea, since out(q2) = {coffee, tea}. We can add the
transitions (t5, ?tea, t6), (t5, ?coffee, t8) and (t5, θ, t7) where t7 is a fail-state.
Because of non-determinism in the specification we have two possible paths to
continue with. For the “tea” path we update S with {q5} and for the “coffee”
path we update S with {q4}. We can in principle continue forever with choosing
between step 2 and three of the test derivation algorithm until we reach a final
state in the specification or until we want to stop. In our case the specification
has reached a final state and we can apply rule 1 to stop the recursion. This
transforms states t6 and t8 into pass-states.

7.5.1 Conformance Testing Based on Input/Output State Machine

In practice, system testing is performed with test suites. Each test case of a test
suite is defined to verify that a specific property of the specifications is correctly
implemented, or to detect a precise fault in the implementation. A test case
can be seen as a finite sequence of interactions between a tester and the tested
implementation. This process ends by the assignment of a verdict (usually pass,
fail or inconclusive).

The method of conformance testing introduced by M. Phalippou on IOSM is
different [Pha93]. Indeed, his idea consists in considering in a global way the set
of all interactions and sequences of interactions between the tester and the tested
implementation. According to this principle, a unique object, called canonical
tester, is defined to represent in the one hand all the executions performed by a
given test suite, and in the other hand all its execution.

7 I/O-automata Based Testing 197

To implement this approach, it is necessary to define concretely what is a
canonical tester, as well as the way of assigning a test verdict with the couple
(tester, implementation).

To ensure homogeneity with the specifications and the implementations, the
canonical testers are modelled with IOSM. The canonical tester depends directly
in the one hand on the implementation relation to be tested, and in the other
hand on the trace machine of the specification. The trace machine of a specifica-
tion S is a deterministic IOSM not comprising any internal action τ and having
the same set of traces as the initial IOSM of S .

Definition 7.35 (Trace Machine).
The trace machine of an IOSM S = 〈Ss ,Ls ,Ts , s0s〉, noted TM (S), is an IOSM
TM (S) = CC (〈St ,Lt ,Tt , s0t〉) defined by:

(1) St is the set of subsets of Ss : a state st of the trace machine is thus a set of
states of the specification st = {sis}1≤i≤n

(2) Lt = Ls

(3) s0t = {s | (s0s , ε, s)}
(4) the transitions of the trace machine are exactly those obtained in the follow-

ing way: for all s ∈ St and µ ∈ {!, ?}×Ls , given s ′ = {sj | (∃ sis ∈ Ss)(sis ,
⇀

µ
, sj)}, if s ′ = ∅ then (s , µ, s ′) ∈ Tt .

The trace machine generation is similar to the determination of an not-
deterministic automaton as introduced by J. Hopcroft and J. Ullman in [HU79].
Thus, from any IOSM, it is possible to calculate a trace machine, which exactly
represents the traces of the initial IOSM.

Property 7.36. Tr(S) = Tr(TM (S))

The mechanism of verdict assignment is based on an parallel execution of
the canonical tester with the implementation to be tested. The verdict is then
pronounced according to the properties of the IOSM which represents this par-
allel composition. Indeed, the canonical tester has one particular state, called
fail, which indicates that an error has been detected.

Definition 7.37 (Verdict of a canonical tester).
The failure of a tester T applied to an implementation I is defined by: Fail(T , I)
iff (∃σ ∈ Tr(T))(

⇀
σ∈ Tr(I) ∧ (T , σ, fail)).

The verdict is Succ(T , I) iff ¬(Fail(T , I)) holds.
The verdict assigned by the canonical tester is also defined as a global (or

total) verdict.

We now present the test theory proposed by M. Phalippou using a concrete
example. This example is based on the specification of the coffee machine exam-
ple. The specification S introduced in figure 7.8 and implementations I1, I2, I3
and I4 introduced in figure 7.9 are used to illustrate the various steps to apply
this testing theory.

198 Machiel van der Bijl and Fabien Peureux

First of all, we need to define the canonical tester making it possible to
distinguish the IOSM which are implementations in conformity with the initial
specification within the meaning of a specific implementation relation. The next
definition describes how generate such a tester from the specification S of the
coffee machine example and the implementation relation R1 introduced by the
definition 7.26.

Definition 7.38 (Canonical tester for R1).
Given a specification S and its trace machine TM (S) = 〈Ss ,Ls ,Ts , s0s〉, we call
canonical tester of S the IOSM noted T = TCA(S) = 〈St ,Lt ,Tt , s0t〉 such as:

(1) St = Ss ∪ {fail}
(2) Lt = Ls

(3) s0t = s0s
(4) the tester transitions are exactly those obtained by the following rules:

(a) (∀µ ∈ {!, ?} × Ls)(∀ s , s ′ ∈ Ss)((s , µ, s ′) ∈ Ts ⇔ (s ,
⇀

µ, s ′) ∈ Tt)
(b) (∀ s ∈ Ss)(∀ a ∈ Ls)(¬(∃ s ′)((s , !a, s ′) ∈ Ts)⇒ (s , ?a, fail) ∈ Tt)

This canonical tester of S is thus charged to check that nothing of opposite
with what is envisaged can appear. For that, it provides an mirroring image
of the traces of the specification. A mechanism to detect the errors is added:
if the tester receives one interaction which should not happen in a given state,
it reaches the state called fail. We can find this detection method in many ap-
proaches concerning testing from systems communicating by inputs and outputs,
namely an inversion of the inputs and outputs to obtain tests from the specifica-
tion [RP92]. The structure obtained by inversion of the trace machine determines
the tester. This one is then supplemented by adding transitions used to detect
errors.

The figure 7.11 introduces the canonical tester on the coffee machine example
using the implementation relation R1. For this example, the set L of all the events
which can be received is L = {soup, tea, coffee}.

Tester T

t1

t2

t3

t4 t5

!button

!button

?coffee ?tea
!button

!button !button

FAIL
�

?coffee,tea,soup

�?coffee,tea,soup

�?soup �

?coffee,tea,soup

�

?coffee,tea,soup

Fig. 7.11. Canonical tester using R1

7 I/O-automata Based Testing 199

In order to assign a verdict, we now introduce the definition of the parallel
composition of two IOSM. In fact, this composition makes it possible to model
several communication interfaces between various IOSM or several points of
interactions.

Definition 7.39 (Parallel composition of two IOSM).
The parallel composition of two IOSM I1 = 〈S1,L1,T1, s01〉 and I2 =
〈S2,L2,T2, s02〉 is an IOSM I = I1 || I2 = 〈S ,L,T , s0〉 which is defined by:

(1) S = S1 × S2

(2) L = L1 ∪ L2

(3) s0 = (s01, s02)
(4) the transitions of the IOSM I1 || I2 are exactly obtained by means of the

following rules:
(a) (s1, τ, s ′1) ∈ T1 ⇒ ∀ s2 ∈ S2 · ((s1, s2), τ, (s ′1, s2)) ∈ T
(b) (s2, τ, s ′2) ∈ T2 ⇒ ∀ s1 ∈ S1 · ((s1, s2), τ, (s1, s ′2)) ∈ T
(c) if a ∈ L1 ∩ L2 then

(s1, ?a, s ′1) ∈ T1 ∧ (s2, !a, s ′2) ∈ T2 ⇒ ((s1, s2), τ, (s ′1, s
′
2)) ∈ T and

(s1, !a, s ′1) ∈ T1 ∧ (s2, ?a, s ′2) ∈ T2 ⇒ ((s1, s2), τ, (s ′1, s
′
2)) ∈ T

(d) if a ∈ L1 − L2 then
(s1, ?a, s ′1) ∈ T1 ⇒ ∀ s2 ∈ S2 · ((s1, s2), ?a, (s ′1, s2)) ∈ T and
(s1, !a, s ′1) ∈ T1 ⇒ ∀ s2 ∈ S2 · ((s1, s2), !a, (s ′1, s2)) ∈ T

(e) if a ∈ L2 − L1 then
(s2, ?a, s ′2) ∈ T2 ⇒ ∀ s1 ∈ S1 · ((s1, s2), ?a, (s1, s ′2)) ∈ T and
(s2, !a, s ′2) ∈ T2 ⇒ ∀ s1 ∈ S1 · ((s1, s2), !a, (s1, s ′2)) ∈ T

The IOSM calculated by parallel composition of the R1 canonical tester and
the possible implementations (figure 7.12) show well that the assignment of the
verdict consists in checking if a state of the form (fail , si) is in the IOSM T || Ii .
So, the four generated IOSM confirm that, using the implementation relation
R1, only the implementation I3 does not conform to the specification S .

T || I1
t1, q1

t2, q2

t3, q3

t5, q4

τ

τ

τ

τ

τ

T || I2
t1, q1

t2, q2

t3, q3

t4, q4 t5, q5

τ

τ

τ τ

τ

τ τ

T || I3
t1, q1

t2, q2

t3, q3

t4, q4t5, q5 fail , q6

τ

τ

ττ τ

τ

ττ

T || I4
t1q1

t2, q2

t3, q3

τ

τ

τ

Fig. 7.12. Parallel composition tester/implementation

This global testing approach, already used by E. Brinksma in [Bri89] and
introduced by M. Phalippou on IOSM, has the advantage of representing in a

200 Machiel van der Bijl and Fabien Peureux

homogeneous way the testing activity without having to pass by the stages of
test suite generation and test case execution as shown in [Pha94a, Pha95].

However, it should be recognized that this approach presents disadvantages
which are the counterpart of the advantages given above. It is for example dif-
ficult, without efficient test hypotheses, to study the concepts which are not
defined in the specification, in particular how to connect the test cases to a test
goal, how to add tests to increase the functional coverage of a test suite, or how
to associate the test verdict with a specific diagnosis.

Finally, this method is used in the tool called tveda [Ris93, BPR93,
CGPT96]. This tool is developed and used by the telecommunication indus-
try (France Telecom) to automate the design of the test cases for protocol sys-
tems [Pha91]. In this area, the complexity of the systems, together with the high
level of fiability which is expected from their global interworking, indeed justify
to bring a great care to the test generation. In this way, tveda makes it possi-
ble to select a reasonable number of test cases by making some test hypotheses.
Thus, the approach adopted in tveda slightly differs from the theory presented
in this section: indeed, it consists, for a given implementation relation, to calcu-
late an approximation of the tester since a rigorous definition is very often too
complex to calculate (see Section 14.2.7 for more details).

7.6 Conclusion

In this chapter we filled in several pieces of the conformance testing framework
for LTS-based testing with inputs and outputs. We started with the introduction
of three models that capture the notion of inputs and outputs: the Input-Output
Automaton, the Input-Output State Machine and the Input Output Transition
System. An interesting characteristic of these models is that they are input-
enabled. Next, we have shown several implementation relations over these mod-
els. The most important ones are: the fair testing preorder, the may and must
preorder, the ioco implementation relation and the R5 implementation relation.
For the ioco theory and the theory of Phalippou we have shown how to derive
test cases and how to execute them against an implementation. For the ioco
theory there is a completeness proof for the test generation algorithm.

Finally, it should be stressed that these works are not simply regarded as sig-
nificant theoretical results, but their practical applications directly contributed
to the development of tools. Thus, an algorithm rising from the ioco theory is
implemented in the tool TorX [dVT98], while the R5 implementation relation is
the base of the tool tveda [CGPT96].

8 Test Derivation from Timed Automata

Laura Brandán Briones1 and Mathias Röhl2

1 University of Twente
brandanl@cs.utwente.nl

2 University of Rostock
mroehl@informatik.uni-rostock.de

8.1 Introduction

A real-time system is a discrete system whose state changes occur in real-
numbered time [AH97]. For testing real-time systems, specification languages
must be extended with constructs for expressing real-time constraints, the im-
plementation relation must be generalized to consider the temporal dimension,
and the data structures and algorithms used to generate tests must be revised
to operate on a potentially infinite set of states.

There are various formalisms that use fictitious clocks for expressing tim-
ing constraints. These simplify reasoning about time by recording the timing
of events with finite precision only and thereby approximate precise timing of
activities. The set of nonnegative integers could be used as a time domain, with
the restriction that the sequence of integer times must be non-decreasing. Be-
havior on a discrete time scale could be modeled with ordinary finite automata
by adding a distinguished tick event to the set of its actions.

In dense time domains, which could be sub-domains of Q≥0 or R≥0, events
may occur at different time points that lay arbitrarily close together. Detecting
arbitrarily small variations would require infinite test cases. However, if two
events may occur on different times but for an observer their ordering makes no
difference for testing purposes these events may be considered to take place at
the same point in time. Henzinger et al. showed that the digitization of clocks
allows to distinguish all systems which are distinguishable in the dense time
domain if the system can be modeled as a timed transition system [HMP92].

We start with a general introduction to timed automata and associated con-
cepts. The main part presents three different techniques for the generation of
real-time black-box conformance tests from timed automata with a dense time
domain. The first approach allows for testing (a subclass of) nondeterministic
timed automata, the second one concentrates on the exhaustive testing of de-
terministic timed automata, while the last approach facilitates the testing of
deterministic timed automata with silent transitions. An automatic light switch
is used as a running example for specifications and test suite derivation.

8.2 Timed Automata

Timed automata extend finite state automata with a finite set of clocks over a
dense time domain [AD94]. All clocks increase monotonically at a uniform rate,

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 201-231, 2005.
 Springer-Verlag Berlin Heidelberg 2005

202 Laura Brandán Briones and Mathias Röhl

and measure the amount of time that has elapsed since they were started or
reset. The choice of the next state of a timed automaton depends, in addition to
the kind of an input symbol, on the occurrence time of the input symbol relative
to the occurrence of previously read symbols. Each transition of the system may
reset some of the clocks and have an associated enabling condition which is a
constraint on the values of the clocks. A transition can be taken only if the
current clock values satisfy its enabling condition. Timing constraints on clocks
may be expressed by the following syntax.

Definition 8.1. For a set C of clock variables, the set Φ(C) of clock con-
straints ϕ, where c ∈ C and k ∈ Q≥0, is defined inductively by

ϕ
def
= c < k | c > k | c ≤ k | c ≥ k | ϕ1 ∧ ϕ2

Often, c = k
def
= c ≤ k ∧ c ≥ k and true

def
= 0 ≤ c are used as abbreviations.

Definition 8.2. A timed automaton A is a tuple 〈S ,S0, Σ,C , Inv ,E 〉, where

• S is a finite set of locations
• S0 ⊆ S is a set of initial locations
• Σ is a finite alphabet that denotes the set of actions
• C is a finite set of clocks
• Inv : S → Φ(C) associates a clock invariant to each location
• E ⊆ S ×Σ × Φ(C) × 2C × S gives the set of transitions [Alu99].

A transition (s , a, ϕ, λ, s ′) ∈ E represents a change of location from s ∈ S to
s ′ ∈ S on symbol a ∈ Σ. The clock constraint (guard) ϕ ∈ Φ specifies when the
transition is enabled, and the set λ ⊆ C gives the set of clocks to be reset when
this transition is taken. Clock invariants constrain how long the automaton is
allowed to stay in a certain location.

Example. We adopt the automatic Light Switch from Springintveld et al. as an
example [SVD01]. The Light Switch can be specified by a timed automaton A ,
with

• S = {s0, s1}
• S0 = {s0}
• Σ = {on, off }
• C = {c}
• Inv(s0) = true, Inv(s1) = c ≤ 5
• E = {(s0, on, true, {c}, s1), (s1, on, c < 5, {c}, s1), (s1, off , c = 5, ∅, s0)}

Its behavior can be explained as follows. The state of the system in which the
light is off is represented by s0, and the state s1 represents the situation where
the light is on. The light can be turned on by pushing the on button. After five
time units the switch turns itself off . Before that happens, the on button may
be pushed again, which will leave the light on (cf. Figure 8.2).

8 Test Derivation from Timed Automata 203

s0
s1

c ≤ 5
on, c < 5,
{c}

on, true, {c}

off , c = 5, ∅

Fig. 8.1. A timed automaton specification of an automatic Light Switch

Remark 8.3. Timed automata were introduced by Alur and Dill [AD94] as a gen-
eralization of finite-state machines over infinite words [Tho90]. We only consider
timed automata without acceptance conditions which are usually referred to as
timed safety automata [HNSY92]. An introduction to acceptance is given in
Section 19.2, whereas a discussion of acceptance conditions in the context of
timed automata can be found elsewhere [HKWT95].

The behavior of a timed automaton A depends on both its current location
and the actual values of all its clocks.

Definition 8.4. A clock valuation over a set of clocks C is a map ν that
assigns to each clock c ∈ C a value in R

≥0. With V (C) we denote the set of
clock valuations over C . For d ∈ R≥0, ν + d denotes the clock interpretation
which maps every clock c to the value ν(c) + d . For λ ⊆ C , ν[λ := 0] denotes
the clock interpretation for C which assigns 0 to each c ∈ λ, and agrees with ν
over the rest of the clocks.

A labeled transition system M with uncountably many states can be used
to define the possible behavior of a timed automata A . A state of M has to
be a pair 〈s , ν〉 such that s is a location of A and ν is a clock valuation for C
satisfying invariant InvA (s). Transitions of M represent either an elapse of time
or a transition of A .

Definition 8.5. The semantics of a timed automaton A is given by the LTS
M = 〈Q ,Q0,L,→〉, where

• Q = {〈s , ν〉 ∈ SA ×V (CA) | ν |= InvA (s)}
• Q0 ⊆ Q with 〈s , ν〉 ∈ Q0 iff s ∈ S0A and ν(c) = 0 for all clocks c ∈ CA

• L = ΣA ∪ R≥0

• →⊆ Q × L×Q , which could be either
– (〈s , ν〉, d , 〈s , ν+d〉) iff d ∈ R

≥0 and for all 0 ≤ d ′ ≤ d , ν+d ′ |= InvA (s)
– (〈s , ν〉, a, 〈s ′, ν[λ := 0]〉) iff (s , a, ϕ, λ, s ′) ∈ EA and ν |= ϕ

Due to dense-time clocks, the transition system M for a timed automaton A
has infinitely many states and operates on infinitely many symbols. Analysis of

204 Laura Brandán Briones and Mathias Röhl

safety requirements of real-time systems can be formulated as reachability prob-
lems for timed automata. Since the transition system M for a timed automaton
A is infinite, reachability analysis constructs a quotient called the region au-
tomaton by partitioning the uncountable state space into finitely many regions
[Alu99].

A timed automaton can be seen as accepting (or generating) timed words
and thereby defining a timed language. Two timed automata are said to be
equivalent if they accept the same timed language.

Definition 8.6. A timed word over an alphabet Σ is a finite sequence (a1, t1)
. . . (an , tn) of symbols ai ∈ Σ paired with nonnegative real numbers ti ∈ R≥0

that are nondecreasing (∀ i < n.ti < ti+1). A timed language over Σ is a set
of timed words over Σ.

Remark 8.7. Alur and Dill showed that a Büchi automaton (called region au-
tomaton) can be constructed that accepts exactly the set of untimed words that
are consistent with the timed words accepted by a timed automaton [AD94].
The construction of the region automaton is PSPACE-complete.

Remark 8.8. Alur and Dill showed the language inclusion problem to be undecid-
able for nondeterministic timed automata but solvable in PSPACE for determin-
istic timed automata. The problem of deciding the emptiness of the language of
a given timed automaton is PSPACE-complete for deterministic timed automata
[AD94].

Deterministic timed automata form an important subclass of timed automata
that are strictly less expressive than nondeterministic timed automata [AD94].
For timed automata to be deterministic multiple transitions starting at the same
location with the same label are only allowed if their clock constraints are mu-
tually exclusive. Thus, at most one of the transitions with the same action is
enabled at a given time.

Definition 8.9. A timed automaton 〈S ,S0, Σ,C , Inv ,E 〉 is called determin-
istic iff

• |S0| = 1, and
• for all s ∈ S , for all a ∈ Σ, for every pair of transitions of the form
〈s , a, ϕ1, λ1, s1〉 ∈ E and 〈s , a, ϕ2, λ2, s2〉 ∈ E , ϕ1 ∧ ϕ2 is unsatisfiable.

Definition 8.10. Timed automata with silent transitions are gained by ex-
tending Definition 8.2 such that for a transition (s , a, ϕ, λ, s ′) ∈ E an action a
can be in Σ ∪ τ , where Σ ∩ τ = ∅. A transition (s , a, ϕ, λ, s ′) is called a silent
transition (often called ε-transition) when a = τ . If, in addition λ = ∅ then we
speak of a silent transition without reset.

Remark 8.11. Whereas silent transition do not increase the expressiveness of
untimed automata they strictly increase the power of timed automata. Bérard
et al. showed silent transitions with clock resets that lie on a directed cycle to
be responsible for this increase in expressiveness [BPDG98].

8 Test Derivation from Timed Automata 205

8.3 Testing Event Recording Automata

Nielsen and Skou present a technique for the automatic generation of real-time
black-box conformance tests for non-deterministic systems [NS03]. They start
from a determinizable class of timed automata specifications called ERA, with a
dense time interpretation. The tests are generated using a coarse grained equiv-
alence class partition of the specification.

8.3.1 Model

Event Recording Automata (ERA) were proposed by Alur, Fix and Henzinger
[AFH94] as a determinizable subclass of timed automata and have language
inclusion as a decidable property (like all deterministic timed automata).

Like a timed automaton [AD94], an ERA has a set of clocks, which can be
used in guards (clock constrains) and be reset when an action is taken. In ERA,
however, each action a is uniquely associated with a clock ca , called the event
clock of a. Whenever an action a is executed the event clock ca is automatically
reset. No further clock assignments are permitted. The event clock ca thus records
the amount of time passed since the last occurrence of a. No silent τ -actions or
location invariants are permitted. These restrictions ensure determinizability
[AFH94].

Definition 8.12. An Event Recording Automaton (ERA) A is a tuple
〈S , s0, Σ,E 〉, where

• S is a non-empty (finite) set of locations
• s0 ∈ S is the initial location
• Σ is a finite set of actions
• E ⊆ S ×Σ × Φ(C) × S is the set of transitions

where
– C = {ca | a ∈ Σ} is the set of real-valued clocks
– Φ(C) is the set of clock constraints (or guards), these guards are gen-

erated by the syntax ϕ ::= γ | ϕ ∧ ϕ, where γ is a constraint of the
form c1 ∼ k or c1 − c2 ∼ k with: ∼ ∈ {≤, <,=, >,≥}, k a non-negative
integer constant, and c1, c2 ∈ C .

All actions are urgent, meaning that synchronization between two automata
takes place immediately when the parties have enabled a pair of complementary
actions. The complementary actions are actions by which the automata syn-
chronize, in our cases input and output actions, denoted as ?, ! respectively.
The requirement of urgent actions is needed because with non-urgent observable
actions the synchronization delay could be unbounded.

Example. Figure 8.2 shows an ERA which describe the behavior of the automatic
Light Switch. The initial location is indicated by double circle. Formally, the
ERA is given by 〈S , s0, Σ,E 〉, where

• S = {s0, s1}
• s0 is the initial state

206 Laura Brandán Briones and Mathias Röhl

• Σ = {on?, off !}
• E = {(s0, on?, true, s1), (s1, on?, con < 5, s1), (s1, off !, con = 5, s0)}

s0 s1

on?, true

off !,
con = 5

on?,
con < 5

Fig. 8.2. ERA specification for an automatic Light Switch [SVD01]

The determinization procedure for ERAs is given by Alur, Fix and Henzinger
[AFH94], and is conceptually a simple extension of the method used for the
untimed case, only now the guards must be taken into account.

8.3.2 Symbolic Representation

Timed automata (a network of ERAs) with a dense time interpretation cannot be
analyzed by finite state techniques, since the timed transition system associated
with it has infinitely many states. Therefore, it must be analyzed symbolically
[NS03]. Similar to the region automaton [Alu99] which partitions the state space
into finitely many regions, here zone is used instead, in the following way.

The state of a network of timed automata is represented by a pair 〈s , ν〉,
where s is the vector of the automata’s current location, and ν is the vector of
their current clock values. A zone z is a conjunction of clock constraints of the
form c1 ∼ k or c1−c2 ∼ k with ∼ ∈ {≤, <,=, >,≥} or equivalently, the solution
set to these constraints. A symbolic state [s , z] represents the (infinite) set of
states {〈s , ν〉 | ν ∈ z}.

Example. The graphical view of the symbolic state [s1, z] for the ERA of example
8.3.1, with z = con < 5 is shown in Figure 8.3.

Zones can be represented and manipulated efficiently by the difference bound
matrix (DBM) data structure [Bel57]. The use of zones allows us to compute:

• The symbolic state that results after take a transition from a given source
symbolic state
• The reachable state space. Forward reachability analysis starts in the initial

state (s0, 0) and computes the symbolic states that can be reached by execute
an action from an exists one, or by let time pass. When a new symbolic state
is included in one previously visited, no further exploration of the new state
needs to take place. Forward the reachability analysis terminates when no
new state can be reached

8 Test Derivation from Timed Automata 207

[s1, z],
z = con < 5,

0 1 2 3 4 5

0

1

2

3

con

coff ���
�

���

�
�

���

�
�

�
��

�
�

�
���

�
�

�
�

���

�
�

�
�

�
���

�
�

�
�

�
�

��

�
�

�
�

�
�

���

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
�

���

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
��

�
�

�
�

��

�
�

�
��

�
�

�
�

�
�

��

�
��
��)

Fig. 8.3. A symbolic state and the solution set corresponding to the zone z

• Given a symbolic path to a symbolic state, a concrete timed trace leading
to it (or a subset thereof) can be computed by propagating its constraints
back along the symbolic path used to reach it, and by choosing specific time
points along this trace

Remark 8.13. To ensure soundness of the produced tests, symbolic reachability
analysis is needed to select only states for testing that are reachable, and to
compute only timed traces that are actually part of the specification.

8.3.3 Testing

As opposed to exhaustive testing, a test selection criterion is used in this case (or
coverage criterion), i.e. a rule that describe which behavior or which requirements
should be tested. Coverage is a metric of completeness with respect to a test
selection criterion.

For real-time systems it is proposed to partition the clock valuations into
domains and ensure that each such domain is tested systematically.

Example. In our example of the automatic Light Switch, a partition domain for
con could be as shown in Figure 8.4.

0 1 2 3 4 5 con

coff

)(dom1

dom2

dom3

Fig. 8.4. ERA Domains Graph

The selection criterion used here is based on partition the state space of the
specification into coarse equivalence classes, and require that the test suite for

208 Laura Brandán Briones and Mathias Röhl

each class yields a set of required observations of the implementation when it is
expected to be a state in that class. Like in the Hennessy’s works [HN83], the
following abstract syntax is used:

(1) after σ must A,
(2) can σ,
(3) after σ must ∅
where σ ∈ Act∗ and A ⊂ Act . Informally, (1) is successful if at least one of
the observations in A (called a must set) can be observed whenever the trace
σ is served, (2) is successful if σ is a prefix of the observed system, and (3) is
successful if this not case (i.e. σ is not a prefix). Using this notation, each class
is decorated with the simple deadlock observations of the forms after ε must
A (a must property), after a must ∅ (a refusal property), and can a (a may
property) that should be satisfied in that class (this idea was taken from the
testing preorder).

A test case consists of a timed trace which lead to a desired state in a coarse
equivalence class followed by one of the simple deadlock observations.

Now, we present the state partitioning definition, which is used to construct
the equivalence class graph. This graph is a transformation of the initial au-
tomata, which preserve all the information from it. And moreover, the equiva-
lence class graph is what is effectively used in the test derivation process.

The State Partitioning works as follows. Let S ′ be a vector location in the
determinized automaton, note that S ′ can be a set of locations of the original
automaton. Therefore, this control location S ′ will have the clock valuations
partitioned such that two clock valuations belong to the same equivalence class
if and only if they enable precisely the same outgoing transitions from S ′, i.e.
the locations are equivalent with respect to the enabled transitions.

An equivalence class is represented by a pair [S ′, p], where S ′ is a set of
location vectors, and p is the inequation which describe the clock constraints
that must hold for that class, i.e. [S ′, p] is the set of states {〈S ′, ν〉 | ν ∈ p}.
Further, to obtain equivalence classes that are continuous convex polyhedra, and
to enable the reuse of existing efficient symbolic techniques (as used in model
checking), this constraint is rewritten in disjunctive normal form. Each disjunct
form is treated as an equivalence class.

Definition 8.14. State Partitioning Ψ(S ′)
Let S ′ be a set of location vectors, E (S ′) the set of transitions from a location
in S ′. If E is a set of transitions with Γ (E) we denote the set of guards of the
set E .

Γ (E) = {ϕ ∈ Φ(C) | s
ϕ,a−→ s ′ ∈ E}

Let P be a constraint over clock inequations γ composed using the logical
connectives (∧,∨, or ¬). DNF(P) denotes a function that rewrites constraint
P to its equivalent disjunctive normal form, i.e. such that

∨
i

∧
j γij = P . Each

conjunct in disjunctive form can be written as a guard ϕ ∈ Φ(C). The disjunctive
normal form can be interpreted as a disjunction of guards such that

∨
i ϕi =∨

i

∧
j γij . Let

8 Test Derivation from Timed Automata 209

Ψ(S ′) = {PE ′ | E ′ ∈ 2E(S ′) ∧ PE ′ =
∧

ϕ∈Γ (E ′)
ϕ ∧

∧

ϕ∈Γ (E(S ′)−E ′)
¬ϕ}

Then, the set of guards ϕi whose disjunction equals the disjunctive normal form
is denoted as GDNF, i.e,

GDNF(PE ′) = {ϕi ∈ Φ(C) |
∨

i ϕi = DNF (PE ′)}
and finally Ψdnf (S ′) is:

Ψdnf (S ′) =
⋃

PE′∈Ψ(S ′)
GDNF (PE ′).

To make this definition more understandable we show the next example.
Using our example of the automatic Light Switch, we present the procedure for
find the equivalences classes for S ′ = {s1}.

Example. Let S ′ = {s1}, then the transitions from S ′ are:

E (S ′) = {(s1, on?, con < 5, s1), (s1, off !, con = 5, s0)}

the guards of E (S ′) are:

Γ (E (S ′)) = {con < 5, con = 5}

only for simplicity we will present 2Γ (E(S ′)) instead of 2E(S ′):

2Γ (E(S ′)) = {∅, {con < 5, con = 5}, {con < 5}, {con = 5}}

and:

Ψ(S ′) = {(con ≥ 5) ∧ (con �= 5), (con < 5) ∧ (con �= 5),
(con ≥ 5) ∧ (con = 5), (con < 5) ∧ (con = 5)}

the disjunctive normal form of Ψ(S ′) is :

Ψdnf (S ′) = {con > 5, con < 5, con = 5, ∅}

Then we have: [s1, con > 5], [s1, con < 5] and [s1, con = 5] as states for our
equivalence class graph.

The state space of the ERA specification is a graph of equivalence classes.
A node in this graph corresponds to an equivalence class. A transition between
two nodes is labeled with an action, and represents the possibility of execute
an action in a state in the source node, wait some amount of time, and thereby
enter in a state in the target node. The graph is constructed by start from
an existing node [S ′, p] (initially the equivalence class of the initial location),
and then for each enabled action a, compute the set of locations S ′′ that can
be entered by execute the a action from the current equivalence class. Then
the partitions p′ of location S ′′ can be computed according to Definition 8.14.
Every [S ′′, p′] is then an a successor of [S ′, p]. Only equivalence classes whose
constraints have solutions need to be represented. The equivalence class graph
is defined inductively in the Algorithm 11.

Each equivalence class [S ′, p] is decorated with the action sets M ,C ,R from
the testing preorder, as it is shows in definition 8.15.

210 Laura Brandán Briones and Mathias Röhl

Algorithm 11 Equivalence Class Graph
input: ERA determinized specification Spec
output: A equivalence Class Graph

1 S ′
0 = {s0}

2 E = ∅ // E the set of transition
3 N = {[S ′

0, p] | p ∈ Ψdnf (S
′
0) ∧ p �= ∅} // N is the set of nodes

4 N ′ = N // N’ is the set of new nodes
5 while N ′ �= ∅ then
6 N ′′′ = ∅
7 foreach [S ′, p] ∈ N ′

8 foreach a ∈ Σ :

9 S ′′ = {s ′ | ∃ s ∈ S ′ : s
ϕ,a−→ s ′}

10 i f S ′′ �= ∅ then
11 N ′′ = {[S ′′, p′] | p′ ∈ Ψdnf (S

′′) ∧ p′ �= ∅}
12 E = E

⋃
{([S ′, p], a, [S ′′, p′]) | [S ′′, p′] ∈ N ′′ ∧ (p ∧ ϕ) �= ∅}

13 N ′′′ = N ′′′ ⋃ N ′′

14 N ′ = N ′′′ − (N ′′′ ⋂ N)
15 N = N

⋃
N ′

Definition 8.15. Decorated Equivalence Classes
Define Must([S ′, p])={A | ∃ 〈S ′, ν〉 : 〈S ′, ν〉∈ [S ′, p] : 〈S ′, ν〉 |= after εmust A}
Sort([S ′, p]) = {a | ∃ 〈S ′, ν〉 : 〈S ′, ν〉 ∈ [S ′, p] : 〈S ′, ν〉 a→}

• M ([S ′, p]) = Must([S ′, p])
• C ([S ′, p]) = Sort([S ′, p])
• R([S ′, p]) = Σ − Sort([S ′, p])

where ε denote the empty sequence.

If σ is a timed trace that lead to [S ′, p] and A ∈ M ([S ′, p]) then: after σ
must A, is a test to be passed for that class. Similarly: after σ · a must ∅, is a
test to be passed if a ∈ R([S ′, p]), and can σ · a if a ∈ C ([S ′, p]). The number
of generated tests can be reduced by remove tests that are logically passed by
another test, i.e. the must sets can be reduced to M ([S ′, p]) = min⊆Must([S ′, p])
(where min⊆(M) gives the set of minimal elements of M under subset inclusion),
and the actions observed during the execution of a must test can be removed
from the may tests, i.e. C ([S ′, p]) = Sort([S ′, p]) −

⋃

A∈M ([S ′,p])

A.

Example. The equivalence classes graph for the automatic Light Switch are
shown in Figure 8.5.

The equivalence class graph preserves all timed traces of the specification, and
the required deadlock information for the Hennessy test [HN83] of the specifica-
tion by the M , C and R action sets is stored in each node. The non-determinism
found in the original specification is therefore maintained, but is represented dif-
ferently, in a way that is more convenient for test generation: a test is composed

8 Test Derivation from Timed Automata 211

{s0}, p0

p0 : tt

{s1}, p1

p1 : con > 5

{s1}, p2

p2 : con < 5

{s1}, p3

p3 : con = 5

on?

on?

on?

on?

on?

on?

off!

Fig. 8.5. ERA Equivalence Class Graph for the Light Switch

of a trace (a deadlock observation possible in the specification thereafter) and
its associated verdict. This information can be simply found by following a path
in the equivalence class graph.

Even the equivalence class graph have the necessary information for gener-
ate timed Hennessy tests, it also contains behavior and states not found in the
specification, and use such behavior will result in irrelevant and unsound tests
(in the same way as in model checking after use zones it is necessary to make a
reachability analysis). To ensure soundness, only traces and deadlock properties
actually contained in the specification should be used in a generated test. There-
fore, the specification is interpreted symbolically, and the tests is generated from
a representation of only the reachable states and behavior.

Algorithm 12 represents the test generation procedure. Step 1 constructs the
equivalence class graph. The result of step 2 is the symbolic reachability graph.
Nodes in this graph consist of symbolic states [S ′, z/p] where S ′ is a set of
location vectors, and z is a constraint characterizing a set of reachable clock
valuations also in p, i.e. z ⊆ p. A transition represents that the target state is
reachable by execute an action from the source state and then wait for some
amount of time. The nodes in the reachability graph are decorated with the set
M , C and R. Step 4 initializes an empty set Tested that contains the symbolic
states from which test have to be generated so far. Steps 5 and further contain
the test generation process.

This algorithm only generates tests for the first symbolic state that reaches a
given partition, and uses the set Tested to ignore subsequent passes over the same
partition. This ensures that all the may, must, and refusal properties are only
generated once per partition, thus reduce the number of produced test cases.

This theory and algorithm have been implemented in a prototype tool called
RTCAT. RTCAT inputs an ERA specification in AUTOGRAPH format, see
[BRRdS96]. A specification may consist of several ERA operating in parallel and
communicating via shared clocks and integer variables, but no silent actions (τ)

212 Laura Brandán Briones and Mathias Röhl

Algorithm 12 Overall Test Case Generation
input: ERA specification Spec
output: A complete cover set of timed Hennessy properties

1 Compute Specp = Equivalence Class Graph(Spec)
2 Compute Specr = Reachability Graph(Specp)
3 Label every [S ′, z/p] ∈ Specr with the sets M ,C ,R
4 Tested := ∅
5 foreach [S ′, z/p] ∈ Specr // traverse Specr

6 i f � ∃ z ′ : [S ′, z ′/p] ∈ Tested then
7 Tested := Tested ∪ {[S ′, z/p]} // enumerate tests
8 Choose 〈s , ν〉 ∈ [S ′, z/p]

9 Compute a concrete timed trace σ from 〈s0, 0〉 to 〈s , ν〉
10 Make Test Cases:
11 i f A ∈ M ([S ′, p]) then after σ must A, is a relevant test
12 i f a ∈ C ([S ′, p]) then can σ · a, is a relevant test
13 i f a ∈ R([S ′, p]) then after σ · a must ∅, is a relevant test

are allowed. The application of this technique to a realistic specification shows
“promising results: the test suite is quite small, is constructed quickly, and with
a reasonable memory usage” [NS03].

8.4 Testing Deterministic Timed Automaton

Springintveld, Vaandrager and D’Argenio [SVD01] showed that exhaustive test-
ing of trace equivalence for deterministic timed automaton with dense time in-
terpretation is theoretically possible, but quite infeasible in practice. A grid
algorithm for bounded time-domain automaton is presented, which capture the
real-time behaviors using finitely many points.

8.4.1 Model

The timed I/O automaton model is used here, which is a finite (untimed) au-
tomaton together with a timing annotation. This model is equivalent to the
original timed automaton [AD94] with some restrictions in order to makes ex-
haustive test derivation feasible. A timed I/O automaton makes exhaustive test
derivation feasible if it does not have silent τ -transitions, is deterministic, is
input enabled and has isolated output as we will show later.

A finite automaton A ′1 is a rooted labeled transition system with Q (the
set of states) and E (the transition relation →) finite. We will fix some useful
notations and definitions. An execution fragment of the LTS A ′ is a finite or
infinite alternating sequence q0a1q1a2q2 . . . of states and actions of A ′ (ai ∈ LA ′

and qi ∈ LA ′), beginning with a state, and if it is finite also ending with a state,
1 the reason why we use A ′ instead of A here, is only notational. Then A ′ denote a

automaton and A will denote a timed automaton

8 Test Derivation from Timed Automata 213

such that for all i > 0, qi−1
ai→ qi . An execution of A ′ is an execution fragment

that begins with the initial state q0 of A ′. A state q of A ′ is reachable if it is
the last state of some finite execution of A ′. σ is a distinguishing trace of
q and q ′ if it is either a trace of q but not of q ′, or the other way around (for
the definition of traces see Appendix: Label Transition Systems). If δ ∈ E and
δ = (q, a, q ′) we denote src(δ) = q, act(δ) = a and trg(δ) = q ′.

Definition 8.16. Let B be an LTS. A relation R ⊆ QB×QB is a bisimulation
on B iff whenever R(q1, q2), then

• q1
a→ q ′

1 implies that there is a q ′
2 ∈ QB such that q2

a→ q ′
2 and R(q ′

1, q
′
2)

• q2
a→ q ′

2 implies that there is a q ′
1 ∈ QB such that q1

a→ q ′
1 and R(q ′

1, q
′
2)

States q, q ′ of LTSs B and B′, respectively, are bisimilar if there exists a bisim-
ulation R on the disjoint union of B and B′ (with arbitrary initial state) that
relates q to q ′. In such a case, we write : q � q ′. LTSs B and B′ are bisimilar,
notation B �B′, if q0 � q ′

0 for q0 the initial state of B and q ′
0 the initial states

of B′.

It is well known that if B is deterministic, for all states q, q ′ of B, B : q � q ′

if and only if traces (q) = traces(q ′). As a consequence, two deterministic LTSs
B and B′ are bisimilar iff they have the same sets of traces.

Let C be a set of clocks with c ∈ C , then define dom(c)
def
= J ∪ {∞},

were J is a bounded interval over R with infimum and supremum in Z and
intv(c)

def
= dom(c)−{∞}. The terms over C (denoted as T (C)) are expressions

generated by the grammar e := c | k | e+k , with c ∈ C and k ∈ Z
∞, i.e. Z∪{∞}.

Let F (C) be the boolean combinations of inequalities of the form e ≤ e ′ or e < e ′

with e, e ′ ∈ T (C). A (simultaneous) assignment over C is a function µ from C
to T (C), the set of all these functions is denoted as M (C). If ϕ is a constraint
over C and µ an assignment, then ϕ[µ] denotes the constraint obtained from ϕ
by replacing each variable c ∈ C by µ(c). Finally a clock valuation over C
is a map ν that assigns to each clock c ∈ C a value in its domain (this set of
valuations is denoted as V (C)). We say that ν satisfies ϕ, notation ν � ϕ, if ϕ
evaluates to true under valuation ν.

In the next definition is presented the timing annotation for a finite automa-
ton, which is a set of clocks, a set of invariants for each state, a set of guards,
which allowed the transition to be made of not, Ass the assignments for each
transition, and ν0 the initial clock valuation.

Definition 8.17. A timing annotation for a given finite automaton A ′ =
〈Q , q0,E 〉 is a tuple T = 〈C , Inv , Φ,Ass , ν0〉, where

• C is a finite set of clocks
• Inv : Q → F (C) associates an invariant to each state
• Φ : E → F (C) associates a guard to each transition

214 Laura Brandán Briones and Mathias Röhl

• Ass : E → M (C) associates an assignment to each transition s.t. for each
δ ∈ E :

Inv(src(δ)) ∧ Φ(δ)⇒
∧

c∈C

(Ass(δ)(c) ∈ dom(c)) ∧ Inv(trg(δ))[Ass(δ)]

• ν0 ∈ V (C) is the initial clock valuation. It should hold that ν0 � Inv(q0)
and, for all c, ν0(c) ∈ Z∞.

Above all, we present the timed I/O automata, which, as we already say, is a
finite automaton together with a timed annotation and some restrictions. These
restrictions are fundamentals to prove future theorems for the discretization of
the state space.

Definition 8.18. A timed I/O automaton (TIOA) is a triple A = 〈A ′,T ,P〉,
where A ′ is a finite automaton with LA ′ ∩R>0 = ∅ (to do not confuse labels of
actions with labels of time), T is a timing annotation for A ′ and P = (I,O) is a
partitioning of LA ′ in input actions and output actions. The following properties
must hold, for all δ, δ′ ∈ EA ′ and q ∈ QA ′ :

• (Determinism) if src(δ) = src(δ′), act(δ) = act(δ′) and Φ(δ) ∧ Φ(δ′) is
satisfiable then δ = δ′

• (Isolated outputs) if src(δ) = src(δ′), act(δ) ∈ O and Φ(δ) ∧ Φ(δ′) is satis-
fiable then δ = δ′

• (Input enabling) every input is always enabled within the interior of the
invariant of each location and only within it
• (Progressiveness) for every state of its operational semantics (OS (A), de-

fined as follows) there exists an infinite execution fragment that starts in
this state, contains no input actions, and in which the sum of the delays
diverges.

In order to not confuse, and following the previous implicit convention, in a
TIOA A we will use S as the set of locations and Σ as the set of actions. In
contrast to the associated operational semantics OS (A), where Q is the set of
states and L is the set of actions.

Example. Figure 8.6 depicts the timed I/O automaton which represent the Light
Switch.

The operational semantics of A (denoted as OS (A)) is defined as the LTS
〈Q ,L, q0,�〉, with Q , L and q0 similarly as in previous Definition 8.5, and
� being the smallest relation that satisfies the following two rules, for all
(s , ν), (s ′, ν′) ∈ Q , a ∈ Σ, δ ∈ E and d ∈ R>0:

• δ:s a→s ′, ν|=Φ(δ), ν′= ν◦Ass(δ)

(s ,ν)
a� (s ′,ν′)

8 Test Derivation from Timed Automata 215

s0
c =∞

s1
c � 5

on?, c =∞,
c := 0

off !, c = 5,
c :=∞

on?, c < 5,
c := 0

Fig. 8.6. TIOA specification for a Light Switch [SVD01]

• ∀ 0≤d ′≤d : ν⊕d ′|=Inv(s)

(s ,ν)
d� (s ,ν⊕d)

where the actions in R>0 are referred to as time delays and

(ν ⊕ d)(c)
def
=

{
ν(c) + d if (ν(c) + d) ∈ intv(c)
∞ otherwise

The following lemma, which is a direct corollary of the definitions, gives four
basic properties of the operational semantics of a timed I/O automaton.

Lemma 8.19. Let A be a TIOA, then

• OS (A) is deterministic
• OS (A) possesses Wang’s time additivity property:

q
d+d′
� q ′ iff ∃ q ′′ : q

d� q ′′ ∧ q ′′ d′
� q ′

• Each state of OS (A) has either
– a single outgoing transition labeled with

an output action, or �
���o!

�

– both outgoing delay transitions and outgoing
input transitions (one for each input action),
but no outgoing output transitions

�
���d

�

�
��
in?�

��
i1? · · ·

States of the second type are called stable
• For each state q ∈ QOS (A), there exists a unique finite sequence of output

actions σ and a unique stable state q ′ such that q
σ� q ′.

8.4.2 Discretization

The construction of a finite subautomaton used, for the discretization of the
state space, is based on the fundamental concept of a region due to Alur and

216 Laura Brandán Briones and Mathias Röhl

Dill [AD94]. The key idea behind the definition of a region is that, even though
the number of states of the LTS OS (A) is infinite, not all of these states are
distinguishable via constraints. If two states corresponding to the same location
agree on the internal parts of all the clock values, and also in the order of the
fractional parts of all the clocks, then these two states cannot be distinguished.

Definition 8.20. The equivalence relation ∼= over the set V (C) of clocks valu-
ations is given by: ν ∼= ν′ if and only if ∀ c, c′ ∈ C :

• ν(c) =∞ iff ν′(c) =∞
• if ν(c) �=∞ then �ν(c)� = �ν′(c)� and (fract(ν(c)) = 0 iff fract(ν′(c)) = 0)
• if ν(c) �= ∞ �= ν(c′) then fract(ν(c)) ≤ fract(ν(c′)) iff fract(ν′(c)) ≤

fract(ν′(c′))

where ∀ k ∈ R (in this case a valuation of a clock), �k� denotes the largest number
in Z that is not greater than k , and �k� denotes the smallest number in Z that is
not smaller than k and fract(k) is the fractional part of k (so fract(k)= k −�k�).

A region is an equivalence class of valuations induced by ∼=.

Example. Figure 8.7 shows the 11 regions of the con clock from the Light Switch.

0 1 2 3 4 5 con

coff

�

()
�

()
�

()
�

()
�

()[
→ ∞

Fig. 8.7. Regions of the con clock from the Light Switch example

Lemma 8.21. For all clock constraints ϕ:

if ν ∼= ν′ then ν � ϕ iff ν′ � ϕ

The equivalence relation∼= on the clock valuations of a TIOA can be extended
to an equivalence relation on states, by defining

(s , ν) ∼= (s ′, ν′)
def
= (s = s ′ ∧ ν ∼= ν′)

A region of a TIOA is an equivalence class of states induced by ∼=.
Because testing is based on distinguishing sequences (cf. Chapter 4), it is

necessary to have an automaton that can distinguish each sequences that is
used. Correspondingly, the Grid Automaton will be presented after present all
its necessary ingredients.

Let G
n be the set of integer multiples of 2−n , for some sufficiently large

natural number n. If t is a real number, we use the notation2 �t�n for the largest
2 do not confuse with the notation � without subindice

8 Test Derivation from Timed Automata 217

number in Gn that is not greater than t , and �t�n for the smallest number in
Gn that is not smaller than t . We write [t]n for the fraction (�t�n + �t�n)/2,
note that [t]n ∈ G

n+1. For a TIOA A and its OS (A) associated, write Qn for
the set of states (s , ν) ∈ Q such that, for each clock c, ν(c) ∈ Gn ∪ {∞}.

The following lemma shown that given any state (q) in Gn for all a ∈ Σ and
d ∈ Gn , labels of a transition in the semantic (�), the target state (q ′) of that
transition is also in Gn .

Lemma 8.22. Let q ∈ Qn , then

• If q
a� q ′ with a ∈ Σ then q ′ ∈ Qn

• If q
d� q ′ with d ∈ Gn then q ′ ∈ Qn .

Moreover, for a distinguishing trace of length m for two states in Qn , a trace
can be derived in which all delay actions are in the grid set Gn+m .

Theorem 8.23. Let A ,B be TIOAs and theirs associated semantics OS (A),
OS (B), let (r , r ′) ∼= (s , s ′) for states r ∈ QA , r ′ ∈ QB, s ∈ Qn

A and s ′ ∈ Qn
B,

and let σ = a1a2 . . . am be a distinguishing trace for r and r ′. Then there exists a
distinguishing trace τ = b1b2 . . . bm for s and s ′ such that, for all j ∈ [1, . . . ,m],
if aj is an input or output action then bj = aj , and if aj is a delay action then
bj ∈ Gn+j with �aj � ≤ bj ≤ �aj �.

This theorem allows to transform each distinguishing trace into one in which
all delay actions are in a grid set, and shown that there is a dependency between
the length of the trace and the granularity of the grid: the longer the trace the
finer the grid. This is due to the fact that the distinguish power of a distinguishing
trace for two states r and r ′ entirely depends on the regions traversed when
applying σ to r and r ′, respectively. Moreover, we can conclude that the grid
size depends on the number of states, not just on the number of clocks.

In order to obtain a grid size that is fine enough to distinguish all pairs of
different states, the following theorem establishes an upper bound on the length
of minimal distinguishing traces.

Theorem 8.24. Suppose A and B are TIOAs with the same input actions,
and r and s are states of OS (A) and OS (B), respectively : r �� s (with �
denoting bisimilarity 8.16). Then, there exists a distinguishing trace for r and
s of length at most the number of regions of QA ×QB.

Finally, we are in position of define the Grid Automaton. For each TIOA
A and natural number n, the grid automaton G (A ,n) is defined as the subau-
tomaton of OS (A) in which each clock value is in the set Gn ∪ {∞}, and the
only delay action is 2−n . Note that since in the initial state of OS (A) all clocks
take values in Z∞, it is always included as a state of G (A ,n). Moreover, since
G (A ,n) has a finite number of states and actions, G (A ,n) is a finite automaton.

Definition 8.25. Let A = 〈S , Σ, s0,E 〉 be a TIOA, its OS (A) = 〈Q ,L, q0,�〉
and n ∈ N . The grid automaton G (A ,n) is the LTS A ′′ = 〈Q ′,L′, q ′

0,�′〉 given
by

218 Laura Brandán Briones and Mathias Röhl

• Q ′ = Qn

• L′ = Σ ∪ {2−n}
• q ′

0 = q0

• for all q, q ′ ∈ Q ′ and a ∈ L′, q
a

�′ q ′ iff q
a� q ′.

The grid automaton is the restriction of OS (A) to the time steps in 2−n ,
therefore G (A ,n) is finite.

Example. In Figure 8.8 the grid automaton of our example of the Light Switch
for n = 2 is presented. Here we denote the initial state as << >>, for distinguish
it from the double circle denoting the initial state in a TIOA.

〈〈s0, c =∞〉〉

〈s1,
c = 5〉

〈s1,

c = 9
2 〉

〈s1,
c = 4〉

〈s1,

c = 7
2 〉

〈s1,
c = 3〉

〈s1,

c = 5
2 〉

〈s1,
c = 2〉

〈s1,

c = 3
2 〉

〈s1,
c = 1〉

〈s1,

c = 1
2 〉

〈s1,
c = 0〉

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

on?

on?

on?

on?
on?on?on?

on?

on?

on?

off !

Fig. 8.8. The grid automaton G (A , n) with A as the Light Switch automaton and
n = 2

Corollary 8.26. Let A and B be TIOA with the same input actions, and let
n be at least the number of regions of SA × SB, then

A �B iff G (A ,n) � G (B,n).

Using the grid automaton with the appropriate degree of granularity the
problem of decide bisimulation equivalence of TIOA is reduced to the problem
of decide bisimulation equivalence of their finite subautomata.

8.4.3 Testing

A test sequence for a TIOA A is a finite sequence of delays and input actions
of A (we denoted the set of this sequences as Exp). A test sequence σ can be

8 Test Derivation from Timed Automata 219

applied to A starting from any state s of its OS (A). The application of σ to
A in s uniquely determines a finite, maximal execution fragment in OS (A).

How to perform a test sequence is shown in the following definition. The
outcome of performing a test sequence on A is described in terms of an auxiliary
labeled transition system T .

Definition 8.27. The test sequence is the LTS T = 〈(Exp × Q), Σ, (ε, s0),�〉
with (Exp×Q) as its set of states, where Exp is the test sequence to be executed,
Σ is a set of actions, (ε, s0) is (arbitrarily chosen) initial state, and a transition
relation � that is inductively defined as the least relation satisfying the following
four rules, for all q, q ′ ∈ Q , σ ∈ Exp, i ∈ I, o ∈ O and d , d ′ ∈ R>0:

• q
o!� q ′

(σ,q)
o!� (σ,q ′)

• q
i?� q ′

(i?σ,q)
i?� (σ,q ′)

• q
d� q ′

(dσ,q)
d� (σ,q ′)

• q
d′� q ′, sup{t∈R>0|q

t�}=d ′<d

(dσ,q)
d′� ((d−d ′)σ,q ′)

The first rule says that output actions are always performed autonomously,
i.e. independently of the input of the intended test sequence. Instead, input
actions are only performed if they are explicitly specified in the test sequence.
This is stated by the second rule. Similarly, the third rule says that a delay can
occur only when it is both specified by the test sequence and allowed by A .
In some cases, a delay specified in the test sequence cannot occur since it is
interrupted by an autonomous output action of A . In such a case, the part of
the delay up to the output action is executed, while the rest is postponed until
A stops doing output actions autonomously. This last case is expressed by the
fourth rule.

Theorem 8.28. Let A a TIOA and T its test sequence, then

• each state of T has at most one outgoing transition, and
• T does not have an infinite execution fragment.

Theorem 8.28 allows us to define exec(σ, q) as the execution fragment of
OS (A) obtained by projecting the states in the unique maximal execution
fragment of T that starts in (σ, q) on their second component. We define
outcome(σ, q), the outcome of the sequence σ in state q, as the trace of the
execution fragment that is induced by performing the test sequence:

outcome(σ, q)
def
= trace(exec(σ, q))

220 Laura Brandán Briones and Mathias Röhl

Deriving and Applying a Test Suite It is assumed that the behavior of the
IUT (Implementation Under Test) is accurately modeled by a TIOA Impl. Then
the IUT conforms to the specification Spec if Impl is bisimilar to Spec.

The method of building test suites is similar to Chow’s classical algorithm
for Mealy machines [Cho78] (cf. Chapter 4). A test suite consists of a finite set
of test sequences which should be applied to the implementation. Each sequence
consists of the concatenation of two sequences. The initial part of a test sequence
is taken from a transition cover P for a grid subautomaton of Spec, i.e. a set of
test sequences that together exercise every transition of the subautomaton.

Definition 8.29. Let A be a TIOA, n ∈ N, A ′′ = G (A ,n). A transition cover
for A ′′ is a finite collection P ⊆ Expn of test sequences, such that ε ∈ P and,

for all transitions q
a

�′ q ′ of A ′′ with q reachable (within A ′′) and stable

(Definition 8.19), P contains test sequences σ and σ · a such that q0

σ

�′ q.

The trailing part of a test sequence is taken from a set Z , which is a char-
acterization set for a grid subautomaton of Impl, meaning that for every pair
of non-bisimilar grid states, Z contains a sequence that distinguishes between
them.

Definition 8.30. Let p a state of A , q a state of B, and let σ be a test sequence
for A and B. σ distinguishes p from q if outcomeA (σ, p) �= outcomeB(σ, q). If
Z is a set of test sequences for A and B, written p ≈Z q means that no test
sequence in Z distinguishes p from q.

The ability of always being able to bring the machine back to its initial
state is used. In the timed case, it is not reasonable to consider the reset as an
instantaneous operation: typically, some time will elapse between the moment
when it is requested the machine to go to its initial state, and the moment at
which the reset operation has been completed. But, it is not difficult to prove
that the maximal time that can elapse between the occurrence of a reset action
and the time at which the initial state is reached is always less than the number
of regions of A .

Then, the test suite is defined for a given TIOA as follows.

Definition 8.31. Let A be a TIOA and n ∈ N. Let P be a transition cover for
G (A ,n) and Z a characterization set for the TIOA model of the IUT. The test
suite for A generated from P and Z with grid size n is defined by

test-suite(A ,n,P ,Z)
def
= P · Z · {reset max}

i.e. the concatenation of the transition cover, the characterization set and the
reset time.

Definition 8.32. A state of a TIOA is quiescent if each execution fragment
starting in that state that contains an output action also contains an input
action.

8 Test Derivation from Timed Automata 221

Algorithm 13 is the testing algorithm that applies each test case from the
test suite to an implementation (the prove of correctness is showed in [SVD01]).
This algorithm is restricted to TIOAs with a quiescent initial state, where the
machine waits for stimulus from its environment before producing any output.

Algorithm 13 Test Generation
input: A TIOA Spec, the specification automaton, with reset action reset,

reset time max, and a quiescent initial state.
An Implementation Under Test (IUT), a device that accepts inputs from
ISpec and produces outputs in OSpec.

A natural number n.
A natural number m.

output: A verdict PASS or FAIL

1 Let X = ISpec ∪ {2
−n}

2 Determine a (minimal) finite transition cover P for G (Spec, n)
3 For all test sequences σ ∈ test-suite(Spec, n,P ,Xm−1) do
4 Apply test sequence σ to the IUT
5 Return FAIL and halt if outcome of the IUT differs from

outcomeSpec(σ, s0
Spec)

6 Return PASS and halt

This algorithm results in a huge number of sequences. Therefore, it cannot be
claimed to be itself of practical value. Rather, the major contribution here is the
TIOA model and the demonstration that an algorithm to derive a (complete)
test suite does exist. Moreover, there are ways to reduce the number of tests,
and make the time delays within the tests manageable [SVD01].

8.5 Testing Networks of UPPAAL Timed Automata

Cardell-Oliver [CO00] presents a test generation method for networks of deter-
ministic timed automata on a dense time base. Timed automata are extended
with persistent data variables and are allowed to have silent transitions. Test
generation is based on test views that partition events into visible (relevant) and
hidden events according to a certain test purpose. By only testing for visible
events the size of the resulting test suite can be reduced. The work presented
is a generalization of previous work by Cardell-Oliver and Glover [COG98] that
was applicable only for specifications with a discrete clock model.

8.5.1 Model

For model specification, UPPAAL timed automata [LPY97] are adopted. UP-

PAAL timed automata (UTA) extend Alur and Dill’s model of timed automata
with (integer) data variables. With UTA, networks of deterministic timed au-
tomata can be specified. This allows for closed world specifications of systems, i.e.

222 Laura Brandán Briones and Mathias Röhl

the behavior of an system’s environment can be specified explicitly. Synchroniza-
tion between components takes place by complementary actions of automata, i.e.
by simultaneous occurrence of an output event a! and an input event a?, with
a ∈ Σ, respectively. Each automaton Ai can use a set of integer variables Vari
that is a subset of a set of global integer variables Var . Guards on transitions
are extended to apply for both clocks and data variables.

Definition 8.33. An UPPAAL timed automata A is a tuple
〈S , s0, Σ,C , Inv ,E 〉, where

• S is a finite set of locations
• s0 is the initial location
• Σ = I ∪ O ∪ {τ} is a finite set of actions, partitioned into input actions,

output actions, and the silent action
• C is a finite set of (real-valued) clocks
• Inv : S → Φ(C) assigns clock invariants to locations
• E ⊆ S ×Σ × Φ(C ,VarAi)× 2R × S is the set of transitions.

Transitions (s , a, ϕ, r , s ′) ∈ E are denoted by s
a,ϕ,r−→ s ′, where a is the action

to be performed, ϕ the guard of the transition, and r a set of assignments for
clocks and data variables. Clock variables can be reset to an integer constant
l ∈ Z ∪ {−1}. A reset to −1 denotes a turn-off of the according clock variable.
Data variables can be reset to integer expressions of the form v := k ∗ v + k ′,
where v ∈ VarAi and k , k ′ ∈ Z. R is used to denote the set of all possible reset
operations.

Remark 8.34. The definition of UTA mainly follows the one presented by Bengts-
son et al. [BLL+95]. The definition given here omits urgent synchronization but
includes silent transitions as well as location invariants.

For testing purposes, clock constraints in guards and invariants are required
to be closed (< and > are not allowed) and domains for clocks and data variables
are required to be finite.

Asw

s0
s1

c ≤ 5

on?,
c ≤ 5,
{c :=0}

on?, true,
{c :=0}

off !, c = 5,
{c :=−1}

Aen

s0

on!, true, ∅

off ?, true, ∅

Fig. 8.9. UTA specification of the Light Switch Asw and its environment Aen

8 Test Derivation from Timed Automata 223

Example. The Light Switch can be defined by an UTA
Asw = 〈S , s0, Σ,C , Inv ,E 〉, where

• S = {s0, s1}
• Σ = {on, off }, with I = {on} and O = {off }
• C = {c}
• Inv(s0) = true, Inv(s1) = c ≤ 5
• E = {(s0, on?, true, {c := 0}, s1), (s1, on?, c ≤ 5, {c := 0}, s1),

(s1, on?, c = 5, {c := -1}, s0)}.

Specification of the environment can be done analogously (cf. Figure 8.9).

The definition of the semantics of UPPAAL timed automata is based on
timed transition systems with an uncountable set of states.

Definition 8.35. A timed transition system (TTS) over a set of actions
Σ and a time domain R≥0 is a tuple M = 〈Q ,L,−→, q0〉 of a set of states
Q , an initial state q0 ∈ Q , and a set of labels L ⊆ Σ ∪ R≥0, a transition
relation −→⊆ Q×L×Q that has to satisfy the following properties (∀ q, q ′, q ′′ ∈
Q ∧ ∀ d , d1, d2 ∈ R≥0):

• time determinism: if q d−→ q ′ ∧ q d−→ q ′′ then q ′ = q ′′

• time additivity: q d1+d2−→ q ′′ iff q d1−→ q ′ d2−→ q ′′

• 0-delay: q 0−→ q ′ iff q = q ′.

Since specifications of real-time systems in UPPAAL are generally networks
of automata, a LTS M has to be constructed for parallel compositions of UTA.
The set P = {p1, . . . , pn} is used to contain the names of all components that
are part of the specification, with pi being the name of the component specified
by the automaton Ai . The set of channels usable for synchronization is given by
Ch = (

⋃
i IAi) ∩ (

⋃
i OAi).

States of M are pairs (s , ν), where s is a vector holding the current control
locations for each component (automaton) and ν maps each clock to a value in
the time domain as well as each data variable to an integer value.

Transition labels of M are either delays d ∈ R≥0 or event triples (pi , a, r)
with pi being the name of the automaton executing an action a, that could
either be a silent action or an output action (which implies the occurrence of
an complementary input actions of another automaton). An action a leads to
the execution of a set of resets r that contains resets for clocks, variables, and
locations. Location resets explicitly denote a change of location of a component
which results in an update of the according element in s . The set of all possible
reset statements is given by R ⊆ 2

⋃
i RAi

∪Rs
i , with RAi being the usual resets of

Ai and Rs
i being the set of resets for locations of Ai .

Definition 8.36. The semantics of a network of UTA A1, . . . ,An is given by
the TTS M = 〈Q ,L,→, q0〉, where

• Q = {〈s , ν〉 | s[i] ∈ SAi , ν |= InvAi (CAi)}, ∀ 1 ≤ i ≤ n
• q0 = 〈s0, ν0〉 with s0[i] = s0Ai and ν0[i] = 0, ∀ 1 ≤ i ≤ n

224 Laura Brandán Briones and Mathias Röhl

• L = R≥0 ∪ (P ,Ch ∪ {τ},R)
• →⊆ Q × L×Q , that could be either

– 〈s , ν〉 d−→ 〈s , ν ⊕ d〉 iff ∀ i : ν ⊕ d |= InvAi (s [i])

– 〈s , ν〉
pi ,τ,r
−−−→ 〈s [s ′Ai

/sAi], ri(ν)〉 iff (si , ϕ, τ, ri , s ′i) ∈ EAi and ν |= ϕ, with
r = ri ∪ {sAi :=s ′Ai

}
– 〈s , ν〉

pi ,a,r
−−−→ 〈s [s ′Ai

/sAi , s ′Aj
/sAj], (ri ∪ rj)(ν)〉 iff (si , ϕi , a!, ri , s ′i) ∈ EAi ,

(sj , ϕj , a?, rj , s ′j) ∈ EAj , ν |= ϕi , and ν |= ϕj , with r = ri ∪ rj ∪ {sAi :=
s ′Ai

, sAj :=s ′Aj
}

For a variable assignment ν and a delay d , ν ⊕ d denotes the variable as-
signment after d . ⊕ models time-insensitiveness of all data variables and that
all enabled clocks progress at the same rate:

∀ v ∈ Var : (ν ⊕ d)(v) = ν(v), and

∀ c ∈
⋃

i CAi : (ν ⊕ d)(c) =
{
ν(c) + d if ν(c) ≥ 0

ν(c) if ν(c) = −1

Silent transitions result in the change of location of one component. Accord-
ing transitions in M express this change by replacing the ith element of the
location vector s by a new location s ′Ai

and applying the resets r to ν. Syn-
chronizations between two components involve two location transitions, one for
the sender Ai and one for the receiver Aj . Consequently the ith and the j th
element of s have to be replaced with s ′Ai

and s ′Aj
respectively, and the union of

transition resets ri ∪ rj has to be applied to ν.

Remark 8.37. The definition given here follows Bengtsson et al. [BLL+95] in
defining states as pairs of a location vector s and variable valuations ν.

An alternative to the use of a location vector would be to include for every
component pi a special variable loci , which holds the current location of the
according process, into the set Var . States could then be defined as S ⊆ (Var →
Z) ∪ (C → R≥0) [CO00].

Example. The possible behavior of the Light Switch specified by Asw in the
environment Aen is given by a TTS Ms = 〈Q ,L,−→, q0〉, where

• Q =
〈(

sAsw
sAen

)
, c → [0, 8]

〉
, with sAsw ∈ SAsw and sAen ∈ SAen

• q0 =
〈(

s0
s0

)
, c=0.0

〉

• L = [0, 8] ∪ ({sw , en}, {on, off }, {{c := 0, sAsw := s1}, {c := -1, sAsw := s0}})
(Resets for locations of the environment are omitted since Aen has only one
location.)

For testing we constrain the time domain to [0, 8]. Note that due to the dense
time domain, Ms has infinitely many states and infinitely many transitions (cf.
Figure 8.10).

8 Test Derivation from Timed Automata 225

〈(
s0
s0

)
,c=0.0

〉
. . .

〈(
s0
s0

)
,c=8.0

〉

〈(
s0
s0

)
,c=−1

〉

d′

8.0

〈(
s1
s0

)
,c=0.0

〉
. . .

〈(
s1
s0

)
,c=d

〉
. . .

〈(
s1
s0

)
,c=5.0

〉

en, on,
{c :=0,

sAsw
:= s1}

en, on, {c:=0, sAsw
:= s1}en, on,

{c :=0,
sAsw

:= s1}

d

5.0

en, on,
{c :=0,
sAsw

:= s1} en, on, {c :=0, sAsw
:= s1}

en, on, {c :=0, sAsw
:= s1}

sw, off ,
{c :=−1

sAsw
:= s0}

Fig. 8.10. Timed transition system Ms for Asw‖Aen

8.5.2 Digitization

Timed transition systems are not directly amenable to testing. Besides their
infiniteness, TTS traces include some traces that cannot be observed, e.g. de-
lays that are not followed by visible events. Furthermore, observable TTS traces
do not contain sufficient information to distinguish between input and output
events.

A testable timed transition systems is a TTS but also a (deterministic)
FSM. A TTTS Spec = 〈Q ,L,−→, q0〉 uses a subset Q ⊂ QM of states of the
original TTS. Labels of the TTTS are timed event 4-tuples (d , io, a, r) with
discrete delay d ∈ N, io ∈ {inp, out}, and a and r as in M . It is derived from a
TTS M executing the following steps:

(1) Digitize clocks: Each timed trace with times in R
≥0 is mapped onto a set of

traces with times in Z. For each reachable state q and for each delay d ∈ R≥0

within a lower and upper bound LB ≤ d ≤ UB after which an event a can
occur include for every i ∈ {LB ,LB + 1, . . . ,UB} a transition from 〈s , ν〉 to
〈s , ν ⊕ i〉 into the TTTS.

(2) Distinguish between inputs and outputs of the SUT: The set of network com-
ponents can be partitioned into automata specifying the system under test S
and automata describing the environment E of the SUT, with S ∩ E = ∅.
Each transition (pi , a, r) of a TTS becomes in the TTTS (0, inp, a, r) if
Ai ∈ E , or (0, out , a, r) if Ai ∈ S respectively.

(3) Distinguish between visible and invisible actions: Visible events of a TTTS
are defined by a test view V = (P ′ ⊆ P ,Var ′ ⊆ Var ,C ′ ⊆ C ,Ch′ ⊆ Ch). In
the TTTS all a ∈ Ch\Ch′ are replaced by τ . The reset set is reduced to only
contain resets for elements of s with p ∈ P ′, for variables v ∈ Var ′, and for
clocks c ∈ C ′. All states with equal values for visible variables are considered
to belong to the same visible equivalence class (q =V q ′ def

= ∀ pi ∈ P ′ ∀ v ∈
(Var ′ ∪ C ′) : ν(v) = ν′(v) ∧ s [i] = s ′[i], with q = (s , ν) and q ′ = (s ′, ν′)).

226 Laura Brandán Briones and Mathias Röhl

(4) Normalize TTTS: Not observable events could not be tested. Therefor, silent
events are elided and delays of these omitted events are added to their fol-

lowing visible events. Each transition sequence of the form q0

d1,inp,τ,{}
−−−−−−−−−→

q1

d2,out,a,r
−−−−−−−−−→ q2 is replaced by q0

d1+d2,out,a,r
−−−−−−−−−→ q2.

Subsequently, the TTTS has to be re-transformed into a deterministic tran-
sition system, since omitting events may have introduced non-determinism.
Note that, normalization is not allowed to remove cycles of silent actions. At
least one of the actions on such a cycle has to be made visible, i.e. the test
view V has to be changed, to get a proper TTTS.

(5) Minimize TTTS: remove all states that are redundant, i.e. all but one that
are in the same visible equivalence class and have the same set of traces.
There might be states that are in the same visible equivalence class but do
not have the same set of visible traces. Such states have to be kept.

〈(
s0
s0

)
,c=0

〉
. . .

〈(
s0
s0

)
,c=8

〉

〈(
s0
s0

)
,c=−1

〉

8, inp, τ, {}

1, inp, τ, {}

〈(
s1
s0

)
,c=0

〉 〈(
s1
s0

)
,c=1

〉 〈(
s1
s0

)
,c=2

〉 〈(
s1
s0

)
,c=3

〉 〈(
s1
s0

)
,c=4

〉 〈(
s1
s0

)
,c=5

〉

0, inp, on,
{c :=0

sAsw
:= s1}

0, inp, on,
{c :=0,
sAsw

:= s1} 0, inp, on, {c :=0, sAsw
:= s1}

1, inp,
τ, {}

2, inp, τ, {}
3, inp, τ, {}

4, inp, τ, {}

5, inp, τ, {}

1, inp,
τ, {}

1, inp,
τ, {}

1, inp,
τ, {}

1, inp,
τ, {}

0, inp,
on,
{c :=0,
sAsw

:= s1}

0, inp, on, {c :=0, sAsw
:= s1}

0, inp, on, {c :=0, sAsw
:= s1}

0, inp, on, {c :=0, sAsw
:= s1}

0, inp, on, {c :=0, sAsw
:= s1}

0, inp, on, {c :=0, sAsw
:= s1}

0, out, off ,
{c :=−1

sAsw
:= s0}

Fig. 8.11. A TTTS gained from TTS Ms after digitization and label transformation

Example. After digitization the TTS Ms is reduced to a TTTS with 15 states
(cf. Figure 8.11).

Let us now assume a test view V = (P ′,Var ′,C ′,Ch′), where P ′ = {pen},
Var ′ = Var = ∅, C ′ = C = {c}, and Ch′ = Ch = {on, off }. Since P ′ ⊂ P
does not contain the name of the switch component psw , valuations and resets
of the locations of the Switch become invisible. By using this view, and applying
normalization the set of states can be reduced to contain only 3 states. We get
the TTTS Spec = (Q ,L,−→, q0) , where

8 Test Derivation from Timed Automata 227

〈(
s0
s0

)
,c=0

〉 〈(
s0
s0

)
,c=−1

〉〈(
s1
s0

)
,c=0

〉
0, inp, on, {c :=0}

5, out, off , {c :=−1}

0, inp, on, {c :=0}

1, inp, on, {c :=0}

. . .
8, inp, on, {c :=0}

0, inp, on,
{c :=0}

. . .

5, inp, on, {c :=0}

Fig. 8.12. The TTTS Spec after the application of a test view, normalization, and
minimization

• Q = {q0, q1, q2} =
{〈(

s0
s0

)
, c=0

〉
,
〈(

s1
s0

)
, c=0

〉
,
〈(

s0
s0

)
, c=-1

〉}

• −→= {t1, . . . , t16} =
{

q0

0,inp,on,{c:=0}
−−−−−−−−−→ q1, . . . , q0

8,inp,on,{c:=0}
−−−−−−−−−→ q1,

q1

0,inp,on,{c:=0}
−−−−−−−−−→ q1, . . . , q1

5,inp,on,{c:=0}
−−−−−−−−−→ q1,

q1

5,out,off ,{c:=-1}
−−−−−−−−−→ q2, q2

0,inp,on,{c:=0}
−−−−−−−−−→ q1

}

(cf. Figure 8.12)

8.5.3 Testing

The conformance relation for testable timed transition systems is trace equiva-
lence. Formally, Conf(Spec)

def
= {S | traces(Spec) = traces(S)}. A test suite for

a TTTS Spec consists of one test case for every transition in Spec. A test case
essentially consists of three parts. The first part reaches the source state of a
transition. Secondly, the transition is executed. The third part has to verify that
the execution of the transition has resulted in the target state specified by Spec,
i.e. it is a state verification sequence.

The usage of test views dramatically simplifies the search for these separat-
ing sequences. With classical FSM testing techniques (without data variables and
test views) each state needs to be distinguished form any other in the automa-
ton (cf. Chapter 4). Since the normalization of the TTTS ensures that Spec is
minimal and does only contain visible events we know exactly in which state we
are after the execution of a certain trace (except for states that are in the same
visible equivalence class). Hence, the third part of a transition test needs only
to distinguish the target state of the transition to be tested from other states in
their visible equivalence class. There may not exist a unique separating sequence
for each such state (cf. Chapter 3), since traces of one state may be included
in traces of other states. To distinguish these states, the separating sequences
are paired with oracles that states whether the final event of the trace shall be
observed.

228 Laura Brandán Briones and Mathias Röhl

Please note, that even if Impl is deterministic, from the tester’s perspective
it does not behave deterministically, because events produced by the implemen-
tation may occur at different points in time. Since the tester has no capability to
control when output events of the SUT will eventually occur any possible trace
has to be considered for both reaching a state and distinguishing a state. One
of all possible reach traces, or separating traces respectively, had to be chosen on
the fly during execution of the test, depending on the actual occurrence of an
output event. If there is a trace that does not depend on the choices of the SUT
we only need to consider this one for testing.

The conformance test algorithm (cf. Algorithm 14) takes a TTTS Spec, con-
structed using a View V , as input and produces a finite set of traces each ac-
companied with an oracle (yes/no) for observing its final event.

Algorithm 14 TTTS Conformance Test Algorithm
input: TTTS Spec = 〈Q ,L,−→, q0〉, Test View V
output: Test(Spec)

1 Test(Spec) = ∅
2 for every q ∈ Q do
3 // find all acyclic traces, i.e. that visit no state more than once, ending at q

4 reach(q) = {σ | q0
σ−→ q ∧ acyclic(σ)}

5 for every q ∈ Q that is a transition’s destination state do
6 for each q ′ =V q do
7 // distinguish q from all states in the same visible equivalence class
8 if q = q ′ then σ = 〈〉
9 else // non trivial distinction of states

10 for every σ = l1 . . . ln with l1 . . . ln−1 ∈ traces(q) ∩ traces(q ′) do
11 if σ �∈traces(q) ∩ traces(q ′) then // σ distinguishes between q and q ′

12 // pair σ with oracle whether the final event should be observed
13 if σ ∈ traces(q) then diff(q , q ′)+ = σ ∗ yes
14 else if σ ∈ traces(q ′) then diff(q , q ′)+ = σ ∗ no
15 // Compose a test for every transition
16 for every t = (q1, l , q2) ∈−→ do
17 for each qi =V q2

18 Testfor(t) += σ1 · l · σi ∗ Ri , with σ1 ∈ reach(q1) and σi ∗ Ri ∈ diff (q2, qi)
19 Test(Spec) += Testfor(t)

Previous work did allow implementations to have extra states [COG98]. Now
it is claimed that “the assumption of a bounded, small number of extra states
is not appropriate for real-time systems” [CO00], because minor changes of a
timed automata specification can result in a very large change in the size of its
TTTS.

Definition 8.38. Real-Time Faults for TTTS: Impl ∈ NonConf(Spec) if and
only if

8 Test Derivation from Timed Automata 229

• Impl has no more states then Spec and
• Impl has a single transition fault or Impl can be transformed to Spec by a

sequence of single transition faults.

It can be shown that for a TTTS specification Spec, the test suite Test(Spec)
that is generated by the TTTS Test generation Algorithm detects any Impl
∈ Nonconf(Spec) [CO00]. If the implementation satisfies the test hypotheses
then all tests for Spec will be passed by the implementation if and only if the
implementation is trace equivalent to Spec.

Example. Spec = 〈QSpec,L,−→, q0〉, V = ({sen}, ∅, {c}, {on, off })

(1) Reach all states

• reach(q0) = {〈〉}
• reach(q1) = {〈0, inp, on, {c :=0}〉, . . . , 〈8, inp, on, {c :=0}〉}
• reach(q2) = {〈0, inp, on, {c := 0} · 5, out , off , {c := -1}〉, . . . , 〈3, inp, on,
{c :=0} · 5, out , off , {c :=-1}〉}

(2) Distinguish states in the same visible equivalence class: Since q0 is not a
destination state for some transition we do not need to distinguish between
q0 and q1 although both are in the same visible equivalence class. q2 has no
other state in its visible equivalence class. Therefor, all distinguishing traces
are trivial, i.e. {〈〉}

(3) Pair traces with oracles.

• diff(q1, q1) = {〈〉 ∗ yes}
• diff(q2, q2) = {〈〉 ∗ yes}

(4) Compose tests for every transition.

• testfor(t1) = 〈0, inp, on, {c :=0}〉 ∗ yes
• . . .
• testfor(t10) = 〈0, inp, on, {c :=0} · 1, inp, on, {c :=0}〉 ∗ yes
• . . .
• testfor(t15) = 〈0, inp, on, {c :=0} · 5, out , off , {c :=-1}〉 ∗ yes
• testfor(t16) = 〈0, inp, on, {c := 0} · 5, out , off , {c := -1} · 0, inp, on, {c :=

0}〉 ∗ yes

Since the tester has control over the event on we can choose one trace of all
possible reach() traces for each state, although the states may be reached by
different traces. If on were under control of the SUT we had to include all
possible reach() traces for the according states. Furthermore, if we allowed off
events to occur between an lower and upper time bound we had to include all
possible traces including an off event into the according reach sets.

Please note, that transitions with yes oracles may be included in longer tran-
sitions, e.g. testfor(t16) subsumes testfor(t1) and testfor(t15).

230 Laura Brandán Briones and Mathias Röhl

8.6 Summary

All three approaches use timed automata with a dense time model for testing
real-time systems. All need to partition the uncountable state space of the se-
mantics of (networks of) timed automata into a finite number of states considered
equivalent.

Nielsen and Skou use coarse-grained domains [NS03]. A fully automatic
method for the generation of real-time test sequences from a subclass of timed
automata called event-recording automata is proposed. The technique is based
on the symbolic analysis of timed automata inspired by the UPPAAL model-
checker. Test sequences are selected by covering a coarse equivalence class parti-
tioning of the state space. They argue that the approach provides a heuristic that
guarantees that a well-defined set of interesting scenarios in the specification has
been automatically, completely, and systematically explored.

Springintveld, Vaandrager and D’Argenio proved that exhaustive testing with
respect to bisimulation3 of deterministic timed automata with a dense time inter-
pretation is theoretically possible [SVD01]. Testing of timed systems is described
as a variant of the bounded time-domain automaton (TA). The TA describing
the specification is transformed into a region automaton, which in turn is trans-
formed into another finite state automaton, referred to as a Grid Automaton.
Test sequences are then generated from the Grid Automaton. The idea behind
the construction of the Grid Automaton is to represent each clock region with
a finite set of clock valuations, referred to as the representatives of the clock
region. However, although being exact, their grid method is impractical because
it generates “an astronomically large number of test sequences” [SVD01].

Cardell-Oliver presents a testing method for networks of deterministic timed
automata extended with integer data variables [CO00]. Checking of trace equiva-
lence is done only for parts of a system that are visibly observable. In addition to
the usual time-discretization test views are used to discriminate between states
depending on a test-purpose. Test views partition variables and events into vis-
ible and hidden ones. Equivalence on visible clocks and variables induces an
equivalence relation on states. States that are evidently different, i.e. that are in
different visible equivalence classes, need not be distinguished from each other.
This significantly reduces the length of test suites.

specs time det. τ network impl. rel. based on exhaustive

[NS03] ERA R
>0 √

trace inclusion testing preorder

[SVD01] TIOA R
>0 √ bisimulation W method

√

[CO00] UTA R
>0 √ √ √

bisimulation W method

Table 8.1. Comparison

In practice, time resources used for test case generation and execution should
be as small as possible and test coverage as high as possible. This general need on
3 In the case of determinism, bisimulation and trace equivalence coincide [vG01]

8 Test Derivation from Timed Automata 231

effectiveness becomes even more evident in real-time testing. Exhaustive testing
becomes infeasible for any system of considerable size. Some approaches for
testing real-time systems (cf. Chapter 13) gain practicability by dropping formal
rigorousness. However, safety-critical systems require for justified confidence into
their behavior. Make timed automata based testing applicable to systems of
realistic size, remains to be done.

9 Testing Theory for Probabilistic Systems

Verena Wolf

University of Mannheim
Lehrstuhl für Praktische Informatik II
vwolf@pi2.informatik.uni-mannheim.de

9.1 Introduction

The aim of this chapter is to give a survey of testing relations for probabilistic
systems. We summarize the relevant material on probabilistic extensions of the
work of De Nicola and Hennessy [dNH84] who defined implementation relations
for nondeterministic processes based on a notion of testing (see also Chapter
5). We mainly concentrate on the relative expressive power of the different pre-
orders1. All presented relations are primarily of theoretical interest and to the
best of our knowledge their usefulness in practical applications has not been
shown yet.
Testing can be described as recording the behavior of systems executing in a par-
ticularly designed environment. In the classical setting a (testing) environment
of a process P is simulated by considering the parallel composition P‖T of P
and a test process T (basically another nondeterministic process but equipped
with a set of success actions or states). De Nicola and Hennessy define P may T
if a success state can (may) be reached by P‖T and P must T if P‖T reaches
a success state on every run (execution). Two processes P ,Q are related if P
may (must, respectively) T implies Q may (must, respectively) T for all test
processes T .
In 1990, Ivan Christoff extended the classical testing theory to fully probabilistic
processes that are basically labeled transition systems enriched with probabilis-
tic information [Chr90]. He considered the parallel composition P‖T of a fully
probabilistic process P and a nondeterministic process T and analyzed the trace
distribution of (the fully probabilistic result) P‖T . Two fully probabilistic pro-
cesses P and Q are related if the trace distributions of P‖T and Q‖T coincide
for all possible test processes T . Additionally, Christoff constructed a charac-
terization by extended traces which are a denotational model simplifying the
development of algorithms for the computation of the preorder.
Two years later Cleaveland et al. presented a testing approach based on prob-
abilistic test processes [CSZ92]. They argued that the environment of a fully
probabilistic process P may also be probabilistic and accordingly, they applied
probabilistic test processes T , equipped with success states, and considered the
probability of reaching success in P‖T . Furthermore, they lifted extended traces

1 We use the term ”preorder” as synonym for ”testing relation” although it might be
the case that the respective relation is not transitive or transitivity has not been
shown.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 233-275, 2005.
 Springer-Verlag Berlin Heidelberg 2005

234 Verena Wolf

to probabilistic traces and proved that the resulting relation coincides with their
testing relation.
The classical theory of testing was also extended to probabilistic processes (also
called probabilistic automata [Sto02]) that are, informally stated, a mixture be-
tween nondeterministic and fully probabilistic processes. They are more abstract
than fully probabilistic processes but enriched with ”conditional probabilities”.
Five years after the seminal work of De Nicola and Hennessy, Larsen and Skou
extended the classical testing theory to probabilistic processes but instead of
considering the parallel composition, they defined a set of observations OT with
regard to a nondeterministic test process T and tested a probabilistic process
P by recording the probability of an observation o ∈ OT occurring in P . Two
probabilistic processes P and Q are related if for all test processes T and all
observations o the probability of o is equal in P and Q . Their probabilistic
extension of ordinary bisimulation coincides with this testing relation.
Jonsson and Yi also constructed testing relations for probabilistic processes
[JY95, JY02]. Their testing may-relation boils down to standard simulation for
non-probabilistic processes and can be characterized by a notion of probabilistic
simulation [JGL91].
Probabilistic processes are also considered by Segala and two preorders (may-
and must-testing) are constructed that act as a ”natural” extension of the clas-
sical may- and must-relations [Seg96]. Segala provides a characterization by the
trace and the failure distribution precongruence which is the probabilistic ex-
tension of trace inclusion with a congruence property.
Testing relations have also been examined for stochastic process algebras by
Bernardo and Cleaveland [BC00]. They are capable of modeling stochastic sys-
tems acting in continuous time and their underlying model are action-labeled
continuous-time Markov chains that are basically fully probabilistic processes
enriched with residence times. Bernardo and Cleaveland extended the testing
criteria for fully probabilistic processes by adding a time criterion and obtained
a strictly finer testing relation than for fully probabilistic processes.
Further approaches of testing probabilistic systems by Núñez et al., Stoelinga
and Vaandrager, Kumar et al., Wu et al. exist [NdFL95, SV03, KCS98, WSS94]
but are not treated here. We will describe the most important results of testing
probabilistic systems in a unified manner to make a comparison between all
the different approaches of probabilistic testing easier and present relationships
between the resulting preorders and their characterizations. We do not address
computability issues, because most authors use an infinite (or even uncountable)
set of tests to define implementation relations2, but try to find characterizations
that are less costly to compute. There are no practical applications mentioned
using probabilistic testing relations.

2 In contrast to the some of the previous chapters, we use the term ”implementation
relation” in a more general way, i.e. it designates all kinds of relations that are con-
structed to show that one process is more abstract than another where ”abstraction”
is not defined any further.

9 Testing Theory for Probabilistic Systems 235

Organization of the chapter: This chapter is organized as follows. In Section 9.2
we set up some notations and terminologies. Section 9.3 (9.4 and 9.5, respec-
tively) introduces fully probabilistic processes, probabilistic processes and action-
labeled continuous-time Markov chains and in Section 9.6 we discuss different
sets of test processes. Section 9.7 (9.8 and 9.9, respectively) presents a compo-
sitional way of testing fully probabilistic processes (probabilistic processes and
action-labeled continuous-time Markov chains, respectively) and in Section 9.10
we study the relationship between the different testing relations. Section 9.11
describes characterizations for each preorder and in Section 9.12 we treat the
testing approach of Larsen and Skou and establish the relation between testing
and bisimulation. Section 9.13 concludes the chapter.

9.2 Preliminaries

We start with some definitions used in the following sections.
Processes:

• In the following a non-probabilistic process is a rooted LTS3 C = (SC ,
Act,→C , sC). We fix the set of actions Act for all non-probabilistic pro-
cesses and briefly write C = (SC ,→C , sC). Moreover, the subscript of the
set of states, the transition relation and the initial state is always equal
to the name of the corresponding process. Let us denote by Actτ the set
Act∪{τ}. In the sequel, we sometimes use the term nondeterministic process
for a non-probabilistic process. Let NP denote the set of all non-probabilistic
processes.

• From now on, s , t , u, v ,w range over states of a non-probabilistic process and
a, b, c, d range over actions. Sometimes primes or indices are added.

• A state s is called terminal if it has no outgoing transitions, i.e. s �→C .
Otherwise s is called non-terminal.

• A non-probabilistic process C is finitely-branching if the set of outgoing
transitions of all s ∈ SC is finite, i.e.

{(s , a, s ′) | s a−→C s ′, a ∈ Actτ , s ′ ∈ SC}

is finite for all s ∈ SC . C is divergence-free if there is no infinite sequence
s0, s1, . . . with s0 = sC and si

τ−→C si+1 for all i ∈ N.

• A non-probabilistic process C = (SC ,→C , sC) is τ -free if →C⊆ SC ×Act×
SC .

• A finite path α in C is a sequence

α = s0 a0 s1 a1 . . . an−1 sn ,

where n ∈ N, s0 = sC , si
ai−→C si+1 for 0 � i < n and sn is terminal. Let

lstate(α) = sn denote the last state of a finite path α.
3 Rooted labeled transition systems are defined in the Appendix 22.

236 Verena Wolf

• A finite trace β is a sequence

β = a0 a1 . . . an−1 ∈ Act∗.

Let trace(α) denote the ordered sequence of all external actions occurring in
a finite path α. Note that finite paths always end up in a terminal state and
start in the initial state whereas traces can be arbitrary sequences of Act∗.

• We use the previous definitions of terminal states, τ -free, finitely-branching
and divergence-free non-probabilistic processes also for all the probabilistic
extensions that are defined later (the formal definitions are analogous). We
will use the term process for all kinds of processes considered in the sequel
and from now on all processes are divergence-free and finitely-branching.

Weight functions: A weight function on a countable set S is a function δ :
S → R�0. Let Weight(S) denote the set of all weight functions on S .
Distributions: µ ∈ Weight(S) is a distribution on a countable set S if∑

s∈S µ(s) = 1. Let supp(µ) = {s ∈ S : µ(s) > 0} and Distr(S) be the set
of all distributions on S . If s ∈ S then χs denotes the unique distribution on S
with

χs(t) =

{
1 if t = s ,

0 if t ∈ S \ {s}.

The product µ×λ of two distributions µ on a set S and λ on a set T is the
distribution on S × T defined by

(µ×λ)(s , t) = µ(s) · λ(t), s ∈ S , t ∈ T .

In the following λ, µ, π, σ will always denote distributions.
Probability spaces: A probability space is a tuple (Ω,A,P), where

• Ω is a nonempty set of outcomes,
• A ⊆ P(Ω) is a σ-algebra, i.e. Ω ∈ A and A is closed under countable union

and complement,
• P : A → [0, 1] is a probability measure, i.e. P(Ω) = 1, P(∅) = 0 and for

countably many pairwise disjoint A1,A2, . . . ∈ A we have
∑

i P(Ai) = P(
⋃

i Ai).

For C ⊆ P(Ω) let σ(C) denote the smallest σ-algebra containing C defined by

σ(C) =
⋂

C⊂A
A is σ-algebra on Ω

A.

A probability measure defined on an appropriate set C can be extended to a
unique probability measure on σ(C) (for details we refer to the book of Feller
[Fel68]).

Example. Consider Ω = [0, 1] and C = {]a, b] | 0 � a < b � 1}. Then σ(C) is
the set of all countable unions of closed or open subsets of [0, 1] and P(]a, b]) =
b − a can be extended to a unique probability measure (the so-called Lebesgue
measure) on σ(C).

�	

9 Testing Theory for Probabilistic Systems 237

9.3 Fully Probabilistic Processes

In this section, we consider fully probabilistic processes which are probabilistic
extensions of ordinary nondeterministic processes. In a fully probabilistic pro-
cess the process itself decides which action is performed next with regard to
the probabilities associated with the actions (in contrast to non-probabilistic
processes where the next action is chosen nondeterministically). So fully proba-
bilistic processes describe aspects of uncertainty or randomness in a system with
probability. Fully probabilistic processes can interact by performing actions syn-
chronized with the environment, but in contrast to nonprobabilistic processes
no nondeterminism exists to be resolved by an external user. They can also be
seen as the action-labeled extension of discrete-time Markov chains [KS76].

Definition 9.1. A fully probabilistic process is a tuple P = (SP ,→P , sP)
where

• SP is a countable set of states,

• →P⊆ SP ×Actτ × [0, 1]× SP is a transition relation such that for all s ∈ SP

∑

a,p,s′:
(s,a,p,s′)∈→P

p ∈ {0, 1},

• sP ∈ SP is an initial state.
�	

We simply write s
(a,p)−−−→P s ′ if (s , a, p, s ′) ∈→P . We call s

(a,p)−−−→P s ′ an outgoing
transition or an a-ransition of the state s . Let FPP denote the set of all fully
probabilistic processes and let Pra

P (s , s ′) denote the probability of an a-transition
from s to s ′, i.e.

Pra
P (s , s ′) =

∑

s
(a,p)−−−→Ps′

p.

Furthermore, for A ⊆ Actτ ,S ⊆ SP , s ′ ∈ SP let

PrA
P (s ,S) =

∑
a∈A

∑
s′∈S Pra

P (s , s ′),

PrA
P (s) = PrA

P (s ,SP),

Pra
P (s) = Pr{a}

P (s),

PrA
P (s , s ′) = PrA

P (s , {s ′}).

Sometimes we omit the subscript P if P is clear from the context.

Example. Figure 9.1 shows a fully probabilistic process P = (SP ,→P , sP) with
SP = {sP , u1, u2, u3, u4, v1, v2} and →P= {(sP , a, 0.5, v1), (sP , b, 0.5, v2), (v1, a,
0.2, u1), (v1, a, 0.8, u2), (v2, τ, 0.3, u3), (v2, b, 0.7, u4)}. We have Pra(sP , v1) = 0.5
and Pra (v1) = Pr{a,b}(sP) = 1, for instance.

�	

238 Verena Wolf

sP

u1 u2 u3 u4

v1 v2

(a, 0.5) (b, 0.5)

(a, 0.2) (a, 0.8) (τ, 0.3) (b, 0.7)

Fig. 9.1. An example of a fully probabilistic process.

9.3.1 Paths and Traces of Fully Probabilistic Processes

Similar as to non-probabilistic processes we define paths and traces in a fully
probabilistic process.

Definition 9.2. Let P = (SP ,→P , sP) ∈ FPP .

• A finite path α of P is a sequence

α = s0 a0 s1 a1 . . . an−1 sn ,

where s0 = sP , sn is terminal and si
(ai ,p)−−−→P si+1, p > 0 for 0 � i < n. As

before, lstate(α) = sn denotes the last state of a finite path α.

• An infinite path α of P is an infinite sequence

α = s0 a0 s1 a1 . . . ,

where s0 = sP and for 0 � i : si
(ai ,p)−−−→P si+1, p > 0.

• A finite trace β is a sequence

β = a0 a1 . . . an−1 ∈ Act∗.

• An infinite trace β is a sequence

β = a0 a1 . . . ∈ Actω.

Let trace(α) ∈ Actω be the ordered sequence of all external actions occurring
in a finite/infinite path α.

�	

Example. Consider P ∈ FPP in Example 9.3. We have, for instance, the finite
paths α1 = sP a v1 a u1 and α2 = sP b v2 τ u3 of P . P has no infinite paths.
Furthermore, we have trace(α1) = a a and trace(α2) = b.

�	

9 Testing Theory for Probabilistic Systems 239

We proceed with the construction of a probability space for sets of paths and
traces of P . We define the set of outcomes Ω as the set Path(P) containing all
finite and infinite paths in P . Furthermore, let C (α) ⊆ Ω denote the set of all
paths starting with the sequence α (also called a cylinder set) and let C be the
set of all C (α), where α is an alternating sequence of states and actions. We
define a probability measure PrP by induction on C as follows.

PrP (C (s0)) = 1 if s0 = sP and 0 otherwise,

PrP (C (s0 a0 s1 a1 . . . an−1 sn a′ s ′)) =

PrP (C (s0 a0 s1 a1 . . . an−1 sn)) · Pra′
P (sn , s ′).

PrP can be extended to a unique probability measure Prpath
P on σ(C). We briefly

write Prpath
P (α) for Prpath

P (C (α)).
We have a similar construction for traces of a fully probabilistic process P . The
set of outcomes is the set of all traces and the σ-algebra σ(C) is built with
cylinder sets of traces. We have for the probability of the cylinder set of all
traces starting with the sequence β ∈ Act∗:

Pr ′
P (C (β)) = Prpath

P ({α ∈ Path(P) | β is a prefix of trace(α)}).

Again it is possible to extend the probability measure Pr ′
P to a unique probability

measure Pr trace
P on σ(C). We briefly write Pr trace

P (β) for Pr trace
P (C (β)). We call

Pr trace
P the trace distribution of P , although

∑
β∈Actω Pr trace

P (β) might be
greater as one. We have

∑
β=trace(α),
α∈Path(P)

Pr trace
P (β) = 1 instead.

Example. For the paths α1, α2 in Example 9.3.1 (see also Figure 9.1) we have
that

Prpath
P (sP a v1 a u1) = 0.5 · 0.2 = 0.1,

Prpath
P (sP b v2 τ u3) = 0.5 · 0.3 = 0.15,

Pr trace
P (a a) = 0.5 · 0.2 + 0.5 · 0.8 = 0.5,

Pr trace
P (b) = 0.5.

�	

9.4 Probabilistic Processes

Probabilistic processes are another basic model for systems with probabilistic
phenomena. Probabilistic processes are the action-labeled extension of Markov
decision processes [Put94] and are also known (sometimes in a more general
form) as probabilistic automata [SL94]. Probabilistic processes are more abstract
than fully probabilistic processes because they can represent nondeterministic
behavior. They combine modeling probabilistic behavior and interaction with

240 Verena Wolf

sP

u1 u2 u3

µ λ

a b

1
2

1
2

2
3

1
3

Fig. 9.2. The probabilistic process P .

the environment by resolving nondeterminism. So one probabilistic process P
describes a set of fully probabilistic processes (here called resolutions of P). We
show how to find a way of splitting P into several resolutions, i.e. how to remove
nondeterminism and obtain a set of fully probabilistic processes (resolutions)
from P . A more detailed comparison between several models for probabilistic
systems can be found in the work of Glabbeek, Smolka and Steffen [vGSS95].

Definition 9.3. A probabilistic process is a tuple P = (SP ,→P , sP), where

• SP is a countable set of states,

• →P⊆ SP × Actτ ×Distr(SP) is a transition relation,

• sP ∈ SP is an initial state.
�	

We write s a−→P µ for a transition (s , a, µ) ∈→P and define PP as the set of
all probabilistic processes. A state s can have several nondeterministic alterna-
tives for the next transition. The destination of a transition s a−→ µ is chosen
probabilistically with regard to the distribution µ. For a transition s a−→ µ the
probability µ(s ′) for some s ′ ∈ supp(µ) can be seen as the conditional probability
of the target state s ′ given that transition s a−→ µ is chosen. This is motivated
by the idea that the external environment decides which action is performed
whereas the probabilistic choice determining the next target state is resolved
by the process itself. Of course, the external user cannot choose between two
transitions s a−→P µ and s a−→P µ′, µ �= µ′. We therefore have a kind of ”true”
nondeterminism in addition. Later on we will remove nondeterminism by adding
weights to every transition such that analyzing the process becomes less difficult.

Example. Figure 9.2 shows P = (SP ,→P , sP) ∈ PP with SP = {sP , u1, u2, u3},
→P= {(sP , a, µ), (sP , b, λ)}, µ(u1) = µ(u2) = 1

2 , λ(u2) = 2
3 and λ(u3) = 1

3 .
States are drawn as circles and distributions as boxes. Transitions s a−→P µ are
drawn as solid arrows and probabilistic choices are drawn as dashed arrows.

We can state that the probability of reaching u1 lies in the interval [0, 1
2] because

a higher probability than 1
2 is not possible even if the environment schedules the

9 Testing Theory for Probabilistic Systems 241

left transition. Furthermore, this probability can be 0 if the right transition is
chosen. In a similar manner we derive that the probability of reaching u2 lies in
the interval [12 ,

2
3]. In general we can assume that the left transition is taken with

probability p1, the right transition with probability p2 and that with probability
1 − (p1 + p2) no transition is chosen (the external user decides to do nothing).
Accordingly, in the following section we add weights to every transition.

�	

9.4.1 Removing Nondeterminism

The idea of adding weights to nondeterministic alternatives is also known as
randomized policies, schedulers or adversaries [Put94]. Sometimes the possibility
of scheduling no transition at all is omitted or all weights take only values in the
set {0, 1} (also called deterministic scheduler).
Adding weights means reducing P to a fully probabilistic resolution of P where
the (unique) probability of reaching certain states or performing certain actions
can be computed.
Definition 9.4.

• Let P = (SP ,→P , sp) ∈ PP and ⊥�∈ SP , stop �∈ Actτ . We extend Act to the
set Act ∪ {stop} and P to Stop(P) = (SP ∪ {⊥},→, sP) ∈ PP with

→=→P ∪ {(s , stop, χ⊥) | s ∈ SP}.

• Let Q = (SQ ,→Q , sQ) ∈ PP and let δ be a weight function on (SQ ×Actτ ×
Distr(SQ)) such that for all non-terminal states s ∈ SQ :

∑
a,µ:s

a−→µ
δ(s , a, µ) = 1.

In this case δ is called a weight function for P and δ(Q) = (SQ ,→, sQ) ∈
FPP is given by

s
(a,p)−−−→ s ′ iff δ(s , a, µ) ·

∑
µ:s

a−→µ
µ(s ′) = p.

• Let fully(P) be the set of fully probabilistic processes of P ∈ PP constructed
in the way previously described, i.e.

fully(P) = {δ(Stop(P)) | δ is a weight function for Stop(P)}.
�	

The stop-action models that no transition of P is chosen. This action always
ends in the terminal ⊥-state and no further executions are possible. Sometimes
the Stop(P) extension is called the halting extension of P .

Example. Figure 9.3 shows δ(Stop(P)) ∈ fully(P) where P is the probabilistic
process of Figure 9.2 and δ(sP , a, µ) = 1

2 , δ(sP , b, λ) = 1
3 , δ(sP , stop, χ⊥) = 1

6
and δ(ui , stop, χ⊥) = 1 for i = 1, 2, 3.

�	
We have already defined paths and traces in fully probabilistic processes. With
the help of the previous construction we analyze paths and traces in a proba-
bilistic process P by considering fully(P).

242 Verena Wolf

sP

u1 u2 ⊥ u3

(a, 1
4
) (a, 1

4
)

(b, 2
9
)

(stop, 1
6
)

(b, 1
9
)

(stop, 1)

(stop, 1) (stop, 1)

Fig. 9.3. Removing nondeterminism in a probabilistic process.

9.5 Action-Labeled Continuous-Time Markov Chains

Action-labeled continuous-time Markov chains (aCTMCs) are the underlying
model of stochastic process algebras like TIPP, EMPA and PEPA [GHR93,
BG96, Hil96] and the action-labeled extension of continuous-time Markov chains.
The difference between aCTMCs and fully probabilistic processes (as presented
in Section 9.3) is that the process acts in continuous time and an exponentially
distributed residence time X is associated with each state. Transition probabil-
ities are replaced by rates and the process remains X time units in the corre-
sponding state and chooses a successor state with regard to the probabilities
implicitly given by the rates. Thus, aCTMCs model real-world systems with
time-dependence and randomness.

Definition 9.5. An action-labeled continuous-time Markov chain M is
given by a tuple (SM , −→M , sM) where

• SM is a countable set of states,

• −→M ⊆ SM × (Actτ × R>0)× SM is a transition relation and

• sM ∈ SM is an initial state.

Furthermore, for all s ∈ SM the exit rate

E (s) =
∑

s′,a,r:
(s,a,r,s′)∈→M

r

is finite.
�	

Let ACTMC denote the set of all action-labeled continuous-time Markov chains.
We write s

(a,r)−−−→M s ′ for (s , a, r , s ′) ∈→M . We interpret an aCTMC as follows:

Every element s
(a,r)−−−→M s ′ corresponds to an a-transition in the chain from

state s to state s ′. Every transition has an associated stochastic delay with a
duration determined by r . If s has only one successor s ′, an a-transition to s ′ can
take place after a delay which lasts an exponentially distributed time period. We

9 Testing Theory for Probabilistic Systems 243

sM

u1 u2 u3 u4

v1 v2

(a, 2) (b, 1)

(a, 0.5)
(a, 2) (τ, 3) (b, 4)

Fig. 9.4. An example of an aCTMC.

use r as parameter of the exponential distribution such that the probability of
reaching s ′ in at most x time units equals 1−e−r ·x . If s has more than one tran-
sition a ”race” between all possible outgoing transitions starts after s is entered.

For each element s
(a,r)−−−→ s ′ an exponentially distributed random number with

regard to r is generated and the transition with the smallest value wins the race.
This means that after the shortest delay which is equal to the smallest value
of all generated random numbers, a transition to the corresponding state takes
place. Note that the minimum of random variables X1,X2, ... governed by an
exponential distribution with parameters r1, r2, ..., respectively, is exponentially
distributed with parameter r1 + r2 + So after entering s the chain remains
in s for a time period which is exponentially distributed with parameter

∑
i ri ,

when r1, r2, .. are the rates of all possible outgoing transitions of s .

Example. Figure 9.4 shows an aCTMC M = (SM ,→M , sM) with

SM = {sP , u1, u2, u3, u4, v1, v2} and →M= {(sM , a, 2, v1), (sM , b, 1, v2),

(v1, a, 0.5, u1), (v1, a, 2, u2), (v2, τ, 3, u3), (v2, b, 4, u4)}.

We have E (sM) = 3 and E (v1) = 2.5, for instance. Note that ”Markovian”
transitions are drawn with dashed arrows here.

�	
Now, we show how to transform an aCTMC to a fully probabilistic process
[BHKW03]. After this transformation we are able to use all definitions presented
in Section 9.3 for aCTMCs. The transformation is called embedding because the
continuous-time nature of the aCTMC is embedded into a discrete-time.

Definition 9.6. Let M = (SM ,→M , sM) be an aCTMC. Then the fully proba-
bilistic process φem(M) = (SM ,→, sM) is given by

s
(a,p)−−−→ s ′ iff s

(a,r)−−−→M s ′ and p = r/E (s).
�	

Since embedding does not change the probabilities of paths, only the time in-
formation is lost, we define paths and traces in an aCTMC M analogously to
paths and traces in φem(M). Let Path(M) = Path(φem (M)) denote the set of
all paths in an aCTMC M .

244 Verena Wolf

9.6 Test Processes

Testing a process is mostly done by simulating the process environment by an-
other process. The idea is to let the tested process run in parallel with a test
process . Test processes are special kinds of non-probabilistic, fully probabilistic
or probabilistic processes. In the following we consider three different classes of
test processes and we will discuss ”design criteria” for test processes.

9.6.1 Selection of Test Process Properties

To find a suitable method for simulating the environment of a process by a test
process, we have to distinguish between the three probabilistic models we have
(fully probabilistic processes, probabilistic processes and aCTMCs). But some
decisions are equal for all models:

• A frequently used approach is that no structural distinction exists between
test processes and tested processes, i.e. the test process and the tested pro-
cess are both fully probabilistic, probabilistic or aCTMCs, respectively. For
fully probabilistic processes some authors applied non-probabilistic test pro-
cesses [Chr90, LS91], whereas others applied fully probabilistic test processes
[CSZ92]. So in the remainder of the chapter we will consider both approaches.
For probabilistic processes we will only consider test processes that are prob-
abilistic process [Seg96, JY02]. To the best of our knowledge for aCTMCs
only one testing approach has been studied [BC00]. The tested aCTMC is
combined with a ”passive” aCTMC where the choice between external ac-
tions is non-probabilistic and the choice between internal actions is a ”race”.

• Very often authors restrict to finite test processes. It turns out that infinite
test processes offer no more distinguishing power than finite test processes
(proved for the non-probabilistic and for the probabilistic setting by Segala
[Seg96] and by Kumar et al. [KCS98]). This is caused by the fact that every
infinite path is considered to be unsuccessful. Thus, we only consider finite
test processes here, i.e. a test process is not able to perform an infinite
sequence of actions.

• In many approaches test processes are equipped with a set of success or fail-
ure states reporting whether the test was successful or not. Only Christoff
and Larsen et al. analyze the entire observational behavior of the process/test
process composition [Chr90, LS91]. For the former approach one can distin-
guish between success and failure and whether it is reached via an action
or a state. A test process can report ”success” by containing success actions
or success states. It is clear that the difference is of no importance. In our
setting we apply test processes equipped with a set of success states. It is
also possible to apply a test process with a single success state, though we
follow here the more general approach.

• Without loss of generality we can assume that test processes are acyclic
to ease the computation of success probabilities. Cycles can be removed by

9 Testing Theory for Probabilistic Systems 245

copying states, i.e. all states that can be reached by more than one path
from the initial state are copied such that the process becomes acyclic. It is
easy to verify that this does not change the resulting success or trace proba-
bilities of compositions with processes to be tested. Furthermore, we assume
that success states are terminal, i.e. they have no outgoing transitions. The
behavior of the process after reaching success is of no interest to us.

• We use test processes that are capable of performing internal actions and
test processes that are not. It is easy to see that in the non-probabilistic
setting of our chapter τ -actions do not increase the distinguishing power of
test processes. However, in the probabilistic setting they do which can be
seen by a trivial example (compare Example 9.7.2 on page 251).

Definition 9.7. Let T np
τ (T pp

τ , T fp
τ , respectively) be the set of all T ∈ NP (PP ,

FPP , respectively) that are finite-state and acyclic and have a set of success
states in addition. We call T ∈ T np

τ (T pp
τ , T fp

τ , respectively) a non-probabilistic
(probabilistic, fully probabilistic) test process. Let T np ⊂ T np

τ (T pp ⊂ T pp
τ ,

T fp ⊂ T fp
τ , respectively) be the set of all non-probabilistic (probabilistic, fully

probabilistic) test processes that cannot perform any τ -action.
�	

9.6.2 Test Processes for Fully Probabilistic and Probabilistic
Processes

Segala, Jonsson and Yi analyze probabilistic processes running in parallel with
a probabilistic test process that simulates a ”natural” environment for proba-
bilistic processes [Seg96, JY02].
In the parallel composition of a probabilistic process and a probabilistic test
process external actions are shared and forced to be performed in parallel and
τ -actions are carried out in isolation.

Definition 9.8. The parallel composition of P = (SP ,→P , sP) ∈ PP and
T = (ST ,→T , sT) ∈ T pp

τ is the probabilistic process P ‖ T = (SP × ST ,→
, (sP , sT)) with

→ ⊆ (SP × ST)× Actτ ×Distr(SP × ST)

such that for a �= τ the following holds:

(s , t) a−→ (λ×µ) iff (s a−→P λ ∧ t a−→T µ)

and

(s , t) τ−→ (λ×µ) iff (s τ−→P λ, µ = χt) ∨ (t τ−→T µ, λ = χs).
�	

Since T has a set of success states, we may have states in P‖T where the
second component is a success state. We call such states success states as well.

246 Verena Wolf

We present two approaches of constructing testing relations for probabilistic
processes in Section 9.8.
A fully probabilistic process P is analyzed by running in parallel with a non-
probabilistic test process or a fully probabilistic test process. Fully probabilistic
test processes have more distinguishing power than non-probabilistic ones as can
be seen by Example 6, page 263. We will discuss both approaches here and start
with the description of two different classes of non-probabilistic test processes
[Chr90].

Definition 9.9. Let T np,re ⊂ T np be the set of all T = (ST ,→T , sT) ∈ T np

with

(t a−→T t ′ ∧ t a−→T t ′′) =⇒ t ′′ = t ′.

Let T np,re
seq ⊂ T np,re be the set of all T = (ST ,→T , sT) ∈ T np,re with

(t a−→T t ′ ∧ t a′
−→T t ′′) =⇒ (a = a′ ∧ t ′′ = t ′).

�	
T np,re is the set of ”reactive” test processes, reactive in the sense that T ∈ T np,re

has no internal nondeterminism. T np,re
seq is the set of all sequential test processes

because in T ∈ T np,re
seq there is no choice at all between several transitions.

We apply non-probabilistic test processes here to fully probabilistic processes.
The parallel composition is defined as follows.

Definition 9.10. The parallel composition of P = (SP ,→P , sP) ∈ FPP
and T = (ST ,→T , sT) ∈ T np is the fully probabilistic process P‖T = (SP ×
ST ,→, (sP , sT)) with

(s , t)
(a, p

v(s,t))
−−−−−−→ (s ′, t ′) iff s

(a,p)−−−→P s ′ and t a−→T t ′,

(s , t)
(τ, p

v(s,t))−−−−−→ (s ′, t ′) iff s
(τ,p)−−−→P s ′ and t = t ′,

where a �= τ and v(s , t) =
∑

a∈Act | {t
a−→T t ′} | ·Pra

P (s) + Prτ
P (s).

�	
Note that the parallel composition of a fully probabilistic process and a non-
probabilistic test process that is able to perform τ -transitions is not sensible
here since there is no appropriate probability for an internal move of T in P‖T
and we do not want to abstract from the probabilistic information here at all.
Following the approach of Cleaveland et al. the environment of a fully probabilis-
tic process is simulated by a test process which is also a fully probabilistic process
[CSZ92]. The parallel composition of P ∈ FPP and T ∈ T fp

τ is a fully proba-
bilistic process P‖T that executes external actions of P and T synchronously
and internal actions in isolation. Here internal actions are treated as ”invisible”
for the environment and synchronizing over internal actions is not allowed.

Definition 9.11. The parallel composition of two fully probabilistic pro-
cesses P = (SP ,→P , sP) and T = (ST ,→T , sT) is P‖T = (SP × ST ,
→, (sP , sT)) ∈ FPP where for a �= τ

9 Testing Theory for Probabilistic Systems 247

(s , t)
(a,p)−−−→ (s ′, t ′) iff s

(a,p1)−−−−→P s ′ ∧ t
(a,p2)−−−−→T t ′ ∧ p = p1·p2

v(s,t) ,

(s , t)
(τ,p)−−−→ (s ′, t) iff s

(τ,p′)−−−→P s ′ ∧ p = p′
v(s,t) ,

(s , t)
(τ,p)−−−→ (s , t ′) iff t

(τ,p′)−−−→T t ′ ∧ p = p′

v(s,t) ,

where

v(s , t) =
∑

a∈Act Pra
P (s) · Pra

T (t) + Prτ
P (s) + Prτ

T (t).
�	

Note that 1
v(s,t) acts as normalization factor. The first possibility is that P and

T perform action a synchronously and the probability of this common action is
the normalized product of each single probability. The other two possibilities are
that a τ -action is performed independently. If T contains success states, we may
have states in P‖T where the second component is a success state. We call these
states in P‖T also success states (as before). All test processes are finite, thus,
the parallel composition of a fully probabilistic process and a fully probabilistic
test process is finite as well.

9.6.3 Test Processes for ACTMCs

A Markovian test process T simulates the environment of an aCTMC M and
behaves like a ”passive” aCTMC. All rates of external actions in T are zero

describing that an enabled transition s
(a,0)−−−→ s ′ is waiting for synchronization

(possibly for an infinite duration) whereas τ−actions must be executed with
non-zero rate. Passive rates are replaced by ”active” rates, i.e. rates that are
greater zero, during synchronization with M . The motivation is that the process
to be tested determines the ”speed” at which external actions happen whereas
the test process imposes no further delays (just observes) except by internal
transitions. Of course, a more stochastic environment might be also suitable for
an aCTMC but this approach has not been investigated yet.

Definition 9.12. A Markovian test process T is a tuple (ST ,→T , sT) where
ST is a finite set of states, sT ∈ ST an initial state and→T⊆ ST×Actτ×R�0×ST

with

s
(a,r)−−−→T s ′ =⇒

{
if a �= τ then r = 0,
if a = τ then r > 0.

Furthermore, T has a set of terminal success states A ⊆ ST and is acyclic. Let
T pa

τ denote the set of all Markovian test processes and T pa ⊂ T pa
τ the set of all

Markovian test processes without the ability to perform an internal action.
�	

Note that T pa is the set of all non-probabilistic test processes (without the
ability to perform internal actions), if we ignore the rate component 0 here. The
parallel composition of an aCTMC and a Markovian test process is defined as
follows.

248 Verena Wolf

T

test process

sT

... suc.

P

specification process

sP

...

sQ

Q

implementation process

...

P‖T
sP , sT

... suc.

Q‖T
sQ , sT

... suc.

”∃ suc. path?”

”∀ path: suc.?”nonprob. nonprob.

”Pr{suc.}?”
”Pr{trace α}?”

prob. prob.

Fig. 9.5. Compositional testing of processes.

Definition 9.13. The parallel composition of M = (SM ,→M , sM) ∈
ACTMC and T = (ST ,→T , sT) ∈ T pa

τ is M ‖T = (SM × ST ,→, (sM , sT)) ∈
ACTMC where
→ ⊆ (SM × ST)× Actτ × R>0 × (SM × ST)

is a transition relation such that for r > 0, a �= τ

(s , t)
(a,r)−−−→ (s ′, t ′) iff s

(a,r)−−−→M s ′ and t
(a,0)−−−→T t ′,

(s , t)
(τ,r)−−−→ (s ′, t ′) iff (s

(τ,r)−−−→M s ′, t ′ = t) or (t
(τ,r)−−−→T t ′, s ′ = s).

�	
Note that in M ‖T all passive rates of the test process are replaced by active
ones and therefore M ‖T ∈ ACTMC .

9.7 Compositional Testing of Fully Probabilistic
Processes

In the following we introduce the probabilistic extension of classical testing. The
idea is that we have an implementation process Q and a specification process P
and we want to know if Q implements P . The answer of this question is given
by a testing relation which is constructed in the following way (see Figure 9.5):
A test process T (with a set of success states) simulates an environment for the
two processes by running in parallel with P and Q , respectively. Informally, P
and Q are related in the non-probabilistic setting if the following holds (may-
testing):

The existence of a successful path4 in P‖T implies that a successful path
exists in Q‖T .

4 Recall that all considered paths here are ”maximal”, i.e. end up in an terminal state.

9 Testing Theory for Probabilistic Systems 249

or (must-testing):

If all paths in P‖T are successful then all paths in Q‖T are successful.

For fully probabilistic processes we do not distinguish between may- and must-
testing. There are two approaches to relate P ,Q ∈ FPP :

”The probability of all successful paths in P‖T is at most the probability
of all successful paths in Q‖T .”

and

The probability of any trace α in P‖T is at most the probability of α in
Q‖T .

Intuitively speaking, an implementation (Q) should be at least as successful as
the specification (P).

9.7.1 Testing with Non-probabilistic Test Processes

In this section, we present the approach of Christoff [Chr90]. He presents a testing
theory for fully probabilistic processes that is based on reactive, non-probabilistic
test processes without internal actions. Two fully probabilistic processes P and
Q are related with regard to their trace distributions while running in parallel
with a non-probabilistic test process. Note that T np,re is a proper subset of T np ,
the set of all non-probabilistic test processes (compare Definition 9.7, page 245).

Definition 9.14. [Chr90] Let P ,Q ∈ FPP .

• P �tr
CH Q iff ∀T ∈ T np,re

seq , α ∈ Act∗:

Pr trace
P‖T (α) � Pr trace

Q‖T (α).

• P �wte
CH Q iff ∀T ∈ T np,re , α ∈ Act∗:
∑

a∈Act Pr trace
P‖T (α a) �

∑
a∈Act Pr trace

Q‖T (α a).

• P �ste
CH Q iff ∀T ∈ T np,re , α ∈ Act∗:

Pr trace
P‖T (α) � Pr trace

Q‖T (α).
�	

Recall that T np,re
seq contains only ”sequential” test processes, so �tr

CH is coarser
than or equal to �wte

CH and �ste
CH . It turns out that �tr

CH can be characterized by
trace inclusion (hence, the superscript ”tr”), i.e.

P �tr
CH Q iff {β ∈ Act∗ | Pr trace

P (β) > 0} ⊆ {β ∈ Act∗ | Pr trace
Q (β) > 0}.

The probabilistic information gets lost due to the restrictions of the test pro-
cesses. Since �wte

CH compares the sum of the trace probabilities whereas the

250 Verena Wolf

u1 u3u2

sP sQ

v1 v2

w1 w2

(τ, 1
3
) (c, 1

3
)

(b, 1
3
)

(τ, 1
2
) (τ, 1

2
)

(c, 1) (b, 1)

z1

sT

b

z2

c

Fig. 9.6. P ∼tr
CH Q but P �∼wte

CH Q .

�ste
CH compares each single trace probability, it is clear that P �ste

CH Q implies
P �wte

CH Q . Hence, for P ,Q ∈ FPP we have

P �ste
CH Q =⇒ P �wte

CH Q =⇒ P �tr
CH Q .

In the following we will see that these implications can not be reversed. The
superscript is chosen due to the fact that �wte

CH is a ”weak testing preorder” com-
pared to the finer preorder �ste

CH (”strong testing preorder”). We denote the in-
duced equivalence relations by ∼i

CH= �i
CH ∩ (�i

CH)−1 where i ∈ {tr ,wte, ste}
and sometimes we write �CH and ∼CH instead of �ste

CH and ∼ste
CH , respectively.

Example. Figure 9.6 shows two fully probabilistic processes P and Q with P ∼tr
CH

Q but P �∼wte
CH Q . The latter can be seen by applying the test process T . Then

∑
a∈Act Pr trace

P‖T (a) = 2
3 <

∑
a∈Act Pr trace

Q‖T (a) = 1.

If we apply some T ′ ∈ T np,re
seq instead we always have Pr trace

P‖T ′(α) = Pr trace
Q‖T ′(α)

for all α ∈ Act∗.
In Figure 9.7 we have P ′ ∼wte

CH Q ′ but P ′ �∼ste
CH Q ′. The latter can be seen if we

apply the test process T in Figure 9.6 to P ′ and Q ′. We have that

1
4 = Pr trace

P ′‖T (c) < Pr trace
Q′‖T (c) = 1

3 .

It is easy to see that P ′′ ∼ste
CH Q ′′.

�	
Note that we obtain the same relations in Definition 9.14 by replacing the
probability distribution Pr trace

P (·) by the conditional probability distribution
Prctrace

P (·) defined as follows: For α ∈ Act∗ and a ∈ Act let

Prctrace
P (α a) =

{
Pr trace

P (α a)/Pr trace
P (α) if Pr trace

P (α) > 0,

0 otherwise.

This is an important fact, on which the proof of the characterization theorem 9.29
relies.

9 Testing Theory for Probabilistic Systems 251

u ′
1 u ′

3u ′
2

sP ′

w ′

sQ′

v ′
1 v ′

2

z ′

(τ, 1
4
)

(c, 1
4
)

(b, 1
2
)

(τ, 1
3
) (b, 2

3
)

(c, 1) (c, 1)

sP ′′

u ′′
1 u ′′

2

w ′′
1 w ′′

2

(a, 1
3
) (a, 2

3
)

(b, 1) (c, 1)

sQ′′

v ′′

z ′′
1 z ′′

2

y ′′
1 y ′′

2

(a, 1)

(τ, 1
3
) (τ, 2

3
)

(b, 1) (c, 1)

Fig. 9.7. P ′ ∼wte
CH Q ′ but P ′ �∼ste

CH Q ′ and P ′′ ∼ste
CH Q ′′ .

9.7.2 Testing with Fully Probabilistic Test Processes

In this section, we discuss the approach of Cleaveland et al. [CSZ92]. We want to
compare two fully probabilistic processes P and Q with regard to their testing
behavior in a ”probabilistic environment” (simulated by a fully probabilistic
test process). The idea is to consider T ∈ T fp

τ running in parallel with P and Q ,
respectively, and compute the total success probabilities in P‖T and in Q‖T .
Let A be the set of success states in P‖T . Compute the probability WP‖T of
reaching a success state in P‖T , i.e. let

WP‖T = Prpath
P‖T ({α ∈ Path(P‖T) | lstate(α) ∈ A}).

Recall that test processes are finite and acyclic here and success states are termi-
nal. Since P is divergence-free and finitely-branching, the previous probabilities
are well-defined.

Definition 9.15. [CSZ92] Let P ,Q ∈ FPP .

P �CL Q iff ∀T ∈ T fp
τ :WP‖T �WQ‖T .

�	
The idea of this relation is that the process P acting in the ”environment T”
should not have a greater success probability than Q acting in the same environ-
ment. Intuitively, we take Q as implementation process and P as specification.
So we have P �CL Q if the implementation is always doing as required or even
better than the specification. Let ∼CL= �CL ∩ (�CL)−1 denote the induced
equivalence relation. Cleaveland et al. showed that �CL and ∼CL coincide.
Note that a different definition of the parallel composition may result in a differ-
ent preorder. However, applying test processes T that are capable of performing
internal transitions yields (in contrast to the non-probabilistic case) a finer re-
lation than using τ -free test processes which can be seen with the following
example.

Example. Consider Figure 9.8 and assume P ,Q ,P ′,Q ′ ∈ FPP , T ∈ T fp
τ (success

states are drawn with bold lines here and in later figures). It can be shown

252 Verena Wolf

sP

v1 v2

u1 u2

w1 w2

(a, 1
2
) (a, 1

2
)

(b, 1) (b, 1)

(c, 1) (d , 1)

sQ

v

u ′
1 u ′

2

w ′
1 w ′

2

(a, 1)

(b, 1
2
) (b, 1

2
)

(c, 1) (d , 1)

sQ′

y

z

(τ, 1)

(a, 1)

sP ′

z ′

(a, 1)

sT

t1 t2

(a, 1
2
) (τ, 1

2
)

Fig. 9.8. P �CL Q but P ′ ��CL Q ′.

that P ∼CL Q but P and Q can be distinguished by the so-called probabilistic
bisimulation [LS91], see also Definition 9.32, page 271. Thus, ∼CL is coarser than
probabilistic bisimulation. Moreover Figure 9.8 shows that using τ -action in fully
probabilistic test processes increases the distinguishing power. P ′ and Q ′ can not
be distinguished by τ -free test processes but we have 1

2 =WP ′‖T >WQ′‖T = 1
3 .

�	

9.8 Compositional Testing of Probabilistic Processes

In this section we focus on the approaches of Segala[Seg96] and Jonsson and Yi
[JY02, JY95]. We apply a probabilistic test process T ∈ T pp

τ to P ,Q ∈ PP . The
following steps are necessary to construct a testing relation.

(1) Consider the parallel composition P‖T ∈ PP and construct the set of fully
probabilistic processes fully(P‖T) (as described in Section 9.4.1, page 241).

(2) For every fully probabilistic process P ′ ∈ fully(P‖T) construct a probability
space for all paths and traces in P ′ (with probability measures Prpath

P ′ and
Pr trace

P ′).

(3) Compute vectors of success probabilities as follows. Let A = {w1, . . . ,wm} be
the set of success states in T . Compute for any i ∈ {1, . . . ,m} the probability
WP ′(wi) of reaching a state (s ,wi) in P ′, i.e. let

WP ′(wi) = Prpath
P ′ ({α ∈ Path(P ′) | ∃ s ∈ SP : lstate(α) = (s ,wi)}).

Note that since T is finite and acyclic and P is divergence-free, no infinite
paths in P ′ exist, so WP ′(wi) is well-defined.

(4) Compute also the total success probability WP ′ =
∑m

i=1 WP ′(wi).

9 Testing Theory for Probabilistic Systems 253

Definition 9.16. [Seg96] Let P ,Q ∈ PP .

• P �may
SE Q iff for all T ∈ T pp

τ :

∀P ′ ∈ fully(P‖T) : ∃Q ′ ∈ fully(Q‖T) :WP ′(w) �WQ′(w)

for all success states w in T .

• P �must
SE Q iff for all T ∈ T pp

τ :

∀Q ′ ∈ fully(Q‖T) : ∃P ′ ∈ fully(P‖T) :WP ′(w) �WQ′(w)

for all success states w in T .

We write P �SE Q iff P �may
SE Q and P �must

SE Q .
�	

The motivation of �may
SE is that each resolution of P‖T should have a success

probability not greater than at least one resolution of Q‖T . This is an implemen-
tation relation if we take Q as implementation process and P as specification.
It is also possible to interpret success as ”error” and motivate it the other way
round, i.e. P acts as implementation process and Q as specification.
In the must-preorder the quantifiers over the fully probabilistic processes of P‖T
and Q‖T are exchanged (compared with the may-testing relation) and it requires
that all elements of fully(Q‖T) have a greater or equal success probability than
at least one element of fully(P‖T).

Example. Figure 9.9 shows two probabilistic processes P and Q (similar to Ex-
ample 9.7.2). Transitions to distributions which assign probability one to a cer-
tain state, like (sQ , a, χv), for instance, are omitted in the picture and an arrow
is directly drawn from the state sQ to v instead. It can be seen that P ��may

SE Q
and P �must

SE Q as follows.
If we test P and Q with T , for example, we have to remove two nondeterministic
choices in P‖T and one in Q‖T (compare Figure 9.10). Let x1, x2 ∈ [0, 1],
x1 + x2 � 1 and let δ′ be a weight function for Stop(Q‖T) with

δ′((v , v ′′), b, µ×χu′′
1
) = x1,

δ′((v , v ′′), b, µ×χu′′
2
) = x2,

δ′((v , v ′′), stop, χ⊥) = 1− (x1 + x2).

Then we choose a weight function δ for Stop(P‖T) with

δ((v1, v ′′), b, χ(u1,u′′
1)) = x1,

δ((v1, v ′′), b, χ(u1,u′′
2)) = 1− x1,

δ((v2, v ′′), b, χ(u2,u′′
1)) = 1− x2,

δ((v2, v ′′), b, χ(u2,u′′
2)) = x2.

Let P ′ = δ(Stop(P‖T)) and Q ′ = δ′(Stop(Q‖T)) be the fully probabilistic result
after the stop-transformation and applying δ and δ′ to P‖T and Q‖T , respec-
tively. We have WP ′(w ′′

1) = WQ′(w ′′
1) = 0.5 · x1 and WP ′(w ′′

2) = WQ′(w ′′
2) =

254 Verena Wolf

sP

λ

v1 v2

u1 u2

w1 w2

a

1
2

1
2

b b

c d

sQ

µ

v

u ′
1 u ′

2

w ′
1 w ′

2

a

b

1
2

1
2

c d

sT

v ′′

u ′′
1 u ′′

2

w ′′
1 w ′′

2

a

b b

c d

Fig. 9.9. P �must
SE Q , but P ��may

SE Q .

sP , sT

λ×χv′′

v1, v
′′ v2, v

′′

u1, u
′′
1 u2, u

′′
1u1, u

′′
2 u2, u

′′
2

w1,w
′′
1 w2,w

′′
2

a

1
2

1
2

b b b b

c d

sQ , sT

v , v ′′

µ×χu′′
1

µ×χu′′
2

u ′
1, u

′′
1 u ′

2, u
′′
1 u ′

1, u
′′
2 u ′

2, u
′′
2

w ′
1,w

′′
1 w ′

2,w
′′
2

a

b b

1
2

1
2

1
2

1
2

c d

Fig. 9.10. The parallel composition of P ,Q with test process T from Figure 9.9.

0.5 · x2. In a similar way we can find for all test processes T ′ a weight function δ
for Stop(P‖T ′) with regard to all possible weight functions δ′ for Stop(Q‖T ′).
Thus we have P �must

SE Q .

It is easy to verify that P ��may
SE Q . Let δ be a weight function for Stop(P‖T)

with

9 Testing Theory for Probabilistic Systems 255

δ((v1, v ′′), b, χ(u1,u′′
1)) = x1,

δ((v1, v ′′), b, χ(u1,u′′
2)) = 1− x1,

δ((v2, v ′′), b, χ(u2,u′′
1)) = 1− x2,

δ((v2, v ′′), b, χ(u2,u′′
2)) = x2.

where x1 > 0.5 and x2 � 0.5. Then it is not possible to find a weight function
for Stop(Q‖T) such that the inequality of Definition 9.16 is fulfilled.
We also have Q �may

SE P and Q �must
SE P which can be seen in a similar way.

�	
Segala also provides analogous relations where infinite test processes are applied
and showed that the finite and the infinite one, respectively, coincide [Seg96].
Note that �may

SE boils down to the standard may-testing relation of De Nicola and
Hennessy and �must

SE boils down to the standard must-testing relation (compare
Section 9.10) when omitting probabilities. Furthermore, a characterization for
�may

SE is presented in Section 9.11.
The preorders of Jonsson and Yi compare the total success probability of two
finite and τ -free probabilistic processes P and Q by applying a probabilistic test
process T ∈ T pp [JY02]. Their construction of a fully probabilistic process from
P‖T and Q‖T is more restrictive than the one presented in Section 9.4.1. The
weight function δ takes only values in the set {0, 1} and there is no possibility
of scheduling no transition at all, i.e. they do not add stop-transitions to a ⊥-
state. That is, a unique transition is chosen from each state. So if we consider
the discussion of Example 9.4, page 240 we are now analyzing the limits of the
intervals which are specified by nondeterministic alternatives. In this case there
are only two possible weight functions in Example 9.4:

δ1(s0, a, µ) = 1, δ1(s0, b, λ) = 0 or δ2(s0, a, µ) = 0, δ2(s0, b, λ) = 1.

Let

fully{0,1}(P) = {δ(P) | δ is a weight function for P with

δ : (SP × Act×Distr(SP))→ {0, 1}}

be the set of all fully probabilistic process obtained from P (similar to Defi-
nition 9.4 but without the additional ⊥-state and stop-transitions). Note that
every element of fully{0,1}(P) is also an element of fully(P), if we add the ⊥-state
and the stop-transitions weighted with zero.
It is an interesting open question whether Segala’s treatment of nondeterministic
choices is more expressive regarding testing relations, because Jonsson and Yi
work only with ”limits” of intervals of probabilities whereas Segala analyzes all
possible probabilities that are provided by the process.

Definition 9.17. [JY95, JY02] Let P ,Q ∈ PP be τ -free.

• P �may
JY Q iff for all T ∈ T pp :

maxP ′∈fully{0,1}(P‖T)WP ′ � maxQ′∈fully{0,1}(Q‖T)WQ′ .

256 Verena Wolf

• P �must
JY Q iff for all T ∈ T pp :

minP ′∈fully{0,1}(P‖T)WP ′ � minQ′∈fully{0,1}(Q‖T)WQ′ .

We write P �JY Q iff P �may
JY Q and P �must

JY Q .
�	

Two processes P and Q are related in �may
JY if the ”best” fully probabilistic

resolution of P‖T has a total success probability that is at least the total success
probability of the best fully probabilistic resolution of Q‖T . Note that�may

JY boils
down to ordinary simulation [Jon91] (when probabilities are omitted) which is
another implementation relation for non-probabilistic processes [Jon91].
A non-probabilistic process Q simulates a non-probabilistic process P if Q can
”simulate” every step of P . The converse must not necessarily hold.
Jonsson and Yi also showed that �may

JY coincides with their probabilistic simu-
lation [JY02].
Note that if P �JY Q the process Q is bounded in some sense by P (so again
we assume that Q has the role of the implementation and P the role of the
specification). The total success probabilities of Q have to lie in the interval

[minP ′∈fully{0,1}(P‖T)WP ′ ,maxP ′∈fully{0,1}(P‖T)WP ′].

Thus P is a more abstract resolution of Q and the requirements in P are fulfilled
in this case because the ”worst” resolution of Q‖T is at least as good as the
worst resolution of P‖T .

Example. Consider P and Q in Figure 9.9, page 254. It can be shown that
Q �JY P . The composition with T , for example, yields

{0.5} = {WQ′ | Q ′ ∈ fully{0,1}(Q‖T)}
⊂ {WP ′ | P ′ ∈ fully{0,1}(P‖T)} = {0, 0.5, 1}.

�	

9.9 Compositional Testing of Markovian Processes

In this section, we briefly sketch a testing theory for action-labeled Markov chains
as proposed by Bernardo and Cleaveland [BC00]. The idea of defining a notion
of testing for aCTMCs is very similar to the approaches for fully probabilistic
processes in Section 9.7 but here two quantities are taken into account when
testing M1,M2 ∈ ACTMC with a Markovian test process T ∈ T pa

τ :

(1) For i ∈ {1, 2} consider all paths α in the fully probabilistic embeddings
M ′

i = φem(Mi‖T) ∈ FPP with success state lstate(α) and calculate their
probabilities where Prpath

Mi‖T := Prpath
M ′

i

5.

5 Here the path distribution of an aCTMC M is equal to the path distribution of the
embedded fully probabilistic process φem(M)

9 Testing Theory for Probabilistic Systems 257

sM1

u1 u2

(a, r) (a, r)

sM1 , sT

u1,w u2, w

(a, r) (a, r)

sT

w

(a, 0)

sM2

v

(a, 2r)

sM2 , sT

v ,w

(a, 2r)

Fig. 9.11. M1 ∼BC M2.

(2) The expected duration t(α) of a path α in Mi‖T is given by:

t(α) =

0 if α = s ,

1
E(sn) + t(s0 a0 s1 a1 . . . an−1 sn) if α = s0 a0 s1 a1 . . . an−1 sn a′ s ′.

Recall that E (s) is the sum of all outgoing rates of s . The expected residence
time in s is given by 1

E(s) . Thus, t(α) adds up all expected residence times of

states visited by α. LetW�x
Mi‖T denote the probability of all paths with expected

duration x ∈ R�0 that end up in a successful state, i.e.

W�x
Mi‖T = Prpath

Mi‖T ({α ∈ Path(Mi‖T) | t(α) � x ∧ lstate(α) is a success state}).

Definition 9.18. [BC00] Let M1,M2 ∈ ACTMC .

M1 �BC M2 iff ∀T ∈ T pa
τ : ∀ x � 0 : W�x

M1‖T �W�x
M2‖T .

We write M1 ∼BC M2 iff M1 �BC M2 and M2 �BC M1.
�	

A more natural approach would conceivably be considering the probability of
reaching a success state within x time units (instead of using the expected dura-
tion). This approach has also been considered by Bernardo and Cleaveland and
it turns out that the two resulting preorders coincide [BC00].
Example. Consider the two aCTMCs M1 and M2 and the Markovian test process
T in Figure 9.11. It is obvious that M1 ∼BC M2 since T is the only ”sensible”
test for these two chains and the probability of reaching the success state w is 1
for both processes. The expected time of the three possible success paths (two
in M1‖T and one in M2‖T) is 1

2r . Note that in this example the probability of
reaching a success state within x time units equals 1 − e−x ·2r for both M1‖T
and M2‖T .

258 Verena Wolf

sM ′
1

u1 u2

(a, r1) (b, r2)

sM ′
2

v1 v2

(b, 2r2) (a, 2r1)

Fig. 9.12. M1 �∼BC M2.

The example in Figure 9.12 shows that even processes that differ only by ex-
pected duration can be different under �BC . The probability of an a-transition
equals r1

r1+r2
= 2r1

2(r1+r2) in M ′
1 and in M ′

2. The probability of a b-transition is
also equal for both. Thus, a preorder solely based on these transition probabil-
ities can never distinguish M ′

1 and M ′
2 whereas ∼BC can because the expected

residence time is 1
r1+r2

for sM ′
1

but 1
2(r1+r2) for sM ′

2
. Hence M ′

1 �∼BC M ′
2.

�	

9.10 Relationships Between Different Testing Relations

In this section we look more closely at the relationship between the preorders
previously presented and also the relationship between the classical (non-prob-
abilistic) testing relations of De Nicola and Hennessy [dNH84] and the proba-
bilistic extensions in this chapter. Figure 9.14 on page 265 gives an overview of
the relationships and is discussed at the end of this section.
We start with the introduction of the classical testing relations where non-
probabilistic test processes are applied to non-probabilistic processes (see also
Chapter 5).

Definition 9.19. The parallel composition of C = (SC ,→C , sC) ∈ NP and
T ∈ T np

τ is a non-probabilistic process C‖T = ((SC × ST),→, (sC , sT)) with

(s , t) a−→ (s ′, t ′) iff (s a−→C s ′ ∧ t a−→T t ′ for a �= τ),

(s , t) τ−→ (s ′, t) iff s τ−→C s ′,

(s , t) τ−→ (s , t ′) iff t τ−→T t ′.
�	

Definition 9.20. [dNH84] Let C1,C2 ∈ NP and T ∈ T np
τ with set A of success

states.

• C1 may T iff ∃α ∈ Path(C1‖T) : lstate(α) = (s , t) with t ∈ A, s ∈ SC1 .

• C1 must T iff ∀α ∈ Path(C1‖T) : lstate(α) = (s , t) with t ∈ A, s ∈ SC1 .

• C1 �may
DH C2 iff ∀T ∈ T np

τ : C1 may T =⇒ C2 may T .

• C1 �must
DH C2 iff ∀T ∈ T np

τ : C1 must T =⇒ C2 mustT .

• C1 �DH C2 iff C1 �may
DH C2 and C1 �must

DH C2.

• C1 ∼DH C2 iff C1 �DH C2 and C2 �DH C1.
�	

9 Testing Theory for Probabilistic Systems 259

We call a path successful if its last state is a success state. We are applying
elements of T np

τ here but it is easy to see that the set of test processes can be
reduced to τ -free test processes without loss of expressiveness. The following
steps show how to delete τ -transitions in test processes.

• Fix T = (ST ,→T , sT) ∈ T np
τ with a set A of success states and assume

without loss of generality that T has a tree-like structure, i.e. every state
t �= sT has exactly one predecessor.

• We define prec : ST → ST inductively by

prec(s) =

sT if s = sT ,

s if ∃ s ′ : s ′ a−→T s , a �= τ,

prec(s ′) if s ′ a−→T s implies a = τ.

Note that prec(s) is constructed such that s can be reached from prec(s)
with a sequence of internal moves.

• Let RMτ (T) = ({s ∈ ST | ∃ s ′ : s = prec(s ′)},→, sT) ∈ T np be a non-
probabilistic test process where → is such that

prec(s) a−→ s ′ iff a �= τ and s a−→T s ′.

Let A′ = {prec(s) | s ∈ A} be the set of success states of RMτ (T).

Intuitively speaking, RMτ (T) is the τ -free copy of T .

Proposition 9.21. Let C ∈ NP and T ∈ T np
τ .

C may T iff C may RMτ (T),

C must T iff C must RMτ (T).

Informally speaking, for each path α in C‖T there is a corresponding path α′

in the process C‖RMτ (T) such that the RMτ (T)-part of α′ is the τ -free copy of
the T -part of α. In our setting, removing τ -transitions in non-probabilistic test
processes does not change the relation �DH . So we apply the set T np instead of
T np

τ for �DH and the resulting relations coincide.
T np can be decreased to T np,re by ”splitting” a test process in several ”reactive”
ones:
For T = (ST ,→T , sT) ∈ T np with set of success states A let RMnd (T) ⊆ T np,re

be the set of all test processes T ′ = (S ,→, sT) where

• → is a largest subset of →T with

s a−→ s ′, s a−→ s ′′ ⇒ s ′ = s ′′,

• S is the set of all states in the process (ST ,→, sT) reachable from sT and

• A′ = A ∩ S is the set of success states of T ′.

260 Verena Wolf

Proposition 9.22. Let C be a non-probabilistic process and T ∈ T np .

C may T iff ∃T ′ ∈ RMnd (T) : C may T ′,

C must T iff ∀T ′ ∈ RMnd (T) : C must T ′.

For the ”if” part we split each test process T ∈ T np in the set RMnd (T) and
for the ”only if” part we construct T by merging all T ′ ∈ RMnd (T).

Theorem 9.23. Let C1,C2 be non-probabilistic processes.

C1 �may
DH C2 iff ∀T ∈ T np,re : C1 may T =⇒ C2 may T ,

C1 �must
DH C2 iff ∀T ∈ T np,re : C1 must T =⇒ C2 must T .

Proof: The ”only if” part follows easily from Proposition 9.21 and 9.22 and the
”if” part follows immediate. �	
We have an alternative definition for �DH now and reduced the set of applied
test processes. To relate �DH , �SE , �JY , �CL, �CH and �BC or just the may
and must parts (if existing), respectively, we define functions φnp and φpp which
map a (fully) probabilistic process P on a non-probabilistic process φnp(P) and
a fully probabilistic process Q on a probabilistic process φpp(Q), respectively
(compare Figure 9.14), page 265.

Definition 9.24. Let P = (SP ,→P , sP) ∈ PP and Q = (SQ ,→Q , sQ) ∈ FPP .

• φnp(P) = (SP ,→, sP) ∈ NP is such that

s a−→ s ′ iff ∃µ : s a−→P µ and µ(s ′) > 0.

• φnp(Q) = (SQ ,→′, sQ) ∈ NP is such that

s a−→′
s ′ iff s

(a,p)−−−→Q s ′ and p > 0.

• φpp(Q) = (SQ ,→′′, sQ) ∈ PP is such that

s a−→
′′
µ iff Pra

Q (s) > 0 and µ(s ′) =

{
p/Pra

Q (s) if s
(a,p)−−−→Q s ′,

0 otherwise.
�	

The function φnp reduces a process P (Q , respectively) to its branching structure
and ”deletes” the probabilistic information and φpp maps a fully probabilistic
process to a probabilistic process and discards the information of the proba-
bility of a certain action. The conditional probabilities for the target states of
one action are preserved but the probabilities between the different actions are
deleted. Note that only a subclass of probabilistic processes is captured by φpp

since there is always only one transition for each action in the resulting prob-
abilistic processes. Thus, the result of φnp(φpp(Q)) is different from φnp(Q)
because in φnp(φpp(Q)) some information about the branching structure may
be lost.

9 Testing Theory for Probabilistic Systems 261

Now we will consider the relationships between the preorders depicted in Fig-
ure 9.14. The numbers of the arrows connecting the preorders are equal to the
numbers in the following enumeration. We have only picked out the most inter-
esting pairs of testing relations here and not all possible combinations. To the
best of our knowledge the relationship between pairs (2),(4),(6) and (8) have not
been examined before.
Let M1,M2 ∈ ACTMC , P ,Q ∈ FPP and P̂ , Q̂ ∈ PP and recall that φem maps
an aCTMC to a fully probabilistic process.

(1) (�SE ,�DH) : Segala states that �may
SE is a ”natural” extension of �may

DH

[Seg96], i.e.

P̂ �SE Q̂ =⇒ φnp(P̂) �DH φnp(Q̂).

This can be seen as follows: First observe that

T np
τ = {T ′ ∈ T np

τ | ∃T ∈ T pp
τ : φnp(T) = T ′}

and φnp(P̂)‖T ′ is isomorphic to φnp(P̂‖T) for all T ∈ T pp
τ with φnp(T) =

T ′. Assume P̂ �may
SE Q̂ and φnp(P̂) may T ′, i.e. there exists a success-

ful path in φnp(P̂)‖T ′. Therefore, there exists a P ′ ∈ fully(P̂‖T) and a
success state w in T with WP ′(w) > 0. But for every P ′ ∈ fully(P̂‖T)
there exists a Q ′ ∈ fully(Q̂‖T) with WP ′(w) � WQ′(w) (compare Defini-
tion 9.16, page 253). Hence, WQ′(w) > 0 and there exists a successful path
in φnp(Q̂‖T).
Now assume P̂ �must

SE Q̂ and φnp(P̂) must T ′, i.e. all paths in φnp(P̂)‖T ′ are
successful. Hence, for all P ′ ∈ fully(P̂‖T) all paths in φnp(P ′) are successful
and

∑
w∈A WP ′(w) = 1 where A is the set of success actions in T . Since it

holds for all Q ′ ∈ fully(Q̂‖T) that WP ′(w) � WQ′(w) for some P ′, we have
1 =

∑
w∈A WP ′(w) �

∑
w∈A WQ′(w) = 1. Thus all paths in Q ′ must be

successful.
We can conclude that Segala’s relations are a natural extension to the proba-
bilistic setting. That the converse of the statement does not hold can be easily
seen with Example 9.8. In Figure 9.9, page 254 we have φnp(P) �DH φnp(Q)
but P ��may

SE Q .

(2) (�JY ,�SE) : We have to consider �SE in a more restrictive way. Only τ -
free probabilistic processes are now of interest and instead of fully(·) we
take fully{0,1}(·) in Definition 9.16. Furthermore, we do not compare the
success probabilities of each single success state rather than the total success
probability. Let the resulting relations be denoted by �may

SE and �must
SE . It is

easy to see that �may
SE is not equivalent to �JY or �may

JY . But we have that
�must

SE is equivalent to �must
JY . To see this, consider two τ -free probabilistic

processes P̂ and Q̂ and T ∈ T pp with P̂ �must
SE Q̂ . Then we have

∀Q ′ ∈ fully{0,1}(Q̂‖T) : ∃P ′ ∈ fully{0,1}(P̂‖T) : WP ′ � WQ′ .

262 Verena Wolf

Now let Qmin be the fully probabilistic process with the smallest success
probability, i.e. WQmin = minQ′{WQ′ | Q ′ ∈ fully{0,1}(Q̂‖T)}. Let P ′′ be
the process such that the equation above holds with Q ′ = Qmin . Then we
have

minP ′ WP ′ � WP ′′ � WQmin .

So P̂ �must
JY Q̂ . The proof for deriving P̂ �must

JY Q̂ from P̂ �must
SE Q̂ is similar

and omitted here.

(3) (�JY ,�DH) : Jonsson and Yi defined a testing relation which boils down to
ordinary simulation but not to the ordinary testing relation, i.e.

P̂ �JY Q̂ �=⇒ φnp(P̂) �DH φnp(Q̂).

It is easy to construct a counterexample where P̂ �JY Q̂ and φnp(P̂) ��may
DH

φnp(Q̂). But �must
JY boils down to �must

DH which is not surprising since we
have relationship (1) and (2).

(4) (�CH ,�DH) : We show that

P �CH Q =⇒ φnp(P) �DH φnp(Q).

Recall that for �CH test processes T ∈ T np,re are applied (compare Defi-
nition 9.14) and with Theorem 9.23 also for �DH . Assume P �CH Q and
φnp(P) may T , i.e. there exists a path α in φnp(P)‖T ending up in a success
state w . Since T ∈ T np,re , we have that trace(α) = β corresponds to a single
path in T , i.e. there is only a single path αT in T with trace(αT) = β. Fur-
thermore, all paths α′ in Q‖T with trace(α′) = β lead to w . Together with
P �CH Q we derive 0 < Pr trace

P‖T (β) � Pr trace
Q‖T (β). So there is at least one

successful path in Q‖T with a nonzero probability and φnp(P) �may
DH φnp(Q)

follows. With a similar argument we can derive that φnp(P) �must
DH φnp(Q).

(5) (�CL,�DH) : It holds [CSZ92]

P �CL Q =⇒ φnp(P) �DH φnp(Q).

First recall that φnp(P) is not equal to φnp(φpp(P)) in general. So we cannot
derive this statement from (1) and (6). We show that this statement is true
as follows. First observe that P �CL Q iff

WP‖T � p =⇒WQ‖T � p, ∀T ∈ T fp
τ , ∀ p ∈ [0, 1].

Furthermore, we have that φnp(P‖T) is isomorphic to φnp(P) ‖ φnp(T) and

T np,re ⊂ {T ′ ∈ T np
τ | ∃T ∈ T fp

τ : φnp(T) = T ′}.

Moreover, we have that for each T ′ ∈ T np
τ there exists at least one test

process T ∈ T fp
τ with φnp(T) = T ′. Hence, if P �CL Q and φnp(P) may T

then there exists a successful path in φnp(P‖T) and WP‖T (x) = p with p ∈

9 Testing Theory for Probabilistic Systems 263

sP

v1 v2

u1 u2

(a, 1
2
) (a, 1

2
)

(b, 1) (c, 1)

sQ

v

w1 w2

(a, 1)

(b, 1
2
) (c, 1

2
)

sT ′

t

z1 z2

(a, 1)

(b, 1
4
) (c, 3

4
)

Fig. 9.13. P �CH Q but P ��CL Q .

(0, 1] and so WQ‖T (x) � p which means that we have also a successful path
in φnp(Q‖T) and φnp(Q) may T . If all paths in φnp(P‖T) are successful
then WP‖T (x) = 1 = WQ‖T (x) and we can conclude that all paths are
successful in φnp(Q‖T), so φnp(P) �must

DH φnp(Q).
Note that, of course, the opposite of this statement does not hold.

(6) (�CL,�CH) : We show that

P �CL Q =⇒ P �CH Q

holds. First, recall that �CH compares for each T ∈ T np,re the trace dis-
tribution of P‖T and Q‖T whereas for �CL the success probabilities in
P‖T and Q‖T are compared for each T ∈ T fp

τ . Now assume P �CL Q and
T ∈ T np,re . We have to show that for all α ∈ Act∗

Pr trace
P‖T (α) � Pr trace

Q‖T (α).

For a given trace α in T there is only one single prefix β1 of a path β =
β1β2 ∈ Path(T) with trace(β1) = α. Then there exists T ′ ∈ T fp such that
φnp(T ′) = T and Pra(t) = 1/| {b ∈ Act | Prb(t) > 0} | for all t ∈ ST = ST ′ .
Let t ′ with β1 = s0 a1 . . . an t ′ be the only success state of T ′. Then

Pr trace
P‖T (α) = Pr trace

P‖T ′(α) =WP‖T ′ �WQ‖T ′ = Pr trace
Q‖T ′(α) = Pr trace

Q‖T (α).

Hence P �CH Q . Example 6 shows two fully probabilistic processes which
are distinguished by �CL but not by �CH .

Example. Consider Figure 9.13. We have P ∼CH Q but P and Q can be
distinguished by �CL by applying the test process T ′ because if z1 is the
only success state then 1

2 =WP‖T ′ >WQ‖T ′ = 1
4 .

�	
(7) (�BC ,�DH) : Bernardo and Cleaveland showed that

M1 �BC M2 =⇒ φnp(φem(M1)) �DH φnp(φem(M2)) [BC00].

Here, this follows also directly from (5) and (8). The strictness follows from
either the strictness of (5) or the strictness of (8). For a counter example see
also [BC00].

264 Verena Wolf

(8) (�BC ,�CH) : We show here that

M1 �BC M2 =⇒ φem(M1) �CH φem(M2)

holds which has not been considered by Bernardo and Cleaveland [BC00]
or Christoff [Chr90]. Assume M1 �BC M2. We have to show that for each
T ∈ T np,re , α ∈ Act∗

Pr trace
φem (M1)‖T (α) � Pr trace

φem (M2)‖T (α).

For a given T we set T ′ = (ST ,→, sT) ∈ T pa
τ where → is such that

t a−→T t ′ iff t
(a,0)−−−→ t ′ for a ∈ Act.

For a given trace α in T there is only one single prefix β1 of a path β =
β1β2 ∈ Path(T) with trace(β1) = α. It is easy to verify that

Pr trace
M1‖T ′(α) = Pr trace

φem(M1)‖T (α).

So if the last state of the sequence β1 is the only success state in T ′, we can
derive

Pr trace
M1‖T ′(α) =W�x

M1‖T ′ �W�x
M2‖T ′ = Pr trace

M2‖T ′(α).

Hence we have φem(M1) �CH φem(M2).
�BC is strictly finer than �CH which can be seen by a simple counterex-
ample similar to example 9.7.2 because we can apply test processes with
τ -transitions.

(9) (�BC ,�CL) : To relate the Markovian testing relation �BC and the fully
probabilistic testing relation �CL, we have to consider the sets of applied test
processes. For �BC some kind of ”passive” test processes are used because
external actions must have rate zero. Only τ -transitions have nonzero rates.
For �CL all transitions in test processes are equipped with probabilities.
Since probabilistic test processes have more distinguishing power than non-
probabilistic test processes (see relationship (6)), we have

M1 �BC M2 �=⇒ φem(M1) �CL φem(M2)

in general. It is easy to construct a counterexample (similar to Example 6).
Of course, the converse of the statement is also wrong, because of the addi-
tional requirement on the expected duration of a successful path for �BC .
So �BC and �CL are incomparable. Bernardo and Cleaveland defined �CL

in a restrictive way such that the statement holds [BC00].

Figure 9.14 shows a diagram of the relationships discussed above.

9 Testing Theory for Probabilistic Systems 265

nonprob.
processes

prob.
processes

fully prob.
processes aCTMCs

φnp

φnp

φpp φem

�DH �SE �JY �CL�CH �BC

[dNH84]
[Seg96] [JY95] [CSZ92][Chr90] [BC00]

(9)
/

(5)

(7)

(1)

/
(3)

(2) (6)

(4)

(8)

Fig. 9.14. Relationships between the different preorders: The upper horizontal arrows
show the mappings between the different classes of processes. The vertical arrows sym-
bolize the different approaches in defining testing relations for each class. A horizontal
arrow is drawn from relation A to relation B if A implies B at the corresponding
”probabilistic information level”. Crossed arrows symbolize that A does not imply B
and arrows are dotted if the implication is true with further restrictions.

9.11 Characterizations of Probabilistic Testing Relations

In this section, we briefly sketch characterizations for the preorders �CL, �CH

(Section 9.7), �SE , �JY (Section 9.8) and �BC (Section 9.9). Cleaveland et
al. found a characterization for �CL by probabilistic traces [CSZ92] and a very
similar concept is used for �CH and �BC which are characterized by extended
traces [Chr90, BC00]. �may

SE can be characterized by the trace distribution pre-
congruence [Seg96] and �may

JY coincides with probabilistic simulation [JY02]. Fig-
ure 9.15, page 270 gives an overview of the different characterizations and is
discussed at the end of this section.

9.11.1 Probabilistic and Extended Traces

Let µ0 be the weight function on Actτ with µ0(a) = 0 for all a ∈ Actτ and let
D = Distr∗(Actτ) ∪ {µ0}, where Distr∗(Actτ) is the set of all distributions µ
over Actτ with a finite support supp(µ) = {s ∈ S : µ(s) > 0}.

Definition 9.25. A probabilistic trace is a sequence

α = (a1, µ1) (a2, µ2) . . . (an , µn), ai ∈ Actτ , µi ∈ D for 1 � i � n.
�	

A probabilistic trace represents a trace a1 a2 . . . an with the restriction that the
set of possible actions at step i is supp(µi) instead of Actτ . The intuitive idea

266 Verena Wolf

is that an action a is provided by the environment with probability µi(a). The
occurrence of the action τ in a probabilistic trace simulates that τ is ”performed
by the environment” with probability µi(τ). Let ε denote the empty probabilistic
trace.
The probability of a probabilistic trace is computed in a similar way as the
probability of a trace (see Section 9.3.1) but with a different ”normalization
factor” in each step because we must take into account the probability of an
action in each step. So we have some kind of conditional probability.
We present some helpful definitions now. Let P ∈ FPP , µ ∈ D, s , s ′ ∈ SP and
i ∈ N.

• Let v(s , µ) =
∑

a∈Act Pra
P (s)·µ(a)+Prτ

P (s)+µ(τ) be a normalization factor.
The first summand denotes the probability of performing an observational
action a that is provided with probability µ(a). Prτ

P (s) is the probability
that P performs an internal action autonomously (independent of µ) and
µ(τ) is the probability that the environment performs τ independently.

• Let Pr silent
P (s , i , s ′, µ) denote the probability of reaching s ′ via i τ -transitions

from P ”under the condition µ” when starting in s :

Pr silent
P (s , 0, s ′, µ) =

{
1 if s = s ′,

0 otherwise.

Pr silent
P (s , i + 1, s ′, µ) =

1
v(s,µ) ·

∑

ŝ∈SP

Prτ
P (s , ŝ)· Pr silent

P (ŝ , i , s ′, µ)

if v(s , µ) > 0,

0 otherwise.

Let

Pr silent
P (s , s ′, µ) =

∞∑

i=0

Pr silent
P (s , i , s ′, µ)

denote the probability of reaching s ′ via a sequence of τ -transitions when
starting in s ”under the condition µ”. Note that Pr silent

P (s , s ′, µ) is well-
defined because P is divergence-free.

• For a �= τ let

Pra
P (s , s ′, µ) =

∑

ŝ:v(ŝ,µ)>0

Pr silent
P (s , ŝ , µ) · Pra

P (ŝ , s ′) · µ(a)
v(ŝ,µ) ·

be the probability of a ”weak” a-transition, i.e. s ′ is reached via a (possibly
empty) sequence of τ -transitions followed by one a-transition when starting
in s .
For a ”weak” τ -transition performed ”by the environment” (simulated by µ)
we have

Prτ
P (s , s ′, µ) = Pr silent (s , s ′, µ) · µ(τ)

v(s′,µ) .

9 Testing Theory for Probabilistic Systems 267

• Let α be a probabilistic trace in P . The probability of α starting in the state
s is inductively defined by

Prptrace
P (s , α) =

{
1 if α = ε,
∑

s′∈SP

Pra
P (s , s ′, µ) · Prptrace

P (s ′, α′) if α = (a, µ) α′.

• Let Prptrace
P (α) = Prptrace

P (sP , α) (where sP is the initial state of P) denote
the probability of a probabilistic trace α in P .

Definition 9.26. [CSZ92] Let P ,Q ∈ FPP .

P �ptrace Q iff for all probabilistic traces α : Prptrace
P (α) � Prptrace

Q (α).
�	

Note that opposed to Cleaveland et al. we do not allow synchronization over τ -
actions, so�ptrace is slightly different from the corresponding relation in [CSZ92].

Theorem 9.27. [CSZ92] For all fully probabilistic processes P ,Q:

P �ptrace Q iff P �CL Q .

Proof sketch: The idea for proving �CL ⊆ �ptrace is to construct T (α) ∈ T fp
τ

from a given probabilistic trace α such that the success probability in P‖T (α)
(and Q‖T (α), respectively) is equal to the probability of α in P (and Q , respec-
tively).
The proof of �ptrace ⊆ �CL relies heavily on the fact that only a subset of all
possible fully probabilistic test processes is necessary to decide whether P �CL Q
or not. These test processes are called essential and an essential test process T
contains only paths that are successful in P‖T (and Q‖T , respectively) or ”stop”
after one step when reaching success is impossible. For details we refer to the
work of Cleaveland et al. [CSZ92]. Note that the set of essential test processes
of P is still infinite. Thus deciding P �CL Q is not practical. �	
Christoff gives a characterization by extended traces for his testing relations
[Chr90]. Bernardo and Cleaveland show that �BC can also be characterized by
such traces [BC00]. This is not surprising since non-probabilistic test processes
(used by Christoff) and Markovian test processes used in [BC00] are very similar
and an extended trace ”simulates” in fact a non-probabilistic test process. Let
D′ be the set of all weight functions σ over Actτ with σ(a) ∈ {0, 1} for a �= τ
and σ(τ) = 0.

Definition 9.28. An extended trace is a sequence

α = (a1, σ1) (a2, σ2) . . . (an , σn), ai ∈ Act, σi ∈ D′ for 1 � i � n.
�	

Note that we restrict to τ -free extended traces here because for �CH we apply
τ -free test processes and a characterization of �BC including test processes that

268 Verena Wolf

can perform τ -transitions has not been presented by Bernardo and Cleaveland.
It is clear that a characterization for �BC covering T pa

τ instead of T pa can be
constructed in a similar way as for �CH by taking weight functions σi with
σi(τ) ∈ [0, 1] and σi(a) ∈ {0, 1} for a �= τ .
The definition of the probability Pretrace

P (α) for an extended trace α in P is equal
to the definition of Prptrace

P (α) as defined just before if the second component σ
of each step in α is in D′ instead of D, i.e. by replacing the probabilistic trace α
by an extended trace in all the previous definitions we obtain Pretrace

P (α).

Theorem 9.29. [Chr90] Let P ,Q ∈ FPP.

• P �tr
CH Q iff for all finite traces β:

Pr trace
P (β) > 0 implies Pr trace

Q (β) > 0.

• P �wte
CH Q iff for all extended traces α and all σ ∈ D′:
∑

a∈Act Pretrace
P (α (a, σ)) �

∑
a∈Act Pretrace

Q (α (a, σ)).

• P �ste
CH Q iff for all extended traces α:

Pretrace
P (α) � Pretrace

Q (α).
�	

Note that �tr
CH was defined applying non-probabilistic test processes that are

sequential. This kind of test processes distinguish processes with regard to the
traces they can perform. The probabilistic information is not taken into account.
�wte

CH and �ste
CH are characterized by extended traces since every test process

T ∈ T np,re can be simulated by an extended trace.
To formulate a characterization for�BC , we have to define an additional function
that tells us the expected duration of an extended trace in an aCTMC. The
details are omitted here because it is very similar in spirit to calculating the
probability of an extended trace. Two aCTMCs M1 and M2 are related iff for
all extended traces α and all t ∈ R�0 the probability of α in M1 with a duration
� t is at least the probability of α in M2 with a duration � t . It turns out that
the resulting relation coincides with �BC [BC00].

9.11.2 Trace Distributions

Let P ∈ PP and Pr trace
P ′ the probability measure for traces in P ′ ∈ fully(P) as

defined in Section 9.3. We define the set of all

• trace distributions of P by tdistr(P) = {Pr trace
P ′ | P ′ ∈ fully(P)}.

• finite trace distributions of P by

ftdistr(P) = {Pr trace
P ′ | P ′ ∈ fully(P) ∧ ∃ k ∈ N : Pr trace

P ′ (Ck) = 1},

where Ck denotes the set of all traces in P ′ of length at most k . So all the
probability is concentrated on finite traces.

9 Testing Theory for Probabilistic Systems 269

Definition 9.30. Let P ,Q ∈ PP .

• The trace distribution preorder �td is given by

P �td Q iff tdistr(P) ⊆ tdistr(Q).

• The finite trace distribution preorder �ftd is given by

P �ftd Q iff ftdistr(P) ⊆ ftdistr(Q).

• The trace distribution precongruence �tp (finite trace distribution
precongruence �ftp , respectively) is the coarsest precongruence with re-
spect to ||6 that is contained in �td (�ftd , respectively).

�	
Segala shows that �td and �ftd coincide [Seg96]. This is also stated by Stoelinga
and Vaandrager as ”Approximation Induction Principle” [SV03]. Furthermore
we have that �ftd and �td characterize �may

SE .

Theorem 9.31. [Seg96] Let P ,Q be probabilistic processes.

P �may
SE Q iff P �tp Q iff P �ftp Q .

�	
Segala also provides a characterization by failure distributions for �must

SE [Seg96].
Failures are similar to traces but end in a set of actions that cannot be performed
by the last state. The details of this characterization are omitted here because
it is similar to the case of trace distributions.
Stoelinga and Vaandrager present an intuitive ”testing scenario” (also known as
button pushing experiment) and proved that the resulting relation is equivalent
to the trace distribution preorder [SV03]. Note that in a sense this also motivates
Segala’s may-preorder due to theorem 9.31.
We have also a characterization of �JY by structures called ”chains of a process”
that are similar to traces [JY02]. A very interesting result is the characterization
of �may

JY by probabilistic simulation as briefly presented in the following section.

9.11.3 Probabilistic Simulation

The idea of ordinary simulation is to prove that an implementation Q refines
an abstract specification P in such a way that required properties are fulfilled
[Jon91]. So Q is simulated by P if ”every step in Q can be simulated by a step
in P” but not necessarily vice versa. In the probabilistic setting, simulation rela-
tions have been defined amongst others by Jonsson [JGL91] and Segala [SL94].
In 2002, Jonsson and Yi proposed an alternative definition of probabilistic sim-
ulation which coincides with their probabilistic may-testing preorder [JY02].

6 A relation R is a precongruence with respect to || if P R Q implies (P || P̂) R (Q ||
P̂) for an arbitrary probabilistic process P̂ . Note that ‖ denotes the parallel compo-
sition operator from Definition 9.8 here.

270 Verena Wolf

fully probabilistic
processes aCTMCs

probabilistic
processes

�tr
CH �ste

CH �CL �BC�may
SE �may

JY

ordinary
traces

extended
traces

prob.
traces

extended
traces+time

trace distr.
precongr.

prob.
simulation

T np,re
seq

T np,re T fp
τ T pa

τ

T pp
τ T pp

Fig. 9.15. Characterizations for probabilistic testing relations: The upper vertical ar-
rows connect the respective class of processes with the matching testing relation and
the label corresponds to the applied set of test processes. The lower vertical arrows con-
nect each testing relation with the respective characterization and the lower horizontal
arrows show that extended traces are a special case of probabilistic traces and a special
case of extended traces with an additional time requirement. Moreover, ordinary traces
are a special case of extended traces.

Figure 9.15 shows the characterizations presented in this section and the ap-
plied sets of test processes, respectively. Moreover, the underlying models are
depicted. Of course, extended traces, enriched with a time function, boil down
to ordinary extended traces and probabilistic traces are the probabilistic ex-
tension of extended traces. It is clear that extended traces are an extension of
ordinary traces.

9.12 Connecting Testing and Probabilistic Bisimulation

In the following, we discuss the work of Larsen and Skou that connects an intu-
itive testing approach for a subclass of probabilistic processes with probabilistic
bisimulation [LS91]. Larsen and Skou apply non-probabilistic test processes to
τ -free reactive probabilistic processes . A probabilistic process P = (SP ,→P , sP)
is reactive if s a−→P µ and s a−→P λ implies µ = λ for all s ∈ SP . The intuitive
idea is that in each step the external environment chooses an action and there is
no ”internal” nondeterminism between two transitions with equal actions. For
s a−→ µ we put µs,a = µ. We write s a−−→/ P if there exists no µs,a .
Larsen and Skou defined the probabilistic bisimulation equivalence such that for
two bisimulation equivalent states the probability to move with an a-transition
to an equivalence class E is equal for all a ∈ Actτ .

9 Testing Theory for Probabilistic Systems 271

Definition 9.32. [LS91] Let P be a reactive probabilistic process. An equiva-
lence relationR ⊆ SP×SP is a probabilistic bisimulation iff for all (s , s ′) ∈ R
we have that

∑
v∈E µs,a(v) =

∑
v∈E µs′,a(v) for all E ∈ SP/R, a ∈ Actτ ,

where SP/R denotes the quotient space of R.
Two reactive probabilistic processes P ,Q are probabilistically bisimilar if
there exists a probabilistic bisimulationR on (SP∪SQ) such that (sP , sQ) are in a
probabilistic bisimulation in the probabilistic process (SP ∪SQ ,→P ∪ →Q , sP)7.
We write P ∼bs Q in this case.

�	
The probabilistic bisimulation extends the standard bisimulation [HM85] for
non-probabilistic processes. It was motivated by a probabilistic modal logic PML
[LS91] that is a probabilistic extension of the Hennessy-Milner logic HML, also
introduced by Hennessy and Milner [HM85]. Two non-probabilistic processes
(probabilistic processes) are bisimilar (probabilistic bisimilar, respectively) if
and only if they satisfy exactly the same HML (PML, respectively) formulas.
For a more detailed discussion about probabilistic bisimulation see the work of
Baier et al. [BHKW03] where also a weak8 notion of ∼bs is defined and where
the relationship between probabilistic (bi-)simulation and probabilistic logics is
examined in the discrete-time and also in the continuous-time case.
In the following, we present a testing approach that is, opposed to the pre-
vious sections, not based on the parallel composition of a test process and a
tested process and it turns out that this approach yields a relation equivalent
to probabilistic bisimulation. Without loss of generality we can assume that
T = (ST ,→T , sT) ∈ T np has a tree-like structure, i.e. each t ∈ ST , t �= sT has
exactly one predecessor. We define a set of observations OT that are produced
if T is applied:

Definition 9.33. Let OT (s) denote the set of observations obtained from the
state t ∈ ST inductively given by OT (t) = {1ω} if t is terminal and

OT (t)=({0a1} ∪ {1a1 : o | o ∈ OT (t1)})×. . .× ({0an} ∪ {1an : o | o ∈ OT (tn)})

if t ai−→T ti , 1 � i � n. Let OT = OT (sT).
�	

Note that OT is well-defined since test processes are finite-state, finitely branch-
ing and acyclic. Intuitively, 1a denotes that action a is observed and 0a that a is
not observed. The observed actions are concatenated with ”:”. The observation
1a : o, for instance, means that a is observed and followed by the observation o.
If the test process branches, the observation is a tuple. For example, 1a : (0a , 1b)
means that first action a is observed and then for the a-branch (in T) no a-
action is performed (0a) and for the b-branch a b-action is executed (1b). Of
course, a = b is possible.
7 Without loss of generality we can assume that SP ∩ SQ = ∅.
8 ’’Weak” in the sense that τ -actions are treated in a special way.

272 Verena Wolf

OT = {0a , 1a : (0b , 0b),

1a : (1b : 0c , 0b),

1a : (0b , 1b : 0d),

1a : (0b , 1b : 1d : 1ω),

1a : (1b : 0c , 1b : 0d),

1a : (1b : 1c : 1ω, 0b),

1a : (1b : 1c : 1ω, 1b : 0d),

1a : (1b : 0c , 1b : 1d : 1ω),

1a : (1b : 1c : 1ω, 1b : 1d : 1ω)}

sT

t1

t2 t3

t4 t5

a

b b

c d

Fig. 9.16. The set of observations OT for a test process T .

Example. Figure 9.16 shows T ∈ T np and the observations OT .

�	
The probability of an observation can be computed using the following definition.

Definition 9.34. The probability distribution PrObs
P ,T : (OT ,SP) → [0, 1] as-

signs a probability to every observation o ∈ OT of a test process T ∈ T np

applied to a state in a τ -free reactive probabilistic process P . It is defined in-
ductively on the length of o.

PrObs
P ,T (1ω, s) = 1, ∀ s ∈ SP .

PrObs
P ,T (0a , s) =

{
1 if s a−−→/ P ,

0 otherwise.

PrObs
P ,T (1a : o, s) =

{
0 if s a−−→/ P ,
∑

s′∈SP
µs,a(s ′) · PrObs

P ,T (o, s ′) otherwise.

PrObs
P ,T ((o1, . . . , on), s) =

∏n
i=1 PrObs

P ,T (oi , s).

Let PrObs
P ,T (o) = PrObs

P ,T (o, sP) for all o ∈ OT and for O ′ ⊆ OT

PrObs
P ,T (O ′) =

∑
o∈O′ PrObs

P ,T (o).
�	

It is easy to see that PrObs
P ,T is indeed a probability distribution, i.e.

PrObs
P ,T (OT) = 1.

Definition 9.35. [LS91] Let P ,Q be τ -free reactive probabilistic processes.

P �LS Q iff ∀T ∈ T np , ∀ o ∈ OT : PrObs
P ,T (o) � PrObs

Q,T (o).

We write P ∼LS Q iff P �LS Q and Q �LS P .
�	

9 Testing Theory for Probabilistic Systems 273

sP

λ

v1 v2

u1 u2

w1 w2

a

1
2

1
2

b b

c d

sQ

µ

v

u ′
1 u ′

2

w ′
1 w ′

2

a

b

1
2

1
2

c d

Fig. 9.17. Q �LS P and P ��LS Q .

Example. Consider P ,Q ∈ PP shown in Figure 9.17 (see also Example 9.8,
page 253). We have Q �LS P and P ��LS Q . If we apply the test process T of
Figure 9.16, we can derive for o = 1a : (1b : 1c : 1ω, 1b : 0d)

PrObs
P ,T (o) = 1

2 · [(1 · 1) · (1 · 1)] + 1
2 · [(1 · 0) · (1 · 0)] = 1

2 ,

PrObs
Q,T (o) = [12 · 1 + 1

2 · 0] · [12 · 1 + 1
2 · 0] = 1

4 .

So we obtain P ��LS Q , but recall we have P ∼JY Q , Q �SE P and P ��SE Q
(see Example 9.7.2).

�	
Larsen and Skou proved that the following relationship between their notion of
testing and the probabilistic bisimulation holds:

Theorem 9.36. [LS91] Let P ,Q ∈ PP be τ-free and reactive. Then

P ∼bs Q iff P ∼LS Q .
�	

Note that the previous theorem also holds for probabilistic processes that are not
finitely branching but fulfill the minimal probability assumption, i.e. there exists
ε > 0 such that whenever s a−→ µ either µ(s ′) = 0 or µ(s ′) > ε for all s ′. The
difference between ∼LS and the testing preorders defined in the previous sections
is that ∼LS considers success or failure ”after each step” whereas testing relations
for probabilistic processes like �SE or �JY take only the success probability after
a (maximal) trace into account. So it is clear that ∼LS distinguishes processes
that can not be distinguished by �SE or �JY . To the best of our knowledge this
relationship has not been further considered yet.

274 Verena Wolf

model test processes boils down to characterization

�CH fully probabilistic τ -free, nonprob., classical extended trace

processes reactive (T np,re) testing (�DH) distribution

∼LS τ -free reactive prob. τ -free, nonprob. ordinary probabilistic

processes (T np) bisimulation bisimulation (∼bs)

�CL fully probabilistic fully probabilistic classical probabilistic trace

processes (T fp
τ) testing (�DH) distribution

�may
SE probabilistic probabilistic classical trace distr. pre-

processes (T pp
τ) testing (�DH) congruence (
ftp)

�may
JY τ -free prob. τ -free, probabilistic ordinary probabilistic

processes (T pp) simulation simulation

�BC action-labeled ”passive” classical extended trace

CTMCs (T pa
τ) testing (�DH) distribution

Table 9.1. Summary table: The first column lists the most important probabilistic
testing relations we have discussed in this chapter. In the second column the corre-
sponding class of processes is depict and the third column shows the set of applied test
processes. In the fourth column, the resulting relations are listed when the probabilistic
information is disregarded. The last columns lists the corresponding characterizations.

9.13 Summary

We have given an extensive survey of the testing theory for probabilistic systems
and presented the definitions of different preorders in a uniform style to ease the
task of establishing relationships between them. Moreover we saw that in most
cases the relations are closely connected with the classical testing relation of De
Nicola and Hennessy (see Figure 9.14, page 265) and we discussed characteri-
zations to better reflect the nature of the relations (see Figure 9.15, page 270).
Table 9.1 summarizes the main contents of this chapter.
Computational issues: Most authors do not not address computational is-
sues, but from the summary table we can see that some of the relations are
decidable. First, consider the characterization by extended traces. If the process
is finite, we can determine the (finite) set of extended traces with a non-zero
probability and compute the probability of each extended trace with the induc-
tive definitions of section 9.11.1. Christoff presents algorithms for verification
of his testing relations in [CC91]. Furthermore, we have a characterization by
probabilistic bisimulation that can be computed in polynomial time and space
by a partitioning technique [HT92]. To the best of our knowledge, for all other
relations no algorithms computing them exist.
Open problems:

• We have only pointed out the most obvious connections between the dif-
ferent preorders presented here. Clarifying which relations are incomparable
and which are finer/coarser than others would be helpful to obtain a more
complete picture on probabilistic testing relations. For example, the rela-

9 Testing Theory for Probabilistic Systems 275

tionship between the following pairs of relations has not been considered yet:
(�CL,�SE), (�CL,�JY), (�wte

CH ,�BC) and the �LS with any of the ”com-
positional testing relations”.

• Many relations are not computable because infinite sets of test processes
have to be applied, so an interesting problem would be finding the set of
”essential” test processes that decide whether two processes are related or
not. A good starting point would be defining the ”informativeness” of a test
process with regard to the tested process. Of course, test processes should
be as compact as possible avoiding unnecessary computations.

Part III

Model-Based Test Case Generation

The previous parts of this book have, in general, been concerned with checking
models against models. A theoretical underpinning with, among other things,
respect to completeness of these approaches has been given.

If correctness of a model w.r.t. another model is to be proved, then the size of
their state spaces becomes a crucial problem. It may turn out that with today’s
technology, mathematical verification is not possible for arbitrary systems. In
addition to complexity issues, checking models against models—or properties—is
crucially dependent on the assumptions that have been encoded into the models.
Mathematically established correctness only holds under the condition that these
assumptions do indeed hold.

As a consequence, there is a growing agreement that verification technology
such as model checking or deductive theorem proving must hence be comple-
mented with activities that relate the real world to the models. This is particu-
larly true for embedded devices where complex systems interact with an equally
complex environment.

The idea of model-based testing is then to have a model of the system, or
specification, and use this model to generate sequences of input and expected
output. Roughly speaking, the input is applied to the system under test, and the
system’s output is compared to the model’s output, as given by the generated
trace. This implies that the model must be valid, i.e., that it faithfully represents
the requirements. The apparatus of the previous parts can be seen as a means
to increase confidence that a model does indeed conform to the requirements.

278 Part III. Model-Based Test Case Generation

Basically, this is achieved by redundancy: two models (state machines, temporal
formulae, etc.) are built, and detection of a discrepancy among them points at
potential difficulties.

If an artifact that is to be checked is of a purely mathematical nature, then
infinite input domains, or infinite runs, can technologically be coped with by
means of finite representations. It is hence possible to argue about infinite be-
haviors. If, on the other hand, this artifact is part of the real world, and includes
sensors, actuators, operating systems, and legacy systems, then these arguments
cannot be applied. The reason is that in general, reasoning about systems in-
volves reasoning about states, and when hardware is involved, there is no definite
knowledge about these states. The consequence is that the comparison between
an actual system and a model is incomplete, both for complexity and principal
reasons.

Overview This motivates the structure of four chapters in this third part of the
book.

Chapter 10 provides a brief overview of methodological issues in model-based
testing. Pretschner and Philipps discuss both the need for abstraction in prac-
tical applications of model-based testing and different scenarios of model-based
testing.

The selection of a few traces of the model can be done w.r.t. functional,
structural, and stochastic criteria. The first category seems to be amenable to
methodology rather than to technology. In Chapter 11, Gaston and Seifert have a
thorough look at the two other criteria, structural and stochastic criteria. While
structural criteria have been used for finite state machines (transition coverage,
for instance) in previous chapters of the book, they look at coverage criteria at
the level of programming languages. This does not contradict the title of this
part: models may well be specified by means of programming languages, and
code is often used to specify guards and assignments in respective modeling
languages. The authors then have a look at stochastic criteria and review the
discussion on comparing their fault detecting power with testing that is based
on partition the input domain.

In the third Chapter 12 of this part, Lúcio and Samer go one step further.
They assume a selection criterion, be it functional, structural, or stochastic, to
be given. The selection criterion and the model are then used to generate test
cases. The generation process is the subject of their article. Consequently, they
investigate the use of model checking, symbolic execution, theorem proving, and
logic programming. Tools that rely on these and other mechanisms—on-the-fly
testing, in particular—are discussed later in this book, in Chapter 14.

Finally, the fourth Chapter 13 is concerned with a particularly complex class
of systems, namely real-time and mixed discrete-continuous, or hybrid, systems.
Berkenkötter and Kirner first define the two classes of systems. After showing
how real-time systems can be modeled with different formalisms, they show how
test cases can be generated for them. As far as hybrid systems are concerned,
hybrid statecharts and hybrid variants of process algebras are introduced. Be-
cause of the very large state spaces of these classes of systems, they discuss ways

Part III. Model-Based Test Case Generation 279

to cope with this complexity, namely decomposition approaches and the use of
discrete, very abstract models that are connected to more concrete models and
that are used for directing the search for test cases.

10 Methodological Issues in Model-Based

Testing

Alexander Pretschner1 and Jan Philipps2

1 Information Security
Department of Computer Science
ETH Zürich
Haldeneggsteig 4, 8092 Zürich, Switzerland
Alexander.Pretschner@inf.ethz.ch

2 Validas AG
gate
Lichtenbergstr. 8., 85748 Garching, Germany
philipps@validas.de

10.1 Introduction

Testing denotes a set of activities that aim at showing that actual and intended
behaviors of a system differ, or at increasing confidence that they do not differ.
Often enough, the intended behavior is defined by means of rather informal
and incomplete requirement specifications. Test engineers use these specification
documents to gain an approximate understanding of the intended behavior. That
is to say, they build a mental model of the system. This mental model is then
used to derive test cases for the implementation, or system under test (SUT):
input and expected output. Obviously, this approach is implicit, unstructured,
not motivated in its details and not reproducible.

While some argue that because of these implicit mental models all testing
is necessarily model-based [Bin99], the idea of model-based testing is to use
explicit behavior models to encode the intended behavior. Traces of these models
are interpreted as test cases for the implementation: input and expected output.
The input part is fed into an implementation (the system under test, or SUT),
and the implementation’s output is compared to that of the model, as reflected
in the output part of the test case.

Fig. 10.1 sketches the general approach to model-based testing. Model-
based testing uses abstract models to generate traces—test cases for an
implementation—according to a test case specification. This test case specifi-
cation is a selection criterion on the set of the traces of the model—in the case
of reactive systems, a finite set of finite traces has to be selected from a usually
infinite set of infinite traces. Because deriving, running, and evaluating tests are
costly activities, one would like this set to be as small as possible.

The generated traces can also be manually checked in order to ascertain
that the model represents the system requirements: similar to simulation, this is
an activity of validation, concerned with checking whether or not an artifact—
the model in this case—conforms to the actual user requirements. Finally, the
model’s traces—i.e., the test cases—are used to increase confidence that the

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 281-291, 2005.
 Springer-Verlag Berlin Heidelberg 2005

282 Alexander Pretschner and Jan Philipps

Code

HW, OS, Legacy

γ/α

Verification

Test case specification

Validation

Model

Test cases

Fig. 10.1. Model-Based Testing

implementation corresponds to the model, or to prove that it does not. Testing
is hence an activity of verification: the implementation is checked for correctness
w.r.t. the model which can arguably be interpreted as a behavior specification,
and which represents the formalized user requirements.

This approach immediately raises an array of difficult questions. The issues of
test case specifications and generation technology are treated in Chapters 11 and
12 of this book, and are consequently not the subject of this chapter. Instead,
we focus on the following two key questions.

(1) Obviously, in the above approach, the model has to faithfully represent the
user requirements, i.e., the intended behavior: it has to be valid. Why would
one choose to build a costly model, validate it, derive tests and run them on
a SUT rather than directly validate the SUT?

(2) Because system and software construction occur—as any engineering
activity—under high time and cost constraints, can we build a single model
to generate both test cases and production code?

The first question is answered by requiring models to be more abstract, or
“simpler”, than the SUT. Because they are more abstract, they are easier to
understand, validate, maintain, and more likely to be amenable to test case gen-
eration. The above approach to model-based testing is then modified as follows.
The input part of a model’s trace—the test case—is concretized (γ in the figure)
before it is fed into the implementation. Conversely, the output of the SUT is
abstracted (α in the figure) before it is compared to the output of the model.
Note that this approach incurs a cost: aspects of the SUT that were abstracted
away can obviously not directly be tested on the grounds of the abstract model.

The second question will be answered by discussing different scenarios of
model-based testing that regard different interleavings and flavors of building
models and code. Roughly, it will turn out that some sort of redundancy is
indispensable: choosing to derive both test cases and implementations from one
single model requires one to precisely know what this means in terms of quality
assurance: in this way, code generators and assumptions on the environment can
be tested.

10 Methodological Issues in Model-Based Testing 283

One might argue that if the model has to be valid anyway, then we could
generate code from it without any need for further testing. Unfortunately, this
is no viable option in general. Since the SUT consists not only of a piece of
code that is to be verified but also of an environment consisting of hardware,
operating system, and legacy software components, it will always be necessary to
dynamically execute the SUT. This is because the model contains assumptions
on the environment, and these may or may not be justified.

Overview

The remainder of this chapter is organized as follows. Sec. 10.2 elaborates on
the different levels of abstraction of models and implementations. In Sec. 10.3,
we discuss several scenarios of model-based testing and shed light on how to
interleave the development of models and of code. Sec. 10.4 concludes.

10.2 Abstraction

Stachowiak identifies the following three fundamental characteristics of models
[Sta73].

• Models are mappings from a concrete (the “original”) into a more abstract
(the “model”) world;
• Models serve a specific purpose;
• Models are simplifications, in that they do not reflect all attributes of the

the concrete world.

In this section, we take a look at the third point. There are two basic ap-
proaches to simplification: omission and encapsulation of details.

10.2.1 Omission of Details

When details are actually discarded, in the sense that no macro expansion mech-
anism can insert the missing information, then the resulting model is likely to be
easier to understand. This is the basic idea behind development methodologies
like stepwise refinement, where the level of abstraction is steadily decreased. 1

Specifications at higher levels of abstraction convey the fundamental ideas. As
we have alluded to above, they cannot directly be used for testing, simply be-
cause they contain too little information. This is why we need driver components
that, where necessary, insert missing information into the test cases.

The problem then obviously is which information to discard. That is true
for all modeling tasks and, until building software becomes a true engineering
discipline, remains a black art which is why we do not discuss it further here.
1 A similar scheme is also found in incremental approaches like Cleanroom [PTLP99]

where the difference between two increments consists of one further component that
is 100% finished.

284 Alexander Pretschner and Jan Philipps

In the literature, there are many examples of abstractions—and the necessary
insertion of information by means of driver components—for model-based testing
[PP04]. These are also discussed in Chap. 15.

This variant of simplification reflects one perspective on model-based de-
velopment activities. Models are seen as a means to actually get rid of details
deemed irrelevant. As mentioned above, no macro expansion mechanism can
automatically insert them, simply because the information is given nowhere.
Missing information can, in the context of stepwise refinement, for instance, be
inserted by a human when this is considered necessary.

10.2.2 Encapsulation of Details

Details of a system (or of parts a system) can be also be referenced. Complexity
is reduced by regarding the references, and not the content they stand for. This
second kind of abstraction lets modeling languages appear as the natural exten-
sion of programming languages (note that we are talking about behavior models
only). The underlying idea is to find ways to encapsulate details by means of
libraries or language constructs.

Encapsulating the assembly of stack frames into function calls is an exam-
ple, encapsulating a certain kind of error handling into exceptions is another.
The Swing library provides abstractions for GUI constructs, and successes of
CORBA and the J2EE architectures are, among many other things, due to the
underlying encapsulation of access to communication infrastructures. The MDA
takes these ideas even further. Leaving the domain of programming languages,
this phenomenon can also be seen in the ISO/OSI communication stack where
one layer relies on the services of a lower layer. The different layers of operating
systems are a further prominent example.

What is common about these approaches is that basically, macro expansion
is carried out at compile or run time. In the respective contexts, the involved
information loss is considered to be irrelevant. These macros are not only use-
ful, but they also restrict programmers’ possibilities: stack frame assembly, for
instance, can in general not be altered. Similarly, some modeling languages disal-
low arbitrary communications between components (via variables) when explicit
connectors are specified. The good news is that while expressiveness—in a given
domain—is restricted, the languages become, at least in theory, amenable to
automatic analysis simply because of this restriction.

Of course, the two points of view on model-based development activities are
not orthogonal. There is no problem with using a modeling language in order to
very abstractly specify arbitrary systems. In the context of testing, the decision
of which point of view to adopt is of utter importance. When models of the pure
latter kind are taken into consideration, then they are likely to be specified at
the same level of abstraction as the system that is to be tested. We then run into
the above mentioned problem of having to validate a model that is as complex
as the system under test.

10 Methodological Issues in Model-Based Testing 285

HW, OS, Legacy

Code

γ()i

α()o’

Model ResVerifyDigSig(

KeyPubCA,

DigCA, SigCA)

81 2A 00 A8 83 9E 81

+ Signature of CA

Model

PSOVerifyDigSig(SigCA)

90 00

γ α

input i

output o’

output o

smart card

config
file

Fig. 10.2. Abstractions and concretizations. The general setting is depicted at the
left; an example where α and γ are defined via a configuration file is given at the right.

10.2.3 Concretization and Abstraction

As argued above, with the possible exception of stress testing, it is methodolog-
ically indispensable that in terms of model-based testing, models are simplifica-
tions of the system under test. Consequently, test cases derived from the model
can in general not be directly fed into the system. To adapt the test cases to
the system, it is necessary to re-insert the information by means of driver com-
ponents :2 the input part i of a trace of the model—a test case—is concretized
to the level of the implementation, γ(i). In general, there will be many choices
to select γ(i), simply because the model is an abstraction. This choice is left to
the test engineer, or a driver component that he or she has to write.

γ(i) is then fed into the implementation which reacts by outputting some o′.
By construction, o′ is not at the same level of abstraction as the output of the
model, o. Unfortunately, we cannot in general use γ to compare γ(o) to o′. The
reason is that as in the case of concretizing input, there are many candidates
for γ(o), and for comparing the system to the model, a random choice is not an
option here.

The classical solution to this problem is to use an abstraction function, α,
instead. Since α is an abstraction function, it itself involves a loss of information.
Provided we have chosen γ and α adequately, we can now apply α to the system’s
output and compare the resulting value α(o′) to the model’s output. If α(o′)
equals o, then the test case passes, otherwise it fails. In the driver component,
this is usually implemented as follows: it is checked whether or not the imple-
mentation’s output is a member of the set of possible implementation outputs
that correspond to the model’s output (of course, in non-deterministic settings
it might possible to assign a verdict only after applying an entire sequence of
stimuli to the SUT).

The idea is depicted in Fig. 10.2, left. Note that the general idea with pairs
of abstraction/concretization mappings is crucial to many formally founded ap-

2 Of course, this concretization may also be performed in a component different from
the driver.

286 Alexander Pretschner and Jan Philipps

proaches to systems engineering that work with different levels of abstraction
[BS01b].

Example. As an example, consider Fig. 10.2, right. It is part of a case study in
the field of smart card testing [PPS+03]. The example shows a case where the
verification of digital signatures should be checked. In order to keep the size of the
model manageable, the respective crypto algorithms are not implemented in the
model—testing the crypto algorithms in themselves was considered a different
task. Instead, the model outputs an abstract value with a set of parameters
when it is asked to verify a signature. By means of a configuration file—which
is part of the driver component—, the (abstract) command and its parameters
are concretized and applied to the actual smart card. It responds 90 00 which
basically indicates that everything is alright. This value is then augmented with
additional information from the configuration file, e.g., certificates and keys, and
abstracted. Finally, it is compared to the output of the model.

Further examples for different abstractions are given in Chap. 15.

10.3 Scenarios of Model-Based Testing

Model-based testing is not the only use of models in software engineering. More
common is the constructive use of behavior models for code generation. In this
section we discuss four scenarios that concern the interplay of models used for
test case generation and code generation. The first scenario concerns the process
of having one model for both code and test case generation. The second and third
scenarios concern the process of building a model after the system it is supposed
to represent; here we distinguish between manual and automatic modeling. The
last scenario discusses the situation where two distinct models are built.

10.3.1 Common Model

In this scenario, a common model is used for both code generation and test case
generation (Fig. 10.3).

γ/α
Code

HW, OS, Legacy

Requirements

Test Case Specification

Generation Generation

Model

Manual
verdicts

Test Cases

Fig. 10.3. One model is used for both code and test case generation

10 Methodological Issues in Model-Based Testing 287

Testing always involves some kind of redundancy: the intended and the actual
behaviors. When a single model for both code generation and test case generation
chosen, this redundancy is lacking. In a sense, the code (or model) would be
tested against itself. This is why no automatic verdicts are possible.

On the other hand, what can be automatically tested are the code generator
and environment assumptions that are explicitly given, or implicitly encoded in
the model. This can be regarded as problematic or not. In case the code generator
works correctly and the model is valid, which is what we have presupposed, tests
of the adequacy of environment assumptions are the only task necessary to ensure
a proper functioning of the actual (sub-)system. This is where formal verification
technology and testing seem to smoothly blend: formal verification of the model
is done to make sure the model does what it is supposed to. Possibly inadequate
environment assumptions can be identified when (selected) traces of the model
are compared to traces of the system. Note that this adds a slightly different
flavor to our current understanding of model-based testing. Rather than testing
a system, we are now checking the adequacy of environment assumptions. This
is likely to be influential w.r.t. the choice of test cases.

Depending on which parts of a model are used for which purpose, this sce-
nario usually restricts the possible abstractions to those that involve a loss of
information that can be coped with by means of macro expansion (Sec. 10.2).

10.3.2 Automatic Model Extraction

Our second scenario is concerned with extracting models from an existing system
(Fig. 10.4). The process of building the system is conventional: somehow, a
specification is built, and then the system is hand coded. Once the system is
built, one creates a model manually or automatically, and this model is then
used for test case generation.

γ/α
Code

HW, OS, Legacy

Extraction

Generation

Manual
Verdicts

Manual
Coding

Requirements

Test Case Specification

Model

Test Cases

Specification

Fig. 10.4. A model is automatically extracted from code

Automatically extracting abstractions from code or more concrete models
is a rather active branch of computer science [Hol01, GS97, SA99] which we
will not discuss here. The abstractions should be created in a way such that
at least some—and identifiable—statements about them should carry over to

288 Alexander Pretschner and Jan Philipps

the more concrete artifact. In the context of testing, it is important to notice
that we run into the same problem of not having any redundancy as above. The
consequence is that automatic verdicts make statements only about assumptions
in the automatic process of abstraction.

Abstractions are bound to a given purpose [Sta73]. Automatic abstraction
must hence be performed with a given goal in mind. It is likely that for test case
generation, fully automatic abstraction is not possible but that test engineers
must provide the abstraction mechanism with domain and application specific
knowledge.

10.3.3 Manual Modeling

A further possibility consists of manually building the model for test case genera-
tion, while the system is again built on top of a different specification (Fig. 10.5).
Depending on how close the interaction between the responsibles for specifica-
tion and model is, there will in general be the redundancy that is required for
automatically assigning verdicts.

γ/α
Code

HW, OS, Legacy

Requirements

Test Case Specification

Model

Manual
Coding

Automatic
Verdicts

Generation

Test Cases

Specification

Fig. 10.5. A model is built only for testing purposes

This approach also reflects the situation where building the specification and
implementing a system are not necessarily performed by the same organization.
For instance, this is often the case in the automotive industry where OEMs
assemble devices from different suppliers. Obviously, the OEMs are interested in
making sure that the supplied systems conform to the specification.

As an aside, combinations of this scenario and that of the last subsection
typically arise when test case generation technology is to be assessed (a recent
survey contains some examples [PP04]). Doing so, however, is problematic in
that testing is only performed when the system has, in large parts, already been
built.

10.3.4 Separate Models

Finally, a last scenario is noteworthy that involves having two redundant and dis-
tinct models, one for test case generation, and one for code generation (Fig. 10.6).

10 Methodological Issues in Model-Based Testing 289

This approach allows one to have automatic verdicts. The model for develop-
ment may be as abstract as desired when the requirement for automatic code
generation is dropped.

γ/αTestfälle
Code

HW, OS, Legacy

Requirements

Test Case Specifications

Model
For Tests

Generation

Automatic
Verdicts

for Development
Model

Manual or

Coding
Automatic

Fig. 10.6. Two models

10.3.5 Interleaving

Except for the last scenario, the above scenarios share the commonality that
there is no real interaction between the development processes of the models
and that of the code. In iterative development processes with ever changing
requirements, this seems unrealistic. With suitable definitions of what an incre-
ment is, it is of course possible to interleave the development of two models,
or to interleave the development of a model and some code. Of course, this is
likely to involve some overhead. We will not discuss this issue any further here
since that has been done elsewhere [PLP03] with considerations of the role of
regression testing and of compositional testing [Pre03].

10.3.6 Summary

Automatic code generation from models boils down to perceiving models as
possibly executable artifacts written in a very high-level programming language.
This goes well beyond the use of models for analytical purposes only where,
again, it is widely accepted that while it might be too expensive, modeling in
itself usually reveals many errors. Currently, the embedded systems industry
expresses a high degree of interest in these concepts.

We have shown that one must be careful in ensuring redundancy when mod-
els are used for testing and code generation. Models for the further can involve
both flavors of simplification that we identified in Sec. 10.2, namely the one
where information is encapsulated, and the one where information is deliber-
ately dropped. Models for the latter can obviously only involve encapsulation of

290 Alexander Pretschner and Jan Philipps

details.3 We consider a thorough discussion of when the use of models for code
generation is likely to pay off utterly important but beyond the scope of this
paper. Briefly, we see a separation of concerns, multiple views, and restriction
as key success factors of modeling languages [SPHP02]. The following captures
the essence of the four scenarios and provides a prudent assessment.

• Our first scenario considered one model as the basis for code and tests. This
is problematic w.r.t. redundancy issues and a restriction to abstractions that
boil down to macros. Code generators and environment assumptions can be
checked.
• The second scenario discussed the automatic or manual extraction of ab-

stractions (beyond its technical feasibility). Because there is no redundancy
either, the consequences are similar to those of the first scenario.
• The third scenario discussed the use of dedicated models for test case gener-

ation only. Because there is redundancy w.r.t. a manually implemented sys-
tems and because of the possibility of applying simplifications in the sense of
actually losing information, this scenario appears promising. This is without
any considerations of whether or not it is economic to use such models. We
will come back to this question in the conclusion in Sec. 10.4.
• Finally, the fourth scenario considered the use of two independent models,

one for test case generation, and one for development. The latter model
may or may not be used for the automatic generation of code. This scenario
seems to be optimal in that it combines the—not yet empirically verified—
advantages of model-based testing and model-based development. Clearly,
this approach is the most expensive one.

10.4 Conclusion

In this brief overview chapter, we have discussed the role of models in the context
of testing. Some emphasis was put on a discussion on the methodological need for
different abstraction levels of models and implementations. The basic argument
is that the effort to manually validate an SUT—checking whether or not it
corresponds to the usually informal requirements—must find itself below the
effort necessary to build the model, validate the model, and derive test cases
from it. Abstract models are easier to understand than very concrete artifacts.
On the other hand, abstraction incurs a cost: aspects that were abstracted can
usually not be tested. We discussed the role of driver components that, to a
certain extent, can re-introduce the missing information.

A further focus of this article is on different scenarios of model-based testing.
We have discussed the role of redundancy and the problematics of generating
both tests and production code from one single model.

3 When they focus on certain parts of a system only, then this clearly is a loss of
information. However, code can obviously only be generated for those parts that
have been modeled.

10 Methodological Issues in Model-Based Testing 291

The fundamental concern of model-based testing seems to be whether or
not it is more cost-effective than other approaches—traditional testing, reviews,
inspections, and also constructive approaches to quality assurance. While first
evaluations of model-based testing are available [PPW+05], there clearly is a
need for studies that examine the economics of model-based testing.

11 Evaluating Coverage Based Testing

Christophe Gaston1 and Dirk Seifert2

1 Commissariat a l’energie atomique
Logiciels pour la Sûreté des Procédés
christophe.gaston@cea.fr

2 Technische Universität Berlin
Software Engineering Research Group
seifert@cs.tu-berlin.de

Abstract. In the previous chapters, various formal testing theories have been dis-
cussed. The correctness of an implementation with respect to a model is denoted by
a so-called conformance relation. Conformance relations are relations between math-
ematical abstractions of implementations and models. Based on these conformance
relations, different testing strategies have been defined. In this chapter, we concentrate
on formal objects used to select test suites. These formal objects are so-called coverage
criteria. A coverage criterion is a property that a selected test suite has to satisfy. We
explore to which purposes these coverage criteria can be used for. Then we concentrate
on the fault detection ability of a test suite satisfying a given coverage criterion.

11.1 Introduction

All testing methodologies introduced in this book follow the same generic test
process. Test cases are generated according to a given model of the implemen-
tation. The model results from a requirements analysis and has to be (if testing
is done automatically) a formal description of the requirements. Test cases are
sequences of input/output pairs and a finite set of test cases is called test suite.
For each test case of a test suite, the input specified in the first pair of the se-
quence is refined with concrete data called test data. Test data are submitted to
the implementation through its environment. The implementation generates a
result which is captured through its environment. The result is compared (with
respect to a conformance relation) to the output specified in the pair. If the
conformance relation is not contradicted, the process goes on with the following
pair. If generated outputs all correspond to the intended outputs, the test case
is executed successfully. If all the test cases of the test suite are executed suc-
cessfully, a success verdict is assigned to the test process, since no test case of
the test suite allows to show that the implementation does not conform to the
specification. Figure 11.1 shows this testing framework.

The number of test cases required to obtain confidence in the system under
test is usually infinitely large for real life applications. Consequently, a so called
domain expert is involved in the test process, as he is able to extract interesting
test suites due to his knowledge. For automated test case generation, the problem
remains unsolved. So, for current testing practices, one of the open questions is:
Which test suite should be extracted from a possibly infinite set of test cases?

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 293-322, 2005.
 Springer-Verlag Berlin Heidelberg 2005

294 Christophe Gaston and Dirk Seifert

Specification/
Model

Test Case
Specification

SuT

Environment

Test
Suite

Test Case Selection

Test Case Derivation

Test Case Execution

Fig. 11.1. A Usual Test Framework

Information provided by the model to extract test cases can have two different
natures. On the one hand, functional aspects can be used. These aspects of the
model describe the intended functionality of the implementation. The goal of
test purpose based techniques is to generate test suites to validate such kind
of properties [FJJV96, BGM91]. On the other hand, structural aspects of the
model can be used. These structural aspects can be the state space description
or the dynamics description of the implementation. For example, in Z, VDM,
or B specifications, the state space is given by a set of typed variables and
predicates describing the invariant. The dynamics description is constituted of
operations which map input data and the state before applying the operation to
the output data and the state after applying the operation. In Extended Finite
State Machines, the state space is expressed by variables and by guards over these
variables, while the dynamics description is given by assignments on variables,
transition functions, and functions which define the output generated depending
on an input received and the current state. In coverage based testing techniques,
test suites are selected to cover some structural aspects of the model with respect
to given coverage criteria. Coverage criteria can be seen as predicates defined on
triples (P ,M ,T), where P is a program whose associated model is M , and T is
a test suite. The meaning of such a criterion can be understood in two ways:

• As an adequacy criterion, which is a set of rules used to determine whether
or not testing is complete for a given program, specification and criterion.
• As a selection criterion, which is a set of rules used to select test cases for a

given program and specification.

A selection criterion helps to select a test suite in order to fulfill a goal,
whereas an adequacy criterion helps to check that a previously selected test
suite satisfies a goal. The notion of coverage criteria has been originally defined
for white-box testing techniques. In these techniques, structural aspects to cover
are related to programs: for example, a coverage criterion may be to cover all
statement sequences in a program. In this book, we focus on coverage criteria

11 Evaluating Coverage Based Testing 295

related to models: for example, a coverage criterion may be to cover all the states
of a model.

This chapter provides an overview of different research activities dealing with
the coverage based testing techniques and their evaluation. In Section 11.2, we
discuss how coverage criteria can help to select meaningful test suites. In Sec-
tion 11.3, we present common coverage criteria. In Section 11.4 we concentrate
on providing quantitative elements to evaluate the ability to detect faults of cov-
erage based testing techniques. Finally, in Section 11.5, we summarize the main
results and present open problems.

11.2 Coverage Criteria

To address the question Which test cases should be extracted from a possibly
infinite set of test cases ? it is possible to use advanced specifications describ-
ing which test cases to choose. Such specifications are usually called test case
specifications (cf. Figure 11.1), and are, strictly speaking, selection criteria.

The main reasons for an infinitely large test suite are that a specification
can represent an infinite number of traces (e.g., caused by variables ranging over
infinite domains) and that a specification can contain infinite traces (e.g., caused
by loops). For the first reason the problem is to select traces for the second reason
the problem is to chop traces. Basically, the specification (ideally) describes all
possible test cases while the test case specification describes which of these test
cases are likely to find errors and, consequently, increase the confidence in the
correctness of the implementation. Most of the criteria used for selecting test
cases can be coarsely classified according to the following three aspects:

(1) The test case specification is a description of a structural criterion which
should be covered.

(2) The test case specification is a description of functional aspects, also called
scenarios, which should be covered.

(3) The test case specification contains stochastic information about different
aspects of the implementation which is be used to concentrate on particular
details.

The third variant is also used to restrict a test case specification if this
represents an infinite model (for example, if path coverage is required which is
usually infeasible to achieve as explained in the following section).

11.2.1 Structural Criteria

Basically, coverage criteria are used to measure the quality or, more precisely,
the adequacy of test suites: A test suite is adequate according to a criterion if a
designated percentage of this coverage criterion is reached. Depending on this,
testing is continued or stopped. A structural criterion is an assertion about the
structure of the specification. For example, in model based specifications states

296 Christophe Gaston and Dirk Seifert

or transitions can be used. In class diagrams, for example, it could be required
to use at least one instance of each class in the diagram.

For test case generation this means that test cases are generated according
to a structural criterion, and that a test case is selected if this test case increases
the coverage of this criterion. In the case of several test cases one can choose the
test case with the major contribution.

For example, transition coverage requires choosing test cases in such a way
that all transitions of the specification are covered. The boundary interior
test requires that every loop is repeated zero, one and at most k times. The
strongest coverage criterion is the path coverage criterion. This criterion is
satisfied by a test suite if and only if for any possible path in the model, the
test suite contains at least one test case which enforces an execution of this
path in the implementation. Path coverage is in general impossible to achieve
and impractical for real life testing. Reasons for that are loops in the model or
infinite data spaces.

11.2.2 Functional Criteria

Another method to select test cases is using a model of the environment. Usu-
ally, such a model is called scenario model, use case or user profile and allows
to describe scenarios which involve user enabled functionalities. The idea is that
the test case specification is used to determine the inputs used to test the im-
plementation and the model is used to estimate the expected outputs of the
implementation.

For example, if the system under test is a banking application, usual func-
tionality is the deposit of money into an account, the withdrawal of money from
an account, or checking the balance. All these functionalities can be described
as scenarios. Another example are the so called attack traces in security engi-
neering. Here, possible ways to attack the system under test by an unfriendly
user are modeled in scenarios and used to control the test selection process. So,
functional criteria restrict the test case generation to particular scenarios and
thus restrict the number of test cases.

As mentioned before, further reduction is required in case that the test case
specification represents a possibly infinite set of scenarios (for example, if the
test case specification is modeled as a state machine containing loops).

11.2.3 Stochastic Criteria

Usually, stochastic criteria1 result from analysis of the expected user behavior
or system usage, respectively. The simplest case is that all parts of the imple-
mentation, or all its functionalities have equal probability of execution. In this
case, test case selection is done randomly. In contrast, if some functions are fre-
quently used or represent important functionalities, test cases connected to these
functionalities are preferred.
1 Note that stochastic criteria can also be referred to as statistical criteria.

11 Evaluating Coverage Based Testing 297

In the following section we review some usual coverage criteria that are used
to select test cases. The aim of the section is to give the reader an intuition of
usual criteria. A more exhaustive presentation of coverage criteria can be found
elsewhere [FW88, RW85, ZHM97].

11.3 Coverage Based Testing

The problem of tractable coverage criteria that are easier to satisfy than the path
coverage criterion, has been studied for a long time in the context of white-box
testing. A lot of criteria have been defined [Mey79]. In the following, we present
different coverage criteria used in the context of model based testing approaches
which are adapted from white-box testing. Most of these coverage criteria can
be classified into two main classes: control flow oriented coverage criteria and
data flow oriented coverage criteria.

Control flow oriented coverage criteria are based on logical expressions in-
troduced in the specification which determine the branch and loop structure of
the implementation. Data flow oriented coverage criteria focus on the data flow
part of the implementation. More precisely, they focus on the way values are
associated to their variables and how these assignments affect the execution of
the implementation [VB01].

In the following coverage criteria are introduced and explained, keeping in
mind the analogy between models and abstract programs. Our discussions fits
also for coverage criteria associated to programs with respect to white-box testing
(i.e., coverage of code). In this context coverage criteria are usually described as
flow graphs. However, we do not need this notion to present control flow criteria.
Thus, a flow graph definition is only introduced in Section 11.3.2.

11.3.1 Control Flow Oriented Coverage Criteria

Basically, control flow oriented coverage criteria rely on the notions of decision
and condition [VB01]. A condition is an elementary boolean expression which
cannot be divided into further boolean expressions. A decision can be seen as
a control point in the specification at which the control flow can follow various
paths. In programming languages, this is a boolean expression consisting of sev-
eral conditions combined by logical connectives. An instantiation of the common
IF-THEN-ELSE construct in programming languages is an example for a decision.
The most basic control flow criterion is the decision coverage criterion.

The decision coverage criterion [Mey79], also known as branch coverage,
requires that each possible outcome (i.e., true or false) of every decision in the
specification is produced at least once. For example, the specification contains a
decision D : IF (A∧B) THEN S, where A and B are conditions. It is required that at
least one test case makes (A∧B) evaluate to true and one makes (A∧B) evaluate
to false. A test suite which contains two test cases, one such that A is true and
B is true and the other one such that A is false and B is true, is sufficient to
test decision D . The example clearly demonstrates that decision coverage does

298 Christophe Gaston and Dirk Seifert

not ensure test suites which cover all different outcomes of a condition involved
in a given decision. For example, the fact that B is failure causing could remain
undetected with this criterion. To overcome this weakness, three refined criteria
have been introduced.

The condition coverage criterion requires that each possible outcome of
every condition in each decision is produced at least once. To give an example,
we consider again decision D . The condition coverage criterion requires that A
and B have taken all possible outcomes. Thus, a test suite which contains two
test cases, one such that A is true and B is false and the other one such that A
is false and B is true is sufficient to test decision D .

Even though the condition coverage criterion captures all conditions, it is not
powerful enough to capture coverage of decisions. The test suite described above
for condition D illustrates this fact: It consists of two test cases which both make
(A∧B) evaluate to false. To overcome this weakness one must combine condition
coverage and decision coverage. This is done in decision condition coverage.

The decision condition coverage criterion requires that each possible out-
come of every condition in each decision is produced at least once and that each
possible outcome of every decision in the specification is produced at least once.
For decision D , a test suite which only contains two test cases, one such that
A is true and B is true and the other one such that A is false and B is false, is
sufficient to test decision D with regard to decision condition coverage. Decision
condition coverage is strictly stronger than both decision coverage and condi-
tion coverage in the sense that each test suite which satisfies decision condition
coverage satisfies both decision coverage and condition coverage.

The multiple condition coverage criterion requires that each possible
combination of conditions outcomes in each decision is produced at least once.
Again, we consider decision D , a test suite containing four test cases (A is true
and B is true, A is true and B is false, A is false and B is true and A is false and
B is false) is necessary to test D with regard to multiple condition coverage.

Note that multiple condition coverage requires full search of various combi-
nations of condition values [VB01]. If the number of conditions in a decision is
equal to n, the number of test cases to satisfy multiple condition coverage grows
up to 2n . This becomes unmanageable even for relatively moderate values of n.
Decision coverage, condition coverage and decision condition coverage criteria re-
quire less test cases. For example, condition coverage requires two test cases per
condition. If a decision contains n conditions, the criterion requires at maximum
2n test cases. However, a test suite which satisfies one of these three weaker
criteria will not cover all combinations of conditions outcomes. The modified
condition decision coverage criterion provides an intermediate position.

The modified condition decision coverage criterion requires that each
possible outcome of every condition in a decision is produced at least once, each
possible outcome of every decision is produced at least once and that each condi-
tion in a decision has been shown to affect the decision’s outcome independently.
A condition is shown to affect a decision’s outcome independently by varying
that condition while all other possible conditions are fixed.

11 Evaluating Coverage Based Testing 299

Modified condition decision coverage includes in its definition both decision
coverage and condition coverage. Furthermore, decision coverage can be deduced
from condition coverage in combination with the independently affect property.
Again, we consider decision D . A test suite with three test cases such that A is
true and B is true, A is true and B is false, and A is false and B is true satisfies
the modified condition decision coverage. Obviously, such a test suite satisfies
the condition decision coverage and also the independently affect property. From
these two facts, it is easy to see that decision coverage is satisfied. The number
of required test cases ranges between n + 1 and 2n which is manageable even
for large values of n. However, there are situations in which it is impossible
to vary one condition value while keeping the others unchanged. This is the
case if A is true implies that B is true. To overcome this problem, Vilkomir
et. al. provide an improved formal definition of the modified condition decision
coverage criterion [VB02]. There it is sufficient to choose any combination that
varies both condition and decision even-though other conditions may also vary.

At last, the full predicate coverage criterion requires that each possible
outcome of every condition in a decision is produced at least once, where the
value of a decision is directly correlated with the value of a condition. Intuitively,
multiple condition decision coverage is relaxed in the sense that it is not required
that conditions in a decision independently affect the decision.

11.3.2 Data Flow Oriented Coverage Criteria

Data flow oriented criteria are based on data flow analysis with respect to com-
piler optimization activities. They require test cases that follow instruction se-
quences from points where values are assigned to variables to points where those
variables are used. To introduce different criteria, we define flow graphs associ-
ated to a model. Strictly speaking, we discuss code coverage as used in white-box
testing approaches. The relationship between models and code is that behavioral
models can be compiled into code and that described coverage criteria can be
applied to this code. However, there are many possibilities for this relationship;
the way criteria are applied depends on the concrete approach. For example,
using modified condition decision coverage at level of assembly code does not
make sense.

A flow graph associated to a model is a directed graph that consists of a
set of nodes and a set of edges connecting these nodes. Nodes contain linear
sequences of computations (i.e., access to external values, variable assignments,
data changes, etc). Edges represent transfer of control between nodes specified in
the specification. Additionally, each edge is associated with a boolean expression
that is the condition of the corresponding control transfer. A flow graph contains
an initial node, which denotes the beginning of an abstract2 computation, and a
set of terminal nodes which denote exit points. Depending on the type of model,
initial and terminal nodes have to be chosen or added (for example, extended
finite state machine formalisms do not use notions of beginning and ending of

2 Abstract in the sense that models are abstractions of programs.

300 Christophe Gaston and Dirk Seifert

computations). In some cases, a data flow graph can be seen as an annotated
control flow graph.

In the following, a flow graph is a representation of all statement sequences
of the model, and a test case is a possible (instantiated) instance of a path in
the flow graph (i.e., inputs which execute the instruction sequence denoted by
the path) [ZHM97]. Moreover each occurrence of a variable in a node is classified
either as definition occurrence or as use occurrence. The latter can be further
divided into computational use or, if it is used within a predicate, into predicate
use. In the following necessary definitions are given:

• A definition clear path with respect to a variable x in a flow graph is a path
where for all nodes in the path there is no definition occurrence of x .
• A definition occurrence of variable x within a node u reaches a computational

use occurrence of x within a node v , if and only if there is a path p =
(u,w1, . . . ,wn , v), such that (w1, . . . ,wn) is definition clear with respect to x .
• A definition occurrence of variable x in u reaches a predicate use occurrence

of x on the edge (wn , v), if and only if there is a path p = (u,w1, . . . ,wn , v),
such that (w1, . . . ,wn) is definition clear with respect to x and there exist a
predicate occurrence of x associated to the edge from wn to v .
• For both predicate and computational use occurrence, a definition occurrence

of x in u feasibly reaches the use occurrence of x , if and only if there is a
path p, such that there exists inputs which enforce the execution of p.

The simplest data flow criteria rely on paths that start with the definition of
a variable and end with the use of the same variable. The following criteria are
adapted from the work of Frankl and Weyuker [FW88].

A test suite T satisfies the all definitions coverage criterion, if and only if
for all definition occurrences of a variable x , such that there is a use occurrence of
x which is feasibly reachable from the definition, there is at least one element in T
which is a numerical instance of a path p, that contains a sub path through which
the definition of x reaches some use occurrence of x . Thus, the all definitions
coverage criterion ensures that all defined variables will be tested at least once
by one of their uses in the model. However, this is insufficient as tester require
to test all uses of all variable definitions. It is ensured by the all uses criterion.

A test suite T satisfies the all uses coverage criterion, if and only if for all
definition occurrences of a variable x and for all use occurrences of x which are
feasibly reachable from the definition, there is at least one element in T which
is a numerical instance of a path p that contains a sub path through which the
definition of x reaches the use occurrence.

The previously described criteria have been specialized to take into account
that a use occurrence can be a computational use or a predicate use [RW85].
However, the all uses coverage criterion does not ensure that all possible ways
to reach a use occurrence have been tested. As there may be several sub paths
which allow a definition occurrence of a variable to reach a use occurrence of this
variable. Note that some of these paths may be infinite due to cycles and cannot
be covered. A possible solution is to restrain to cycle free sub paths. The only

11 Evaluating Coverage Based Testing 301

cycles allowed are those that begin and end at the same node. The all definitions
uses paths criterion requires each of such cycle free sub paths to be covered by
at least one test case.

A test suite T satisfies the all definitions uses paths coverage criterion,
if and only if for all definition occurrences of a variable x and for all paths q
through which a use occurrence of x is reached, there is at least one element
in T which is a numerical instance of a path p that contains q as a sub-path.
Moreover, q is required either to be cycle free or to be such that the first node
is also the last node. This criterion may never be satisfied since such cycle free
paths are infeasible to generate. But, more complex criteria (involving several
definition and use occurrences) are definable.

Ntafos introduces a family of coverage criteria (required k -tuples) and their
definition relies on the notion of k -dr interactions [Nta88]. For k > 1 a k-dr
interaction is a sequence K = [d1(x1), u1(x1), d2(x2), u2(x2), . . . , dk (xk), uk (xk)]
and for all i < k :

• A definition occurrence of xi is di(xi).
• A definition use of xi id ui(xi).
• The use occurrence ui(xi) and the definition occurrence di+1(xi+1) are asso-

ciated with the same node ni+1 in a path p = (n1) · p1 · (n2) · . . . · (nk−1) ·
pk−1 · (nk) such that the definition occurrence d1(x1) is associated to n1.
• The i th definition occurrence di(xi) reaches the i th use occurrence ui(xi)

through pi .

Where p is an interaction path for the k -dr interaction K . The aim of the
required k -tuples criteria is to achieve test suites which allow to test j -dr inter-
actions for j ≤ k .

A test suite T satisfies the required k-tuples criterion, if and only if for
all j -dr interactions L with 1 < j ≤ k , there is at least one test case in T which
is a numerical instance of a path p such that p includes a sub path that is an
interaction path for L.

The presented criteria are basic coverage criteria. Numerous criteria have
been defined elsewhere (for example, criteria that take the number of loogs into
account). For further study, the paper of Zhu et. al. provides a presentation of
a large number of coverage criteria [ZHM97].

11.4 Coverage Based Testing and Fault Detection Ability

In the following, we concentrate on systems which are non-reactive: that is,
they can be seen as functions (taking an input as argument and yielding a
result). For these systems, test cases are pairs of inputs and intended outputs. We
present contributions which aim at providing quantitative elements to evaluate
the ability to detect faults of structural coverage based testing techniques.

We assume that structural coverage based testing techniques can be seen as
partition based testing techniques. Partition based testing consists in splitting

302 Christophe Gaston and Dirk Seifert

the whole input domain of the implementation into several subdomains. For
example, domain D = {0, 1, 2} is separated into two subdomains D1 = {0, 1}
and D2 = {2}. D1 and D2 define together a partition (in the mathematical
sense) of D . Usually, the terminology of partition based testing is associated to
any technique involving a division of the input domain into several subdomains
even if these subdomains overlap. For example, if the domain D = {0, 1, 2} is
divided into the following two subdomains: D ′

1 = {0, 1} and D ′
2 = {1, 2}.

Let us consider any structural selection criterion applied on a given model and
program. Selecting a test suite implies dividing the whole input domain of the
implementation. For example, a model described in a formalism containing the
”if-then-else” statement with x ranging over D : if (x ≤ 1) then inst1 else inst2.
By using decision coverage, the selected test suite contains at least two test cases:
one for which the selected test data is such that x ≤ 1 and one for which the
test data is such that x > 1. This example clearly demonstrates that testing
techniques in which test case selection processes are based on structural criteria
are in fact partition based testing techniques.

The first part of the following section is to compare abilities to detect faults of
structural coverage based testing techniques and of random based testing. Ran-
dom based testing consists in selecting a certain number of test data randomly
out of the input domain and evaluating outputs caused by test data with regard
to intended results expressed in the model. Following the discussion above, we
discuss contributions which compare random based testing and partition based
testing techniques. Section 11.4.1 provides a structured presentation of several
significant contributions to this aspect.

The second part of the following section is to compare techniques based on
different structural criteria on the basis of abilities to detect faults. One of the
most well known ways to compare criteria is by the subsume relation. It is a way
to compare the severity of testing methods (in terms of adequacy of test suites).
In Section 11.4.2 we present several relations derived from the subsume relation.
Then, it is studied whether or not these relations impact the fault detection
ability. That is, the following question is addressed: If two criteria are involved
in one of these relations, what can we say about their respective abilities to
detect faults?

11.4.1 Partition Testing Versus Random Testing

Here we focus on contributions which address the problem of comparing re-
spective abilities to detect faults of random based and partition based testing
[DN84, HT90, Nta98, Gut99]. All these contributions are based on a common
mathematical framework. This framework is called the failure rate model and is
now described.

We suppose that an implementation is used for a long period of time with
various samples of randomly selected test data. Furthermore we suppose that
we are able to observe the number of detected faults at any time. The number
of faults will converge towards a constant. We denote θ the ratio between this

11 Evaluating Coverage Based Testing 303

constant and the total number of possible inputs. The ratio θ is called the fail-
ure rate associated to the domain D of the implementation. The probability to
randomly select one test data which does not reveal a fault is 1−θ and the prob-
ability to randomly select n test data, none of which reveals a fault, is (1− θ)n .
The probability to reveal at least one fault for n randomly selected test data can
be expressed as follows: Pr = 1− (1− θ)n .

Now let us consider that a partition based testing technique partitions the
domain D into k subdomains D1 . . .Dk . For each Di , i ∈ {1, . . . , k}, θi denotes
the failure rate associated to Di . Now suppose that the testing technique states
that ni test data must be selected in Di . A total of n test data is selected,
therefore n = Σ

k

i=1
ni . The probability to select ni test data in Di , none of which

reveals a fault, is (1− θi)ni and the probability to detect at least one fault when

selecting ni test data in each Di is Pp = 1−
∏k

i=1
(1− θi)ni .

For each Di , i ∈ {1, . . . , k}, pi is the probability that a randomly chosen test

data is in Di , so that θ = Σ
k

i=1
piθi . Thus, Pr and Pp can be expressed as follows:

Pp = 1−
∏k

i=1
(1− θi)ni (for partition based testing), and

Pr = 1− (1−Σ
k

i=1
piθi)n (for random based testing).

In the following, contributions introduced can be classified into two differ-
ent types. In the first type of contributions the results are based on simulation
experiments. The idea is to perform comparisons between Pr and Pp with dif-
ferent valuations of their variable parts. In the second type of contributions (the
fundamental approaches) the results are based on mathematical proofs. Under
particular assumptions, fundamental results are proved.

Simulation Experiments

Duran and Ntafos [DN84] follow the framework described above to address the
problem whether or not one of the two testing methods is more efficient at
detecting faults than the other. That is, they compare Pr and Pp through various
simulation experiments. Moreover the authors compare the two testing methods
through another criterion: the expected number of errors that a set of test data
will discover. Using an ideal partition scheme in which each subdomain contains
at most one fault, the expected number of errors discovered with partition based
testing is given by the formula Ep(k) = Σ

k

i=1
θi . Here, one test data is randomly

chosen out of each subdomain Di . The expected number of errors found by n
random test data Er (k ,n) is given by the formula Er (k ,n) = k −Σ

k

i=1
(1−piθi)n .

The simulation experiments consist of different variations: the number k of
subdomains, the number ni of test data in each subdomain (and thus the overall
number n of test data), the failure rate θi in each subdomain and the probability
pi that a randomly chosen test data is in the subdomain Di (and thus the overall

304 Christophe Gaston and Dirk Seifert

failure rate θ). For each variation Duran and Ntafos study the ratio Pr

Pp
and Er

Ep
.

The experiments reported are based on two different assumptions on failure rates.
On the one hand, a usual belief about partition based testing is that it allows to
obtain homogeneous subdomains. That is, if an input of a subdomain is failure
causing, then all inputs of the subdomain have a high probability to be failure
causing and conversely. Under this assumption, failure rates should be either
close to 0 or close to 1. On the other hand, there are examples of program paths
that compute correct values for some, but not all, of their input data. Under this
assumption, the failure rate distribution should be more uniform than suggested
above.

• In the first experiment, the authors suppose that the partition based testing
technique divides the domain into 25 subdomains. It is supposed that the
partition based technique requires the selection of one test data per sub-
domain. To provide a fair comparison the random based testing method
requires to select 25 test data randomly. Several values for θi are selected.
The θi ’s are chosen from a distribution such that 2 percent of the time
θi ≥ 0.98 and 98 percent of the time θi ≤ 0.049. These assignments reflect
a situation in which subdomains are homogeneous. The pi are chosen from
a uniform distribution. It appears that on a total of 50 trials 14 trials are
such that Pr ≥ Pp . However the mean value of Pr

Pp
is 0.932. Under the same

hypothesis on failure rates, the experiment is repeated for k = n = 50 and
the results are even more surprising. Indeed, one could think that increasing
the number of subdomains should favor partition based testing. However this
experiment does not corroborate this intuition: the mean value of Pr

Pp
was

0.949. The mean value of the ratio Er

Ep
is for 25 subdomains and 50 trials it

is equal to 0.89, and for 50 subdomains and 50 trials it is equal to 0.836.
• In the second experiment, the assumption on the θi distribution is that θi ’s

are allowed to vary uniformly from 0 to a given value θmax ≤ 1. Several
possible values are assigned to θmax . Experiments are performed for k =
n = 25 and k = n = 50. As θmax increases Pr and Pp tend to 1. Random
based testing performs better for the lower failure rates and also when the
size of the partition is 25 instead of 50. Similar studies are carried out for
Er and Ep . In these studies, the number of randomly selected test data is
allowed to be greater than the number of test data selected for partition
based testing (100 for random based testing versus 50 for partition based
testing): this is consistent with the fact that carrying out some partition
based testing scheme is much more expensive than performing an equivalent
number of random test data. Under these assumptions, random based testing
performed better than partition based testing most of the time (Er > Ep).

All these experiments deeply question the value of partition based testing
with regard to random based testing. However, these are simulation results.
Therefore, the authors concentrate on actual evaluations of random based test-
ing. Duran and Ntafos propose to evaluate random based testing on three pro-
grams containing known bugs. The first program contains three errors. The first

11 Evaluating Coverage Based Testing 305

error is detected 11 out of 50 times, the second error 24 times and the third error
45 out of 50 times. The simple error in the second program is detected by 21 out
of 24 times. For the third program 50 test cases were generated. The simple error
was detected 18 of 50 times. More programs were tested with similar results.

One of the features of coverage criteria is that they can be used to measure
coverage of test suites generated by other methods. The authors evaluate some
test suites generated by random based testing, with program based coverage
criteria. Test suites are generated for the programs previously used to evaluate
random based testing. The idea is to simply generate a test suite and then to use
a given criterion to see if the test suite satisfies the requirements stated by the
criterion. Several criteria are then considered to measure random based testing
adequacy. The number of test data generated ranges between 20 and 120 and
five programs from the previous experiments were used. The over-all result is,
that for a moderate number of random test data random based testing allows to
cover these criteria for coverage percentages ranging from 57 percent up to 94
percent depending on the criterion.

The experiments presented in the paper indicates that it is reasonable to as-
sume that random based testing can find more errors per unit cost than partition
based testing, since carrying out some partition based testing scheme is much
more expensive than performing an equivalent number of random test data. This
holds for homogeneous subdomains and for values of θi uniformly distributed.
Assumptions on failure rates may be unrealistic but actual evaluations show
that random based testing seems to discover some relatively subtle errors with-
out great efforts. Moreover, random based testing seems to ensure a high level
of coverage for some usual coverage criteria.

Hamlet and Taylor [HT90] explore the results of Duran and Ntafos more deeply.
They perform experiments based on statistical assumptions very similar to those
made by Duran and Ntafos.

They compare partition based testing and random based testing with respect
to the conventional failure rate model used by Duran and Ntafos. They are
compared by different numerical valuations of their respective probabilities to
detect faults for the same number of selected test data (Σ

k

i=1
ni = n). Different

relationships between θ and θi are proposed:

• The first relationship is based on the assumption that if a test data is ran-
domly selected, the probability that this test data is an element of any sub-
domain is 1/k . Thus θ is the average of the sum of all θi : θ = 1

kΣ
k

i=1
θi . The

difference between random based and partition based testing in terms of the
probability of finding at least one failure will be maximal when the variance
of the θi has a maximum. If only one test data per subdomain is selected,
this occurs if only one subdomain, the j th one, is failure causing (θj = kθ
and θi = 0 for i �= j). This situation is studied for different failure rates
and different sizes of partitions. To give a significant advantage to partition
based testing, the number k of subdomains has to be of the same order of

306 Christophe Gaston and Dirk Seifert

magnitude as the inverse of θ: in the frame of this investigation, the most
favorable case is that random based testing is about 0.63 as effective as par-
tition based testing. This result is clearly better than the results obtained
by Duran and Ntafos [DN84]. But Hamlet and Taylor also observe that the
assumption pi = 1/k is not realistic.

• The second relationship is introduced by Duran and Ntafos [DN84]. This
relationship is based on the assumption that when a test data is randomly
selected the probability that this test data is an element of subdomain Di

is an arbitrary number pi . The influence of the number of subdomains, the
distribution of θi and of lower and upper bounds for θi is investigated by
different experiments. This deeper investigation does not contradict previ-
ous results given by Duran and Ntafos [DN84] which indicate that there are
little differences between partition based and random based testing with re-
gard to their probabilities of revealing failures. Even-though partition based
testing is sometimes better, slight advantage for partition based testing can
be reduced by using a higher number of random test data.

• The third relationship explores modifications of the relationship described
above. The aim is to gain information on the importance of the way the sub-
domains are chosen and, the impact of homogeneity on the effectiveness of
partition based testing. To obtain information on the importance of subdo-
main selection, one needs a correlation between the probability of a random
test data in a given subdomain (pi) and its failure rate (θi). The correlation
is denoted by a weight associated to each θi . This weight is used to calcu-
late pi . The higher the weight is, the more subdomains with high failure
rates have a low probability that a random test data would fall into them.
The model intuitively favors partition based testing if the weight associated
to a failure causing subdomain is high. Experiments are consistent with this
intuition but the effectiveness of random based testing is not dramatically af-
fected: in the worst case, random based testing is 0.77 as effective as partition
based testing. Some other experiments in which failure rates are controlled
were conducted. Some subdomains (hidden subdomains) have small proba-
bility of being used by random test data while other subdomains (exposed
subdomains) have a high probability of being used. Failure rates of subdo-
mains are then varied. When failure rates of hidden subdomains are higher
than the overall failure rate, partition based testing is favored. When failure
rates of hidden subdomains are lower than the overall failure rate, random
based testing is favored. The only result is that the advantage of partition
based testing arises from increased sampling in regions where failures occur.
Other experiments are performed to obtain information on the importance
of the impact of homogeneity on the effectiveness of partition based testing.
In these experiments failure rates of hidden subdomains are permitted to
vary uniformly from 1 to 0.2 (low homogeneity) and results are compared
to the case where they varied from 1 to 0.9 (high homogeneity). The largest
impact of low homogeneity is found to be only a 22 percent decrease in the
effectiveness of partition based testing. Most of the time experiments do not

11 Evaluating Coverage Based Testing 307

show that homogeneity is an important factor which impact partition based
testing effectiveness.

Besides conventional failure rate model used by Duran and Ntafos [DN84],
Hamlet and Taylor also investigate a comparison between partition based and
random based testing by the so-called Valiant’s Model [Val84]. The motivation
of this study is that faults are uniformly distributed over the state space of the
program code, not over its input space. Valid partitions are therefore those that
result from reflecting uniform coverage of program states into the input domain
where testing is done. Valiant’s Model does not allow to calculate such partition
but it allows to relate the number of test data to the probability of missing a
failure. Thus, for a given probability of missing a failure, it is possible to compare
the number of test test data for both random based and partition based testing.
Experimental results indicate that random based testing outperforms partition
based testing many times.

Experiments performed in the contribution of Hamlet and Taylor confirm
conclusion of Duran and Ntafos: partition based and random based testing are
of almost equal value with respect to their ability to detect faults. Hamlet and
Taylor explore the impact of homogeneity of subdomains on the ability to detect
faults of partition based testing. They are not able to show that homogeneity is
an important factor.

Ntafos [Nta98] presents further comparisons between random based and parti-
tion based testing. Additionally, the expected cost of failures is taken into ac-
count as a way to evaluate the effectiveness of testing strategies. A comparison
is made between random based testing and proportional partition based testing.
The latter is a partition based testing method where the number of allocated
test data for each subdomain depends on the probability that a chosen test data
falls into this subdomain. Shortly, the ratio between the number of selected test
data for two arbitrary subdomains is equal to the ratio between probabilities
that a test data falls into these subdomains.

First of all the power of proportional partition based testing is investigated. A
problem here is that occurrences of rare special conditions (subdomains with low
probability that randomly chosen test data fall into them) require a large number
of test data. Suppose that an input domain is divided into two subdomains and
one of them corresponds to a rare special condition which occurs once in a
million runs. Then proportional partition based testing would require a total of
1, 000, 001 test data to test a program that consist of a single IF statement. It is
also argued that if the number of required test data grows, proportional partition
based testing allocates test data which are the same as randomly selected test
data. Thus, even though some experiments show that proportional partition
based testing performs at least as well as random based testing, the difference
between the respective performances tends to zero while the number of test data
grows. Simulation experiments in which Pr and Pp are compared are presented.
The allocation of test data in each subdomain is parameterized by the probability

308 Christophe Gaston and Dirk Seifert

that a randomly chosen test data fall into this subdomain. Different failure rates,
number of subdomains and test data are used. None of the experiments allows
to conclude that one method is better than the other.

Comparisons between proportional partition based, partition based, and ran-
dom based approaches with regard to the cost of missing a failure are also pro-
vided. The measure used is given by the expression Σci(1−θi)ni , where for each
subdomain Di ci is the cost of a failure for test data in Di , θi is the failure rate
for Di , and ni is the number of test data out of Di . For various values of k and n,
sample simulation results are given that compare proportional partition based,
partition based, and random based testing. Random probabilities are assigned
to each subdomain. The only interesting result is that uniform partition based
testing performs better than the other two strategies.

Fundamental Approaches

Gutjahr [Gut99] proposes a probabilistic approach: in contrast to the previously
introduced papers, the contribution is based on mathematical proofs. The math-
ematical framework is obtained by slightly modifying the one used by Duran and
Ntafos [DN84]. These modifications are motivated as follows: from a pragmatic
point of view, neither the domain of failure nor the failure rate are known. There-
fore the deterministic variables θ and θi are considered to be random variables
associated to the probability distributions. These probability distributions are
supposed to be deduced from knowledge of experts of the domain of interest.
This knowledge includes the type of program, its size, the programming language
used, etc. Thus θi and θ are replaced by θi = E (θi) and Θ = E (θ), where E
is the mathematical expectation for the distribution. In this context, the prob-
ability of selecting at least one test data which reveals a fault is expressed as
follows:

Pp = E (1−
∏k

i=1
(1− θi)) (for partition based testing), and

Pr = E (1− (1− θ)k) (for random based testing).

The probabilities depend on a class of programs and models of a given domain
and no longer on the program itself. Different results led the authors to draw
the following conclusions:

• If no particularly error prone subdomain is identified before testing and if
finding out the failure rate of one subdomain does not change estimations
of failure rates in other subdomains, then partition based testing techniques
for such a partition have a higher probability to detect errors than random
based testing techniques. If the failure rate in each subdomain is close to the
overall failure rate, fault detection probabilities for both testing techniques
are nearly equivalent.
• Under the same assumptions than described above, if the input domain is

partitioned in k subdomains and the same number of test data is selected
out of each domain, then the fault detection probability of partition based

11 Evaluating Coverage Based Testing 309

testing can be up to k times higher than that of random based testing. This
is the case whenever:
(a) There are many small subdomains and only one (or a few) large sub-

domain(s).
(b) Homogeneous subdomains contain either mostly inputs that are cor-

rectly processed or essentially inputs that are failure causing.

All results presented in this paper are based on strong assumptions on fail-
ure rates and distribution of probabilities: One can not deduce a fundamental
superiority of partition based testing over random based testing. However, the
author claims that there are arguments for the conjecture that, in some practi-
cal applications, both conditions (a) and (b) are at least approximately satisfied.
The first argument is that most of structural partition based testing techniques
define partitions on the basis of predicates used in the program. These intro-
duce extremely unbalanced subdomain sizes. As a result, condition (a) is lucky
enough to be almost true. Concerning condition (b), it is argued that reasonable
subdivision techniques bundle up inputs to subdomains that are processed by
the program in a similar way. In such context, if one input of a subdomain is
recognized as failure causing, this increases the probability that the other inputs
are also failure causing. Conversely, this probability is decreased if an input is
recognized as correctly processed.

Notes All contributions show that we know very little about the comparison be-
tween random based and partition based testing with regard to their respective
ability to detect faults. Independently from the technical background (simula-
tion, theoretical approaches), the presented results and conclusion are based on
strong assumptions on failure rates. It is difficult to judge the relevance of these
assumptions with regard to real failure rates. Random based testing seems to
be the most valuable technique to test reliability of software. This is due to the
fact that random selection of test data makes no assumption on the inputs. In
contrast, partition based selection constrains relations between inputs. Thus, se-
lected test suites have great chances to be non-representatives for usual uses of
the software. If one wants to constrain test suites while addressing reliability, the
constraints should be based on operational profiles rather than on structure of
the model. This increases chances to run test data which are representatives of
real use cases. Nevertheless, partition based testing techniques have great value.
In particular, it is known that in practice they are the only ones that tackle
efficiently the problem of specific fault detection. For example logical faults or
boundary faults can be efficiently analyzed by these kinds of approaches. Unfor-
tunately, the failure rate model does not allow to capture the notion of specific
fault (common mistakes made by programmers). Thus, this model can not be
used to ground theoretically this fact. Contributions allowing to define mod-
els that could take into account this notion of specific faults would be of great
value. This would allow to compare partition based testing and random based
testing with regard to their abilities to detect these specific faults. Concern-
ing the nature of systems under test, all contributions presented here deal with

310 Christophe Gaston and Dirk Seifert

non-reactive systems. Contributions allowing to relate partition based testing
and random based testing for reactive systems would be an interesting prospect.
However the failure rate model should be adapted to take into account infinite
runs.

11.4.2 Structural Criteria and Ability to Detect Faults

In this section, we compare the ability to detect faults for different testing meth-
ods involving structural coverage criteria to select test suites. We present a con-
tribution by Frankl and Weyuker [FW93]. They propose to define relations be-
tween criteria and to study, for each of these relations, what knowing that a
criterion C1 is in relation with a criterion C2 tells us about their respective abil-
ity to detect faults. One of the most well known way to compare two coverage
criteria is the subsume relation. A criterion C1 subsumes a criterion C2 if and
only if for any program and associated model, C1 is satisfied by a test suite T im-
plies C2 is satisfied by T . The subsume relation compares constraints imposed
by criteria to select test suites. In contrast, relations proposed by Frankl and
Weyuker only compares partition induced by criteria. This allows to compare
fault detection abilities of criteria by different assumptions on the test data se-
lection process. These assumptions are made explicit in the way fault detection
ability is measured. Frankl and Weyuker propose three different measures. We
note SDC (P ,M) = {D1,D2, . . . ,Dk} the partition induced by a given criterion
C for a given program P and associated model M . For i ∈ {1, . . . , k}, we de-
note di =| Di | and mi the number of failure causing inputs in Di . The measures
proposed by Frankl and Weyuker are:

• M1(C ,P ,M) = max
1≤i≤k

(mi

di
) measures to what extent failure causing inputs

are concentrated at subdomains. The only assumption made on the test data
selection process is that at least one test data is selected in each subdomain.
With this assumption, M 1(C ,P ,M) is a lower bound of the probability that
a test suite will expose at least one fault.

• M2(C ,P ,M) = 1 −
∏k

i=1
(1 − mi

di
) measures the exact probability that an

adequate test suite exposes at least one fault, assuming that the test data
selection process requires exactly one selection per subdomain.

• M3(C ,P ,M ,n) = 1−
∏k

i=1
(1 − mi

di
)n measures the exact probability that an

adequate test suite exposes at least one fault, provided that the test data
selection process requires n selections per subdomain.

For each relation R defined between criteria, for every program P and every
model M , the authors investigate the following questions:

(A) Does R(C1,C2) imply M1(C1,P ,M) ≥ M1(C2,P ,M)?
(B) Does R(C1,C2) imply M2(C1,P ,M) ≥ M2(C2,P ,M)?
(C) Does R(C1,C2) imply M3(C1,P ,M , 1) ≥ M3(C2,P ,M ,n) where n =

|SDC1 (P ,M)|
|SDC2 (P ,M)|?

11 Evaluating Coverage Based Testing 311

Let us comment the last question. One problem with using M2 as a measure
is that one criterion C1 may divide the domain into k1 subdomains while another
criterion C2 divides the domain into k2 subdomains where k1 > k2. Then, M2

gives C1 an unfair advantage since C1 will require k1 test data while C2 will
only require k2 test data. M3 allows to overcome this problem by comparing
M3(C1,P ,M , 1) and M3(C2,P ,M , k1

k2
).

We now introduce five relations defined by Frankl and Weyuker.

The Narrows Relation (1)

C1 narrows C2 for (P ,M) if for every subdomain D ∈ SDC2(P ,M) there
is a subdomain D ′ ∈ SDC1(P ,S) such that D ′ ⊆ D . If for every (P ,S) C1

narrows C2, one says that C1 universally narrows C2.

Example: We consider a program P whose input domain is the set of integers
between −N and +N , with N > 1. C1 is a criterion that requires the selection of
at least one test data that is 0 and at least one test data that is different of 0. C2

is a criterion that requires the selection of at least one test data that is greater
than or equal to 0 and at least one test data that is less or equal to 0. Therefore
C1 uses two subdomains: D1 = {0} and D2 = {x | −N ≤ x ≤ N ∧ x �= 0}. C2

uses two subdomains: D3 = {x | 0 ≤ x ≤ N } and D4 = {x | −N ≤ x ≤ 0}. Since
D3 and D4 both contain D1, C1 narrows C2.

Relation to the subsume relation: Consider that for any (P ,M), C1 and C2 give
rise to the same set of subdomains, but C2 requires selection of two test data
out of each subdomain whereas C1 only requires selection of one test data out
of each subdomain. Trivially, C1 universally narrows C2. However, C1 does not
subsume C2, since a test suite consisting of one element out of each subdomain
is C1-adequate but not C2-adequate. However, we have the following theorem:

Theorem 11.1. Let C1 and C2 be two criteria which explicitly require the se-
lection of at least one test data out of each subdomain, then C1 subsumes C2 if
and only if C1 universally narrows C2.

Proof. Assume C1 universally narrows C2. Let T be a test suite that is C1-
adequate for some program P and model M . T requires the selection of at least
one test data out of each subdomain of SDC1(P ,M). Thus, since each subdomain
in SDC2(P ,M) is a superset of some subdomains belonging to SDC1(P ,M), T
is a test suite which requires the selection of at least one test data out of each
subdomain of SDC2(P ,M). We conclude that C1 subsumes C2.

Conversely, assume C1 does not universally narrow C2. There exists a pro-
gram P and a model M such that some subdomain D ∈ SDC2(P ,M) is not a
superset of any subdomain of SDC1(P ,M). Thus for each D ′ ∈ SDC1(P ,M),
D ′ − D �= ∅. Let T be a test suite which requires the selection of exactly one
test data out of D ′ − D for each D ′ ∈ SDC1(P ,M). T is C1-adequate but not
C2-adequate. So C1 does not subsume C2.

312 Christophe Gaston and Dirk Seifert

Relation to the three measures: We consider questions (A), (B) and (C) intro-
duced in the introduction of this section. In order to answer these questions we
consider the following example. Domain D of a program P is {0, 1, 2}. M is
the model associated to P . We suppose that SDC1(P ,M) = {{0, 1}, {0, 2}} and
SDC2(P ,M) = {{0, 1}, {0, 1, 2}}. Since {0, 1} ⊆ {0, 1} and {0, 2} ⊆ {0, 1, 2}, C1

narrows C2.

(A)Does C1 narrow C2 imply M1(C1,P ,M) ≥ M1(C2,P ,M)?

We answer in the negative. Suppose that only 1 and 2 are failure causing:
M1(C1,P ,M) = 1

2 while M1(C2,P ,M) = 2
3 and thus M1(C1,P ,M) <

M1(C2,P ,M).

(B) Does C1 narrow C2 imply M2(C1,P ,M) ≥ M2(C2,P ,M)?

We answer in the negative. Suppose that only 1 and 2 are failure causing:
M2(C1,P ,M) = 1−(1− 1

2)(1− 1
2) = 3

4 , M2(C2,P ,M) = 1−(1− 1
2)(1− 2

3) = 5
6

and thus M2(C1,P ,M) < M2(C2,P ,M).

(C) Does C1 narrow C2 imply M3(C1,P ,M , 1) ≥ M3(C2,P ,M ,n) where

n = |SDC1 (P ,M)|
|SDC2 (P ,M)|?

We answer in the negative. Since in our example n = 1, question (C) is
equivalent to Question (B).

As stated above, the narrows relation does not necessarily induce a better
fault detection ability for each of the three measures considered. Thus from The-
orem 11.1, it is naturally deduced that the subsume relation does not necessarily
induce a better fault detection ability for each of the three measures considered.

The Covers Relation (2) The narrows relation can be strengthened to impose
that each subdomain of the partition induced by C2 can be expressed as a union
of some subdomains of the partition induced by C1. This gives rises to the
following definition:

C1 covers C2 for (P ,M) if for every subdomain D ∈ SDC2(P ,M) if there is a
non-empty collection of subdomains {D1, . . . ,Dn} belonging to SDC1(P ,M)
such that D1∪· · · ∪Dn = D . If for every (P ,M) C1 covers C2, one says that
C1 universally covers C2.

Example: We consider criteria C1 and C2 and Program P used to illustrate the
narrow relation. Since D3 and D4 both contain D1, C1 narrows C2. However,
since D3 �= D1, D3 �= D2 and D3 �= D1 ∪D2, C1 does not cover C2.

In contrast, we consider a program P ′ whose input domain are the integers
between −N and N (N > 0). Suppose that criterion C ′

1 induces a partition into
two subdomains: D ′

1 = {x | −N + 1 ≤ x ≤ N } and D ′
2 = {x | −N ≤ x ≤ N − 1}

and that criterion C ′
2 induces a partition into one subdomain: D ′

3 = {x | −N ≤
x ≤ N }. Since D ′

3 = D ′
1 ∪D ′

2, C ′
1 covers C ′

2.

11 Evaluating Coverage Based Testing 313

Relation to the subsume relation: The following theorem is obvious:

Theorem 11.2. Let C1 and C2 be two criteria. C1 universally covers C2 implies
C1 universally narrows C2.

From Theorem 11.1, we immediately have the following theorem:

Theorem 11.3. Let C1 and C2 be two criteria which explicitly require the selec-
tion of at least one test data out of each subdomain, then C1 universally covers
C2 implies C1 subsumes C2.

Relation to the three measures: In order to answer questions (A), (B) and (C),
we consider the following example. Domain D of a program P is {0, 1, 2, 3}. M is
the model associated to P . We suppose that SDC1(P ,M) = {{0, 1}, {1, 2}, {3}}
and SDC2(P ,M) = {{0, 1, 2}, {1, 2, 3}}. Since {0, 1, 2} = {0, 1} ∪ {1, 2} and
{1, 2, 3} = {1, 2} ∪ {3}, C1 covers C2.

(A) Does C1 cover C2 imply M1(C1,P ,M) ≥ M1(C2,P ,M)?

We answer in the negative. Suppose that only 0 and 2 are failure causing:
M1(C1,P ,M) = 1

2 while M1(C2,P ,M) = 2
3 and thus M1(C1,P ,M) <

M1(C2,P ,M).

(B) Does C1 cover C2 imply M2(C1,P ,M) ≥ M2(C2,P ,M)?

We answer in the negative. Suppose that only 2 is failure causing. M2(C1,P ,
M) = 1 − (1 − 1

2) = 1
2 while M2(C2,P ,M) = 1 − (1 − 1

3)(1 − 1
3) = 5

9 and
thus M2(C1,P ,M) < M2(C2,P ,M).

(C) Does C1 cover C2 imply M3(C1,P ,M , 1) ≥ M3(C2,P ,M ,n) where n =
|SDC1 (P ,M)|
|SDC2 (P ,M)|?

We answer in the negative. It is obvious that for n ≥ 1, M3(C2,P ,M ,n) ≥
M2(C2,P ,M). Now M3(C1,P ,M , 1) = M2(C1,P ,M). Since we have proven
that there exists P and M such that M2(C1,P ,M) < M2(C2,P ,M), we de-
duce that there exists P and M such that M3(C1,P ,M , 1) <M3(C2,P ,M ,n).

As for the narrows relation, the covers relation does not necessarily induce
a better fault detection ability for each of the three measures considered. Thus,
ensuring that each subdomain of the partition induced by C2 can be expressed
as a union of some subdomains of the partition induced by C1 is not sufficient
to gain a superiority of C1 over C2 (at least with respect to the three measures
considered).

The Partitions Relation (3) The cover relation is then strengthened to ensure
that for each subdomain of the partition induced by C2, a partition consisting
of pairwise disjoint subdomains induced by C1 may be defined.

314 Christophe Gaston and Dirk Seifert

C1 partitions C2 for (P ,M) if for every subdomain D ∈ SDC2(P ,M) there
is a non-empty collection of pairwise disjoint subdomains {D1, . . . ,Dn} be-
longing to SDC1(P ,M) such that D1 ∪ · · · ∪Dn = D . If for every (P ,M) C1

partitions C2, one says that C1 universally partitions C2.

Example: Let us consider criteria C ′
1 and C ′

2 and the program P ′ used to illus-
trate the covers relation. Since D ′

3 = D ′
1∪D ′

2 C ′
1 covers C ′

2 and, since D ′
1∩D ′

2 �= ∅,
C ′

1 does not partition C ′
2.

In contrast we consider a program P ′′ whose input domain are the integers
between−N and N (N > 0). Suppose that a criterion C ′′

1 induces a partition into
two subdomains: D ′′

1 = {x | 0 ≤ x ≤ N } and D ′′
2 = {x | −N ≤ x < 0} and that

criterion C ′′
2 induces a partition into one subdomain: D ′′

3 = {x | −N ≤ x ≤ N }.
Since D ′′

3 = D ′′
1 ∪D ′′

2 and D ′′
1 ∩D ′′

2 = ∅, C ′′
1 partitions C ′′

2 .

Relation to the subsume relation: The following theorem is obvious:

Theorem 11.4. Let C1 and C2 be two criteria. C1 universally partitions C2

implies C1 universally covers C2.

From Theorem 11.2, we have the following theorem:

Theorem 11.5. Let C1 and C2 be two criteria. C1 universally partitions C2

implies C1 universally narrows C2.

From Theorem 11.1 we have the following theorem:

Theorem 11.6. Let C1 and C2 be two criteria which explicitly require the selec-
tion of at least one test data out of each subdomain, then C1 universally partitions
C2 implies C1 subsumes C2.

Relation to the three measures:

(A) Does C1 partition C2 imply M1(C1,P ,M) ≥ M1(C2,P ,M)?

The answer is positive, as stated in the following theorem:

Theorem 11.7. If C1 partitions C2 for a program P and a model M then
M1(C1,P ,M) ≥ M1(C2,P ,M).

Proof. Let D0 ∈ SDC2(P ,M). Let D1, . . . ,Dn be disjoint subdomains belonging
to SDC1(P ,M) such that D0 = D1 ∪ · · · ∪ Dn . Then m0 = m1 + · · · + mn and
d0 = d1 + · · · + dn . Thus maxn

i=1(
mi

di
) is minimized when each mi

di
= m0

d0
. So

maxn
i=1(

mi

di
) ≥ m0

d0
and therefore M1(C1,P ,M) ≥ M1(C2,P ,M).

(B) Does C1 partitions C2 imply M2(C1,P ,M) ≥ M2(C2,P ,M)?

We answer in the negative. Domain D of a program P is {0, 1, 2, 3}. M is the
model associated to P . We suppose that SDC1(P ,M) = {{0}, {1, 2}, {3}}

11 Evaluating Coverage Based Testing 315

and SDC2(P ,M) = {{0, 1, 2}, {1, 2, 3}}. Since {0, 1, 2} = {0} ∪ {1, 2}, {0} ∩
{1, 2} = ∅, {1, 2, 3} = {1, 2} ∪ {3}, and {1, 2} ∩ {3} = ∅, C1 partitions C2.
Suppose that only 2 is failure causing. M2(C1,P ,M) = 1 − (1 − 1

2) = 1
2

while M2(C2,P ,M) = 1 − (1 − 1
3)(1 − 1

3) = 5
9 and thus M2(C1,P ,M) <

M2(C2,P ,M).

(C) Does C1 partitions C2 imply M3(C1,P ,M , 1) ≥ M3(C2,P ,M ,n) where
n = |SDC1(P ,M)|

|SDC2(P ,M)|?

We answer in the negative. For n ≥ 1, M3(C2,P ,M ,n) ≥ M2(C2,P ,M).
Now M3(C1,P ,M , 1) = M2(C1,P ,M). Since we have proven that there ex-
ists P and M such that M2(C1,P ,M) < M2(C2,P ,M), we deduce that there
exists P and M such that M3(C1,P ,M , 1) < M3(C2,P ,M ,n).

The partitions relation ensures a better fault detection ability for measure
M1 (if C1 partitions C2 then C1 is better at detecting faults than C2 with regard
to M1) but not necessarily for the two others. Recall that measure M1 is a lower
bound of the probability that a test suite will expose at least one fault. Thus
Theorem 11.7 only ensures that if C1 partitions C2, this lower bound of the
probability that a test suite will expose at least one fault is greater for C1 than
for C2. Another intuitive way to understand this result is that a partition induced
by C1 concentrates more failure causing inputs in one specific subdomain than
a partition induced by C2 does.

The Properly Covers Relation (4) In order to obtain a better fault detec-
tion ability regarding measure M2, the cover relation is specialized so that each
subdomain D of the partition SDC1(P ,S) is used only once to define a partition
of a subdomain of SDC2(P ,S).

Let us note SDC1(P ,S) = {D1
1 , . . . ,D

1
m} and SDC2(P ,S) = {D2

1 , . . . ,D
2
n}.

C1 properly covers C2 for (P ,M) if there is a multi-set

M = {D1
1,1, . . .D

1
1,k1

, . . . ,D1
n,1, . . .D

1
n,kn
}

such that M ⊆ SDC1(P ,M) and D2
i = D1

i,1 ∪ · · · ∪D1
i,ki

for i ∈ {1, . . . ,n}.
If for every (P ,M) C1 properly covers C2, one says that C1 universally
properly covers C2.

Example: Consider a program P with integer input domain {x | 0 ≤ x ≤ 3},
and criteria C1 and C2 such that SDC1 = {Da ,Db ,Dc} and SDC2 = {Dd ,De},
where Da = {0}, Db = {1, 2}, Dc = {3}, Dd = {0, 1, 2}, and De = {1, 2, 3}.
Then Dd = Da ∪Db and De = Dc ∪ Db , so C1 covers (and also partitions) C2.
However, C1 does not properly cover C2 because subdomain Db is needed in to
cover both Dd and De , but only occurs once in the multi-set SDC1 .

On the other hand consider criterion C3 where SDC3 = {Da ,Db ,Db,Dc}. C3

does properly cover C2. It is legitimate to use Db twice to cover both Dd and
De , since it occurs twice in SDC3 .

316 Christophe Gaston and Dirk Seifert

Relation to the subsume relation: The following theorem is obvious:

Theorem 11.8. Let C1 and C2 be two criteria. C1 universally properly covers
C2 implies C1 universally covers C2.

From Theorem 11.2 we have the following theorem:

Theorem 11.9. Let C1 and C2 be two criteria. C1 universally properly covers
C2 implies C1 universally narrows C2.

From Theorem 11.1 we have the following theorem:

Theorem 11.10. Let C1 and C2 be two criteria which explicitly require the
selection of at least one test data out of each subdomain, then C1 universally
properly covers C2 implies C1 subsumes C2.

Relation to the three measures:

(A) Does C1 properly cover C2 imply M1(C1,P ,M) ≥ M1(C2,P ,M)?

We answer in the negative. Domain D of a program P is {0, 1, 2, 3}. M is
the model associated to P . We suppose that SDC1(P ,M) = {{0, 1}, {1, 2}, {3}}
and SDC2(P ,M) = {{0, 1, 2}, {3}}. Since {0, 1, 2} = {0, 1} ∪ {1, 2} and {3} is
an element of SDC1(P ,M), C1 properly covers C2. We suppose that only 0 and
2 are failure causing. Therefore, M1(C1,P ,M) = 1

2 and M1(C2,P ,M) = 2
3 . We

conclude M1(C1,P ,M) < M1(C2,P ,M).

(B) Does C1 properly cover C2 imply M2(C1,P ,M) ≥ M2(C2,P ,M)?

The answer is positive as stated in the following theorem:

Theorem 11.11. If C1 properly covers C2 for program P and model M , then
M2(C1,P ,M) ≥ M2(C2,P ,M).

Proof. The proof requires some intermediate lemma.

Lemma 11.12. Assume d1, d2 > 0, 0 ≤ x ≤ d1, 0 ≤ x ≤ d2, 0 ≤ m1 ≤ d1 − x
and 0 ≤ m2 ≤ d2 − x . Then we have:

m1+m2
d1+d2−x ≤ (1− (1− m1

d1
)(1 − m2

d2
)).

Proof. Since

(1− (1− m1
d1

)(1 − m2
d2

)) = m1d2+m2d1−m1m2
d1d2

it suffices to show that

0 ≤ (m1d2 + m2d1 −m1m2)(d1 + d2 − x)− (m1 + m2)(d1d2)
= m2d1(d1 −m1 − x) + m1d2(d2 −m2 − x) + m1m2x

11 Evaluating Coverage Based Testing 317

This follows immediately from the assumption that (d1−m1−x), (d2−m2−x),
di , mi , and x are all non negative.

Lemma 11.13. Let D3 = D1 ∪D2. Then m3
d3

< (1− (1− m1
d1

)(1− m2
d2

)).

Proof. For any set {D1, . . . ,Dn} of subdomains, let us note f (D1, . . . ,Dn) =
∏k

i=1
(1− mi

di
).

We want to show that: 1− f (D3) < 1− f (D1,D2) or that f (D3) > f (D1,D2).
We start by showing that for given values d3 and m3, the value of f (D1,D2)

is maximized when D1 ∩ D2 contains as few failure causing inputs as possible.
This is clear intuitively, since points in the intersection are more likely to be
selected. Thus when as many of them as possible are not failure causing, the
probability to select an input which does not cause a fault is maximal (that is if
f (D1,D2) is maximal).

Formally, let Da = D3 − D2, Db = D3 − D1 and Dc = D1 ∩ D2. Let da , db ,
dc and xa , xb , xc be the size and the number of inputs which does not cause a
fault of Da , Db and Dc respectively. The following equation holds:

f (D1,D2) = (xa+xc

da+dc
)(xb+xc

db+dc
)

Suppose it is possible to swap one non failure causing input out of Da with
one failure causing input of Dc. Let us call D ′

1 and D ′
2 the subdomains obtained

from D1 and D2 by applying this operation. Doing so leaves the values da , db ,
dc , and xb unchanged but decrements xa and increments xc, yielding

f (D ′
1,D

′
2) = (xa−1+xc+1

da+dc
)(xb+xc+1

db+dc
) > f (D1,D2).

Similarly, swapping a non failure causing input of Db with a failure causing in-
put of Dc leads to two subdomains D ′′

1 and D ′′
2 such that f (D ′′

1 ,D
′′
2) > f (D1,D2).

Thus, to prove the lemma, it suffices to consider the following two cases.

Case 1: Dc consists entirely of non failure causing inputs. In this case, letting
x = dc =| D1 ∩D2 |, the hypotheses of Lemma 11.12 are satisfied, so:

m1+m2
d1+d2−dc

≤ (1− (1− m1
d1

)(1 − m2
d2

)) holds.

Since m3 = m1 + m2 and d3 = d1 + d2 − dc , it gives the desired result.

Case 2: Da and Db consist entirely of failure causing inputs. We want to
show that f (D3)− f (D1,D2) ≥ 0, where

f (D3) = xc

da+db+dc
and f (D1,D2) = (xc

da+dc
)(xc

db+dc
).

It suffices to show

0 ≤ xc((da + dc)(db + dc)− xc(da + db + dc))

318 Christophe Gaston and Dirk Seifert

that is

0 ≤ xc(da (db + dc − xc) + db(dc − xc) + dc(dc − xc))

But this follows immediately from the fact that 0 ≤ xc ≤ dc .

Lemma 11.14. Let D = D1 ∪ · · · ∪Dn . Then f (D) ≥ f (D1, . . . ,Dn).

Proof. Proof by induction on n. The base case, n = 1 is trivial. Now assuming
that

D = D1 ∪ · · · ∪Dk ⇒ f (D) ≥ f (D1, . . . ,Dk),

we want to show that

D ′ = D1 ∪ · · · ∪Dk+1 ⇒ f (D) ≥ f (D1, . . . ,Dk+1).

Since D ′ = D ∪ Dk+1, from Lemma 11.13 we deduce f (D ′) ≥ f (D ,Dk+1).
Now from the definition of f , f (D ,Dk+1) = f (D)f (Dk+1). We deduce f (D ′) ≥
f (D)f (Dk+1). From the inductive hypothesis, we can write f (D) ≥ f (D1, . . . ,Dk).

Thus we deduce f (D ′) ≥ f (D1, . . . ,Dk)f (Dk+1). From the definition of f we
conclude f (D ′) ≥ f (D1, . . . ,Dk+1).

We now prove Theorem 11.11. Assume C1 properly covers C2 for a program P
and model M . Let us denote SDC1(P ,M) = {D1

1 , . . . ,D1
m} and SDC2(P ,M) =

{D2
1 , . . . ,D

2
n}. Let M = {D1

1,1, . . .D
1
1,k1

, . . . ,D1
n,1, . . .D

1
n,kn
} be a set such that

such thatM⊆ SDC1(P ,M) and D2
i = D1

i,1 ∪ · · · ∪D1
i,ki

for i ∈ {1, . . . ,n}.
From the definition of f we can write

f (D2
1 , . . . ,D

2
n) =

∏

i≤n

f (D2
i).

From Lemma 11.14, we have
∏

i≤n

f (D2
i) ≥

∏

i≤n,

∏

j≤ki ,

f (D1
i,j).

Since for all i ≤ m we have f (D1
i) ≤ 1, we deduce:

∏

j≤ki ,

f (D1
i,j) ≥ f (D1

1 , . . . ,D
1
m).

Thus we deduce:

f (D2
1 , . . . ,D

2
n) ≥ f (D1

1 , . . . ,D
1
m).

We conclude the proof:
M2(C1,P ,M) ≥ M2(C2,P ,M).

(C) Does C1 properly cover C2 imply M3(C1,P ,M , 1) ≥ M3(C2,P ,M ,n) where
n = |SDC1(P ,M)|

|SDC2(P ,M)|?

11 Evaluating Coverage Based Testing 319

We answer in the negative. Assume that the domain of a program P is
{0, 1, 2}. Let us note M the model associated to P . We suppose that
SDC1(P ,M) = {{0, 1}, {0, 2}} and SDC2(P ,M) = {0, 1, 2}. Since {0, 1, 2} =
{0, 1}∪{0, 2}, C1 properly covers C2. Suppose that only 1 is failure causing then
M3(C1,P ,M , 1) = 1 − (1 − 1

2) = 1
2 . Now, M3(C2,P ,M , 2) = 1 − (1 − 1

3)2 =
1− (2

3)2 = 5
9 > M3(C1,P ,M , 1).

The properly covers relation ensures a better fault detection ability for mea-
sure M2 (if C1 properly covers C2 then C1 is better at detecting faults than C2

with regard to M2) but not necessarily for the two others. Recall that measure
M2 measures the exact probability that an adequate test suite exposes at least
one fault, assuming that the test data selection process requires exactly one se-
lection per subdomain. However we answered to question (C) in the negative.
This means that if the same number of test data is used for C1 and for C2, then
nothing ensures that C1 will be better at detecting faults than C2 (for mea-
sure M3). Note also that if C1 properly covers C2, then nothing ensures that a
partition induced by C1 concentrates more failure causing inputs in one specific
subdomain than a partition induced by C2 does. This is due to the fact that we
answered in the negative to question (A).

The Properly Partitions Relation (5) The properly partitions relation con-
strains the partitions relation exactly as the properly covers relation constrains
the covers relation. Let us note SDC1(P ,S) = {D1

1 , . . . ,D
1
m} and SDC2(P ,S) =

{D2
1 , . . . ,D2

n}.

C1 properly partitions C2 for (P ,S) if there is a multi-set

M = {D1
1,1, . . .D1

1,k1
, . . . ,D1

n,1, . . .D1
n,kn
}

such that M ⊆ SDC1(P ,S) and D2
i = D1

i,1 ∪ · · · ∪ D1
i,ki

for i ∈ {1, . . . ,n}.
Moreover, it is required that for each i , collection {D1

i,1, . . . ,D
1
i,ki
} is pairwise

disjoint. If for every (P ,S) C1 properly covers C2 for (P ,S), one says that
C1 universally properly partitions C2.

Example: Again, consider criteria C2 and C3 used to illustrate the properly cover
relation. C3 also properly partitions C2 since Dd = Da ∪ Db , De = Dc ∪ Db ,
Da ∩Db = ∅, Dc ∪Db = ∅

Relation to the subsume relation: The two following theorems are obvious:

Theorem 11.15. Let C1 and C2 be two criteria. C1 universally properly parti-
tions C2 implies C1 universally properly covers C2.

Theorem 11.16. Let C1 and C2 be two criteria. C1 universally properly parti-
tions C2 implies C1 universally partitions C2.

320 Christophe Gaston and Dirk Seifert

Either from Theorem 11.8 or from Theorem 11.4, we have the following The-
orem:

Theorem 11.17. Let C1 and C2 be two criteria. C1 universally properly parti-
tions C2 implies C1 universally covers C2.

From Theorem 11.2 we have the following theorem:

Theorem 11.18. Let C1 and C2 be two criteria. C1 universally properly parti-
tions C2 implies C1 universally narrows C2.

From Theorem 11.1 we have the following theorem:

Theorem 11.19. Let C1 and C2 be two criteria which explicitly require the
selection of at least one test data out of each subdomain, then C1 universally
properly partitions C2 implies C1 subsumes C2.

Relation to the three measures:

(A) Does C1 properly partition C2 imply M1(C1,P ,M) ≥ M1(C2,P ,M)?

The answer is positive, as stated in the following theorem:

Theorem 11.20. If C1 properly partitions C2 for a program P and a model M
then M1(C1,P ,M) ≥ M1(C2,P ,M).

Proof. From Theorem 11.16 C1 partitions C2. Theorem 11.7 allows us to con-
clude that M1(C1,P ,M) ≥ M1(C2,P ,M).

(B) Does C1 properly partitions C2 imply M2(C1,P ,M) ≥ M2(C2,P ,M)?

The answer is positive, as stated in the following theorem:

Theorem 11.21. If C1 properly partitions C2 for a program P and a model M
then M2(C1,P ,M) ≥ M2(C2,P ,M).

Proof. From Theorem 11.15 C1 properly covers C2. Theorem 11.11 allows us to
conclude that M2(C1,P ,M) ≥ M2(C2,P ,M).

(C) Does C1 properly partition C2 imply M3(C1,P ,M , 1) ≥ M3(C2,P ,M ,n)
where n = |SDC1(P ,M)|

|SDC2(P ,M)|?

We answer in the negative. Domain D of a program P is {0, 1, 2, 3}. M is the
model associated to P . We suppose that SDC1(P ,M) = {{0}, {1}, {2, 3}}
and SDC2(P ,M) = {0, 1, 2, 3}. Since {0, 1, 2, 3} = {0} ∪ {1} ∪ {2, 3} and
{0} ∩ {1} = {0} ∩ {2, 3} = {1} ∩ {2, 3} = ∅, C1 properly partition C2.
Suppose that only 2 is failure causing. M3(C1,P ,M , 1) = 1 − (1 − 1

2) = 1
2

while M3(C2,P ,M ,n) = 1 − (1 − 1
4)3 = 1 − (3

4)3 = 1 − 27
64 = 37

64 . Thus
M3(C2,P ,M , 3) > M3(C1,P ,M , 1)

11 Evaluating Coverage Based Testing 321

The properly partitions relation ensures a better fault detection ability for
measure M1 and M2 (if C1 properly partitions C2 then C1 is better at detecting
faults than C2 with regard to M1 and M2) but not necessarily for M3.

Notes Since for most criteria of interest, the universally narrows relation is
equivalent to the subsumes relation, one can interpret the presented results by
concluding that the subsume relation is a poor basis for comparing criteria.
However, it is important to note that the results here are worst case results in
the sense that it is only considered whether or not the fact that one criterion
subsumes another guarantees improved fault-detecting ability. The question of
what C1 subsuming, or narrowing, or covering, or partitioning C2 tells us about
their relative ability to detect faults in ”typical” programs remains open. More-
over, note that the most convincing measure studied is measure M3, since this
measure takes into account the number of test data used. Thus it is possible
to compare two criteria for the same number of test data. However none of the
relations presented here induces a better fault detection ability for measure M3.

11.4.3 Remarks

Questions addressed in Section 11.4.1 and Section 11.4.2 can be compared. The
way random based testing is modeled in the contributions presented in Section
11.4.1 results in a “partition oriented” view of random based testing. Indeed ran-
dom based testing can be seen as a partition based technique which partitions
the input domain in a single subdomain (the input domain itself). Even-more,
random based testing can be seen as a coverage criterion which divides the in-
put domain of a program in one subdomain: the input domain itself. Let us
call random criterion this criterion. Consider now any structural criterion. It is
easy to see that such a criterion either properly partitions or properly covers
the random criterion (depending on the fact that the criterion of interest in-
duces overlapping or non overlapping subdomains). Contributions presented in
Section 11.4.1 essentially make the assumption that the same number of test
data is used both for random based an partition based testing. Thus comparing
random based testing and partition based testing with regard to their ability to
detect faults (as expressed in Section presented in Section 11.4.1) is equivalent
to associate a criterion C to the partition based testing technique considered,
and to compare C with the random criterion with regard to Measure M3 (as
defined in Section 11.4.2). Results introduced in Section 11.4.1 indicates that
partition based testing is not better at detecting faults than random based test-
ing. This result is thus totally consistent with the fact that both properly covers
and properly partitions relations do not induce a better fault detection ability,
with regard to measure M3.

11.5 Summary

The application of coverage techniques at the model level seems a promising ap-
proach. These techniques allow rather easy test selection from executable models,

322 Christophe Gaston and Dirk Seifert

while ensuring (at a certain degree) the coverage of targeted behaviors of the
model (e.g. a set of test cases for which all variable definitions of the model are
stimulated). Of course, criteria have to be adapted to specification formalisms:
for example it makes no sense to talk about data flow criteria for models de-
scribed in a specification formalism which does not handle variables. However
most of the usual criteria can be easily adapted to models, since models’ exe-
cutable aspect makes them “look like programs”. Moreover, approaches based on
model coverage may be adapted to perform functional testing. This can be done
through property coverage by model checking approaches or user profile usages
for example. The main point is that this kind of functional testing is still based
on coverage considerations, which is very valuable since generated test suites are
supposed to cover in a measurable manner behaviors of the model which reflect
an abstract scenario (or property).

All these properties make model-coverage-based-testing methods good can-
didates to detect specific faults at the earliest design level. The strength of cov-
erage approaches relies mainly on their ability to explore in a systematic manner
“missing logic” faults: bad treatment of bounds for example. These approaches
are the only one to tackle the problem of detecting catastrophic failure causing
inputs. However, one must keep in mind that these properties are not sufficient
to ensure reliability. In particular, there is no scientific evidence that coverage
based testing is better than random testing to reach this purpose. To gain more
insight, a further analysis of what is a “typical program under test” is needed,
since the usual failure rate model seems unsuitable to provide such evidence.
The same problem occurs when one tries to classify criteria with respect to their
respective ability to detect faults.

Common belief however seems to be that random testing should systemati-
cally complement coverage based approaches. Coverage based approaches should
be used to detect specific faults while random approaches aim at providing con-
fidence about programs reliability.

12 Technology of Test-Case Generation

Levi Lúcio1 and Marko Samer2
∗

1 Software Modelling and Verification Group
University of Geneva
levi.lucio@cui.unige.ch

2 Institute of Information Systems
Vienna University of Technology
samer@dbai.tuwien.ac.at

12.1 Introduction

Model based test case generation deals with the generation of test cases based
on test case specifications and a model of the system under test (SUT). Since the
number of possible test cases is in general too large to be practically useful, test
case specifications are used to select interesting test cases. Therefore, test case
generation can be seen as the search problem of finding appropriate test cases.
In the previous chapter, several kinds of test case specifications, in particular
coverage criteria, have been presented. In the current chapter, we will show how
techniques from various fields in computer science such as program analysis
and formal methods can be applied to generate test cases that satisfy such
specifications. The input part of each test case can then be fed into the SUT
whose output is compared with the output part of the test case in order to
detect errors. In particular, we will cover test case generation by theorem proving,
symbolic execution, and model checking. Although these techniques are often
used in combination, we will describe them separately in order to show their
applicability and specific features from different points of view.

Theorem proving can be used to support the generation of test cases from a
model that is given as formal specification. The basic assumption behind this
approach is that the model can be partitioned into equivalence classes which
represent the same behavior with respect to the test; in particular, test data
in the same equivalence class are assumed to cause the same error (or no error
in the case of success). Each such equivalence class represents one test case.
It is therefore sufficient to extract a small amount of test data from each test
case. We will present several approaches from the literature of how to find such
an appropriate partitioning of a given specification into equivalence classes. In
particular, we will show how general purpose theorem provers can be used to
transform Z specifications into test cases by syntactic transformations as well as
by taking semantic aspects into account. Moreover, we will show how Prolog can
∗

This author was supported by the European Community Research Training Network
“Games and Automata for Synthesis and Validation” (GAMES) and by the Austrian
Science Fund Project Z29-N04.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 323-354, 2005.
 Springer-Verlag Berlin Heidelberg 2005

324 Levi Lúcio and Marko Samer

be used to extract test cases from specifications given as logic programs, and
why correctness proofs can be useful in test case generation.

Symbolic execution is a program verification technique from the 1970s. Differ-
ently from the other verification techniques discussed in this chapter, symbolic
execution was initially applied to real code rather than to abstract models. Sev-
eral software verification frameworks using symbolic execution were built in the
1970s. However, their success was limited since the required mathematical ma-
chinery was not sufficiently developed. Recently, the principles of symbolic exe-
cution have been reused to cope with the problems of state space explosion while
searching for execution traces in a software application’s abstract model. By re-
placing actual system inputs with symbols, i.e., variables and sets of constraints
over them, symbolic execution allows coping with the problem of unbounded
entries – thus reducing state space explosion. There is however a price to pay
since traces found in this way are symbolic and need to be instantiated. After
introducing the basic concepts of symbolic execution as it was invented in the
1970s for code verification, we will discuss several modern frameworks for test
case generation that make use of symbolic execution. The examples are chosen
to demonstrate that symbolic execution can be used both with abstract models
and concrete code.

Model checking is a method for verifying finite-state systems. Given a system
model and a specification written in a temporal logic, the model checker auto-
matically determines whether the model satisfies the specification. In addition to
being fully automatic, an important feature of model checking is that in principle
a witness resp. counterexample can be supplied when the model succeeds resp.
fails to satisfy the specification. There exist several approaches that establish
connections between model checking and model-based testing. The main idea
of these approaches is that test case specifications can be written in temporal
logics such that the problem of test case generation is reduced to the problem of
finding a set of witnesses resp. counterexamples to the specification. Since model
checking in the context of test case generation is also covered by other chapters
in this book, we will give only a short summary and refer to other chapters.

This chapter is organized as follows: In Sec. 12.2, we present test case gen-
eration by theorem proving. The use of symbolic execution is then described in
Sec. 12.3. Afterwards, in Sec. 12.4, we cover test case generation by model check-
ing. Finally, we summarize in Sec. 12.5. The responsibilities for the two main
parts of this chapter, namely theorem proving and symbolic execution, were split-
ted in the following way: Marko Samer was responsible for Sec. 12.2 and Levi
Lúcio was responsible for Sec. 12.3.

12.2 Theorem Proving

An automated theorem prover attempts to construct a proof for a given input
conjecture. However, since for complex problems it is rarely possible to construct

12 Technology of Test-Case Generation 325

a proof fully automatically, in most cases – especially in industrial applications –
the user has to guide the proof search procedure. Such user controlled theorem
provers are called semi-automated or interactive. In this context, automated
theorem proving is the process of constructing a proof by an automated or
semi-automated theorem prover.

The importance of automated theorem proving arises not only from its math-
ematical and philosophical relevance, but also from the fact that many problems
in artificial intelligence and formal verification can be reduced to theorem prov-
ing. In industrial environments, however, theorem proving is rarely used because
it is very time consuming and requires expert knowledge. Nevertheless, in some
areas of high-quality productions [Sch00, Sch01], there is no adequate alternative
to formally prove properties of the system under consideration. Moreover, there
exist several attempts to combine theorem proving with model checking in order
to compensate the shortcomings of each other [ORR+96, CCG+03]. This can be
seen as further evidence for the importance of automated theorem proving.

In this section, we survey how automated theorem proving technology can
be used in test case generation. Although theorem proving is often used in com-
bination with other techniques, we focus on approaches where theorem proving
is the dominating technique. The typical method in this context is based on for-
mal specifications which model the SUT. Such a model resp. specification is then
partitioned into equivalence classes which are assumed to satisfy a uniformity
hypothesis, i.e., they are assumed to represent the same behavior concerning
the test; in particular, test data in the same equivalence class are assumed to
cause the same error (or no error in the case of success). Each such equivalence
class is then interpreted as one test case. Hence, because of the uniformity hy-
pothesis, it suffices to extract a small amount of test data from each test case.
Note that the test cases generated by the approaches presented in this section are
single instances and not sequences of test cases as would be necessary for testing
reactive systems. Extensions for generating test case sequences are described in
the referred literature or are topic of future research.

Our aim in the following is to show how theorem provers can be applied
to construct such test cases from a given specification. There exist three major
approaches in the literature to address this issue:

• Use theorem provers to generate test cases from Z specifications
• Translate algebraic specifications into logic programs and use Prolog’s the-

orem proving mechanisms to generate test cases
• Construct formal proofs from which test cases can be extracted

Since our focus will be on the first item, which is mainly based on the spec-
ification language Z, we start with a short introduction of some basic concepts
of this language.

12.2.1 The Z Specification Language

Z is a commonly used formal specification language based on set theory and
first-order predicate logic [Spi92, PST96, ISO02]. As every formal specification

326 Levi Lúcio and Marko Samer

language, Z uses mathematical notation to describe the properties a system
must satisfy. One of the main concepts of Z is the possibility to decompose
specifications into small parts called schemas. This allows the user to describe
a system by its subsystems, i.e., to present it piece by piece. Schemas in Z are
used to specify static as well as dynamic aspects. In general, a schema has the
following form:

Name
Declaration; . . . ; Declaration

Predicate; . . . ; Predicate

Every schema consists of a schema name, a declaration part (or signature),
and a predicate part. The schema name is used to refer to the schema within
other schemas, the declaration part consists of the declarations of the free vari-
ables occurring in the predicate part, and the predicate part describes the prop-
erties the system must satisfy, i.e., the relationship between the variables. Note
that the declarations and predicates are usually written among each other within
the declaration and predicate part respectively. Moreover, note that there is an
implicit conjunction between the predicates in the predicate part.

A system specification in Z usually consists of a specification of the states
and a specification of the possible operations, i.e., the state transitions. We will
now illustrate these concepts by a simple example of an up-counter modulo four
(ring counter).

Counter
ctr : N

0 ≤ ctr < 4

In this schema, the state variable ctr is declared to be a natural number.
The predicate part determines the values ctr can take, which can be seen as an
invariant the system must satisfy. According to this schema, our system consists
of four states, namely the four possible values of ctr. We will now specify the
operation to increment the counter:

Increment
∆Counter

((ctr < 3) ∧ (ctr ′ = ctr + 1)) ∨ ((ctr = 3) ∧ (ctr ′ = 0))

In this schema, the declaration part refers to schema Counter. The preceding
symbol ∆ indicates an implicit declaration of the variables of Counter before
and after the operation Increment1 has been applied. In particular, ∆Counter
declares the variables ctr and ctr ′, where ctr represents the value before and ctr ′

1 Note that for simplicity we identify the operation with its corresponding schema.

12 Technology of Test-Case Generation 327

represents the value after the application of Increment.2 This allows us to define
the effect of the operation Increment on Counter in the predicate part. In par-
ticular, if the value of ctr is less than three, then its value after the application
of Increment must be ctr + 1, and if ctr is equal to three, then its value after
application of Increment must be zero.

Finally, let us specify another example: the modulo operation of natural
numbers which, given the base and the modulus, returns the common residue.

Modulo
b?,m?, r ! : N

b? ≥ m?
(r ! < m?) ∨ (m? = 0)
∃ k : N • b? = m? ∗ k + r !

This schema declares the three variables b?, m?, and r ! to be natural num-
bers. The suffixes ‘?’ and ‘!’ indicate input and output parameters respectively.

The predicate part consists of three predicates. The first ensures that the base
must be greater or equal to the modulus. The second ensures that the specified
residue is the common residue, i.e., less than the modulus, or that the modulus
is equal to zero. In the latter case, the residue should be equal to the base which
is greater or equal to the modulus according to the first predicate. The final
predicate specifies the relationship between base, modulus, and residue.

As already mentioned, the above constructs represent only a small fraction
of the whole Z specification language. The reader is referred to [Spi92, PST96,
ISO02] for a more exhaustive introduction to Z. We will use Z specifications as
the basis of test case generation in the following section.

12.2.2 Test Case Generation from Z Specifications

Given a model of the SUT as Z specification, general purpose theorem provers
can be used to support the partitioning of the specification into equivalence
classes. We will now present some approaches of how to construct test cases
from Z specifications in such a way. We start with the disjunctive normal form
approach, a method that allows us to syntactically transform Z specifications into
equivalence classes. Afterwards, we present the classification-tree method which
enables us to integrate semantic aspects into the partitioning process. Finally,
we discuss partitioning heuristics which can be seen as a general theoretical
framework of syntactic and semantic partitioning methods.

The Disjunctive Normal Form Approach. In the approach of Helke et
al. [HNS97], Z specifications are translated into the input language of Isabelle

2 Similarly, a preceding symbol Ξ indicates an implicit declaration of the variables
of Counter which, in contrast to ∆, remain unchanged, that is ctr ′ = ctr .

328 Levi Lúcio and Marko Samer

[Pau94, NPW02], a generic theorem prover which supports proof tactics3. Set
operations, predicate logic, and Cartesian products in Z can be directly trans-
lated into Isabelle. The representation of schemas in Isabelle can be done in
several ways; Helke et al. [HNS97] chose a predicate representation (cf. Kolyang
et al. [KSW96]). For instance, the schema Counter resp. Increment in Sec. 12.2.1
is translated into the predicate Counter resp. Increment as shown below, where
λ identifies the free variables:

Counter ≡ λ ctr . [ctr : N | 0 ≤ ctr < 4]
Increment ≡ λ(ctr , ctr ′). [Counter(ctr) ∧ Counter(ctr ′) |

((ctr < 3) ∧ (ctr ′ = ctr + 1)) ∨ ((ctr = 3) ∧ (ctr ′ = 0))]

With this encoding of Z specifications, Isabelle can be applied to construct
test cases in such a way as described in the following. The approach of Helke
et al. [HNS97] is based on disjunctive normal form partitioning [DF93]. That
is, the predicate part of a schema is transformed into disjunctive normal form,
where the disjuncts are pairwise disjoint (i.e., the disjunction is equivalent to
the exclusive or of its disjuncts). Each of the resulting disjuncts is assumed to
define a equivalence class concerning the test behavior, and can therefore be
interpreted as a test case. The pairwise disjointness allows us to treat each test
case entirely independently. To obtain disjunctive normal form, the usual logical
transformation rules can be applied. To obtain pairwise disjointness, however,
disjunction, implication, and bi-implication have to be transformed according
to:

A ∨ B ≡ (A ∧ ¬B) ∨ (¬A ∧ B) ∨ (A ∧ B) (12.1)
A⇒ B ≡ ¬A ∨ (A ∧ B) (12.2)
A⇔ B ≡ (A ∧ B) ∨ (¬A ∧ ¬B) (12.3)

The schemas of our example above are already in such a normal form (cf.
Sec. 12.2.1). The schema Counter consists of only one disjunct in the predi-
cate part and is therefore trivially in disjunctive normal form. Furthermore, the
schema Increment is also in disjunctive normal form. In this simple example,
it is easy to see that the disjuncts are pairwise disjoint because ctr < 3 and
ctr = 3 are mutually exclusive. Nevertheless, for demonstration purposes, we ig-
nore our knowledge of the disjointness of the disjuncts and apply transformation
rule (12.1) to the schema Increment. Thus, we obtain the equivalent schema:

3 Proof tactics are “subroutines” written in a metalanguage for the purpose of sup-
porting the proof search procedure. For instance, they can be used to transform
proofs or to justify proof steps by autonomously performing detailed proof steps.

12 Technology of Test-Case Generation 329

Increment
∆Counter

((ctr < 3) ∧ (ctr ′ = ctr + 1) ∧ ¬(ctr = 3)) ∨
((ctr < 3) ∧ (ctr ′ = ctr + 1) ∧ ¬(ctr ′ = 0)) ∨
(¬(ctr < 3) ∧ (ctr = 3) ∧ (ctr ′ = 0)) ∨
(¬(ctr ′ = ctr + 1) ∧ (ctr = 3) ∧ (ctr ′ = 0)) ∨
((ctr < 3) ∧ (ctr ′ = ctr + 1) ∧ (ctr = 3) ∧ (ctr ′ = 0))

The predicate part in this schema can be simplified by removing unsatisfiable
disjuncts and unnecessary literals. For instance, the final disjunct is unsatisfiable
because ctr < 3 and ctr = 3 are contradictory. The remaining four disjuncts can
be simplified by removing redundant literals. For instance, the literal ¬(ctr = 3)
in the first disjunct can be removed because it is already implied by ctr < 3.
When continuing these simplifications, we finally obtain the original definition
of the schema Increment in Sec. 12.2.1. This is not surprising because, as men-
tioned above, the original definition was already in the desired normal form. In
general, however, this need not to be the case. The generation of test cases in
this approach consists of two steps:

(1) Compute disjunctive normal form with mutually exclusive disjuncts
(2) Remove unsatisfiable disjuncts and simplify the remaining test cases

For the computation of the disjunctive normal form, an optimization to avoid
redundancy was used by Helke et al. [HNS97]. In particular, the predicate part P
of each schema is initially transformed into a conjunction of the form P =
R ∧ Q , where R is a meta-variable consisting of those schema predicates that
do not contain disjunctions (implicitly or explicitly), and Q is a meta-variable
consisting of the remaining predicates that contain at least one disjunction. For
instance, P = a ∧ (c ∨ (d ∧ e)) ∧ b can be transformed such that R = a ∧ b
and Q = (c ∨ (d ∧ e)), where a, b, c, d , and e denote atoms. The disjunctive
normal form is then computed for Q while R is ignored. Hence, the resulting
representation of the predicate part P consists of a purely conjunctive part R and
an expression Q in disjunctive normal form. This avoids that purely conjunctive
predicates appear in each disjunct of the disjunctive normal form which would
lead to much redundancy.

The preparing partitioning of the predicate part and the computation of the
disjunctive normal form can be implemented by Isabelle’s proof tactics. To de-
tect unsatisfiable disjuncts, Isabelle’s conditional rewrite mechanisms are used,
i.e., a special parameterized tactic called simplifier. It allows to define rewrite
rules which are able to find contradicting disjuncts and makes it possible to
rewrite them to false. For instance, the final disjunct in the above schema In-
crement contains ctr < 3 as well as ctr = 3. An application of rewriting yields
3 < 3 which is obviously false. Hence, the disjunct is unsatisfiable and can be
removed. A side effect of such rewritings to find contradicting disjuncts is that
redundancy is reduced, i.e., the test cases are simplified. On the other hand, how-

330 Levi Lúcio and Marko Samer

�

�

�

�
Modulo

����

����
b? k

�
�

�
�

�
�

�
�

= m? > m? mod2 = 0 mod2 = 1

�
�

�
� �

�

�

�
1
2
3
4

Fig. 12.1. Classification-tree of Modulo

ever, new disjuncts maybe introduced. This can be corrected by post-processing
the disjuncts after the elimination step.

As already mentioned, each of the disjuncts obtained by this procedure rep-
resents a test case. Thus, the disjuncts can be separated into schemas for each
test case with the same declaration part as the original schema and one of the
disjuncts as predicate part respectively. Case studies by Helke et al. [HNS97]
have shown that most of the generated test cases after the first step are not
satisfiable. Therefore, the second step, i.e., the simplification by removing un-
satisfiable disjuncts and reducing redundancy, is the most expensive part in this
approach.

The Classification-Tree Method. The drawback of such purely syntax-
oriented approaches as proposed by Helke et al. [HNS97] is that the user has
only little influence on the generation of relevant test cases. Therefore, a com-
bination with the semantic-oriented approach of classification-trees [GG93] was
investigated by Singh et al. and Sadeghipour [SCS97, Sad98]. In the classifica-
tion-tree method, the test object is analyzed with respect to properties which
are considered to be relevant for the test. For each such property, a disjoint
partitioning is performed. The partitions can then be further classified until a
sufficiently refined partitioning is reached. It is easy to see that this refinement
process can be graphically represented as a tree, the classification-tree.

For instance, the classification-tree of the schema Modulo in Sec. 12.2.1 con-
cerning the variables b? and k is shown in Fig. 12.1. In this tree, b? is partitioned
depending on being equal to or greater than m?, and k is partitioned depending
on being even or odd. Each combination of the leaves of different classifications
in such a tree represents a high-level test case. In our example, each row in the
combination table below the classification-tree represents such a high-level test
case (according to the marked points in the table).

Since these test cases contain only variables occurring in the classification-
tree, we have to add them as additional predicate to the original schema in
order to obtain complete test cases. For instance, if we add the fourth test case

12 Technology of Test-Case Generation 331

(b? > m?) ∧ (k mod 2 = 1) to the predicate part of the original schema, we
obtain after some simplifications the complete test case schema:

Modulo (Partition4)
b?,m?, r ! : N

b? > m?
(r ! < m?) ∨ (m? = 0)
∃ k : N • (k mod 2 = 1) ∧ (b? = m? ∗ k + r !)

This test case can be further refined by transforming it into disjunctive nor-
mal form as in the previous approach, which yields two refined test cases:

(b? > m?) ∧ (r ! < m?) ∧ ∃ k : N • ((k mod 2 = 1) ∧ (b? = m? ∗ k + r !))
(b? > m?) ∧ (m? = 0) ∧ ∃ k : N • ((k mod 2 = 1) ∧ (b? = m? ∗ k + r !))

Note that in addition to the semantic aspects, the classification-tree method
provides a hierarchical structuring of the test cases, while test cases in the pure
disjunctive normal form approach are completely unstructured. An application of
theorem proving to support this approach was presented by Sadeghipour [Sad98].
In particular, the theorem prover Isabelle [Pau94, NPW02] is used as integral
part of a tool environment for test case generation based on the classification-
tree method. The theorem prover is applied, e.g., for simplification tasks, for
checking test data consistency, and for test evaluation.

Partitioning Heuristics. An approach with the objective of building a uni-
form theoretical foundation and generalizing the above methods was presented
by Burton et al. [BCM00, Bur00, Bur02]. This approach is based on CADiZ
[TM95, Toy96, Toy98], a Z type checker and theorem prover. Since the input
language of CADiZ is Z itself, there is no necessity for translating Z specifi-
cations. The main difference to the approaches of Helke et al. [HNS97], Singh
et al., and Sadeghipour [SCS97, Sad98] is that various partitioning heuristics
are supported in the work of Burton et al. [BCM00, Bur00, Bur02]. In partic-
ular, the test case generation of Helke et al. [HNS97] is based on disjunctive
normal form partitioning as shown above. This partitioning, however, can be
generalized by other partitioning heuristics such as heuristics based on bound-
ary value analysis or type analysis. For instance, the predicate m ≥ 0 can be
partitioned by boundary value analysis into (m = 0) ∨ (m = 1) ∨ (m > 1),
and the domain of the variable n ∈ Z can be partitioned by type analysis into
(n < 0) ∨ (n = 0) ∨ (n > 0).

In addition, the partitioning can also be based on fault-based heuristics which
take the experience of faults detected in previous builds into account. For in-
stance, if the specified operation n2 is assumed to be incorrectly implemented
as 2 ∗ n, where n ∈ N, then the partitioning would be (n = 1)∨ (n > 2) because
n2 and 2 ∗ n cannot be distinguished by n = 0 and n = 2.

Of course, these partitionings can also be performed by the classification-tree
method of Singh et al. and Sadeghipour [SCS97, Sad98]. However, as we will see

332 Levi Lúcio and Marko Samer

in the following, partitioning and fault-based heuristics can be seen as a uniform
theoretical framework.

Partitioning heuristics can in Z be formulated as theorems which describe
the equivalence between the original predicate and the partitions. In particular,
there are two components of this equivalence: completeness, which ensures
that the union resp. disjunction of the partitions covers the original predicate,
and disjointness, which ensures that the partitions are pairwise disjoint. The
corresponding generic partitioning heuristics are

∀Vars(P) • P ⇔ P1 ∨ P2 ∨ . . . ∨ Pn

∀Vars(P) • ∀ i , j : 1..n • i �= j ⇒ ¬(Pi ∧ Pj)

where P denotes the original predicate, Pi with 1 ≤ i ≤ n denotes a partition,
and Vars denotes a function that returns the declarations of all variables oc-
curring in its argument. To obtain partitioning heuristics, the above templates
have to be instantiated. Examples of such instantiations concerning disjunctive
normal form have already been shown above (see transformation rules (12.1),
(12.2), and (12.3)). An instantiation of a boundary value analysis heuristic is
given by:

∀A,B : Z • A ≥ B ⇔ (A = B) ∨ (A = B + 1) ∨ (A > B + 1)

To obtain concrete test cases, such a heuristic has to be applied to a selected
predicate in a specification, i.e., it has to be instantiated with the parameters
of the predicate. For instance, let us apply the above boundary value heuristic
to the first predicate of the schema Modulo in Sec. 12.2.1. To this aim, we
first have to prove within CADiZ that the heuristic is a tautology. If this is
the case, the heuristic’s instantiation with respect to the predicate (A and B
are instantiated by b? and m? respectively) is computed by CADiZ’s pattern
matching mechanisms within a tactic. The resulting equivalence is:

b? ≥ m? ⇔ (b? = m?) ∨ (b? = m? + 1) ∨ (b? > m? + 1)

Now, the predicate b? ≥ m? in the schema can be replaced by the right hand
side of this equivalence, which yields:

Modulo
b?,m?, r ! : N

(b? = m?) ∨ (b? = m? + 1) ∨ (b? > m? + 1)
(r ! < m?) ∨ (m? = 0)
∃ k : N • b? = m? ∗ k + r !

Finally, the predicate part of this schema can be transformed into disjunctive
normal form. Each of the resulting six disjuncts represents one test case. Thus,
the disjuncts can be separated into schemas for each test case.

Fault-based heuristics can be divided into necessary conditions and suffi-
cient conditions. Necessary conditions are able to distinguish between differ-
ent (mutated) subexpressions. This, however, is not always sufficient to detect

12 Technology of Test-Case Generation 333

faults because, for example, two mutated subexpressions may cancel each other
out such that the fault does not propagate to the output. The generic fault-based
heuristic for the necessary condition is

∃Vars(Ei) • ∃Vars(Ej) • ¬(Ei = Ej)

where Ei and Ej denote two subexpressions and Vars is as above. For instance,
to distinguish between multiplication and addition of natural numbers, the fol-
lowing instantiation can be used as heuristic:

∃A,B : N • ¬(A ∗ B = A + B)

For example, if we assume that the multiplication in the schema Modulo
in Sec. 12.2.1 is incorrectly implemented as addition, we choose the following
instantiation of the necessary condition for detecting this fault:

∃m?, k : N • ¬(m? ∗ k = m? + k)

Sufficient conditions, on the other hand, restrict the range of the values
the variables can take such that the fault is observable at the output. The generic
fault-based heuristic for the sufficient condition is given by

∃Vars(P) • ∃Vars(P ′) • ¬(P ⇔ P ′)

where P and P ′ denote two predicate parts and Vars is as above. The same fault
assumption in schema Modulo as above would lead to the following instantiation:

∃ b?,m?, r !, k : N •
¬(((b? ≥ m?) ∧ ((r ! < m?) ∨ (m? = 0)) ∧ (b? = m? ∗ k + r !))
⇔ ((b? ≥ m?) ∧ ((r ! < m?) ∨ (m? = 0)) ∧ (b? = m? + k + r !)))

The sufficient condition is obviously much harder than the necessary con-
dition because the whole predicate part has to be considered. On the other
hand, it contains more information about the testing domain and has therefore
stronger failure detection capabilities. However, the construction of satisfiable
sufficient conditions is not always possible. The relation between necessary and
sufficient fault detection conditions is analogous to weak and strong mutation
testing [Bur00].

It is easy to see that each test case generated by the above techniques can be
seen as a set of constraints on the variables. Thus, CADiZ’s built-in constraint
solver can be used to randomly select test data satisfying these constraints.
A case study of this approach can be found in [BCGM00], and a combination
with graphical notations such as Statecharts from which abstract finite state
machines (AFS machines) can be extracted in order to generate test sequences by
finding counterexamples during model checking the AFS machines is presented
in [BCM01, Bur02].

334 Levi Lúcio and Marko Samer

12.2.3 Logic Programming

One of the most important representatives of declarative programming languages
is Prolog. Due to its high abstraction level, Prolog seems also adequate as specifi-
cation language. In particular, many formal specification notations have straight-
forward translations to logic programs, nondeterminism appears naturally in
logic programming, and specifications in Prolog are executable [Den91]. Prolog
can be seen as a general framework that uses the underlying theorem proving
techniques, extended by some control mechanisms, to construct test cases from
specifications given as logic program.

Bernot et al. [BGM91] presented a general theoretical framework and im-
plementation issues of how to use Prolog for test case generation. Essentially,
their implementation, given an algebraic specification and some auxiliary pa-
rameters, returns uniformity sub-domains and test data. The approach is based
on a translation of algebraic specifications into Horn clause logic, Prolog’s res-
olution principle, and some specific control mechanisms to ensure, for instance,
termination and finite domains.

The theoretical framework is based on testing context refinements4, i.e.,
refinements of a triple containing a set of hypotheses, a set of test data, and an
“oracle”. The hypotheses describe the assumptions on the testing environment
such that the success of the test data ensures the correctness of the SUT with
respect to the specification, and the oracle is a decision procedure for the success
of the test data when submitted to the SUT. The starting point of the refinement
process is an initial testing context which is guaranteed to be valid and unbiased,
where valid means that incorrect programs are rejected, and unbiased means that
correct programs are accepted. This initial testing context is then successively
refined by operations that preserve validity and unbias. Note that, although we
finally want ground formulas, formulas in the test data set of the initial and
intermediate testing contexts can contain variables.

The basic assumption on the underlying algebraic specification5 is that every
formula is a positive conditional equation of the form

(v1 = w1 ∧ . . . ∧ vk = wk) ⇒ v = w ,

where vi , wi , v , and w for all 1 ≤ i ≤ k are terms with variables. We will
show how a set of such formulas can be used to generate test cases with Prolog.
The first step is to transform every equation in both preconditions and con-
clusions into an equation of the form f (t1, . . . , tn) = t , where f is a defined
operator and t , t1, . . ., tn contain only basic operators, called generators, but no
defined operators. This transformation is achieved by four syntactic transforma-
tion rules [BGM91]. The resulting formulas are of the form

(f1(t1,1, . . . , t1,n1) = r1 ∧ . . . ∧ fm(tm,1, . . . , tm,nm) = rm) ⇒ f (t1, . . . , tn) = r .

4 Note that a testing context is not the same as a test context as defined in the glossary.
5 In this approach, a specification is defined as a set of formulas.

12 Technology of Test-Case Generation 335

�������

�������

max(A,B ,X)

nat(X ′)

{A/0, B/X ′, X/X ′}

nat(X ′)

{A/s(X ′), B/0, X/s(X ′)}

max(A′,B ′,X ′)

{A/s(A′), B/s(B ′), X/s(X ′)}

(12.4)
(12.5)

(12.6)

Fig. 12.2. Resolution tree of max(A,B ,X)

It is easy to see that every equation of the form f (t1, . . . , tn) = t can be
replaced by a literal f̃ (t1, . . . , tn , t) with arity n + 1. Hence, we obtain a Horn
clause resp. Prolog rule of the form

f̃ (t1, . . . , tn , r) ← f̃1(t1,1, . . . , t1,n1 , r1), . . . , f̃m(tm,1, . . . , tm,nm , rm).

Therefore, we have transformed the initial specification into a Prolog pro-
gram. It remains to show how test cases can be generated with this program.
Two important properties in this context are completeness and termination. To
ensure a complete proof search strategy, iterative deepening can be used in-
stead of Prolog’s standard depth-first search. This, however, does not guarantee
termination because some unsatisfiable goals cannot be detected. To solve this
problem, rewriting is used by Bernot et al. [BGM91] to simplify goals before
each resolution step in order to alleviate the detection of unsatisfiable goals.

The refinement resp. unfolding process to obtain a suitable decomposition of
the specification into sub-domains is implemented by recursively replacing each
defined operator by the cases corresponding to its definition. This is already
provided by Prolog’s resolution principle. For instance, consider the predicate
max/3 defined by the following three clauses, where s denotes the successor
function:

max(0,X ,X) ← nat(X). (12.4)
max(s(X), 0, s(X)) ← nat(X). (12.5)

max(s(A), s(B), s(X)) ← max(A,B ,X). (12.6)

For example, max(s(0), s(s(s(0))), s(s(s(0)))) is true since the maximum of
s(0) .= 1 and s(s(s(0))) .= 3 is s(s(s(0))) .= 3. The resolution tree shown in
Fig. 12.2 is obtained when applying one resolution step to the goal max(A,B ,X).
The leaves of this tree obviously represent a decomposition of max/3 according
to its definition. For the first two clauses we obtain the resolvent nat(X ′), and
for the third clause we obtain the resolvent max(A′,B ′,X ′) together with the
corresponding unifiers. These resolvents can now be further decomposed. The
crucial point is to decide when the refinement process has to be stopped, i.e., to
control the degree of decomposition. To this aim, meta-clauses are used by Bernot
et al. [BGM91]. The literals are chosen for resolution according to a selection

336 Levi Lúcio and Marko Samer

heuristic in order to stop resolution when a sub-domain is reached which seems
to satisfy a uniformity hypothesis. Each branch of the resulting resolution tree
represents one test case. Starting from the instantiations of the predicates at the
leaves, test data of the original predicate can be computed using the unifiers on
the corresponding branch.

To obtain ground formulas which represent the executable test data, two
kinds of instantiation hypotheses have to be implemented. The first is called
regularity hypothesis and means that it is sufficient to consider test cases
below some maximal complexity. For instance, it may be sufficient to instantiate
list variables with lists up to a maximal length. This can be realized in Prolog
by a predicate implementing an appropriate complexity measure which ensures
that variables are instantiated only below a fixed complexity. For the remaining
variables, the uniformity hypothesis can be applied, i.e., an instantiation
within the domain is randomly chosen. This can be implemented in Prolog by
using a random choice strategy for the clauses during resolution and selecting
the first solution found in this way.

A more implementation oriented approach to test case generation with Pro-
log was presented by Denney [Den91]. He has shown how the technical problems
occurring in the context of test case generation with Prolog can be solved by
a meta-interpreter. The main idea is to dynamically construct a specification
automaton by Prolog’s goal-reduction procedure during the specification execu-
tion. Uniform sub-domains of the specification input and output domains are
obtained by special sets of arcs of the specification automaton called routes, i.e.,
all paths over a route are considered to be equivalent. In particular, a route
is a “set of arcs over which there is at least one path through the automaton
corresponding to a path through the specification that uses all and only those
arcs in that route”. The meta-interpreter tries then to generate one test case
for each route by using some heuristics (e.g., to control recursion/termination).
Since term ordering may affect the test case generation process and the user
should not need to take care of term ordering when writing specifications, the
meta-interpreter uses a constraint list which contains insufficient instantiated
goals until they can be evaluated.

12.2.4 Extracting Test Cases from Proofs

In principle, the intention of formal proofs is to ensure the correctness of an
abstract model of a system. Therefore, at first sight, one might probably say that
testing of a system is unnecessary if such correctness proofs exist. However, what
guarantees that the abstract model is a correct representation of the concrete
system, i.e., what guarantees that there have been no mistakes in the model
building process? On the other hand, if we assume that testing of the concrete
system is unavoidable, why should we construct correctness proofs? An approach
of answering these questions was presented by Maharaj [Mah99, Mah00].

The main idea in this approach is that theorem proving procedures often
perform a detailed analysis of the input domain of the given model. This anal-

12 Technology of Test-Case Generation 337

�����

���������

���������

���������

�����

l = nil l �= nil

m = 1 m > 1

n > 1 n = 1

cdr(l) = nil cdr(l) �= nil

�

�

�

� �

Fig. 12.3. Proof structure of select

ysis is then reflected in the structure of the resulting formal proof. Thus, the
partitioning of the input domain in order to obtain sub-domains which satisfy a
uniformity hypothesis is done as by-product of the proof process, i.e., the domain
analysis is implicitly available in the proof structure and need not to be done
by special test case generation procedures as usual. Test cases extracted from
correctness proofs can then be used for verifying the SUT.

A small case study to justify this approach was also presented by Ma-
haraj [Mah99]. It discusses a small program implementing the function select
which, given a list and two integers m and n, returns the sublist from the m-
th element to the n-th element. The specification of this function is given by
two properties. We consider the first of them which specifies the length of the
returned sublist:

∀ l : List • ∀m,n : N • (0 < m ≤ n) ∧ (n ≤ length(l)) (12.7)
⇒ length(select(l ,m,n)) = n −m + 1

The function has to be implemented in a high-level programming or specifi-
cation language about which it is easy to reason. In the case study, the functional
programming language Miranda was used. The resulting program can be seen as
an executable specification of a low-level language implementation that has to
be tested. The theorem prover PVS [ORS92] was used to prove the correctness
of the Miranda implementation regarding both specified properties.

Property (12.7) was proved by induction on the length of the list. The cor-
responding proof structure is shown in Fig. 12.3, where cdr : List → List is a
function that maps a list to its tail. This structure arises from the case distinc-
tions during the proof process. Since the proof is done by induction on the list
length, the first branching distinguishes between the induction start (l = nil)
and the induction step (l �= nil). The other branchings result from the proof of
the induction step.

The test cases can be extracted from this tree by combining the conditions
on the variables that occur on the branches from the root to the leaves. Since
each branch represents a test case, we obtain five test cases. For instance, the
test case corresponding to the right most branch is given by:

{0 < m ≤ n,n ≤ length(l), l �= nil ,m > 1}

338 Levi Lúcio and Marko Samer

These test cases can then be simplified, and well known unfolding techniques
can be applied. Maharaj [Mah99] also has shown that, in this simple example,
test cases generated by conventional test case generation methods from specifi-
cations are subsumed by the test cases extracted from the proof.

12.3 Symbolic Execution

Symbolic execution is a program verification technique born in the 1970s.
One of the first papers in the area by King [Kin76] describes the technique as
being somewhere between the informal and the formal approaches. The informal
approach may be described as follows: the developer creates test cases which
are sets of input values to be provided to the application; these test cases are
ran against the application which will output the results; the test results are
tested for correctness against the expected results. In what concerns the for-
mal approach, it means describing the application by means of a specification
language and then using a proof procedure to prove that the program will
execute as expected. While the informal approach involves actual execution of
the application, the formal one can be applied even before a prototype for the
system exists.

Symbolic execution was invented to fill the gap between the two above men-
tioned techniques. While the informal approach completely disregards input val-
ues that are not taken into consideration in the test cases, the formal one requires
an exhaustive mathematical description of the application which is not easy to
produce.

The first goal of symbolic execution is to explore the possible execution paths
of an application. The difference between symbolic execution and informal test-
ing with sample input values is that the inputs in symbolic execution are symbols
representing classes of values. For example, if a numeric value is expected by the
application, a generic x representing the whole set of numerical values is passed.
Obviously, the output of the execution will be produced as a function of the
introduced input symbols.

Given that symbolic execution is done over non-defined values, the control
paths that are covered have to be defined either by heuristics or by humans
at run-time. In particular, the symbolic execution of conditional structures is of
great interest: when a symbolic condition is evaluated, the result may be true,
false or not decidable. In case of true or false, it is clear which control path
should be followed. If the symbolic execution environment is not able to decide
unambiguously which branch of the condition should be taken, then both control
paths can be followed and the symbolic execution of the program splits. From
the above, one can imagine that to each possible program control path corre-
sponds a conjunction of conditions accumulated by the decisions taken during
the execution. The set of conditions that defines a control path is called its path
condition.

12 Technology of Test-Case Generation 339

It is now possible to talk about test case generation. As for the other two
techniques mentioned in this section (model checking and theorem proving), test
cases can be generated as by-products of symbolic execution. The main goal of
symbolic execution is to analyze the control structure of a program and possi-
bly discover errors in it. However, by finding a solutions to the equations that
describe control paths it is possible to extract values that can be used as test
cases. These values will clearly force the application to follow the control path
that defines that path condition.

From the above it can be understood that symbolic execution was invented
mainly for white-box testing. Despite, nothing prevents from applying the
same techniques starting from an abstract specification such as a state machine.
Symbolically searching a state space helps coping with state space explosion
since it reduces the number of possible paths by associating classes of inputs.
Several authors [PPS+03, LP01, LPU02] provide interesting examples of the
usage of symbolic execution for generating test cases from an abstract model.
From here on in this text we will use the term model to mean both program
and abstract specification.

In this section we will provide an account of the above described topics. In
particular in Sec. 12.3.1 we will go through the technique of symbolic execution,
showing both how it works and what problems it raises. In Sec. 12.3.2 the topic
of test case generation from symbolic execution is discussed. Since in our days
test case generation is mainly done using a conjunction of techniques, we will
discuss several test case generation methods where symbolic execution plays a
significant role.

12.3.1 The Technique

As already discussed in the introduction, symbolic execution started to be as
a technique to help debugging programs by instantiating input variables with
symbols. Each symbol represents the whole range of values a given input variable
may assume. As an illustration, consider the code in Fig. 12.4 which is a C
translation of an example that can be found in [Cla76]:

 int foo(int a,int b) {

 }

3 a = a − b;

5 a = b − a;

7 a = −a;

1 a++;
2 if (a > b)

4 else

6 if (a <= −1)

8 return a

Fig. 12.4. foo C code

340 Levi Lúcio and Marko Samer

In order to execute this piece of code symbolically, we start by assuming the
instantiation of the input variables a and b of the foo routine by the symbols α1
and α2.

The instruction labelled 1 is an assignment which increments the value of
α1. In this case it is simple to see that after this statement is executed we have
α1 = α1 + 1.

The symbolic execution of a conditional statement is however more com-
plicated. If we take the statement labelled 2 from the foo routine, there are two
cases to consider:

• α1 > α2: the next instruction is the one labelled 3 ;
• α1 ≤ α2: the next instruction is the one labelled 5.

Since both α1 and α2 are symbolic and represent the whole range of numeric
values the input variables to the program may assume, it is impossible to decide
whether the program should follow label 3 or label 5. It is thus necessary to
follow both of them and to split the execution in two separate control paths.
Each of these control paths will however have a condition attached to it: the
control path associated to the fact that a > b is true has the a > b condition
attached to it; the control path associated with the fact that a ≤ b is true has the
a ≤ b condition attached to it. These conditions are called path conditions. If
we generalize, a path condition can be seen as a set of arbitrary constraints on
input variables.

In Fig. 12.5 it is possible to observe the partial symbolic execution of foo by
means of a directed graph. The nodes of the graph correspond to the state of
the input variables and of the path condition while the edges correspond to the
next statement in line for execution.

From foo’s symbolic execution much information can be retrieved:

• At each state of the symbolic execution three data are known: the input
variable’s symbolic value, the path condition’s symbolic value and the next
statement to be executed;
• Each leaf in the symbolic execution tree corresponds to the end of a control

path. The path condition on each leaf is the conjunction of all the assumption
made about the input values as the program executes. At the tree’s leaves,
the path condition fully documents the followed control path;
• This method enables the detection of control paths that are never executed

in a model. For example, in foo the control path (1-3,6-8) is associated with
the path condition (α1 − α2 > −1) ∧ (α1 − α2 ≤ −2). There is no solution
for these equations so no input values will ever make the program follow this
control path.

The example from Fig. 12.5 only deals with assignments and conditional
statements, no loop statements are included. We will not go into the details
of how to symbolically execute a loop statement since the algorithm can be
extrapolated from the one for symbolically executing a conditional statement:

12 Technology of Test-Case Generation 341

α1
α2b:

PC: True

a:

α1+1
α2

a:
b:
PC: True

α2
α1+1

α1+1>α2

a:
b:
PC:

α1+1
α2
α1+1<=α2

a:
b:
PC:

α1+1−α2
α2
α1+1>α2

a:

a:
b:
PC:

α1+1−α2
α2
α1−α2>−1
α1−α2<=−2

a:
b:
PC:

α1+1−α2
α2
α1−α2>−1
α1−α2>−2

(1)

(2) (2)

(6)

(3) (5)

...

(8)

...

(6)

b:
PC:

(infeasible control path)

Fig. 12.5. Symbolic execution tree of foo

• if from the path condition it can be deduced that the loop condition is
– true then the control path is directed to the beginning of the loop state-

ments;
– false then the control path is directed to the first statement after the

loop.
– both true and false, then the control path is split in two as described in

the first two bullets.

An interesting case is when the condition expression of a conditional statement
involves a subroutine or method call. As an example, imagine instruction 2 of
the foo routine has the following condition: f (a) > b, where f is a function or a
method defined elsewhere in the application. In that case two different strategies
may be used: consider the return value of the function call as one or multiple
symbolic expressions (resulting from the symbolic execution of the f subroutine);
consider the f(a) expression as another symbolic variable over the possible return
values of f.

342 Levi Lúcio and Marko Samer

Proving Program Correctness It is possible to extract relevant information
only from symbolically executing an application model. For example, infeasible
control paths may be identified or errors in the code can be detected by looking
at the path conditions for each control path. However, using symbolic execu-
tion it is possible to go further than that into the domain of proving program
correctness.

King [Kin76] discusses the similarities between proving program correctness
and symbolic execution. In order to prove that a program is correct it is necessary
to state a precondition that constraints input variables and a postcondition
that will be required to be true after program execution. It is possible to perform
these proofs with symbolic execution since:

• the precondition can simply be conjunct with the path condition at the
beginning of the execution;
• the postcondition can again be conjunct with the path condition at the

end of the execution of each control path. If there is no solution for the
equations posed by the conjunction of a control path’s path condition and
the postcondition, then that path should not exist.

The proof can also be done in a compositional fashion by making pre and
postconditions cover relevant segments of the program. Proving the program
is correct corresponds in this case to proving all the specified segments. This
technique is used in [Kin76] to show that EFFIGY (one of the first symbolic
executors) could be used to prove program correctness.

The authors of [KPV03] use a similar technique for verifying object oriented
concurrent programs with complex data structures. Their approach consists of
annotating source code with method pre and postconditions and performing
symbolic execution using a model checker. Each time the model checker fails to
verify one of the preconditions the search backtracks (the path is infeasible) and
an alternative execution path is tried out.

Issues Related to the Approach Several difficulties arise when trying to
execute a model symbolically. As with other verification techniques, the main
problem is linked to the fact that the state space for control path verification is
usually infinite, as well as the range of values of each input. Despite the advantage
offered by symbolic execution of abstracting sets of input values into symbols,
solving the path condition equations is still necessary in order find which input
values yield a given control path. The following bullets discuss these problems
and how some authors approached them.

• Dealing with infinite control paths If we consider models which comprise
loops - which means all the programming languages and virtually all state
spaces generated by abstract specifications - there is an infinite number of
control paths with infinite states. When a loop depends on symbolic input
values it is a difficult problem to automatically understand when the loop
execution should stop. Several solutions may be envisaged:

12 Technology of Test-Case Generation 343

– simply prompt the user at each iteration of the loop for directions;
– establish an upper limit on the amount of iterations to be performed

on each loop (automatically or by human intervention). This limit is an
heuristic and will have an impact on the quality of the generated control
paths;

– Try to automatically find a fixed point to the loop. This is however not
trivial and may require human assistance.

The usual approach implemented in symbolic executors is to provide an
upper limit on the number of symbolic executions to be performed (e.g.
CASEGEN [RHC76], DISSECT [How77]). In DISSECT another approach
to controlling control path length is to provide an upper limit for the total
control path length, as well as for the total amount of generated paths.

• Solving path condition equations This is crucial both for the symbolic exe-
cution itself and for test case generation. During symbolic execution it will
be necessary to constantly evaluate the path condition equations of in order
to decide whether the control path being explored is feasible or not. If there
is no solution to the equations at some moment, the path is infeasible.
In what concerns test case generation, for each feasible control path the path
condition provides the relation between input variables that will direct exe-
cution through that particular path. If it is possible to generate values that
satisfy that relation, then it is possible to extract a test case.

• The path condition holds a general system of equalities and/or inequalities,
for which any algorithm will not be complete. Clark [Cla76] presents a linear
programming algorithm that can be applied in the case where the equations
are linear constraints. Ramamoorthy et al. [RHC76] deal with non-linear
equations using a systematic trial and error procedure. This procedure as-
signs random values to input variables until a solution is found (which is not
always possible). Much more recently in [PPS+03], random trial and error
is also used, in conjunction with limit analysis.

In this subsection we have discussed the fundamentals of symbolic execu-
tion. This knowledge provides the basis for understanding the next section - an
overview on test case generation using symbolic execution.

12.3.2 Test Case Generation Using Symbolic Execution

While going through the available literature on test case generation using sym-
bolic execution we found that the models used to specify the application vary
wildly. We have thus opted by describing in this section three examples that
have their starting point in three different abstract models: B [Abr96], AUTO-
FOCUS [FHS96] and CO-OPN [OBG01].

More than that, we also found that some interesting techniques that make
use of symbolic execution for test case generation don’t use abstract models
but rather start directly from code. We explore in this section also one of these

344 Levi Lúcio and Marko Samer

techniques coming from white-box testing. We find that the example described
enriches this survey since it can also eventually be used in test case generation
from abstract models.

Another axis where we based this survey on are the synergies between sym-
bolic execution and other program verification techniques in the context of test
cases generation. As we have shown in Sec. 12.3.1, symbolic execution started
out as a pure white-box testing technique during the 1970s. Later, it has been
recycled to help reducing state-space explosion problems associated with formal
verification techniques such as model checking (Sec. 12.4) or theorem proving
(Sec. 12.2).

The examples that follow encompass the application of several techniques
for program verification, including obviously symbolic execution. For each of the
examples the several techniques employed for test case generation are identified,
so that the synergies between them are exposed.

We start with three frameworks for model based test case generation where
symbolic execution is heavily used. We then pass onto one example of code based
test case generation which we find particularly interesting since it uses model
checking to perform symbolic execution.

Abstract Model-Based Test Case Generation The three following exam-
ples are relatively similar in the way they approach the problem of test case
generation. They all start from an abstract specification and perform searches
through the execution state space of the specified application by using a con-
straint logic programming language or simply Prolog. This search is done in
a symbolic fashion in the sense that each state of the model corresponds not to
a single concrete state but rather to a set of constrained model input variables.
The constraints for the model input variables at a given state are calculated by
symbolically executing the path until that state - the same way we have shown
in Sec. 12.3.1.

At this point it seems important to also define what a constraint logic pro-
gramming (CLP) language is. CLP languages are declarative logic languages,
such as Prolog, but particularly enabled to deal with arbitrary constraints. Ex-
amples of constraints could be for example X > 0 or Y + Z < 15. Intuitively,
while Prolog’s inference engine only understands syntactic unification, a CLP
engine includes semantic knowledge about constraints while performing unifi-
cation. This makes CLPs more efficient than Prolog for performing searches
through variable constrained state spaces such as the ones we are considering in
this text.

We will start by an example that builds test cases starting from a B specifi-
cation. This approach called BZ-TT (BZ-Testing-Tools) is described by Legeard
and Peureaux in [LP01, LPU02, LPU04] and consists essentially of three steps:

12 Technology of Test-Case Generation 345

• translating a B specification into their custom CLPS-B constraint logic pro-
gramming language: B is a specification language related to Z that supports
the development of C code from specifications. In B a software application
can be seen as a state machine in which each state is defined by a number
of state variables and transitions are defined by the operations the state
machine accepts for each state.
The translation step generates CLPS-B prototypes of the operations de-
scribed in B to allow the animation of the specification. With CLPS-B it
is then possible to generate the execution state space for the specified ap-
plication and to search it for traces that are interesting to be tested. The
translation from B into CLPS-B can be seen as a first (abstract) prototyping
of the system under test;

• calculate the boundary states for each state variable in the specification:
Boundary states consist of states of the specification execution which are
considered to be particular hence should be tested. In order to find these
states the test case generation framework relies on symbolic execution. In
what follows, please keep in mind that this approach is limited to finite
enumerated domains.
Boundary states are calculated in the following fashion: each state variable’s6

value domain is partitioned by symbolic execution of the B specification (by
means of the CLPS-B translation). In fact, in a B specification properties
of state variables are defined both in the preconditions and the body of
operations by structures such as “SELECT...THEN”, “IF...THEN...ELSE”
or “ANY...WHERE”. For each possible execution (each possible trace) of the
specification there is a path condition associated. The difference with normal
symbolic execution is that this time the interest is not on all the conditions
posed on all the state variables, but rather on the conditions posed on one
single state variable. For example, if we consider that a given execution trace
implies the following conditions over state variable x with domain 1,2,...,9,10:

x ∈ {1, 2, 3, 4, 5} ∧ x �= 3

then x ’s value domain would be partitioned in the following way:

x ∈ {1, 2, 3} ∪ {3} ∪ {3, 4, 5} ∪ {5, ..., 10}

From this union of sets called P-Domain it is possible to calculate an in-
termediate product called boundary values. These are the values belonging
to the extremes of each of the subsets in the P-Domain set. If we take the
example above, the boundary values for x ∈ {1, 2, 3}∪3∪{3, 4, 5}∪{5, ..., 10}
would be {1, 3, 5, 10}. It should be said that we have not taken into consid-
eration state variables over non-numeric sets, although the computation of
boundary values for these sort of variables is relatively similar to the previous
description.

6 State variables are related to what we described in Sec. 12.3.1 as input variables

346 Levi Lúcio and Marko Samer

It is now possible to calculate the boundary states. These correspond to
states in the execution space of the specification where at least one of the
state variables assumes a boundary value. Symbolic execution is again nec-
essary at this stage given that in order to know the ranges of all the other
state variables that define a boundary state it is necessary to know the path
condition for that state.

state 1
Boundary Boundary

state 2

of body 1.1

Final state

identification
Final state of

identification
Final state of

identification
Final state of

Initial State

Final state Final state

of body 1.2

Boundary
state m

of body 1.m
...

...

preamble invocations

body invocations

identification invocation

postamble invocations

Fig. 12.6. Trace construction for boundary testing

• generate the test cases (traces through the state space): this activity may be
resumed to the following:

– Calculate the preamble trace to the boundary state: this consists of cal-
culating the sequence of operations that leads the system to a boundary
state. Given that the path condition for the boundary state is already
known, this can be considered trivial;

– Calculate the “critical invocation” step: the authors of the approach de-
fine critical invocation as the execution of the operations which are pos-
sible from the boundary state. The execution of these operations in is
clearly sensitive since is implies the manipulation of a boundary value.
For that reason the input parameters for the operations under analysis
are decomposed into subdomains as was done in order to find the bound-
ary values. We can say that the operations accessible from the boundary
state are then symbolically executed over their entry parameters, yield-
ing a subdivision of the preamble trace (see Fig. 12.6);

12 Technology of Test-Case Generation 347

– Calculate the identification traces and the postamble after the “critical
invocation”: The identification trace consists of one or more operations
to be executed in order to observe the behavior of the system after the
critical step. The postamble trace is a sequence of operations that resets
the state machine to the initial state from where new test cases can be
again searched for.

It is then possible to concatenate the preamble trace with the critical invo-
cation traces with the identification traces. The remaining symbolic parts
of the traces are finally fully instantiated in order to generate real test case
scripts that can be applied to a concrete implementation of the application.

While trying to discriminate the verification techniques used in this frame-
work we can identify clearly the usage of symbolic execution, but also of theorem
proving since a logic programming language (i.e. a theorem prover) is used to
calculate the boundary states.

The second example on model-based test case generation we will discuss is
presented by Pretschner et al. in [PPS+03]. This approach also relies on a CLP
tool to symbolically execute the abstract specification of the system. The appli-
cation’s state space is then searched for symbolic traces that can be instantiated
to form interesting test cases.

The specification model used in this case in the one used by the AUTOFO-
CUS CASE tool - inspired from UML-RT (UML for Real-Time systems), espe-
cially directed towards the development of embedded systems. In this paradigm
the system’s structure is defined as a network of components. Each of the bottom
level component’s behavior is described by a state machine. Composition of the
bottom level state machines generates higher level state machines and so on until
the full system’s state machine is reached. As in the previous example, states
are defined by state variables and the transitions are possible via commands (or
operations) that are issued to the system.

Before describing how the test cases are generated, it is useful to mention that
the authors of the approach consider different kinds of coverage of the execution
state space. In [PPS+03] they describe three different coverage classes:

• Functional coverage: this sort of coverage implies generating test cases that
exercise precise execution scenarios given in the specification. Both positive
as well as negative test cases are interesting to validate the system;
• Structural coverage: structural criteria implies for example issuing sequences

of commands that selectively test critical components of the system. Another
example is the coverage of states that may be considered dangerous or unsafe;
• Stochastic coverage: using this approach random traces are generated through

the execution state space of the application. Despite the search not being
directed, this sort of coverage may still produce relevant test cases.

348 Levi Lúcio and Marko Samer

The generation of test cases is done by translating the AUTOFOCUS model
into a CLP language so that it can be symbolically executed by a constraint logic
engine. The idea is that a bottom level transition of a component K is modelled
into a formula of the following type:

stepK (−→σ src ,
−→ι ,−→o ,−→σ dst)⇐ guard(−→ι ,−→σ src) ∧ assgmt(−→o ,−→σ dst)

This means that upon reception of input −→ι , component K can evolve from
control and data state −→σ src to −→σ dst while outputting −→o . In order for this to
happen however the transition’s guard has to hold. Also, the data state of the
component after transition is determined by the assignment function assgmt . If
we consider a component K that is not a bottom level one, then a transition
of component K shall be composed of a set of lower-level transitions of K ’s
subcomponents.

The CLP program representing the application’s specification is then exe-
cuted to calculate interesting traces through the execution’s state space. We can
say symbolic execution is used here since the traces are built not with actual
input values for each transition - rather with constraints over variables repre-
senting input values. One of the interesting feature of this particular framework
is the possibility of annotating the abstract AUTOFOCUS specification with
coverage criteria. These annotations are also translated into the CLP model of
the application in order to allow heuristics for trace construction.

Clearly, at the end of the search the symbolic traces need to be instantiated
in order to build real test cases that can be used to verify a concrete implemen-
tation of the system. This instantiation is done either at random or by limit
analysis.

As in the previous example, we can clearly identify in this approach the pres-
ence of the symbolic execution and the theorem proving verification techniques.

The final example on test case generation from an abstract model we describe
in this text is presented by Peraire, Barbey and Buchs in [CPB98]. The start-
ing point for the framework is a formal specification language called CO-OPN
(Concurrent Object Oriented Petri Nets), also developed by the same group. CO-
OPN uses algebraic structures to define data types and the Petri Net formalism
to handle concurrency. From a specification in this language an axiomatization
in Prolog is produced automatically. The role of this axiomatization is dual:

• it allows the generation of test cases by composition of operations of the
SUT’s interface. Since there is an infinite random amount of these composi-
tions, the test engineer can apply hypotheses on the behavior of the system
in order to reduce the initial number of tests. This is done using a special
purpose language;
• on the other hand the axiomatization of the specification in Prolog also

makes it executable (at a level which is necessarily more abstract than the
SUT). This high level prototype makes it possible to validate the generated

12 Technology of Test-Case Generation 349

tests, i.e. checking whether the transitions between the operations in the test
sequence are possible. If they are not, then that sequence of operations should
not be applicable to the implementation - this type of tests are negative but
also relevant to verify the correctness of the SUT.

The next step in the approach is to define a set of hypotheses that will direct
the symbolic execution of the axiomatized prototype. Unlike other frameworks
described in this section, this one relies on human intuition during test case
selection. Despite the fact that some of the possible automation during this step
is lost, the high-level language used to describe hypotheses about interesting test
cases provides a basis to generate tests which are semantically meaningful.

The test engineer can express two types of hypotheses concerning the tests
that will be generated:

• Regularity hypotheses: this type of hypotheses stipulates that if a test con-
taining a variable v if valid for a subset of v satisfying an arbitrary complex-
ity criteria, then it is valid for all of v ’s domain of greater complexity. The
notion of variable in a test is very generic, including not only input variables
but also constraints on the shape of the sequence of operations that form the
test. This is however a complex topic and the reader is referred to [Per98]
for details;
• Uniformity hypotheses : the uniformity hypotheses state that if a test con-

taining a variable v is valid for one value of v, then it is valid for all of v ’s
domain.

After introduction in the system of hypotheses by the test engineer, the pro-
log adapted engine (the resolution is not pure SLD7) symbolically executes the
uninstantiated tests against the axiomatic definition of the application. The idea
behind the approach is to extract from path condition of a given test the con-
straints on the variables corresponding to the input values of the operations
present in that test. Given this knowledge it becomes possible to calculate the
subdomains of the uninstantiated input variables and apply uniformity hypothe-
ses in a way that the operation behaviors described in the specification are taken
into consideration. This activity is somehow equivalent to what is performed by
Legeard and Peureaux in [LP01] while calculating the P-Domains.

Again, as with the previously described approaches, both theorem proving
and symbolic execution techniques are used in this test case generation frame-
work.

Code-Based Test Case Generation In the last example of this section we
will be describing a framework by Khurshid et al. [KPV03] that generates test

7 SLD is the standard mechanism used in logic programming languages in order to
compute goal solutions

350 Levi Lúcio and Marko Samer

cases not from an abstract model as the ones described in 12.3.2, but from Java
code directly. We chose to take this detour from the main topic of this section
in order to discuss a technique that:

• generates test cases from “real code” in a modern programming language;
• takes advantage of a model checker (Java PathFinder) to overcome some of

the difficulties of symbolic execution;
• takes advantage of symbolic execution to overcome some of the difficulties

of model checking.

Java PathFinder is a model checker (see Sec. 12.4) built specifically for Java.
As all model checkers, it allows verifying that a model of an application (or, in
this case the application itself) satisfies a set of logic formulas specifying given
properties of the application. An interesting property to be verified with Java
PathFinder is for example that no exception is left unhandled in a given method.
As a result of the model checking we can obtain either execution trace witnesses
of the validity of the formulas or execution trace counter-examples if the formulas
do not hold. Clearly, witnesses are positive test cases and counter examples are
negative ones.

There is a fundamental difference between this approach and the ones de-
scribed before. In fact, all the previous frameworks were based on the fact that
a model of the application, assumed correct, existed. The implementation could
then be verified against that model. In the present case, the model does not
exist explicitly: it is provided implicitly with the temporal logic formulas. The
expected correct and incorrect behaviors of the implementation are described
by the test engineer using temporal logic. The simple fact that the witnesses or
counterexamples to these formulas exist already provides information about the
correctness of the implementation.

One of the main issues around model checking software applications is the
state space explosion problem. In order to be model checked efficiently, an appli-
cation needs to be bounded on its input variables. Symbolic execution may help
in this point, by replacing explicitly valued states by symbolic states representing
large domains.

On the other hand, model checking provides a number of built-in facilities
that allows exploring a state space efficiently. In particular, goodies like the han-
dling of loops, recursion or method invocation can be hidden from the symbolic
execution part. The handling of infinite execution trees is handled by the model
checker by exploring the state space using either iterative deepening depth first
or breadth first techniques. Heuristic based search is also supported.

In what concerns the technique itself, it requires that the Java code passes
through a first instrumentation phase. Since Java PathFinder takes in pure Java
code, the model checking is done over all possible values of input variables of the
system. In order for the model checker to be able to manipulate symbols rather
than real values the code needs to be instrumented. This is done at three levels:

12 Technology of Test-Case Generation 351

• Basic typed variables (e.g. integers) are replaced by objects of an Expression
type that will be able to keep track of symbolic values. Objects that are
static or dynamic can be seen as compositions of the basic types and can
thus be represented symbolically by replacing the basic typed fields with
Expression objects;
• Code instrumentation is also necessary in order to build the path condition

for each of the traces the model checker explores. To do this a PathCondition
class is provided that allows modifying the conditional statements of the code
so that the path condition may be built as the application is executed;
• Finally, code instrumentation is used to add method pre and postconditions.

Method preconditions are used to constrain the method’s input values. This
is relevant in order to constrain the search space and avoid execution traces
that will never exist.

For each of the types of instrumentation described above, the framework pro-
vides the necessary Java libraries.

The most interesting aspect of this approach is the symbolic execution algo-
rithm that allows dealing with methods that take as inputs complex unbounded
data structures. This algorithm uses what the authors of [KPV03] call lazy ini-
tialization since it initializes data structures as the they are accessed. In Fig. 12.7
the algorithm for lazy initialization is described.

if (f is uninitialized) {
 if (f is a reference field of type T) {
 nondeterministically initialize f to
 1. null

 if (method precondition is violated)
 backtrack();
 }
}

 3. an object created during a prior initialization of a field of type T
 2. a new object of class T (with uninitialized field values)

Fig. 12.7. Lazy initialization algorithm

The algorithm allows the construction of path conditions that take into con-
sideration not only conditions over basic types, but also over complex data struc-
tures involving a dynamic number of objects. Fig. 12.7 only shows how the al-
gorithm deals with initializing references to objects, being that primitives types
are given symbolic values. The backtrack() instruction in the algorithm points
out the fact that since the initialization of a reference is non-deterministic, the
algorithm backtracks when the selected initialization is not allowed by the pre-
condition of the method. It can then continue searching for other solutions at
the last decision point.

352 Levi Lúcio and Marko Samer

Finally, the test cases are obtained by running the Java PathFinder model
checker over the instrumented code. For each of the criteria specified in logic
formulas, witnesses or counter-examples traces are generated. As in the previous
approaches, the path conditions for these traces may then be used the build the
actual input values to test the concrete system.

12.4 Model Checking

In the next few paragraphs we will describe the application of model checking
for test case generation. Given that the topic is explored in depth in Chap. 19
of the present volume, we limit ourselves to giving a short overview of the subject.

Several approaches exist that establish connections between model check-
ing and model-based testing (see [CSE96, EFM97, GH99, GRR03, HLSU02,
HCL+03, RH01a, RH01b]). In all these approaches the problem of test case gen-
eration is reduced to finding witnesses or counterexamples to a set of temporal
logic formulas. These temporal logic formulas express control flow oriented test
coverage criteria (see [GH99, GRR03, RH01a, RH01b]) or data flow oriented
test coverage criteria (see [HLSU02, HCL+03]). The capability of model check-
ers to find witnesses and counterexamples to the logic formulas allows then test
case generation to be fully automatic. The obtained execution traces are ob-
tained from a simplified model of the application and can be used to test a real
implementation either for correct traces or for error situations.

In [CSE96, EFM97], the authors propose similar approaches that use test
purposes instead of test coverage criteria. Differently from test coverage criteria
which capture structural entities of a model, test purposes express behavioral
properties of a model. Examples are properties of certain states or a sequence of
states to be traversed.

The authors of [ABM98, AB99] apply model checking to test case generation
for mutation analysis-based test coverage criteria. By applying mutation opera-
tors to either a system model or a property, mutants are produced. A test suite
is then generated to cover the inconsistent behaviors exhibited by the mutants.
The capability of model checkers to construct counterexamples is used to find
such inconsistent behaviors.

Model checking-based test case generation provides several relevant features
in comparison to other test case generation techniques. First, all details on test
case generation are hidden inside the model checkers. This allows the test engi-
neer to focus on only high-level specifications of test purposes or coverage criteria
written in temporal logic. On the other hand, test case generation is language in-
dependent in the sense that the temporal logic formulas can be applied to various
specification and programming languages without having to build a dedicated
tool for each language. Finally, test case generation can be performed on large
and complex models since model checking is a relatively mature technology.

12 Technology of Test-Case Generation 353

12.5 Summary

In this chapter we have shown how the search problem of finding test cases
that satisfy given test case specifications can be solved by applying well known
techniques from computer science. After introducing the basic terminology and
the used formalisms in each section, we have shown how techniques and tools
from theorem proving, symbolic execution, and model checking can be applied to
perform, improve, or support test case generation based on a model of the SUT.

At first, we have presented some approaches from the literature of how test
case generation can be done by theorem proving. A formal specification of the
SUT is transformed into equivalence classes, which are assumed to represent
the same behavior with respect to the test. Therefore, each equivalence class
can be interpreted as one test case. We have shown how such transformations
into equivalence classes resp. partitions can be performed using theorem proving
technology. In particular, we described how general purpose theorem provers can
be applied to generate test cases from Z specifications. Starting at the purely
syntactic disjunctive normal form approach, we have shown how to integrate se-
mantic aspects by means of the classification-tree method, and how partitioning
resp. fault-based heuristics can be used. Afterwards, we have covered test case
generation by logic programming, i.e., we have shown how algebraic specifica-
tions can be translated into Horn clauses from which test cases can be extracted
by Prolog’s resolution principle. Finally, we have shortly described test case
extraction from correctness proofs. Topics for future research in this area are
extensions regarding test case sequencing and concurrency, broader constraint
solving abilities, and applications to a wider range of graphical notations.

We have also shown that symbolic execution is a relevant technique to help
coping with state space explosion while generating test cases. Symbolic execution
is generic enough to be applied to abstract models as well as to concrete code.
In particular, we have described three test case generation frameworks. The first
two start by performing a translation of their respective abstract models (in the
B and AUTOFOCUS modelling language) into a constraint logic programming
language. The resulting CLP model is then symbolically executed in order to
search for traces that represent interesting test cases. In both examples a synergy
between symbolic execution and theorem proving is established, given that logic
programming is used to perform state space exploration. The third example
framework demonstrates generating test cases starting from Java code. A very
interesting feature of this approach is that it uses model checking to symbolically
search the state space. In a way, this example comes to reinforce the notion that
symbolic execution is not used on its own to generate test cases – rather it is
merged with other techniques in order to overcome their shortfalls, as well the
ones in symbolic execution itself.

Finally, we have shortly described the application of model checking in model-
based test case generation. Specifically, we have covered the relation between con-
trol flow resp. data flow oriented coverage criteria and the capability of model
checkers to construct witnesses and counterexamples. There still remain a num-
ber of open questions in this context. Most research efforts in model checking

354 Levi Lúcio and Marko Samer

focus on efficient model checking algorithms for a single temporal logic formula.
In model checking based test case generation, however, we are given a set of
temporal logic formulas from dozens to hundreds and are interested in both
determining the satisfiability of the formulas and generation of witnesses and
counterexamples.

13 Real-Time and Hybrid Systems Testing

Kirsten Berkenkötter1 and Raimund Kirner2

1 Department of Computer Science
University of Bremen
kirsten@informatik.uni-bremen.de

2 Real-Time Systems Group
Vienna University of Technology
raimund@vmars.tuwien.ac.at

13.1 Introduction

Real-Time and Hybrid Systems A system whose functionality is not only
dependent on the logical results of computation but also on the time in which
this computation takes place is called real-time system. We speak of hard
real-time if timing constraints always have to be met exactly. In contrast, soft
real-time allows lateness under specified conditions.

Similarly, hybrid systems also consider time to determine if computa-
tion works correctly. They are called hybrid as both time-discrete and time-
continuous observables exist as well as time-discrete and time-continuous be-
havior. Variables may have dense values that change with respect to time while
events occur discretely. Assignments to variables are also made at discrete points
in time. Therefore the behavior of a hybrid system consists of time-continuous
parts where variable evaluations change with respect to time and of time-discrete
parts where events occur and assignments to variables are performed.

Both kinds of systems are used, e.g. in avionics, in automotive control, and
in chemical processes control systems. They are often embedded systems with a
probably safety-critical background. This leads to high demands on both mod-
eling and testing for providing high quality.

Testing As stated above, both real-time and hybrid systems are potentially
hazardous systems. Obviously, temporal correctness is an important issue of
real-time systems. As a result, testing real-time systems is more complex than
testing untimed systems as time becomes an additional dimension of the input
data space. In case of hybrid systems, complexity increases again as the value
domain is continuous instead of discrete.

For model-based testing, the main goal is handling this complexity. On the
one hand, this means building models that allow to abstract from details to
reduce complexity in a way that test cases can be generated. On the other hand,
test cases must be selected in a meaningful way to achieve a manageable number
out of them.

Outline In Section 13.2, we discuss test automation in general and with re-
spect to the special needs of real-time and hybrid systems. We then focus on

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 355-387, 2005.
 Springer-Verlag Berlin Heidelberg 2005

356 Kirsten Berkenkötter and Raimund Kirner

model-based test case generation in Section 13.3. Different modeling techniques
like timed process algebras and timed automata are discussed for real-time and
hybrid systems as well as their application in test case generation. After that,
evolutionary testing is introduced as a method for improving generated test
suites with respect to testing timing constraints in Section 13.4. We conclude
with a discussion of the presented techniques in Section 13.5.

13.2 Test Automation

Testing is one of the most time consuming parts of the software development
process. Hence, a high degree of automation is needed. The general structure
for a test automation system is the same for untimed, timed, and hybrid systems.
In contrast, the internals of the different parts of a test automation system differ,
as the specific characteristics of timed and hybrid systems must be considered.

13.2.1 Overview

First, we have to introduce some testing terminology. Testing itself means the
execution of the system to be tested which we call system under test (SUT).
The SUT is fed input data while the output data is monitored for checking its
correctness.

A test case is a set of test inputs, execution conditions, and expected results.
This does not mean that the test case necessarily gives explicit input data, it
may also specify rules for generating test data. The set of test cases for a SUT
is called test suite. The test procedure gives detailed information about the
set-up and execution of test cases and the evaluation of the test results. If only
the interfaces of the SUT are accessible, a test is called black-box test. In
contrast, if also internal states can be observed and influenced, a test is called
white-box test.

As stated in Peleska et al. [PAD+98], a test automation system consists of
several logical building blocks as depicted in Figure 13.1:

• Model The test model represents the required functionality of the SUT.
More precisely, it abstracts the functionality to a sensible size to allow the
generation of a test suite with manageable size. Different representations can
be chosen, e.g. automata or process algebra.
• Test Generation The test generator uses the model for deriving test

cases. In addition, more specific test case specifications that describe
a test case or a set of test cases can be used for this purpose. The test
generator is responsible for achieving a manageable number of test cases out
of the infinitely many possible ones. Therefore it plays an important role in
the test automation system.
• Test Monitoring The execution of test cases must be monitored to keep

track of inputs and outputs. This is done by the test monitor. On the one
hand, this is needed for documentation purposes. On the other hand, results

13 Real-Time and Hybrid Systems Testing 357

Test OracleTest Driver

Test Generator

Model of SUT
Specification
Test Case

Test Monitor

SUT

Fig. 13.1. Test automation system

may be needed during execution. To give an example, nondeterminism can
occur. Then the output of the SUT is needed to decide which input can be
sent next. It is also desirable to know if a test case fails during execution as
the test can be aborted then. This holds especially for long time tests.
• Test Evaluation Either after or during test execution, the test result

has to be assessed. This is the task of the test oracle. According to the
monitored test data, SUT model, and test specifications, it calculates the
test verdict. Passed, failed, and inconclusive are frequently used as
verdicts.
• Test Driver The parts of the test automation system converge in the test

driver. It executes the generated test cases, i. e. it posts inputs to the SUT
and receives corresponding outputs. This includes providing interfaces from
and to the SUT. Therefore, the test driver works hand in hand with the test
monitor.

13.2.2 From Untimed to Timed to Hybrid Models

Due to the time-dependent behavior of a real-time system, new problems arise
when testing it as time is a relevant factor. For hybrid systems, also dense-valued
variables must be considered. These problems must be analyzed to find suitable
abstractions for the SUT model as done in Peleska et al. [PAD+98].

With respect to testing, the sequential components of an untimed system are
obviously best understood. Correct behavior is surveyed by looking at the initial
and final states of such a component. Concurrent components are more difficult
to test as not only the data processed must be correct but also the order in which
it is processed. Furthermore, the interactions between the processes lead to many

358 Kirsten Berkenkötter and Raimund Kirner

internal states. The amount of test cases and test data to be evaluated can be
reduced by describing not only the system under test but also the environment. In
this way, input and output are specified for a certain environment, so the number
of possible values is reduced to a more manageable size. Also redundancy checks
are performed that delete redundant test sequences.

Adding time to the requirements of a system means adding complexity to
testing. In addition to the correct sequencing of inputs and outputs, the time
at that they occur is crucial. If only discrete time is considered, time can be
abstracted as a counter that is regularly incremented. The fuzziness of measuring
time must be considered in the test automation system. This is the case for real-
time systems with both discrete time and data domain.

If it becomes hard to define time as multiples of discrete time intervals, dense
time has to be taken into account. This is closer to reality as time is naturally
dense. Timing constraints are then given with respect to the real numbers. Data
is still considered discrete. Nevertheless, a model that uses dense time increases
complexity even more, so this must be taken into account, e.g. for test case
generation. This is the case for real-time systems with discrete data domain and
dense time domain.

The last step to be taken is regarding also dense-valued, i. e. analog data
as done for hybrid systems. This is an abstraction for both analog sensors and
actuators and also sensors and actuators that are discrete but have very high
sampling rates. In the model the evaluation of dense-valued variables is specified
by piecewise continuous functions over time that may be differential. Therefore
the time domain and the value domain of hybrid systems are both dense.

13.2.3 Real-Time and Hybrid Systems

The different components of the test automation system that has been described
in Section 13.2.1 have to be modified as the time and value domain of real-time
and hybrid systems must be considered. As described in Section 13.2.2, there
are real-time systems with discrete time domain, real-time systems with dense
time domain, and hybrid systems with both dense value and dense time domain.
These different abstractions of the SUT have to be mirrored in the corresponding
test automation system.

• Model Obviously, adequate modeling techniques have to be chosen for test-
ing real-time and hybrid systems. For real-time systems, there are several
types of timed automata and timed process algebras that consider either
discrete time or dense time in modeling. In case of hybrid systems, dense
values for variables must also be taken into account. Here, hybrid automata
and hybrid process algebra can be used for describing the SUT. It is impor-
tant to notice that appropriate abstractions from the SUT must be found to
obtain a manageable model.
• Test Generation In comparison with untimed systems, test generation

is much more difficult for timed and hybrid systems as the search space of
the model increases with discrete time, dense time, and (in case of hybrid

13 Real-Time and Hybrid Systems Testing 359

systems) dense values. Therefore, the algorithms needed for generating test
cases have to be chosen carefully to gain a meaningful and manageable test
suite.
• Test Monitoring Again, the important factor is time. For monitoring the

execution of test cases, not only inputs and outputs to and from the SUT
are relevant, also the time at that these inputs and outputs occur must be
logged adequately.
• Test Evaluation Test evaluation also depends on time. Not only the cor-

rect order of inputs and outputs is needed for deciding if a test has failed
or passed, the correct timing is also a crucial factor. An unavoidable fuzzi-
ness for measuring time must be considered. The same holds for measuring
dense-valued data with respect to hybrid systems.
• Test Driver For real-time systems, the test driver must be capable of

giving inputs at the correct time, i. e. it must be fast enough for the SUT.
For hybrid systems, the same holds for dense data values, e. g. differential
equations have to be processed fast enough to model the valuation of data
values over time. If analog, i. e. dense-valued, data is expected as input from
the SUT, this must be generated. The most important function of the test
driver for real-time and hybrid systems is therefore bridging the gap between
the abstract model and the corresponding implementation, i. e. the SUT. On
the one hand, it has to concretize the input from the model to the SUT. On
the other hand, it has to abstract the output from the SUT for the test
monitor and test oracle.

All in all, we can identify two main issues for testing real-time and hybrid sys-
tems:

• Building manageable and meaningful models from the SUT.
• Finding manageable and meaningful test suites.

Test oracle, test monitor, and test driver are more a challenge in implemen-
tation. They have in common that they depend on the model and the test case
generation to work efficiently. Therefore, the focus in the following chapters is
on modeling and test case generation.

13.3 Model-Based Test Case Generation

The aim of model-based testing is to derive test cases from an application model
that is an abstraction of the real behavior of the SUT. As described in Sec-
tion 13.2.2, time can be abstracted either as discrete or dense time for real-time
systems. Values are considered discrete. For hybrid systems, the time domain is
dense just as the value domain. There are approaches for modeling each of these
systems as well as test case generation algorithms based on these models. These
are described in the following.

360 Kirsten Berkenkötter and Raimund Kirner

13.3.1 Real-Time Systems – Discrete Time and Discrete Values

First, we focus on real-time systems that consider both time and value domain
as discrete. Different modeling techniques can be used here, e. g. process algebras
as the Algebra of Communicating Shared Resources (ACSR) [LBGG94,
Che02] or Timed Communicating Sequential Processes (TCSP) [DS95,
Hoa85] or different variants of Timed Automata [AD94].

In this section, we discuss ACSR as a process algebra and Timed Transition
Systems (TTS) as an example for automata as test case generation algorithms
for these exist. Timed CSP has also been used for testing purposes, but here
research has been done with regard to test execution and test evaluation and
not test case generation [PAD+98, Pel02, Mey01]. Test case specifications are
written in Timed CSP and then executed instead of deriving a test suite from a
Timed CSP model of the SUT.

Describing Real-Time Constraints Before describing the formalisms used in
testing frameworks to model real-time applications, we introduce a more intuitive
graphical language to describe real-time constraints called constraint graph
language. We use it to present a simple example of a real-time application that
is used throughout this chapter.

A constraint graph (CG) is a directed graph G(V ,E) with a distinguished
starting node ε ∈ V . The nodes of a CG represent I/O events where input events
are given by there name while output events are marked with a horizontal line
above their name, e.g. event. The edges E of CG are illustrated as f T−−−→F g,

where f denotes the source I/O event and g denotes the target I/O event. T is
the time constraint that guards the edge. It can be an interval [t1, t2) or a fixed
delay t . F denotes the possibly empty set of forbidden I/O events that may not
occur before receiving the target event g to allow the edge to be taken. Multiple
edges starting from a single node have the semantics of alternative executions,
except multiple edges that are marked with a common diamond at their origin.
These represent concurrent execution. The constraints of concurrent edges must
be valid simultaneously.

Edges with a given timing constraint where the target event is an input
event are called behavioral constraints. These limit the rate at which inputs
are applied to a system. In contrast, edges with a given timing constraint where
the target event is an output event are called performance constraints that
dictate the rate at which outputs are produced by a system.

Real-Time Monitor Example For a better understanding of the described
modeling techniques, we will use in this section a simple real-time monitor ex-
ample called RTMonitor. The task of RTMonitor is to observe whether events
occur within a certain time interval after triggering the monitor application.
Such a tool could be, for example, used to monitor whether a robot arm moves
correctly by sampling its temporal position at two control points. The initial
state of RTMonitor is denoted as ε while the start of RTMonitor is triggered

13 Real-Time and Hybrid Systems Testing 361

by event Start. The incidents of two control points are reported by signals Pos
respectively Pos.

[0, 20)

Pos2Pos1 Passed[10, 30) [20, 30) [0, 20)[0,∞)

TimeOut
30 30

[0, 20)

[0,∞)

Start

Reset
[0,∞)

[0,∞)

Pos2
[0, 20)

[0,∞)

{Pos2}{Pos1}
ε

Pos1

Reset TooFast[0,∞)

[0, 10)

Fig. 13.2. Constraint graph of the real-time monitor example

The constraint graph of RTMonitor that shows the relative timing con-
straints is given in Figure 13.2. The start of monitoring can be triggered at an
arbitrary time instant. Once it is triggered:

• The first event Pos has to be reported within time interval [10, 30).
• The second event Pos has to be reported within time interval [20, 30) after

the first event.
• If one of these two events occurs too early, event TooFast has to be triggered.
• In case that one of these two events has not been observed after passing the

time interval, event T imeOut has to be stimulated.
• After output event TooFast, respectively T imeOut, has been used to indi-

cate an incorrect timing, the input event Reset can be used to restart the
monitoring.
• If both events have occurred with a correct timing, event Passed will be

triggered within time interval [0, 20) after event Pos.
• The monitoring application is restarted by waiting again for trigger event
Start.

There is no timeout mechanism for the time constraint [0, 20) of the event
Passed. Passed is an output event and therefore its time constraint [0, 20) is the
allowed delay introduced between processing the previous event and generating
the output event Passed. However, for testing the real-time behavior of the SUT,
the validity of such a performance constraint also has to be tested on the SUT.

To exemplify the semantics of a constraint graph’s edge with forbidden I/O

events we describe the meaning of the edge “Start 30−−−→{Pos} T imeOut”. It implies
that the last received input event was Start. Then, this edge is taken if for the

362 Kirsten Berkenkötter and Raimund Kirner

time interval of [0, 30) the application receives no input event Pos. In this case,
the output event T imeOut will be emitted.

ACSR-based Test Case Generation ACSR is based on the Calculus of
Communicating Systems (CCS) [Mil89], a process algebra to specify untimed,
concurrent, and communicating systems. ACSR adds several operators to de-
scribe timed behavior and handle the communication and resource consumption
of concurrent real-time processes. These operators support mechanisms for mod-
eling bounded execution time, timeouts, delays, and exceptions.

Modeling: The ACSR computation model considers a real-time system as
a collection of communicating processes competing for shared resources. Every
computation step is either an event or a resource consuming action:

• Event (ei , pi): An event ei having a priority level pi is denoted as (ei , pi).
It serves as a synchronization or communication mechanism between pro-
cesses. The execution of events does not consume any time in contrast to the
execution of actions. The example event (ei , pi) describes an input event in
contrast to an output event that is drawn with a top bar above its name:
(ēi , pi).
• Action {(ri , pi)}t : An action is a set of consumptions of resources ri at

corresponding priority level pi (1 ≤ i ≤ n) that needs t time units to execute.
A resource consumption is denoted by a pair (ri , pi)t .

A process P can be one of the following expressions:

NIL – process that executes no action (deadlock).
At : P1 – executes action A for t time units and proceeds with

process P1. The action ∅t represents idling for t time
units.

e.P1 – executes event e and proceeds with process P1.
P1 + P2 – nondeterministic selection among the processes P1 and

P2.
P1 || P2 – concurrent execution of processes P1 and P2.
P1�a

t (P2,P3,P4) – temporal scope construct that binds the execution of
event a by process P1 with a time bound t . If P1 termi-
nates successfully within time t by executing the event
a, the “success-handler” P2 is executed. If P1 fails to
terminate within t , process P3 is executed as a “time-
out exception handler”. Lastly, the execution of P1 may
be interrupted by the execution of a timed action or an
instantaneous event of process P4.

[P1]I – process P1 that only uses resources in set I .
P1\F – process P1 where externally observable events with la-

bels in F are disallowed while P1 is executing.
P1[Re ,Ra] – relabels the externally observable events of P1 according

to the relabeling function Re and the resources of P1

according to the relabeling function Ra .

13 Real-Time and Hybrid Systems Testing 363

recX .P1 – process P1 that is recursive, i.e. it may have an infinite
execution. Every free occurrence of X within P1 repre-
sents a recursive call of the expression recX .P1.

X – recursive call of the surrounding recursive process recX .P1.

RTMonitor Example: We will now model the RTMonitor example according
to the constraint graph given in Figure 13.2. An ACSR model of RTMonitor is
shown in Figure 13.3. It does not use any actions as resources are not considered
in this example. The model excessively uses the concept of temporal scopes to
model the allowed time intervals.

RTMonitor = recX .((Start, 1).PMA1)

PMA1 = ∅∞�(Pos,1)
10 (Pearly ,PMA2 ,NIL)

PMA2 = ∅∞�(Pos,1)
20 (PMB1 ,Pmiss ,NIL)

PMB1 = ∅∞�(Pos,1)
20 (Pearly ,PMB2 ,NIL)

PMB2 = ∅∞�(Pos,1)
10 (Pok ,Pmiss ,NIL)

Pok = (Passed, 1).X

Pmiss = (T imeOut, 1).(Reset, 1).X

Pearly = (TooFast, 1).(Reset, 1).X

Fig. 13.3. ACSR model of the real-time monitor example

First, process RTMonitor is defined as a recursive process where the re-
cursion is performed in subprocess Pok . RTMonitor is waiting an unlimited
time period for the occurrence of event (Start, 1) and continues then with pro-
cess PMA1 . Process PMA1 together with process PMA2 checks whether event
(Pos1, 1) occurs within time interval [10, 30) and continues then with process
PMB1 . If the event comes too early respectively too late, the corresponding out-
put events (TooFast, 1) or (T imeOut, 1) are generated by process Pearly re-
spectively Pmiss . After receiving an input event (Reset, 1) process RTMonitor
is recursively called. Analogous to PMA1 andPMA2 , processes PMB1 and PMB2

check whether event (Pos2, 1) occurs within time interval [20, 30). After that,
control is taken over by process Pok that emits the output event (Passed, 1) and
then recursively calls RTMonitor.

The use of a process algebra like ACSR allows to abstract from the real
application behavior by modeling only the dynamic aspects of interaction. In
case of ACSR these aspects of interaction include events as well as resource
consuming actions. Mechanisms like temporal scope and time consuming actions
can express the temporal behavior of the application. ACSR does not support
the modeling of numerical calculations or direct communication of parameters.
Therefore, the use of ACSR is adequate in cases where the behavior of event
communication and resource consuming actions of concurrent processes are the
only interesting aspects.

364 Kirsten Berkenkötter and Raimund Kirner

Test Case Generation: As stated above, ACSR describes the interaction of
concurrent processes. Testing such a system of concurrent processes is done by
expressing a test as a separate process that we call T . The application of a test
T to a process P is denoted as T �P as done by Clarke and Lee [CL95, CL97a,
CL97b]. The test operator � is introduced for testing purposes and is not part of
the ACSR specification itself. It implies an auxiliary sink process that absorbs
unsynchronized output events between the tester process and the process under
test. For testing the ACSR model of the SUT a test T written in ACSR can
be directly applied to the model. But for model-based testing the test T has to
be translated into another language so that it can be applied to the SUT, i.e. it
must be executable.

A test T indicates by signaling whether a test was a success or failure. The
notion of success or failure of a test is modeled by the special event labels success
and failure. Since the generality of ACSR’s syntax obscures some common testing
operations, the following notational conventions have been introduced by Clarke
and Lee [CL97a]:
� – process that signals successful termination of a test: � ≡

(success, 1).recX .(∅ : X).
⊥ – process that signals the failing of a test: ⊥ ≡ (failure, 1).recX .(∅ :

X).
δ.T – unbounded wait for the occurrence of an action or event of test

process T : δ.T ≡ (recX .(∅ : X))�∞(NIL,NIL,T).
T1�tT2 – simplified timeout notation: T1�tT2 ≡ T1�t (NIL,T2,NIL).
T1; T2 – sequential composition of tests T1 and T2: T1; T2 ≡

(T1[{esccs/success}, ∅] || δ.(esccs , 1).T2)\{esccs} where event esccs
is not used in T1 or T2.

(e, p)!T – applies event (e, p) as input to the SUT and proceeds with T :
(e, p)!T ≡ (e, p).T .

(e, p)?T – the specific output event (e, p) from the SUT must be received; if
it is not received, the required response is a failed test: (e, p)?T ≡
(e, p).T + (τ, 1).⊥ where p>1.

The constraint graph given in Figure 13.2 can now be used to derive a test
suite to verify whether the temporal behavior of the application conforms to
the ACSR model given in Figure 13.3. The test suite is then transformed by
a trivial rewriting step into a test language suitable for testing the SUT. We
have to notice that this test case generation method does not deal with infinite
application behavior.

Two kinds of constraints in the SUT are tested by this approach: behavioral
constraints and performance constraints:

• Performance constraint This kind of constraint describes a delay in-
terval that ends when a required output is produced.
• Behavioral constraint This kind of constraint describes a delay interval

that ends when a required input is applied.

A performance constraint is tested by a simple test that verifies that the cor-
rect response is received during the required interval. Figure 13.4 shows the three

13 Real-Time and Hybrid Systems Testing 365

situations of an erroneous implementation of a sample constraint S . Implemen-
tation I1 shows the case that the required output E1 is not produced within the
interval [t1, t2). In contrast, output E1 occurs to early in implementation I2. I3
demonstrates the situation in which an output is produced within the required
interval [t1, t2) but the event associated with the output is incorrect. Since the
quantity being tested is the delay introduced by the SUT, there are no input
parameters for the tester to vary. Therefore, it also does not make a difference
whether the time domain boundaries are open or closed ones.

I3

t1 t2
tI1

¬E1

t1 t2
t

E1

I2

t1 t2

E1

tS

t1 t2

E2

t

Fig. 13.4. Erroneous implementations of performance constraints

For behavioral constraints each of the two time domain boundaries is verified
by up to two test points. As shown in Figure 13.5, the number and position of the
test points for each domain boundary depends on its type and value. In contrast
to the performance constraints, for behavioral constraints it makes a difference
whether the time domain boundaries are open or closed ones, because test points
have to be used close to these boundaries. One test point is always placed directly
on the domain boundary. For closed domain boundaries the second test point is
placed at a distance of ε outside the boundary. For open domain boundaries the
second test point is placed at a distance ε inside the boundary. For the special
case where the upper boundary is ∞, it is not possible to place a test point at
the domain boundary. It is approximated by placing a test point at time Tmax

after the start of the interval, where Tmax is the longest constraint interval in
the system specification. For both open and closed interval boundaries, the up
to two tests per boundary are sufficient to verify that the required change in
system behavior has occurred within ε time units with respect to the required
point in time.

A test suite can be derived by generating test cases so that both coverage
criteria are fulfilled. The following three steps are used for test case generation:

(1) Deriving test process templates from the constraint graph. These templates
will supply inputs at some time within the required interval, observe the
outputs of the SUT to verify that they are generated within the correct time
interval, and terminate with � if the test is successful or ⊥ if the test fails.

366 Kirsten Berkenkötter and Raimund Kirner

∞

0

t

0

t

0

t

0

t

0

t

0

t

0

t

0

t

0

t

∞

∞

Fig. 13.5. Test points to test interval boundaries of behavioral constraints

(2) Derive input delay values that must be covered by the test in order to satisfy
the intended coverage requirements.

(3) The output of the two previous steps is used to determine all test case
candidates. As describing each delay requirement separately would lead to a
high degree of redundancy within the test processes, a further optimization
pass is necessary to reduce the number of test cases. Since this optimization
problem is NP-hard, the usage of heuristics is necessary.

Since a process may also contain recursive elements (i.e. loops in the con-
straint graph), a full depth-first traversal of the constraint graph in step 1) and
step 2) is not feasible. Therefore, the traversal must be bounded to a maximum
depth.

Summary: The test framework described by Clarke and Lee has already been
applied to real applications such as a relatively simple communication proto-
col [CL97b]. However, there is still room for further research in improving this
method. A useful extension would be the development of coverage criteria that
address interactions between different timing constraints (such as race condi-
tions). Furthermore, coverage metrics that exploit the ACSR’s focus on resource
requirements and priorities in interactions would improve the generality of the
test case generation framework.

An extension of the framework of Clarke and Lee to handle also infinite ex-
ecutions of processes is necessary for testing typical reactive systems that are
nonterminating. The critical aspect of this extension is the design of the re-
quired test coverage criteria. For applications that can be expressed by a finite
constraint graph without loops, it is sufficient to use coverage criteria that guar-
antee local coverage across the constraint graph. In case of infinite executions,
it is required to define the coverage criteria such that the overall amount of test
cases that are required for testing is limited. One possible method is giving a
fixed upper bound for the length of test sequences. This strategy can be directly
combined with the coverage criteria described by Clarke and Lee.

TTS-based Test Case Generation Test case generation with discrete time
and value domain has also been done based on timed automata. Originally, timed

13 Real-Time and Hybrid Systems Testing 367

automata work with a dense time domain [AD94]. In contrast, we present here
results from Cardell-Oliver that use discrete time [CO00]. In this approach, it
is argued that events cannot be observed at arbitrarily close times even if this
can be specified in the dense time domain. Therefore digital clocks that model
discrete time are used.

In the original algorithm, the basic assumption is that the implementation
does not possess more states than its model. In this case, it can be proven that
the generated test suite detects non-conformance between model and SUT and
is furthermore complete. We do not believe that this is always guaranteed as
the model is generally derived from the requirements of the SUT and not from
the SUT itself. We refer to Chapter 8 for theoretical background. However, we
believe that the presented ideas for generating a manageable test suite are useful
as their focus is decreasing the amount of test cases.

Modeling: The basis for this approach are Timed Transition Systems
(TTS) that mainly consist of three components:

• States Each TTS owns a finite set of states.
• Initial state One of these states is the initial state, where execution starts.
• Labeled transition relations Source and target states are connected

by labeled transition relations. The label is discussed with respect to the
used timed automata definition.

The timed transition system itself is described by a network of communicating
timed automata as used in the tool UPPAAL [LPY97]. These automata further
consist of:

• Variables Each automaton owns a finite set of data and clock variables.
All variables are bounded. Clocks have to be reset if the specified bound is
reached.
• Guards Guards are predicates that are conjunctions of constraints on clock

and data variables. They are used for labeling transitions. If the guard eval-
uates to true, the transition is enabled and can be taken.
• Events Each automaton owns a finite set of events. Different automata

communicate via these events over synchronization channels. For this pur-
pose, each event is classified either as input or as output. If a is the name of
a synchronization channel, a! is the corresponding output event and a? the
corresponding input event. Like guards, events are used to label transitions.
Two transitions are involved and must therefore be enabled: one that emits
event a! and one that receives event a?.
• Assignments With assignments both data and clock variables can be reset.

They are also used to label transitions.
• Clock Invariants Each state of the automaton can own an invariant that

specifies when the state has to be left due to a given timing constraint.

With respect to transitions, labels are composed of guards, events, and as-
signments in this order. The initial state is marked with an inner circle in the
state symbol as shown in Figure 13.6. The network of communicating automata

368 Kirsten Berkenkötter and Raimund Kirner

Waiting Pos2 x<20

x<10
Pos1?

x<20
Pos2?

x�10
x<30
Pos1?
x:=0

x�20
x<30
Pos2?
x:=0

x�30

Start?
x:=0

Started

TooFast

Pos1

x�0
x<20
Passed!

x<30 x<30

TimeOut!

x�30

TimeOut

Reset?

Reset?

TooFast!

TOReset

TFReset

Fig. 13.6. UPPAAL timed automaton model of the real-time monitor example

is merged to a product automaton that is given as a TTS enriched with the clock
invariants that are not included in the general TTS notation.

RTMonitor Example: Again, we will look on the RTMonitor example. It is
realized by an UPPAAL timed automaton in Figure 13.6. In the initial state, we
wait until event Start is received. After that, event Pos1 should occur in time
interval [10, 30). If this has been received correctly, we wait again if event Pos2
occurs in time interval [20, 30). In this case, event Passed is generated in time
interval [0, 20).

If events Pos1 or Pos2 occur too early, event TooFast is generated and control
is switched to state TFReset . Vice versa, event TimeOut is generated and control
is switched to state TOReset , if these events do not occur in their specified time
intervals. After TooFast , respectively TimeOut , has been generated, we wait for
event Reset to restart the RTMonitor.

The states Started and Pos1 own both an invariant x < 30, so after 30 time
units these states must be left. The same holds for state Pos2 where the invariant
is x < 20. States TooFast and TimeOut are marked committed which is shown
with the symbol C inside the state. A committed state must be left immediately
after entering it, i.e. events TimeOut and TooFast are sent immediately.

In this example, we have seen that real-time systems can be modeled ade-
quately with timed automata. By using states and transitions, the control flow
of the modeled application can be easily captured. The timed automata variant
of UPPAAL also allows modeling inputs and outputs explicitly. This further
simplifies understanding of the automaton. However, large systems become in-
tractable by using this modeling technique. Hierarchical structuring of models
can help here.

Test Case Generation: The central idea of the approach of Cardell-Oliver is
using test views for transforming a given TTS to a Testable TTS (TTTS). As

13 Real-Time and Hybrid Systems Testing 369

described above, the model used for test case generation is given by a TTS that is
derived from a network of UPPAAL automata. In combination with this model,
different test views can be used that each describe a specific test purpose. The
TTS is transformed to a smaller TTS by a view. This is the TTTS that is used
for test case generation.

Each test view is designed to fulfill a given test purpose. This is described
by different parameters:

• Interface With respect to the TTS, we have to identify events that are
produced from the test driver and are therefore input events for the SUT and
events that are produced by the SUT for the test driver and are therefore
output events. That is, we identify the interface between the test driver and
the SUT.
• Discrete Clock The digital clock used in the test automation system

must be specified. The clock grain must be chosen according to the needed
precision to distinguish between observed and stimulated events and the
possibilities of the used hardware.
• Hiding The set of events can be divided into observable and hidden events.

Therefore, only the events of interest with respect to the test purpose are
observable in the TTTS. This can reduce the search space of the system as
also less states are visible if traces to and from them are not observable any
more.

With the help of the test view, the test designer can control the size of the
test suite. The TTTS can be detailed if important test cases are generated and
less detailed if the test purpose is not crucial. The size of the search space is
determined by the discrete clock as its granularity influences the search space
and by the hidden and observable events that lead to less observable transitions.
In general, the search space is decreased as states cannot be distinguished any-
more after eliding invisible transitions. Only under specific circumstances it is
increased.

This happens if a state has n incoming transitions that are all hidden and m
outcoming transitions that are all visible. Before hiding, the number of visible
edges in the TTS is n + m, after hiding, the number of visible edges in the
transformed TTTS is n ∗ m. The test designer can react to this by using a
different test view where these events are not hidden. A similar problem is a
cycle of transitions where all events are hidden. This is not allowed for creating
a test view as the SUT may cycle forever in this loop without a possibility of
observation when test cases are executed, i.e. unbounded nondeterminism occurs.
Here, at least one event must be made visible in the test view.

Another problem in this context is that the resulting TTTS may have redun-
dant states. These could be distinguished in the TTS before the transformation
by different distinguishing traces of inputs, outputs, and delays. After the trans-
formation, these distinguishing traces can be equivalent due to hidden events.
In this case the TTTS can be minimized before test case generation. This is not
necessary but helpful as test case generation can be performed more efficiently
if the size of the TTTS is further reduced.

370 Kirsten Berkenkötter and Raimund Kirner

The test case generation algorithm itself is based on the W method [Cho78]
discussed in detail in Chapter 4. It works in the following way:

(1) For each state all acyclic traces that lead to that state are generated. It
is possible that one or more of these traces are tester controlled, i.e. the
inputs of the test driver to the SUT produce deterministic outputs of the
SUT. If such a trace exists, this can be used as a test case in the following.
If nondeterminism is possible, the correct test case is selected out of all
generated ones during testing with respect to the output of the SUT.

(2) After that, we have to check that the reached state is really the state we ex-
pected. As the underlying TTS has persistent variables, it may be possible to
identify states based on variable values. If this is not possible, distinguishing
sequences as introduced by Chow [Cho78] can be used. Again, tester con-
trolled test cases are preferred as this reduces the test suite. Else all possible
test cases must be present to be chosen during test execution.

(3) Furthermore, not just every state but also every transition should be visited.
Therefore one test case for every transition is generated.

(4) At least, the test suite is created based on the test cases produced in step 1
to 3. We check for redundant test cases as a short test trace may be included
in a longer one. In this case, the short traces can be elided from the test suite.
It is expected that the nondeterministic test cases are all executed at least
once if testing the implementation is performed long enough. In practice,
this may not happen but cannot be prevented. The test suite can be further
reduced if it is possible to limit the possible set of input values to the SUT
by making assumptions about the possible ones. Often, a system is expected
to run in a specific environment so some input values can never occur.

Summary: The main idea of this test case generation algorithm is obviously
the usage of test views. These specify the interface between the SUT and the
test driver, the clock granularity, and the amount of observable events based
on the test purpose. By using UPPAAL automata that differentiate between
sending and receiving events, interfaces can be easily specified. The clock grain
can be chosen with respect to the used timing constraints in the model and the
used hardware. The art of creating test views is the subdivision of the event set
into hidden and observable events. The amount of test cases generated by the
algorithm depends mainly on these. Therefore the test designer has to consider
carefully which events should be observed in a test view and which not.

As we cannot guarantee that the set of states is equivalent in the implemen-
tation and the model, the completeness results for the generated test suite is
not relevant. However, test views are a means to reduce the set of test cases and
are therefore useful. Moreover, the usage of persistent variables helps reducing
the amount of test cases as states can be often distinguished based on variable
values. If we do not consider time in test views, these can also be used to reduce
test suites of untimed systems.

The obvious drawback is that test views must be chosen carefully. The created
test suites for each view may overlap and hence increase the overall testing time

13 Real-Time and Hybrid Systems Testing 371

unnecessarily. Even worse, parts of the system may never be tested as no test
view covers them. Therefore, the generated test suites must be compared before
using them for testing.

13.3.2 Real-Time Systems – Dense Time and Discrete Values

For modeling real-time systems, also dense time can be used as this is the natural
way time is passing. This approach is used in the original Timed Automata ap-
proach by Alur and Dill [AD94] and also in the more restricted Event Record-
ing Automata (ERA) [AFH94]. As the different timed automata variants do
not differ significantly we reuse the RTMonitor example from Section 13.3.1 and
focus on test case generation with respect to the differences in using discrete and
dense time.

ERA-based Test Case Generation In Section 13.3.1 we already presented
one technique for generating test cases based on timed automata models. How-
ever, this approach is working with a discrete time domain. It is also possible to
use a dense time domain for test case generation. This approach is driven by the
natural flow of time that is not discrete but dense [Nie00]. Furthermore, proces-
sor clocks are discrete but their granularity is so fine that it can be regarded as
dense.

The test case generation algorithm is based on Hennessy’s testing theory for
untimed systems, i.e. it is based on preorder relations. This is described in more
detail in Chapter 5, Chapter 6, and Chapter 8. We are interested here in the
ways the test cases in a test suite are chosen out of the possible ones.

Modeling: The timed automaton model ERA [AFH94] chosen by Nielsen is
very similar to the one presented in Section 13.3.1 but more restricted [Nie00].
Due to these restrictions, ERA can be determinized. Briefly, there are states
and transitions labeled with guards, actions, and assignments to clock variables.
Actions are partitioned into hidden and observable ones that are either input
or output actions used for synchronization while transitions are either urgent or
non-urgent.

The characteristic feature of ERA is that clocks and actions are coupled as
each action has an associated clock. This clock is reset every time the action is
performed, other resets are not allowed. Therefore, a clock measures the time
between two occurrences of its associated event. Similar to UPPAAL automata,
input and output actions are always synchronized. The environment has control
over clock resets as it performs the complementary actions to the ones of the
model of the SUT, so clock valuations are determined. The environment is the
test driver as it stimulates and records inputs and outputs to and from the SUT.

For test case generation, ERA are further restricted by permitting only ob-
servable and urgent actions and forbidding clock invariants in states. Urgent
and non-urgent actions were not distinguished by Alur et. al. for ERA but are
introduced by Nielsen for testing purposes. With only urgent actions, transitions
must be taken immediately if they are enabled and their action synchronization

372 Kirsten Berkenkötter and Raimund Kirner

can be performed. Therefore, it is determined when a transition must be taken.
ERA are enhanced by allowing integer variables that can be shared between
automata in a network just as clock variables.

RTMonitor Example: On the first sight, the RTMonitor model created with
ERA shown in Figure 13.7 does not differ very much from the one created with
UPPAAL automata in Section 13.3.1. We have to keep in mind that all clocks
are associated to an event and are automatically reset. Therefore, there are no
clock assignments shown. Clock names are given with respect to their associated
action. To give an example, for event Start the corresponding clock is named
StartC . The initial state has a further inner circle.

Start?
Waiting Started Pos1

TimeOut

Pos2
StartC�30 Pos1C�30

StartC<10
Pos1?

Pos1C<20
Pos2?

StartC�10
StartC<30
Pos1?

Pos1C�20
Pos1C<30
Pos2?

TooFast

Pos2C�20
Passed!

TimeOut!

Reset?

TOReset

Reset?

TFReset

TooFast!

Fig. 13.7. ERA model of the real-time monitor example

The time intervals in which signals Pos1 and Pos2 should occur, respectively
in which signals TooFast , TimeOut , and Passed must be sent, are obviously the
same as in the example using discrete time in Section 13.3.1. Nevertheless, they
are expressed differently as all clocks are related to events. The most important
difference between the two examples using discrete respectively dense time is
that in ERA events can be sent and received at any time and not only at fixed
time points. To give an example, event Start can be received at time unit 1, 2,
3, . . . in an UPPAAL automaton using discrete time. In contrast, Start can be
received at time point 1.5, 1.578, or 2.3 in an ERA with dense time domain.
Therefore this model is closer to reality.

Test Case Generation: In the test case generation algorithm presented by
Nielsen [Nie00], two main principles are used: partitioning of the state space
for decreasing it and using coverage criteria for selecting test cases out of the
possible many ones. Determinized ERA automata serve as a basis.

The first step to be taken is partitioning the overall state space by grouping
states into sets of equivalent states. These serve as a basis for testing. The

13 Real-Time and Hybrid Systems Testing 373

motivation for this is that it is more interesting to test inequivalent states then
testing equivalent states multiple times. It is also necessary as the underlying
TTS of the ERA has infinitely many states due to the dense time domain.

The partitioning is done with respect to the stable transition criterion.
Nielsen calls it stable edge criterion, but for homogeneity throughout this chapter
we prefer the term transition instead of edge. Two sets of states are considered
equivalent if they consist of the same states and enable the same set of tran-
sitions. A transition is enabled if its guard evaluates to true. A change in the
enabled set of transitions may also induce a change in the enabled actions for
synchronization. Therefore, different deadlock situations can be detected with
respect to the different enabled transitions. Furthermore, guards may be depen-
dent on clock valuations, so the set of enabled transitions changes with respect
to time. This behavior requires corresponding test cases. Hence, using the set of
enabled transitions is more convenient for testing than just considering transi-
tions.

After partitioning the original ERA, respectively its underlying TTS, into
sets of equivalent states, we can visualize the result as a partition graph. The
sets of equivalent states are called symbolic states. Each partition should be
tested by at least one test case in a test suite. Before generating it, the reachable
parts of each partition are computed. A symbolic reachability graph for the
partition graph is the result. This is created by starting at the initial state of
the partition graph and traverse the graph with respect to symbolic states. Each
trace is followed as long as new symbolic states are found.

Test cases are generated from the symbolic reachability graph in the following
way:

(1) For each symbolic state, create a concrete trace leading to it with the initial
state as a starting point. To do this, a strengthened symbolic state is
created that consists of all states that will lead to the target state. This is
necessary as not all states inside a partition will lead to the target partition.
We do this by starting at the target transition and follow the trace back
to the initial state so that all constraints in the transitions of the trace will
evaluate to true. This proceeding is called back propagation.

(2) The strengthened traces created in step 1 are transformed to specific traces
with concrete values for delays.

Delays can be chosen according to different strategies:

• Promptness The smallest possible delay is chosen. This is useful to stress
the SUT with the shortest possible interval between inputs and outputs.
• Persistence A delay somewhere in the middle of the possible values is

chosen. This is useful to check the persistence of the SUT.
• Patience The largest possible delay is chosen. Here, the patience of the

SUT is tested.

Nielsen claims that many bugs are found near extreme values of inputs and
therefore choosing delays with respect to promptness and patience is preferable.

374 Kirsten Berkenkötter and Raimund Kirner

In principle, the test case generation algorithm depends on the reachability
graph as the traces represented by this are concretized during test case gener-
ation. If the reachability graph or even the partition graph is too large further
strategies have to be applied based on pragmatic reasons. These can be:

• Trace length limitation One possibility is limiting the trace length of
a test case to a certain length. After that, processing of reachable states is
aborted.
• Randomized state space exploration Another way of limiting the size

of the partition or reachability graph is choosing the successor states of one
state randomly out of all possible ones. This is done until a fixed number of
states is reached or a specific time limit exceeds.
• Bit-State Hashing It is also possible to use a hash table with fixed length.

Each state is stored there with respect to a key value that must be computed
based on a given algorithm. Therefore, different states may be related to the
same key. As only one bit is used for hashing, there can exist exactly one
entry for each key value. If a state with an already used key is reached, it
overwrites the hash entry. Exploration from the former state is stopped then.

A generated test suite can be reduced further by eliminating redundant test
cases as one test case can be included in another, longer one. To perform this
reduction, the test suite is transformed to a tree structure called test tree. This
is also helpful for nondeterministic tests where new inputs must be chosen with
respect to the nondeterministic output of the SUT. Obviously, this technique is
also applicable to testing untimed systems.

Summary: The presented test case generation algorithm for models based on
a dense time domain relies mainly on the partitioning of state sets into equivalent
sets called partitions. Partitions are chosen with respect to state sets that enable
the same transitions and consist of the same states. Therefore, the infinitely many
states in the TTS underlying an ERA are grouped so that a symbolical finite
partition graph is the result. This can be used for test case generation.

The generated test suite can still be very large as it depends on the size of
the partition graph. If this is very large, heuristics must be used. Three pos-
sibilities are suggested, namely trace length limitation, randomized state space
exploration, and bit-state hashing.

The delays used in timed traces also depend on heuristics. Stressing the SUT
with the shortest possible delay values as well as testing its patience by choosing
the largest delays are claimed to be most important for testing as extreme values
are considered best for finding errors.

The chosen modeling language ERA restricts the original timed automata by
using only event clocks and urgent transitions. However, this seems not to be a
drawback as the resulting model is still expressive. The main problem with this
approach is that the partition graph may be still too large to generate a test
suite with practicable size without using further heuristics.

13 Real-Time and Hybrid Systems Testing 375

13.3.3 Hybrid Systems – Dense Time and Dense Values

The last step is taking also dense values into account as done in hybrid systems.
These have been studied in many ways during the last ten years. There are
different attempts for modeling them and applying concepts known from the
formal methods community to them, like model checking or theorem proving, e.g.
by Henzinger [Hen96], Alur et al. [ACH+95], Zhou et al. [CJR96], Kapur et al.
[KHMP94], Ábrahám-Mumm et al. [ÁMHS01], Lynch et al. [LSV01], or Larsen
et al. [LSW97]. Hence, models of hybrid systems are well understood today. In
contrast, there are only few attempts for using hybrid models in model-based
testing.

We focus on Hybrid Automata [Hen96] and their extension to CHARON
[ADE+01, AGLS01, ADE+03] and HybridUML [BBHP03] here. There exists also
approaches for hybrid process algebras, e.g. Hybrid CSP as a further extension
of Timed CSP [CJR96, Amt00]. Here, research with respect to testing deals with
test case specifications and their execution as e.g. in Peleska et al. [PAD+98].
Test case generation based on a model of the SUT is not covered in detail.

Thermostat Example To give an idea of hybrid systems, we will use the
thermostat example taken from Alur et al. [ACH+95] throughout this section.
The thermostat continuously measures the room temperature x . It turns a heater
on and off due to the current temperature. The initial temperature is named θ,
K and h are constants describing the power of the heater and the room. The
following requirements hold for the SUT and must be considered in the SUT
model:

• If the heater is off, x is decreasing according to x (t) = θ ∗ e−Kt .
• If the heater is on, x is increasing in the following way:

x (t) = θ ∗ e−Kt + h(1 − e−Kt).
• The heater is turned on if the temperature falls below m.
• The heater is turned off if the temperature rises above M .

Hybrid Automata-Based Test Case Generation With considering dense
values in addition to dense time, the state space further explodes. Nevertheless,
also hybrid automata can be used for test case generation if appropriate abstrac-
tions are found. We can build up on the techniques for discrete- and dense-timed
automata presented in Section 13.3.1 and Section 13.3.2.

Modeling: For modeling hybrid systems, Hybrid Automata as developed by
Henzinger [Hen96] can be used. In general, the time-discrete part of the system is
described by transitions while the time-continuous part is modeled inside states.
Automata are enriched with flow conditions for describing the evolution of dense-
valued variables over time. Clocks are modeled in the same way with a constant
rate of change of 1.

376 Kirsten Berkenkötter and Raimund Kirner

In general, a hybrid automaton H consists of five components:

• Variables A finite set of real-valued variables.
• Control graph The system is described by a finite directed graph with

vertices called control nodes and edges called control switches. As long as
control resides inside one node, time is passing and the values of the dense
variables evolve according to time. This is a continuous change called flow.
When an edge is taken, control switches to another mode, i. e. a discrete
change is performed called jump condition. Discrete changes do not con-
sume time.
• Initial, invariant, and flow conditions Three different predicates can

be attached to control nodes. First, the initial condition specifies the initial
values of variables inside a node. Second, an invariant can be assigned that
describes under which conditions the node has control. If the invariant is
violated, control must be switched to another node. At last, a node may
have a flow condition that describes the evaluation of analog variables
over time.
• Jump conditions A control switch can be labeled by a predicate called

jump condition. The edge is enabled if the condition evaluates to true.
Only then, the control switch can be taken.
• Events Furthermore, an edge can also have an assigned event. If the jump

condition of an edge holds and the associated event occurs, the edge is taken
and control is switched to the target node. Different hybrid automata H 1
and H 2 can interact via events, i. e. they synchronize over event a if a is
both an event of H 1 and of H 2.

CHARON is a further development of hybrid automata as described by
Alur et al. in [ADE+01], [AGLS01], and [ADE+03] with two main improve-
ments. First, not only behavior but also structure of a system can be modeled.
This is done in an agent whose behavior is described in a mode. Second, both
structure and behavior may be built hierarchically. This allows better struc-
turing of models as large systems become unmanageable with flat structures.
A further enhancement is HybridUML, a profile of the Unified Modeling
Language 2.0 (UML) with formal semantics [BBHP03]. In addition to the
possibilities of CHARON, HybridUML gives better support for datatypes and
allows communication not only via shared variables but also via signals. The
specification of datatypes, structure, and behavior is handled in different UML
diagrams, so no confusion between the different aspects of modeling occurs.

Thermostat Example: We assume that the thermostat consists of a controller
and a heater. In Figure 13.8 we can see a hybrid automaton describing the be-
havior of the controller. This is switching the heater on and off via events named
on and off . The evaluation of the temperature is described by flow conditions.
If the temperature falls below m or rises above M , jump conditions will trig-
ger the switch from state On to state Off . θ is set to 20 here, while K = 0.1,
h = 5, m = 20 and M = 22. The heater can be modeled as a separate hybrid
automaton which has two states On and Off that have control if the heater is

13 Real-Time and Hybrid Systems Testing 377

on, respectively off. The switch from one state to another one is triggered by
events on and off that are sent by the controller’s hybrid automaton, i. e. the
two automata synchronize over these events.

On

x � 22
x > 22 / off

x � 20
ẋ = -0.1x ẋ = 5 - 0.1xx = 20

Off x < 20 / on

Fig. 13.8. Hybrid automaton for the thermostat controller

For comparison, we look at the same controller as a HybridUML model.
The structure of the thermostat is modeled as an agent in Figure 13.9. The
thermostat consists of a heater and a controller that communicate via signals
on and off . Temperature x is measured by the controller and is also visible in
the thermostat itself, e.g. to monitor the temperature from the environment.
Therefore x is a shared variable. Sending of a signal, respectively write access
to a shared variable, is shown as a black-filled box, while receiving a signal,
respectively read access to a shared variable, is shown as a white-filled box.
These boxes are connected to visualize communication structures.

: Controller: Heater

class Thermostat(20,22)

x

{t = 0}
{data.h = 5}

{data.θ = 20}

on()
off()

xon()
off()

{data.K = 0.1}
{x = data.θ}

{x = data.θ}

Fig. 13.9. Composite structure diagram for the thermostat agent

In the upper left corner, parameters m and M are set to 20, respectively
22. Both values are given as parameters for better reusability of the thermostat
model. Furthermore, variables and constants of the thermostat must be initial-
ized. Constants K , h, and θ are all included in structure data and are set to 5,
0.1, and 20. Shared variable x that measures the temperature is set to the initial
value θ in both the thermostat and the controller. At last, t is a global clock
that must be set to 0 in the beginning.

The behavior of the controller is visualized in Figure 13.10, similar to the
hybrid automaton modeled above, i.e. states and transitions coincide in both
variants of the thermostat example. Here, flows and invariants are marked ex-
plicitly with keywords flow , respectively inv . Jump conditions of transitions are
given in brackets while events are given after a slash.

As we have seen, hybrid automata offer the possibility to model time-discrete
and time-continuous behavior. As they are based on well-known automata, they

378 Kirsten Berkenkötter and Raimund Kirner

Off On

statemachine Controller

[inv: x � M]

init

[inv: x � m]
[flow: ẋ = -data.K • x] [flow: ẋ = data.h-data.K • x]

[x=m] on()

[x=M] off()

Fig. 13.10. Statechart diagram for the thermostat controller mode

are easy to understand. Hybrid Automata themselves have been introduced for
theoretical purposes. In contrast, CHARON and HybridUML have been designed
for practical purposes and are able to model both structure and behavior of a
system.

Test Case Generation: New problems appear for test case generation based
on hybrid systems. In addition to the problems that arise when dense time is
considered as described in Section 13.3.2, new problems occur due to the dense
value domain. On the one hand, the SUT expects dense values in form of curves
as input, e.g. the velocity of a car. The SUT must receive these during test
execution from the test driver. Such curves must be selected from the infinitely
many possible ones. This is a problem that has not been tackled until now. On
the other hand, dense values are outputs from the SUT that must be evaluated.
We have to consider a certain fuzziness with respect to time and values as the
test itself is performed with a discrete-working computer. We can image this as
a tolerance tube like in Hahn et al.[HPPS03b, HPPS03a] where some tolerance
is added for both expected time and values. The output from the SUT must lie
inside this tube as depicted in Figure 13.11.

Time

Value

Fig. 13.11. Tolerance tubes for time and values [HPPS03a]

Until now, there is one attempt for test case generation based on hybrid
systems. In this approach, two models instead of one are used as done by Hahn
et al. [HPPS03b, HPPS03a]. The first model describes the hybrid system, i.e.

13 Real-Time and Hybrid Systems Testing 379

the discrete and the continuous part of the SUT. The second model is a purely
discrete model that describes abstract control flow in the SUT. This reduces
the problem of test case generation for hybrid systems to the one for real-time
systems with dense time. This is possible as the hybrid part of the model is
always hidden inside states while the discrete part is modeled by transitions.
These transitions, respectively their triggers, are needed for generating test cases.

At this point, we have to ask ourselves, why we have not built a discrete model
beforehand if this is used for the generation process. We must reconsider that
the hybrid model is the most exact model for mirroring the required behavior of
the SUT. The pure discrete model is too imprecise for testing the hybrid system.
We therefore use the test suite created by the discrete model and feed both the
SUT and the hybrid model the generated inputs.

We first consider an open loop system, i.e. we do not model the environment
of the SUT and feedback from the environment to the SUT as in the closed loop
system described in the next paragraph. Here, we have to compare the calculated
output given by the hybrid model with the output from the SUT. The hybrid
model is used to evaluate if a test has passed or failed as shown in Figure 13.12.

The situation is slightly different for closed loop systems. Here, the envi-
ronment of the SUT is explicitly modeled due to the fact that most systems are
required to work correctly in one specific environment and not in all possible
ones. Therefore, values of inputs to the SUT can be restricted to possible inputs
in the specified environment. As inputs often depend on the output of the SUT,
a feedback construction is needed, so outputs of the SUT can be considered to
calculate the next input, again with respect to the environment. The advantage
of this approach is that complexity is reduced as the possible search space is
restricted.

Discrete Model

Concretizer

Interface
Adapter

Hybrid Model

SUT

Verdict Finder

Fig. 13.12. Open loop test [HPPS03a]

Problems occur here with respect to the required feedback construction to
the discrete model. The outputs we expect during testing are calculated in the
hybrid model. Hence, this is used to give feedback to the discrete model as

380 Kirsten Berkenkötter and Raimund Kirner

shown in Figure 13.13. New inputs to the SUT must be given with respect to
this feedback, the modeled environment, and the modeled control flow of the
SUT. We associate control flow with the hybrid model that defines it according
to states and transitions in this model. If the hybrid model has reached a new
state, i.e. control has switched from one state to another one, the discrete model
must also perform a control switch to a new state, so inputs to the SUT are
calculated with respect to the correct state of the system and the corresponding
behavior of the environment that may be different in different states. Therefore,
the discrete model, the hybrid model, and the environment model have to be
synchronized to guarantee correctly generated test cases. This is done by using
the output of the hybrid model to differentiate between its states. The output
value space is split up into partitions that are related to states.

AbstracterDiscrete Model

Concretizer

Interface
Adapter

Verdict Finder

Hybrid Model

SUT

Fig. 13.13. Closed loop test [HPPS03a]

Summary: To summarize, by using one hybrid and one abstracted discrete
model we can combine the advantages of the hybrid and discrete approaches.
On the one hand, we can calculate results precisely, on the other hand, we
are able to generate test traces efficiently. In case of open loop test systems,
we just compare the results from the SUT and the hybrid model by the test
oracle. In case of closed loop test systems, we have a feedback construction that
requires more effort from test automation and test execution. The advantage of
this proceeding is that the search space is further reduced. The problem is that
the feedback construction is difficult to built as discrete model, hybrid model,
and environment model must be synchronized. Partitioning the output space of
the hybrid model to fulfill this task may be infeasible or not possible without
ambiguities.

Obviously, the multiple model approach increases the modeling effort as we
have to built two models instead of one. The key to the usability of this approach
is designing a good discrete model. For one, it must mirror the hybrid model to
guarantee working test traces, but in the same time, it has to be very abstract
to take advantage of the discrete nature, i.e. generating a manageable set of test

13 Real-Time and Hybrid Systems Testing 381

traces. If the discrete model is too detailed we would again get too much test
cases. Another problem not tackled here is generating time-continuous input
data as we have infinitely many possibilities for this.

13.4 Optimizing Test Suites by Evolutionary Testing

As we have seen in Section 13.3, there exist different techniques for model-based
test case generation for real-time and hybrid systems. They have in common
that they adapt algorithms known from testing theory to achieve a manageable
test suite that consists of a finite set of test cases. Nevertheless, the number
of test cases can still be very large. In that case, further reduction is required.
Moreover, we do not know if the test cases derived are “good” test cases, i.e.
they are able to find errors in the SUT or increase our confidence in the correct
behavior of the SUT. We will present a possible way for improving this situation.

With respect to real-time systems, time is an important factor to guarantee
correct behavior. Hence, we are also interested in the best-case execution times
and especially in the worst-case execution times to see if deadlines are met.
To test the timing constraints imposed by the SUT, the algorithms presented
in Section 13.3 do not help since the values for delays generated by them are
chosen according to a certain test strategy, e.g. promptness. They do not depend
on the real behavior of the SUT.

Evolutionary algorithms can be adapted to optimize the size of the test suite
or to test timing constraints imposed by the SUT.

13.4.1 Iterative Refinement Using Evolutionary Testing

Evolutionary testing is a testing technique where test data can be generated
automatically by using search techniques. It is called iterative refinement
because the test data to be optimized is iteratively refined due to a specified
quality criterion.

Evolutionary testing has not been explicitly developed as a model-based
method for test case generation, but it can be used in combination with this. As
shown in Figure 13.14, the test model used in evolutionary testing is quite sim-
ple. It basically consists of a start state l0 and an end state l1 where the state l0
can have an initial property p0 assigned to it. Beside the initial property p0, the
only application specific part of the model is the property p1 of the end state l1.
p1 encodes certain aspects of the application that one is interested to be verified
by testing. These aspects are typically maximum allowed boundaries such that
the system is considered correct as long as it stays within these boundaries.

Reactive systems potentially run endlessly and therefore it is not possible to
designate an end state of the system. To apply evolutionary testing, one idea is
to identify an interesting intermediate state of the overall system model and use
it as end state for the testing model. This allows testing the value of property
p1 when reaching state l1.

382 Kirsten Berkenkötter and Raimund Kirner

l0 l1

〈l0, p0〉 〈l1, p1〉

Fig. 13.14. Formal model for evolutionary testing of real-time systems

Though the application model used by evolutionary testing is quite simple,
the challenge is to define an effective process of iterative test case generation
together with a useful encoding of relevant system aspects by property p1.

Evolutionary testing as described above assumes a model with a given bound-
ary for the property of the end state p1. The test goal is to increase the confi-
dence whether this property is an invariant of the system respectively to show
by counter-example whether it is invalid. If one is not interested to test a specific
boundary of the property p1, it is also possible to use evolutionary testing to get
an idea of the feasible boundary of p1.

Test Case Generation: As described above, the generation of test cases by
evolutionary testing is a process that performs an iterative improvement of the
test data. To achieve this, the test results of the previous test run are abstracted
by using a fitness calculation. The calculated fitness values are used on the one
side to decide whether the iterative test case generation can be stopped and
on the other side to guide the calculation of new test data for the next test
round. This is a typical optimization problem that can be solved, for example,
by evolutionary algorithms. A characteristic of evolutionary algorithms is
that there exists a whole population of solutions instead of only one current
solution.

The choice of a certain search technique is often a question of the compro-
mise between efficiency and robustness to generic problems. The difficulties of
searching test data with maximum fitness are demonstrated in Figure 13.15.
Figure 13.15(a) shows a relatively simple fitness distribution where even local
search methods like hill climbing will find the solution easily. A more complex
example is given in Figure 13.15(b) where the fitness distribution has more than
one local maximum. Evolutionary algorithms have mechanisms to avoid getting
stuck on a local maximum.

In the following, evolutionary algorithms are described as a technique for the
iterative test case generation.

The iterative process of test-data generation based on evolutionary algo-
rithms is shown in Figure 13.16. The algorithm starts with an initial set of test
cases which is called population. Each member of the population is called indi-
vidual. Each individual must be a valid parameter of the SUT. During fitness
evaluation each individual is weighted according to a specified optimization
criterion. The test can be stopped if the exit test has determined that the best
fitness value has been reached or that the number of iterations has exceeded a
certain value. In case of termination, the individual with the best fitness value
is reported as final result. Otherwise, individuals from the current population
are selected to create new individuals out of them. The new individuals will be

13 Real-Time and Hybrid Systems Testing 383

x

y

fitness

x x

y

fitness

x

(a) unimodal function (b) multimodal function

Fig. 13.15. Examples of fitness functions with different difficulty

the population for a new cycle of the evolutionary algorithm. This proceeding is
explained in more detail by Goldberg [Gol89].

Insert new
Population

Generation by Variation

Fitness
Evaluation

Exit
Test

Selection

Final Solution

Initial Population

Fig. 13.16. Operational cycle of evolutionary algorithms

With respect to testing, the test case generator must be able to derive test
cases. Furthermore, it has to be able to evaluate the fitness of each individual
and to perform exit tests. This may require to collect and merge values of several
observations into one fitness value.

Testing the Worst-Case Execution Time: To demonstrate the application of
evolutionary testing, we describe its application to measurement-based timing
analysis of real-time systems. Testing real-time systems means ensuring the cor-
rectness in the value and time domain. In contrast to other methods that test
both properties in combination, the aim of the test method described in this sec-
tion [PN98, Weg01, AHP99, GW98] is testing only the time domain. The value
domain can be tested separately by other test methods. The property p1 of the
end state of a real-time system we are interested in is the tuple 〈BCET,WCET〉
where the BCET means the best-case execution time and WCET the
worst-case execution time. In the following we will just describe test case
generation for WCET as BCET can be handled similar. The application of evo-

384 Kirsten Berkenkötter and Raimund Kirner

lutionary testing to measure the WCET conforms to the operational cycle of
evolutionary algorithms given in Figure 13.16.

Testing the timing behavior of tasks individually requires that each task is
free of synchronization points, i.e. it is a simple task [Kop97]. In the following
we call the SUT just real-time program without making assumptions about its
granularity compared to the whole real-time system.

Evolutionary testing for generating test cases to measure the WCET depends
on fitness evaluation and the encoding of the real-time program’s input vari-
ables. The fitness evaluation is realized as a black-box test that measures the
execution time for concrete input test data. The execution time measurement is
performed for each generated test case while the fitness value is calculated by
comparing the relative execution time of each test result. The technical realiza-
tion of the execution time measurement can be arbitrary.

As evolutionary testing is an iterative process, we also need a stoppage
criterion. The simple case is that the fitness evaluation provides an execution
time that is higher than the specified WCET bound. In this case the test has
found a counter-example to the model and the test immediately stops. But as
long as the execution times of all individuals of the population are smaller than
the WCET bound, it is hard to decide whether the test can be stopped. Using
an upper bound of the number of cycles in the iterative refinement does not
provide a trustworthy result.

There are several approaches that demonstrate the applicability of evolution-
ary testing to analyze the WCET of so-called transformative systems, e.g.,
[PN98, Weg01, WBS02]. Transformative systems are typically subsystems that
take input data and transform them into output data. In contrast to reactive sys-
tems that potentially run endlessly, transformative systems have to be triggered
separately for each transformation. As a consequence, test data of transforma-
tive systems consist of a single test vector while test data of reactive systems
consist of a sequence of test vectors.

The application of evolutionary testing based on evolutionary algorithms to
reactive systems is not obvious as concrete techniques like genetic algorithms
operate with individuals having a fixed length. A possible approach would be to
test only test sequences of a fixed length, a method that is also used to limit the
search space of test cases. However, in case of testing performance constraints
(described in Section 13.3.1), the presented technique of WCET testing can be
applied. This allows to reason at least whether a reactive system can perform its
transitions within a certain time period. The verification of behavioral constraints
(Section 13.3.1) of reactive systems would need another testing technique.

Summary: Evolutionary testing allows the iterative refinement of input data
for testing. There exist several works on how to apply evolutionary testing for so-
called transformative systems. The application of evolutionary testing to reactive
systems has not been done and is not obvious. However, we have sketched in this
section how evolutionary testing can be applied to test performance constraints
of reactive systems. This can be done by applying the methods of WCET testing.

13 Real-Time and Hybrid Systems Testing 385

13.5 Summary

In this chapter, we have discussed test case generation for real-time and hybrid
systems. As we have seen in the beginning, test automation for real-time and
hybrid systems differs from that for untimed systems. The time domain has to
be taken into account as well as the dense value domain for hybrid systems,
e.g. for test evaluation. The model of the SUT must abstract from the real
behavior of the SUT to allow sensible test case generation. In contrast, the test
driver concretizes the generated inputs to feed the SUT. Vice versa, the concrete
outputs of the SUT are abstracted again so that test evaluation can be done with
respect to the abstract model.

Process Algebra vs. Automata Different modeling techniques can be used for this
purpose. We have discussed ACSR as a process algebra and different variants of
automata that already have been used for test case generation. A process algebra
is capable of modeling a system consisting of processes that communicate with
each other via events. Concurrency can be modeled explicitly as there are oper-
ators for interleaving and parallel execution with synchronization. Time is con-
sidered discrete. One problem of process algebras is that this modeling technique
has no support in industry where graphical modeling is preferred. Nevertheless,
testing based on process algebra has been proven useful and practicable.

In contrast, automata based modeling has more support as this is very pop-
ular, e.g. with respect to UML where state machines are used as automata
variants. Timed automata introduce either discrete or dense time to be capable
of modeling timing constraints. Graphical models are in principle easy to under-
stand as control flow can be captured at one sight. However, large models become
intractable in graphical representation. Hierarchy or different abstraction levels
must be used to better this situation.

Discrete vs. Dense Time With respect to time, this is either modeled discrete or
dense. In the first case, a timer is a counter that is incremented continuously. As
the computer itself is working discrete, this seems appropriate. In contrast, time
is naturally dense so modeling based on dense time is closer to reality, e.g. when
analog sensors and actuators are used. For real-time systems, it must be chosen
if the model represents natural time or computer time beforehand. For hybrid
systems, time must be modeled dense as the continuous parts of the system rely
on this.

Discrete vs. Dense Values Another aspect is the value domain that has to be
tested. This is considered discrete for real-time systems. We have seen that test
case generation builds up on methods for untimed systems and enhances the
generated test cases with timing information. Discrete values for inputs and
outputs to respectively from the SUT can be easily generated and evaluated.
Time points and intervals for generating inputs and outputs are chosen with
respect to the selected test case generation method. For hybrid systems, this
situation differs as we have dense-valued variables. Until now, nobody has tackled

386 Kirsten Berkenkötter and Raimund Kirner

the problem of generating curves as input data if time-continuous input is needed.
With respect to output data, fuzziness is considered for test evaluation.

Test Case Generation Algorithms We presented two different test case genera-
tion algorithms for real-time systems that are based on discrete time and one
algorithm that is based on dense time. Also one algorithm for creating test suites
for hybrid systems was discussed. The most important function of these algo-
rithms is the way in which the size of the test suite is reduced to a manageable
size, i.e the way in which test cases are selected.

The first test case generation algorithm discussed is based on the process alge-
bra ACSR where test cases are derived from the constraint graph of the ACSR
model. Test data is selected to cover two type of timing constraints, namely
performance constraints and behavioral constraints. To handle also applications
with recursive elements, upper bounds on the length of tested execution scenarios
have to be introduced.

Furthermore, test case generation for systems with discrete time can be done
with timed automata models. Here, the central idea is using test views that re-
strict the model of the SUT to a specified test purpose. Test views are composed
by parameters like clock granularity and the division of actions into observable
and hidden actions. Therefore the task of the test engineer is creating test views
that lead to manageable test suites. This must be done carefully as parts of
the system may never be tested while other test views overlap. One important
advantage of this approach is that the size of test suites is scalable.

With respect to dense time, the main idea is finding equivalent parts in the
model called partitions. Due to the dense time domain, the model has infinitely
many states with respect to the infinitely many possible time values. Partitions
group these values so that a finite graph is the result that can be used for test
case generation. As this may be too large for full exploration, heuristics must be
used to limit the size of the state space.

For hybrid systems, the presented algorithm is based on the results of test
case generation for real-time systems. In addition to the hybrid model, a sec-
ond, discrete, model is created that abstracts from the hybrid system. This can
be used in combination with the test case generation algorithms for real-time
systems presented. The original hybrid model is needed to derive correct evalua-
tions for variables as the discrete model being only an abstraction is not capable
of doing this. The selection of dense input curves is not tackled.

Optimization of Test Suites Testing timing constraints is still a difficult topic as
delays for stimulating the SUT must be chosen and the correctness of outputs of
the SUT must be accessed. First attempts with using evolutionary theory based
test case generation methods have shown that these can improve the test suite
with respect to determining best- and worst-case-execution times. This can be
helpful to prove if a SUT meets its timing requirements.

All other algorithms presented built up on results of testing untimed sys-
tems. In contrast, evolutionary testing has a different background and therefore

13 Real-Time and Hybrid Systems Testing 387

provides a new point of view for future work in the field of real-time and hybrid
systems testing.

Future Work Model-based test case generation for real-time and hybrid systems
has been successfully applied in relatively small examples. More effort has to
be put into this to prove the practicability of test case generation algorithms.
There is also only few tool support for test case generation and execution for
real-time systems and no tool support for hybrid systems. New techniques like
evolutionary testing to test timing constraints must be further surveyed. Also
cross-fertilization between the different approaches seems useful to improve the
presented algorithms as each has its advantages and disadvantages.

Part IV

Tools and Case Studies

The previous parts of this book have shown how to relate models to models, and
how to relate models to actual systems running in their actual environments.
This included the theoretical background as well as pragmatic and technological
considerations when it came to reducing the number of test cases to a “sufficient”
number.

The two articles of this part are concerned with tools and case studies that
are, in a way or another, based on the observations of the previous papers. It is
concerned with both technology, as reflected in tools, and with methodology, as
reflected in a survey of a few selected real world case studies.

Overview Belinfante, Frantzen, and Schallhart provide an overview of tools for
test case generation in Chapter 14. They are structured w.r.t. the modeling
formalism. The authors take into account tools for test case generation with time-
synchronous languages, with extended finite state machines, and with labeled
transition systems. Their paper shows that there is an increasing body of tools
for automated model-based testing. While this appears very promising, of course,
existing tools are limited by the complexity of the systems for which test cases
are to be generated. The authors provide arguments for their assessment that
test case generation technology has matured to a point at which it is capable of
coping with systems that are not toy examples any more.

This claim is even strengthened by El-Ramly, Horstmann, and Prenninger
in Chapter 15. They review case studies that actually relied on abstract models
that have been successfully used for test case generation. Application domains

390 Part IV. Tools and Case Studies

include processor architectures, protocols, operating systems, and smart cards.
In particular, they are interested in the underlying abstraction mechanisms—
a result of the observation that the endeavor of checking a system against a
model at the same level of abstraction is a dubious endeavor, because the model
has to be validated. Roughly, the bottom line of this article is that model-based
testing is particularly successful in domains where predefined levels of abstraction
(VHDL, RTL) exist.

14 Tools for Test Case Generation

Axel Belinfante1, Lars Frantzen2∗
, and Christian Schallhart3

1 Department of Computer Science
University of Twente
Axel.Belinfante@cs.utwente.nl

2 Nijmegen Institute for Computing and Information Sciences (NIII)
Radboud University Nijmegen
lf@cs.kun.nl

3 Institut für Informatik
Technische Universität München
schallha@cs.tum.edu

14.1 Introduction

The preceding parts of this book have mainly dealt with test theory, aimed at
improving the practical techniques which are applied by testers to enhance the
quality of soft- and hardware systems. Only if these academic results can be
efficiently and successfully transferred back to practice, they were worth the
effort.

In this chapter we will present a selection of model-based test tools which
are (partly) based on the theory discussed so far. After a general introduction of
every single tool we will hint at some papers which try to find a fair comparison
of some of them.

Any selection of tools must be incomplete and might be biased by the back-
ground of the authors. We tried to select tools which represent a broad spectrum
of different approaches. Also, to provide some insight into recent developments,
new tools such as AsmL and AGEDIS have been added. Therefore, the tools
differ a lot with respect to theoretical foundation, age, and availability. Due to
commercial restrictions, only limited information was available on the theoreti-
cal basis of some of the tools. For the same reason, it was not always possible to
obtain hands-on experience.

Relation to Theory

The preceding chapters of this book discuss theory for model-based testing. One
could raise the question: what does all this theory bring us, when we want to
make (or use) model-based testing tools? A possible answer could be that theory
allows us to put different tools into perspective and to reason about them.

The formal framework described elsewhere in this book in the introduction to
Part II (page 113) allows to reason about, and classify, all model-based testing
∗

Lars Frantzen is supported by the Netherlands Organisation for Scientific Research
(NWO) under project: STRESS – Systematic Testing of Realtime Embedded Soft-
ware Systems.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 391-438, 2005.
 Springer-Verlag Berlin Heidelberg 2005

392 Axel Belinfante, Lars Frantzen, and Christian Schallhart

approaches, even those that are not aware of it. An example is given in Sec-
tion 14.3.1, where the error-detecting power of a number of model-based testing
tools is compared by looking at the theory on which the tools are based.

The formal framework also allows to reason about correctness, not only of
the implementation that is to be tested, but also of the testing tool itself, as we
will see below.

The key concept of the formal framework is the implementation relation (or
conformance relation). It is the most abstract concept of the framework, since
it has no “physical” counterpart in model-based testing, unlike concepts like
specifications, test suites or verdicts. The implementation relation relates the
result of test execution (so, whether execution of tests generated from the model
failed or passed) to conformance (or non-conformance) between the model and
the SUT. The idea is the following. Suppose a user has a model, and also an idea
of which (kind of) implementations the user will accept as valid implementations
of the model – an implementation that according to the user is a valid one is
said to conform to the model. The user will then derive (generate) tests on the
basis of (from) the model. The idea is that if the SUT conforms to the model,
then the execution of all tests that are generated on the basis of the model must
be successful. Here conforms to is formalized by the implementation relation.
Therefore, any tool defines an implementation relation, explicitly or implicitly.
If the implementation relation is defined implicitly, it may still be possible to
make it explicit by analyzing the test derivation algorithm implemented in the
tool, or maybe even by experimenting.

The implementation relation is embodied in the test derivation algorithm.
This is reflected in the theoretical framework by the concept of soundness, which
says that the generated test cases should never cause a fail verdict when executed
with respect to a correct (conforming) implementation. A related concept is
completeness (or exhaustiveness) which says that for each possible SUT that
does not conform to the model, it is possible to generate a test case that causes
a fail verdict when executed with respect to that SUT.

If one knows that a tool implements a test derivation algorithm that is sound,
analyzing unexpected test execution results may be easier, because one knows
that the tool will never generate test cases that cause a fail verdict that was not
deserved. The unexpected result may be caused by an error in the SUT (this is
what one hopes for), but it may also be caused by an error in the model, or by
an error in the glue code connecting the test tool to the SUT. However, (as long
as the test derivation algorithm was implemented correctly) it can not be caused
by the test derivation tool. Without this knowledge, the error can be anywhere.

Also completeness of the test derivation algorithm has important practical
implications. In practice one is only able to execute a limited number of tests,
so one may be unlucky and no distinguishing test case is generated. However, if
one does know that the test derivation algorithm is complete, one at least knows
that it does not have any “blind spots” that a priori make it impossible for it to
find particular errors. So, if one has a SUT that is known to be incorrect (non-
conforming), and one tries hard and long enough, one should eventually generate
a test case that causes a fail verdict for the SUT. In contrast, if one applies a

14 Tools for Test Case Generation 393

test derivation algorithm for which one knows that it is not complete, one also
knows that there are erroneous implementations that one can never distinguish
from correct ones, and it makes no difference whether or not one tries long or
hard, because the inherent blind spots in the test derivation algorithm simply
make it impossible to generate a test case that causes a fail verdict.

14.2 Tool Overview

Tool Section Page Languages CAR Method

Lutess 14.2.1 394 Lustre A
Lurette 14.2.2 399 Lustre A
GATeL 14.2.3 402 Lustre A CLP
AutoFocus 14.2.4 406 AutoFocus A CLP
Conformance Kit 14.2.5 408 EFSM R FSM
Phact 14.2.6 409 EFSM R FSM
TVEDA 14.2.7 410 SDL, Estelle R FSM
AsmL 14.2.8 412 AsmL R FSM?
Cooper 14.2.9 414 LTS (Basic LOTOS) A LTS
TGV 14.2.10 417 LTS-API (LOTOS, SDL, UML) A LTS
TorX 14.2.11 420 LTS (LOTOS, Promela, FSP) A LTS
STG 14.2.12 424 NTIF A LTS
AGEDIS 14.2.13 427 UML/AML CAR LTS
TestComposer 14.2.14 429 SDL C LTS/EFSM?
AutoLink 14.2.15 431 SDL C

Table 14.1. Test Tools

Table 14.1 lists the tools that will be presented in more detail below. From
left to right, the columns contain the name of a tool, the section in which it
is discussed, its starting page number, the input languages or APIs, its origin
or availability (whether it was developed by an Academic institute, by a non-
university Research institute, or whether it is Commercially available), and the
test derivation method used in the tool (CLP stands for testing based on Con-
strained Logic Programming, FSM stands for testing of Finite State Machines
and LTS stands for testing of Labeled Transition Systems). For some tools we
left the Method entry open because the method implemented in the tool differed
too much from those discussed in the theoretical chapters.

From top to bottom the table shows the tools in the order in which we
will present them. Unfortunately, there is no simple single criterion to order
them. Therefore, we ordered them by input language and test derivation method.
We start with tools for models based on time-synchronous languages. Next, we
discuss tools for (extended) finite state machine models. Finally, we discuss tools
based on labeled transition system models. For each of those categories, we try
to follow the flow of development, so we go from the earlier tools, based on more
simple theory, to the later ones, based on more advanced theory. With AutoFocus

394 Axel Belinfante, Lars Frantzen, and Christian Schallhart

we refer to the testing facilities (for which we do not know a separate name) of
the modeling tool AutoFocus. The tool AGEDIS was developed in a European
project. It is commercially available, and freely for academic purposes.

For most of these tools, the theory on which they are based has already been
discussed in the previous chapters, and we will just refer to it. For the other
tools, we will try to give a brief overview of the relevant theory when we discuss
the tool.

Each of the following tool presentations contains an introduction (which also
tells where the tool originated, if known), followed by discussions of its test gener-
ation process and its interfaces (which also lists its input and output languages),
and concluded by a summary and, for the interested reader, a categorized list of
literature references.

14.2.1 Lutess

Introduction

Lutess [dBORZ99] is a testing environment for synchronous reactive systems
which is based on the synchronous dataflow language Lustre [HCRP91].

It builds its test harness automatically from three elements, a test sequence
generator, the SUT, and an oracle. Lutess does not link these elements into a
single executable but is only connecting them and coordinating their execution.
The test sequence generator is derived from an environment description and test
specification. The environment description is given in terms of a synchronous
observer, i.e., as synchronous program which observes the input/output stream
of the SUT. The environment description determines whether a test sequence is
realistic wrt. the environment, and the oracle determines whether the sequence
is correct or not.
The SUT and the oracle might be given as synchronous programs, Lutess is able
to handle them completely as black-boxes. Optionally, they can be supplied as
Lustre programs, which are automatically compiled to be integrated into the
test harness.

The test sequence generator is derived by Lutess from the environment de-
scription written in Lustre and from a set of constraints which describe the set
of interesting test sequences. Lustre has been slightly expanded such that these
constraints can be expressed in Lustre, too. Lutess allows one to state operational
profiles [Mus93], properties to be tested, and behavioral patterns.

All three components of a test harness must not have any numerical inputs or
outputs – this might be the most serious restriction of Lutess: It is only working
with Boolean variables.

The test sequences are generated on the fly while the SUT is executed. First
the test sequence generator provides an initial input vector for the SUT. Then
the SUT and test sequence generator compute in an alternating manner output
vectors and input vectors respectively. The oracle is fed with both, the input and
the output stream, and computes the verdict. If the SUT is deterministic, i.e., a
sequence of input vectors is determining the corresponding sequence of output

14 Tools for Test Case Generation 395

vectors, then the complete test sequence can be reproduced based on the initial
random seed given to the test sequence generator.

Lutess is aimed at two goals – first it supports a monoformalistic approach,
i.e., the software specification, the test specification and the program itself can be
stated in the same programming language. Second, the same technology should
support verification and testing techniques [dBORZ99].

Lustre

Lustre is a high-level programming language for reactive systems [HCRP91,
CPHP87] which combines two main concepts, namely it is a dataflow oriented
as well as a time-synchronous language.

Lustre is based on the synchrony hypothesis, i. e., a Lustre program is written
with the assumption that every reaction of the program to an external event is
executed instantaneously. In other words, it is assumed that the environment
does not change its state during the computation of a reaction. This allows the
use of an idealized notion of time where each internal event of a program takes
place at a known point in time with respect to the history of external events.

To make this concept usable in practice, Lustre is designed such that each
Lustre program can be compiled into a finite IO-automaton where each state
transition is compiled into a piece code without branches. A transition of this
automaton corresponds to an elementary reaction of the program. Thus, it is
possible to give an accurate upper bound on the maximum reaction time of the
program for a given machine. This structuring of compiled synchronous programs
was introduced in the context of the Esterel language [BC85]. Taken together,
this approach allows to check the synchrony hypothesis.

Many reactive systems are easily and naturally modeled in terms of dataflows.
Each dataflow is a mapping of discrete time to values, i.e., a dataflow X repre-
sents a sequence of values x1, x2, In Lustre, reactive systems are composed
of flows of data which are recombined and transformed by a set of operators. In
fact each variable in Lustre represents a dataflow. So for example, in Lustre the
statement X = Y + Z means that each element of the flow X equals the sum
of the corresponding elements of the flows Y and Z , i.e., if Y = y1, y2, . . . and
Z = z1, z2, . . . then X = x1, x2, . . . with xi = yi + zi .

Advantages of the dataflow approach are that it is functional and parallel.
Functional programs are open to automated analysis and transformation because
of the lack of side-effects. Parallel components are naturally expressed in Lus-
tre by independent dataflows. Synchronization is implicitly described by data
dependencies between the different dataflows.

The following piece of code implements a counter as a so called node.1 A
node recombines a set of dataflows into a new one. In this case val init is used
as initialization of the new flow which is then incremented by val incr in each
cycle.

1 This example has been taken from [HCRP91].

396 Axel Belinfante, Lars Frantzen, and Christian Schallhart

node COUNTER(val_init, val_incr : int; reset : bool)
returns (n : int);
let

n = val_init -> if reset then val_init else pre(n)+val_incr;
tel;

This example shows the two more fundamental time operators of Lustre2. The
first operator -> is the followed-by operator. If A and B have the respective
sequence of values a0, a1, . . . and b0, b1, . . . then A -> B declares the sequence
a0, b1, b2, Therefore, in the example, the flow of n starts with the first value
of val init.
The second time operator in the example is pre. Given a flow A with the values
a0, a1, . . . , pre(A) is the flow with the values nil , a0, a1, So in the code above,
we find that if reset is true, then n is set to the current value of val init.
Otherwise n is set to the previous value of n plus the increment val incr. Two
simple applications of this node are the following two sequences.

even=COUNTER(0,2,false);
mod5=COUNTER(0,1,pre(mod5)=4);

The first sequence generates the even numbers, and the second cycles through
the numbers between 0 and 4. Note that the reset input is indeed fed with
another flow.
To approximate the position of an accelerating vehicle, we can use the following
two flows

speed=COUNTER(0,acceleration,false);
position=COUNTER(0,speed,false);

Note that speed used as input in the second statement is a flow which is chang-
ing over time. E.g. if acceleration is the constant flow with value 4, then
speed would be the sequence 0,4,8,12,16,. . . , and position would start with
0,4,12,24,40,. . .

Testing Method

The construction of the test sequence generation is formally described in the
paper [dBORZ99]. Basically, a test sequence generator built by Lutess is based
on an environment description given in Lustre and a set of further (probabilistic)

2 Lustre also offers two other operators, namely when and current. These operators
allow the manipulation of the clock of a dataflow. Each dataflow in Lustre has an
associated clock which determines when a new value is added to the corresponding
flow. For example, a flow with the clock true, false, true,... would be expanded
by a new value every second cycle. The when operator allows to declare a sequence
which runs with a slower clock, while the current operator allows to interpolate a
flow with a slow clock such that it becomes accessible for recombination with faster
flows.

14 Tools for Test Case Generation 397

constraints to guide the test sequence generation. The environment description
computes a predicate which indicates whether the test sequence is relevant or
not. The test sequence generator inverts this predicate, i.e., it computes the set
of inputs for the SUT which satisfy the environment description. In every step,
the oracle is provided with the last input/output pair of the SUT to compute a
pass or fail verdict for the sequence tested so far.

Random Testing The behavior of the environment is restricted by a set of
constraints which must be satisfied unconditionally by the whole test sequence.
For example, an environment description for a telephone-system will allow a
test sequence such as oni , diali , offi , oni , diali , offi . . . , where oni is the event of
picking up the phone i , diali is the event of dialing a number, and offi is the
event of hanging up. A sequence starting with oni , oni , . . . would not be allowed
by the environment description, since it is physically impossible to pick up the
same phone twice.

Random testing is the most basic mode of operation, where Lutess generates
test sequences which respect the environment constraints based on a uniform
distribution.

Operational Profile-Based Testing Although random test sequences are
possible interactions between the SUT and the environment, the arising test se-
quences lack realism, i.e., most sequences which occur in the target environment
are not generated since they unlikely happen at random. To obtain more realis-
tic test sequences, Lutess allows to add operational profiles to the environment
description. An operational profile CP(e) = 〈(p1, c1), . . . , (pn , cn)〉 associates
conditional probabilities (pi , ci) with an input e. If the condition ci evaluates to
true, then the input e of the SUT will be set to true with probability pi in the
next step. Therefore, operational profiles do not rule out unexpected cases, but
they are emphasizing more common sequences of events.

Property-Guided Testing Next, Lutess provides property guided testing. In
this case, Lutess will try to generate test sequences which test safety properties.
For example, if a property of the form a ⇒ b should be an invariance, then
Lutess will set a to true if such a setting is consistent with the basic environment
constraints. However, Lutess is only able to provide this feature for expressions
that do not involve references into the past. For example pre(a) ⇒ b cannot
be used for property guided testing, since pre(a) is refers to the value of the
expression a in the last step.

Pattern-Based Testing Finally, Lutess provides pattern-based testing. A pat-
tern BP = [true]cond0[inter1]cond1 . . . [intern]condn is a sequence of conditions
cond0, . . . ,
condn with associated interval conditions inter1, . . . , intern . Lutess probabilis-
tically generates test sequences which match the pattern, i.e., if the environment

398 Axel Belinfante, Lars Frantzen, and Christian Schallhart

allows to generate an input such that cond0 becomes true, such a choice is taken
with higher probability. Then, Lutess will take choices which are biased to either
maintain the first interval condition inter1 or to match the next condition cond1.
The concrete probabilities are given as part of the specification. This process is
continued until the test sequence has passed the pattern entirely or until the test
sequence becomes inconsistent with the pattern.

Test Sequence Generation

Given the internal state of the environment description and the last output of
the SUT, the test sequence generator must produce an input vector for the SUT,
such that the environment constraints will be satisfied. For random testing, the
generator has to determine the set of input vectors which are relevant wrt. the
environment description. Then it has to choose one such vector randomly in
an efficient way according to the current testing method (random, operational
profile-based, property-guided, or pattern-based).
To determine the set of relevant input vectors efficiently, Lutess constructs a
Binary Decision Diagram (BDD) [Bry85] to represent all state transitions which
are valid within the environment. This BDD contains all valid transitions in
all possible states of the environment. To allow efficient sampling on the set of
possible input vectors for the current state of the environment description, all
variables which determine the next input vector for the SUT are placed in the
lower half of the BDD, while all other variables (describing the state and last
output of the SUT) are placed in the upper part of the BDD. Given the current
state and the last output vector, the generator can quickly determine the sub-
BDD which describes all possible input vectors to be sent to the SUT in the
next step.

Then this sub-BDD is sampled to determine the next input for the SUT.
The sampling procedure is supported by further annotations. Depending on the
employed testing methods, the sampling is implemented in different ways, see
[dBORZ99] for details on the sampling procedure.

Summary

Lutess allows to build the test harness for fully automated test sequence genera-
tion and execution in the context of synchronous reactive systems. The harness
is constructed from a SUT, a test specification, and an oracle. The SUT and
the oracle can be given as arbitrary synchronous reactive programs. The test
sequence generated is based on an environment description given in Lustre. Op-
tionally, the test sequence generation can be controlled by operational profiles,
safety properties to be tested, and behavioral patterns to be executed. Lutess
has been applied to several industrial applications [PO96, OP95].

However, Lutess is not able to deal with SUTs which have numerical inputs
or outputs. Also, it is not possible to express liveness properties in Lutess. Fur-
thermore Lutess does not provide any means to generate test suites based on
coverage criteria.

14 Tools for Test Case Generation 399

14.2.2 Lurette

Introduction

The approach of Lurette3 is generally comparable to Lutess which has been
presented above [RNHW98]. Lurette is also based on the synchronous dataflow
language Lustre. Both tools build their test harness from three elements, namely
the SUT, a test sequence generator, and an oracle. Moreover, both tools derive
the test sequence generator from an environment description written in Lustre
while the SUT is tested as a black box. Finally, both tools utilize environment
descriptions and oracles given as synchronous observers. Synchronous observers
are programs which implement acceptors for sequences. A synchronous observer
used as environment description will output true as long as the sequence pre-
sented to the observer represents a valid sequence of events in the environment.

However, in contrast to Lutess, Lurette allows to validate systems which
have numerical inputs and outputs. On the other hand, Lurette is only offering
a single mode for test sequence generation. The randomly generated sequences
are based on a uniform distribution. Also, Lurette requires that the SUT is given
as a C-file which implements a predefined set of procedures.

The test sequence is generated on the fly during the execution of the SUT.
An initial input is provided by the test sequence generator and fed into SUT.
From then on, the SUT and the test sequence generator compute outputs and
inputs in an alternating fashion.

Testing Method

The testing method of Lurette is relatively simple. The environment description
is used to express both relevant and interesting test sequences. In [RNHW98],
the term relevance refers to those properties which constrain the environment
itself and the term interest refers to the test purpose. The constraints which rep-
resent the relevance and the interest are expressed within the same synchronous
observer, i.e., there is no distinction between the environment description and
the test purpose. This observer is fed with the inputs and outputs of the SUT
and evaluates to true, if the sequence so far is relevant and interesting.

A test sequence generated by Lurette is constructed uniformly and randomly
such that the observer evaluates to true in every single step of the sequence.
In other words, Lurette has to invert the environment description to compute a
new input vector for the SUT based on the current state of the environment and
the last output of the SUT. The oracle is also fed with the inputs and outputs
of the SUT to evaluate the correctness of the sequence. The result of the oracle
is either a fail or pass verdict.

Test Sequence Generation

In each step of the test sequence generation, Lurette has to compute an input
vector for the SUT based on the internal state of the environment description
3 See also http://www-verimag.imag.fr/SYNCHRONE/lurette/lurette.html.

400 Axel Belinfante, Lars Frantzen, and Christian Schallhart

and the last output of the SUT, such that the environment constraints will be
satisfied. The approach is completely analogous to the test sequence generation
of Lutess, however, Lurette has to deal with linear constraints over integers and
reals.

Abstracting the Observer To solve this problem with numerical constraints,
Lurette computes an abstract version of the original observer. In this abstract
observer, all numerical constraints have been replaced by new Boolean Variables.
These new variables are treated as further inputs of the observer. Consider the
following observer with a number of numerical constraints:

node RELEVANT(X,Y,Z : int; A,B : bool)
return (relevant : bool)
let

relevant = (X=0) -> if A then (B or (X>Y))
else (X+Y<=Z) and (Z* pre(Y)<12);

tel

Note that pre(Y) can be treated as constant, since its value has been determined
in the last step. Assuming that we are not in the initial state, Lurette would
replace this observer by a new abstract observer with three additional Boolean
variables C1,C2,C3 to represent the numerical constraints.

node ABSTRACT_RELEVANT(A,B,C1,C2,C3 : bool)
return (relevant : bool)
let

relevant = (A and (B or C1) or
((not A) and C2 and C3);

tel

where C1,C2,C3 represent the conditions X > Y , X +Y � Z , and Z ∗pre(Y) <
12 respectively.

This abstracted observer is then represented as BDD. The BDD can be in-
verted effectively, i.e., it is easy to expand a partial truth assignment to a com-
plete satisfying truth assignment. Assigning the last output of the SUT, we have
a partial assignment which must be completed such that ABSTRACT RELEVANT
evaluates to true, i.e., the associated BDD evaluates to true.

Choosing the Next Input Lurette chooses one of the Boolean assignments
which satisfy the BDD randomly according to a uniform distribution. This as-
signment determines the set of numerical constraints to be satisfied. This set of
linear constraints on integers and reals establishes a convex polyhedron which is
explicitly constructed. If the polyhedron is empty, then the Boolean assignment
lead to numerical infeasibility – another Boolean assignment must be chosen to
repeat the process. If the polyhedron is non-empty, a point is selected within
the polyhedron according to a specified strategy, [RNHW98] mentions limited

14 Tools for Test Case Generation 401

vertices and random selection within the polyhedron. The assignments to the
Boolean and numerical variables obtained by this procedure are used as input
vector to the SUT.

An Optimization Lurette does not only test linear test sequences. In each step
of a test sequence generation and execution, Lurette tests several inputs with
the SUT. More precisely, it computes the output of the SUT for a whole set
of input vectors and checks whether each of the correspondingly continued test
sequences would be correct. This is possible, since the SUT is required to provide
one method to produce the next output of the SUT without changing its state,
and a separate method to advance the state of the SUT. If an error is found, the
test sequence which provoked the error is returned along with a fail verdict and
Lurette terminates. If no error is detected, then the test sequence is continued
with one of the tested inputs. This is possible, since Lurette is requiring the SUT
to be given in a way that allows to compute the output of the SUT on a given
input vector without advancing its internal state.

SUT Program Format

To test a program with Lurette, this program must be given as a C-file which
implements a synchronous reactive program. In particular, the C-file must im-
plement a specific interface to be integrated into the test harness. This interface
must allow to access the following elements:

• The names and types of the inputs and outputs of the SUT, such that the
test harness can connect to the SUT with the test case generator.
• The initialization procedure initP must bring the SUT P into its initial state.
• The output procedure o = outP(i) has to compute the output of P based

on the current internal state of P and the input i . Note that a call to outP
is not allowed to change the state of P .
• Finally, the procedure nextP(i) has to bring P into the next state, again on

the basis of the current internal state and the input i .

The Lustre compiler which is provided for free by Verimag produces C-files
which are suitable for Lurette. Alternatively, the code generator of the SCADE
environment4 can be used to obtain appropriate input files for Lurette. Other
synchronous languages are probably adaptable to Lurette by wrapping the gen-
erated code into the above described procedures.
To integrate an oracle into a test harness, it must be provided in the same form
as the SUT P .

4 SCADE is a suite for developing dependable software, including tools to facilitate
specification, code generation, and code validation. It is based on a graphical imple-
mentation of the Lustre language. See http://www.esterel-technologies.com.

402 Axel Belinfante, Lars Frantzen, and Christian Schallhart

Summary

Lurette is targeted at the fully automated testing of synchronous reactive sys-
tems. It builds a test harness from an environment description, a SUT, and an
oracle. The SUT and the oracle must be given in terms of a C-file which imple-
ment a specific set of procedures. The environment description must be given
in Lustre. It describes the environment and the test purpose simultaneously.
The generated test sequence is chosen randomly such that relevance and interest
constraints are satisfied.

Lurette allows to test SUTs which have numerical inputs and outputs. How-
ever, Lurette is only able to deal with linear constraints between these numerical
parameters. Each step in the test sequence generation is subdivided into two
phases, first an abstracted environment description is used to obtain a set of
linear constraints to be satisfied. Then the obtained constraint set is solved.

On the other hand, Lurette is not able to deal with liveness properties and
it only allows to specify test purposes in terms of safety properties.

14.2.3 GATeL

Introduction

The third Lustre-based tool which is described here is GATeL5 [MA00]. Its
approach is quite different from the two other Lustre related tools (Lutess and
Lurette) presented in this chapter. Lutess and Lurette start the test sequence
generation from the initial state. Then the sequence is generated on the fly, i.e.,
in each step the outputs of the SUT are used to compute a new input for the SUT
based on the environment description and the test purpose. This process is iter-
ated either until a negative test verdict is produced, or until the maximum test
sequence length is reached. In contrast, GATeL starts with a set of constraints
on the last state of the test sequence to be generated. This set of constraints can
contain invariant properties as well as any other constraint on the past which can
be expressed in Lustre. The latter amounts to a test purpose since it allows to
state a predicate on all sequences which are of interest. During the test sequence
generation, GATeL tries to find a sequence which satisfies both, the invariant
and the test purpose. To find such a sequence, GATeL employs constraint logic
programming (CLP) in a search process which extends the sequence backwards,
i.e., from the last state to the first one.

Testing Method

GATeL requires the SUT or a complete specification of the SUT, an environment
description, and a test objective. All three elements must be supplied as Lustre
source code. All three components of the test harness are not allowed to use real
variables or tuples.

5 See also http://www-drt.cea.fr/Pages/List/lse/LSL/Gatel/index.html.

14 Tools for Test Case Generation 403

The test objective allows to state properties and path predicates. Safety prop-
erties are expressed with the assert keyword of Lustre. An asserted property
must hold in each step of the generated test sequence. To state a path predicate,
GATeL employs a slightly expanded Lustre syntax. GATeL allows to express
path predicates with the additional keyword reach. The statement reach Exp
means that Exp must be reached once within the test sequence. More precisely,
GATeL will try to find a test sequence which ends in a state where all expressions
to be reached evaluate to true.

The SUT and the environment are only allowed to contain assertions. An
assertion in the SUT is used by Lustre compilers to optimize the generated
code. Assertions within the environment description are used to constrain the
possible behavior of the environment – as usual.

As an example, consider the following program and test objective. The node
COUNT
SIGNAL is counting the number of cycles when signal is true. Let us further
assume that signal is part of the input.

node COUNT_SIGNAL(signal : bool)
returns (n : int);
let

base = 0 -> pre(n);
n = if signal then base + 1 else base;

tel;

assert true -> not (signal and pre(signal))
reach COUNT_SIGNAL(signal)>1;

The assertion requires signal to be true in two consecutive steps. The subse-
quent reach statement requires GATeL to generate a test sequence such that
COUNT SIGNAL(signal) becomes greater than 2.

Based on the SUT (or its specification) and the environment description,
GATeL will try to find a test sequence which satisfies the path predicate ex-
pressed in the reach statement and which satisfies the asserted invariance ex-
pressions in every cycle. If such a test sequence can be found, it will be executed
with the SUT. The output values computed by the SUT are compared with the
corresponding values of the precomputed test sequence. If the two sequences
match, the test case passed, otherwise it failed.

Test Sequence Generation

Consider again the node COUNT SIGNAL with the test objective

assert true -> not (signal and pre(signal));
reach COUNT_SIGNAL(signal)>1;

To find a sequence which satisfies the test objective, GATeL starts with the final
cycle of the test sequence to be generated. Using the notation signal[N] to

404 Axel Belinfante, Lars Frantzen, and Christian Schallhart

denote the Nth value of the flow signal, the constraints on this final cycle N are
the following:

• true -> not (signal[N] and signal[N-1]) = true
• COUNT SIGNAL(signal[N]) > 1

Then GATeL tries to simplify this constraint set as far as possible without in-
stantiating further variables. In this example, GATeL would derive the three
constraints shown next, where maxInt is a user tunable parameter.

• true -> not (signal[N] and signal[N-1]) = true
• COUNT SIGNAL[N] in [2,maxInt]
• COUNT SIGNAL[N] = if signal[N] then base[N] + 1 else base[N]

This set cannot be simplified further without instantiating a variable. GATeL
has to choose one variable to instantiate – it tries to find a variable with a
maximum number of waiting constraints and a minimal domain size. In the
example above the first and second constraints are waiting for signal[N], i.e.,
these constraints can be simplified further once signal[N] has been instantiated.
The domain of signal[N] contains only two values since signal[N] is Boolean.
Therefore, GATeL would choose to instantiate this variable. The value to be
assigned to signal[N] is chosen randomly wrt. the uniform distribution. This
process leads to the following set of constraints (assuming that GATeL chooses
to assign true).

• signal[N] = true
• true -> not (signal[N-1]) = true
• base[N] in [1,maxInt]
• base[N] = 0 -> COUNT SIGNAL[N-1]

In this situation, GATeL has to decide whether the Nth cycle is the initial one
or not. Internally, GATeL uses an implicit Boolean variable to represent this
decision. Again, the assigned value is chosen randomly. Assuming that GATeL
would choose that the Nth cycle is non-initial, we would find the constraint set
shown next.

• signal[N] = true
• signal[N-1] = false
• true -> not (signal[N-2]) = true
• COUNT SIGNAL[N-1] in [1,maxInt]
• COUNT SIGNAL[N-1] = if signal[N-1] then base[N-1] + 1

else base[N-1]

Note that the third constraint listed above is instantiated from the invariance
property which has been expressed as an assertion.

This process of backward constraint propagation is continued until either
a test sequence has been found which satisfies all initial constraints or until a
contradiction arises. In the latter case, GATeL starts to backtrack. If a test se-
quence is generated successfully, some variables might be still unassigned. The

14 Tools for Test Case Generation 405

corresponding values are chosen randomly again to obtain a complete test se-
quence.

The test sequence generation is implemented in Prolog and based on the
ECLiPSE package [ECLb].

Domain Splitting

The basic testing method described above allows to generate a single test se-
quence. GATeL offers the possibility of “domain splitting”, i.e., to replace the
domain (described by the current constraint set) with two ore more sub-domains
(again described by constraint sets) which are special cases of the original do-
main (see Section 12.2 on page 324).
For example if the constraint set contains the condition A = B <= C, then GATeL
offers two possibilities to split the domain. The first possibility is to split the
domain into B <= C and B > C. The second possibility is to split the domain
into B < C , B = C, and B > C. Domain splitting can be applied recursively to
obtain a tree of sub-domains of the original domain.
Once the user decides to stop the domain splitting, GATeL will produce a test
sequence for each sub-domain (if possible).

Summary

GATeL does not only allow to state invariance properties but allows to state
path predicates to express the test purpose. To support path predicates, GATeL
has to construct its test sequences backwards, i.e., it has to start with the final
state to be reached by the test sequence. Thus the test sequence is not generated
during the execution of the SUT, but before the SUT is executed.
This backward search is implemented in terms of a backtracking algorithm. The
backtracking algorithm has to guess appropriate assignments when the current
constraint set does not enforce a particular assignment or does not allows further
simplification.
Moreover, GATeL requires the SUT to be given as Lustre source code, represent-
ing either the actual implementation or its complete specification. Again, this is
necessary, since GATeL has to construct its test sequences backwards.
The feature of domain splitting allows to further subdivide the domain of in-
teresting test sequences interactively. Moreover, it requires human intervention,
which does not allow to generate a large number of sub-domains automatically.
Finally, the domain splitting applies to the initial constraint set, which primarily
constrains the very last cycles of the test sequence. Consequently, the domain
splitting as implemented by GATeL only allows to split the domain wrt. the end
of the test sequence.

406 Axel Belinfante, Lars Frantzen, and Christian Schallhart

14.2.4 AutoFocus

Introduction

Autofocus6 is a graphical tool that is targeted at the modeling and develop-
ment of distributed systems [HSE97]. Within AutoFocus, distributed systems
are described as collections of components which are communicating over typed
channels. The components can be decomposed into networks of communicat-
ing subcomponents. More specifically, a model in AutoFocus is a hierarchically
organized set of time-synchronous communicating EFSMs which use functional
programs for its guards and assignments. A model in AutoFocus can be used for
code generation and as basis for verification and testing.

The testing facilities [PPS+03] of AutoFocus require a model of the SUT,
a test case specification, and the SUT itself. The test case specification might
be functional, structural, or stochastic. Functional specifications are used to test
given properties of the SUT, structural specifications are based on some coverage
criterion, and stochastic specifications are used to generate sequences randomly
wrt. some given input data distributions. Based on the model and the test case
specification, a set of test cases is generated automatically with the help of a
constraint logic programming (CLP) environment.

To execute a suite of test sequences, the SUT needs to be adapted to the
abstraction level of the model which underlies the test sequences. The adaption
has to translate the IO between the conceptual level of the model and the con-
crete implementation level of the SUT.
The testing environment for smart cards used in [PPS+03] is automatically exe-
cuting the complete test suite and reports deviations between the expected and
actual IO-traces of the SUT.

Test Method

Functional Specifications Functional test purposes are used for testing of a par-
ticular feature, i.e., test sequences have to be generated which trigger the ex-
ecution of a certain functionality. AutoFocus employs a nondeterministic state
machine to represent the set of sequences which are of interest, i.e., trigger the
functionality in question. In many cases, there is more than one way to exercise
a specific feature. In such situations, nondeterministic state machine allow to
represent the set of possible test sequences in a natural way. Also, it is possible
to add transitions that will cause a failure in the protocol represented by the
state machine.

The composition of the model and the functional test specification yields a
generator which enumerates test sequences for a given length exhaustively or
stochastically.

6 See also http://autofocus.informatik.tu-muenchen.de.

14 Tools for Test Case Generation 407

Structural Specifications Structural specification can exploit the hierarchical
modeling within AutoFocus, i.e., it is possible to generate suites independently
for different components and to use these unit tests to generate integration tests
[Pre03]. Also, it is possible to require the generated test sequences not to contain
given combinations of commands or states.

In addition, AutoFocus allows to incorporate coverage criteria into the test
specification. More precisely, coverage criteria can be applied to the model of
the SUT or on the state machine which is used as functional test specification.

Statistical Specifications In the case of statistical testing, test sequences up to
a given length are generated randomly. Because of the huge number of test se-
quences that would be almost identical, the generated sequences can be required
to differ to certain degree.

Test Generation

Like GATeL, the test generation of AutoFocus is based on constraint logic pro-
gramming (CLP). The AutoFocus model is translated into a CLP language and
is executed symbolically (see Section 12.3 on page 338 for further details).

Each component K of the model is translated into a corresponding set
of CLP predicates nextK (SK , i , o,DK). nextK is the next state relation, i.e.,
nextK (SK , i , o,DK) holds if the component K has a transition from state SK to
state DK with input i and output o. The next-state predicates are composed
of the predicates of the subcomponents mirroring directly the decomposition
of the model at hand. Executing the generated logic program yields the set of
all possible execution traces of the model. The formulation as constraint logic
program allows to reduce the size of this set because of the compact symbolic
representation of the traces. E.g., if the concrete command i sent to a model
is unimportant as long as it is not the Reset command, only two traces will be
generated, one where the command i is fixed to Reset , and another one where
the command is left uninstantiated with the constraint i �= Reset . To further re-
duce the number of generated test sequences, the testing environment allows to
prohibit test sequences which contain the same state more than once. In such an
approach, the detailed prohibition mechanism must be chosen carefully. More-
over the technique which is used to store and access the set of visited states is
crucial to the overall performance. See [Pre01] for details.

To generate the test sequences according to a given test specification, the
specification is also translated into or given directly in CLP and added to the
CLP representation of the corresponding model. The specification guides the
test sequence generation, determines its termination, and it restricts the search
space.

The result of this process is a set of symbolic test sequences, i.e., test se-
quences which contain uninstantiated variables. For example, a symbolic test
sequence might contain a command AskRandom(n). The concrete value of n
might be free but bound to the interval [0, 255]. However, each of these vari-

408 Axel Belinfante, Lars Frantzen, and Christian Schallhart

ables might be subject to some of the constraints which are collected during the
symbolic execution.

These variables can be instantiated randomly or based on a limit analysis.
After instantiation, the test sequences can be used for actual testing.

Summary

AutoFocus allows to model a system as a collection of communicating com-
ponents which can be decomposed hierarchically into further subnetworks of
synchronously communicating components. The testing environment of Auto-
Focus provides the possibility to translate its models into a CLP language and
to symbolically execute these transformed models. The model can be associated
with functional, structural, and stochastic test specifications to generate test
sequences based on the symbolic execution within the CLP environment. In ad-
dition AutoFocus is able to generate test cases that conform to a given coverage
criteria to the model itself, or on a functional test specification. The generated
test sequences can be employed to drive a SUT which implements or refines the
model which underlies the generated test sequences.

14.2.5 Conformance Kit

Introduction

At KPN Research [KPN] the Conformance Kit was developed in the early
nineties to support automatic testing of protocol implementations. It is not pub-
licly available. (E)FSMs serve as specifications. Beside the typical EFSM con-
cepts like variables and conditions (predicates) on transitions, some additional
notions like gates are introduced to facilitate the mapping to the SUT. The gate
concept allows to split a specification into several EFSMs which communicate
through such gates.

The first fundamental tool of the Kit is a converter which transforms an
EFSM into an equivalent FSM (i.e. same input/output behavior) via enumer-
ation of the (necessarily finite domain) variables. In a next step the resulting
FSM is minimized. A basic syntax check is embedded into these steps which is
capable of detecting nondeterministic transitions and input-incomplete specifica-
tions. Furthermore, EFSMs can be simulated and a composer allows to assemble
communicating EFSMs into a single one with equal behavior.

Test Generation Process

The test suite generation tool offers several FSM techniques to derive test cases.
A transition tour is possible if the FSM is strongly connected. The disad-
vantage of this method is that only the input/output behavior is tested, the
correctness of the end-states of the transitions is not checked. To overcome this
disadvantage a tour including unique input/output (UIO) sequences is offered
which does check the end-states. It is called partition tour because it does not

14 Tools for Test Case Generation 409

yield one finite test sequence covering all transitions but a set of single sequences
for each transition. Each such sequence consists of three parts:

(1) A synchronizing sequence to transfer the FSM to its initial state.
(2) A transferring sequence to move to the source state of the transition to

be tested.
(3) A UIO sequence which verifies the correct destination state of the transi-

tion.

Note that a partition tour is only possible if the utilized sequences exist, which
is not always the case. See Part II of this book for a more detailed description
of the FSM-based algorithms. Also a random sequence can be computed in
which a random generator is used to produce stimuli. Statistics ensures that the
whole specification is covered given that a real random generator is used and
that the produced sequence is of infinite length. This is of course not practicable
but at least these sequences can always be constructed and additional control
mechanisms, which allow an explicit exclusion of transitions, may give quite
usable results.

Tool Interfaces

A textual representation of the specification (E)FSM is needed. All the necessary
information including special features like guards are described here. After a
test suite is generated it is expressed in TTCN-MP, the syntactical notation of
TTCN-2. A graphical representation in the common TTCN table form (TTCN-
GR) is possible via a transformation from TTCN-MP to LATEX.

The Kit has been integrated into several tools and approaches. Below we will
introduce two major ones.

14.2.6 PHACT

Philips [Phi] developed in 1995 a set of tools called PHACT (PHilips Automated
Conformance Tester) which extends the Conformance Kit with the ability to ex-
ecute the computed TTCN test cases against a given SUT. To link the abstract
events of the specification to the corresponding SUT actions, a so called PIXIT
(Protocol Implementation eXtra Information for Testing, this is ISO9646 termi-
nology) has to be written. The executing part of PHACT consists basically of
three components, the supervisor, the stimulator and the observer. The latter
two give stimuli to the SUT respectively observe its outputs, hence they must be
customized for each system. The supervisor utilizes these two components to ex-
ecute the TTCN test suite and to give a pass/fail verdict based on the observed
behavior. A test log is generated which can be processed by the commercial tool
SDT from Telelogic, which in turn can present the log as a Message Sequence
Chart.

To execute tests against an SUT, several modules are compiled and linked
with the observer and simulator. This results in an executable tester which can

410 Axel Belinfante, Lars Frantzen, and Christian Schallhart

be separate from the SUT or linked with it. To compile a tester, modules in C,
VHDL (Very High Speed Integrated Circuit Hardware Description Language)
and Java are supported. Also the TTCN test suite is translated into one of these
languages. This makes it possible to download a whole test application on a
ROM-emulator and carry out the test in batch mode.

Other extensions comprise additional test strategies extending the ones of-
fered by the Conformance Kit (partition and transition tour). To do so a test
template language is defined. Such templates correspond basically to regular ex-
pressions over sequences of input actions that are allowed by the FSM when start-
ing from the initial state. PHACT is not publicly available but several research
groups had access to it and used it to conduct case studies, see e.g. [HFT00].

Testing VHDL Designs

In [MRS+97] the authors report about a generic approach to use PHACT for
hardware testing. More precisely not real hardware is tested here, but its VHDL
model. VHDL can be simulated and is therefore suited for serving as the SUT.
After a test suite is generated by the Conformance Kit, a generic software layer
is used to interface with the VHDL design. The main problem here is to map
the abstract ingredients of the test cases to the model which consists of complex
signal patterns, ports, etc. The aim of the approach is to automate this mapping
as much as possible. Small protocol examples were used as case studies.

Summary

The Conformance Kit and the tools built upon it such as PHACT made it pos-
sible to do several interesting industrial case studies. Furthermore the PHACT
implementation was used for a comparative case study involving other tools like
TGV and TorX. We return to that in section 14.3.

Related Papers

• Case Studies: [MRS+97, HFT00]

14.2.7 TVEDA

Introduction

The R&D center of France Telecom [Fra], formerly called CNet, developed the
TVEDA [CGPT96] tool from 1989 to 1995. The final version TVEDA V3 was
released 1995. The main goal was to support automatic conformance testing
of protocols. Not a formal test theory but empirical experience of test design
methodology formed the base of the TVEDA algorithms. Care has also been
taken to let the tool generate well readable and structured TTCN-2 output. The
approaches of TVEDA and TGV (see 14.2.10) have been partially incorporated
into the tool TestComposer (see 14.2.14) which is part of the commercial tool
ObjectGeode from Telelogic [Tel].

14 Tools for Test Case Generation 411

Test Generation Process

The notion of test purpose in TVEDA basically corresponds to testing an EFSM-
transition. Achieving a complete coverage here is its test approach. This strategy
originates from (human) test strategies for lower layer protocol testing. TVEDA
basically offers two test selection strategies: single tests for each transition or a
transition tour.

To test transitions the tool has to find paths to and from their start-, respec-
tively end-states. One main problem of state-based testing is state explosion
when building the complete state graph of the specification (e.g. when trans-
forming a EFSM into a FSM, or a LOTOS specification into its LTS-semantics).
In particular the problem consists of finding a path from one EFSM-state to
another while satisfying given conditions on the variables. Instead of doing a
(prevalently infeasible) raw analysis, TVEDA implements two main approaches
to compute feasible paths: symbolic execution and reachability analysis using
additional techniques. Only the latter method has been applied effectually and
hence found its way into TestComposer. One hindrance of the symbolic attempt
is that path computations are time-exponential w.r.t. the length of the path to
be computed.

The reachability technique is based on an (external) simulator/verifier. In a
first step the EFSM is reduced. Here all the parts which do not concern reaching
the demanded target transitions are excluded, i.e. specification elements which do
not influence firing-conditions of transitions. After that the simulator is exerted
using three heuristics:

(1) A limited exhaustive simulation. A typical limit is 30000 explored states. A
major part of the paths is found here. Because of a breadth-first search the
discovered paths are also the shortest ones.

(2) Transitions not reached during the first step are tried to be caught during a
second exhaustive simulation using a concept of a state-distance. When the
distance increases during the exploration, the current path is given up and
the next branch is taken. This may yield some new paths which have not
been found in step 1.

(3) Finally TVEDA tries to reuse an already computed path which brings the
specification to a state which is close to the start state of a missing transition.
Another exhaustive search is initiated until the transition is is reached.

This heuristic reachability analysis is used by the offered test selection strategies
to produce the resulting test suites. See [CGPT96]for a detailed description of
the algorithms.

Tool Interfaces

Estelle7 or SDL8 serve as specification languages. A (sequential) SDL specifica-
tion can be represented as an EFSM. In that case an EFSM-transition corre-
7 ISO9074
8 ITU Recommendation Z.100

412 Axel Belinfante, Lars Frantzen, and Christian Schallhart

sponds to a path from one SDL-state to the following next state. The resulting
test suite is expressed in TTCN.

Summary

TVEDA was successfully applied to several protocol implementations, mostly
specified in SDL. Meanwhile it has partly found it’s way into TestComposer,
which is addressed in section 14.2.14. Most of its underlying empirical principles
were later justified theoretically in terms of well elaborated I/O theories, see
[Pha94b].

Related Papers

• Underlying Theory: [CGPT96, Pha94b]

14.2.8 AsmL Test Tool

Introduction

At the beginning of the nineties the concept of Evolving Algebra came up
due to the work of Yuri Gurevich [Gur94]. He was driven by the ambition to
develop a computation model which is capable of describing any algorithm at its
appropriate abstraction level. Based on simple notions from universal algebra an
algorithm is modeled as an evolution of algebras. The underlying set corresponds
to the machines memory and the algebra transformation is controlled by a small
selection of instructions. Later on Evolving Algebra was renamed to Abstract
State Machine, short ASM. ASMs have been used for defining the semantics
of programming languages and extended in several directions like dealing with
parallelism. See the ASM Homepage [ASMa] for detailed information.

At Microsoft Research a group called Foundations of Software Engineering
[MSF] is developing the Abstract State Machine Language, short AsmL,
which is a .NET language and therefore embedded into Microsoft’s .NET frame-
work and development environment. Based on ASMs it is aimed at specifying
systems in an object-oriented manner. AsmL and the .NET framework can be
freely downloaded at [ASMb].

Test Generation Process

AsmL has a conformance test facility included which is based on two steps.
Firstly the specification ASM is transformed into an FSM before subsequently
well known FSM-based algorithms (rural Chinese postman tour, see Part II of
this book) are applied to generate a test suite. The whole testing process is
bounded by the .NET framework, hence the SUT must be written in a .NET
language. The ASM specification is aimed at describing the behavior of the SUT,
abstracting away from implementation details.

14 Tools for Test Case Generation 413

Generating FSMs out of ASMs

In the following we will try to sketch the extraction process which generates an
FSM out of a given ASM specification. This is the crucial step because it highly
depends on user-defined and domain-specific conditions to guide the extraction.
The quality of these conditions determines whether the resulting FSM is an
appropriate abstraction of the ASM and if the extraction algorithm terminates
at all.

If one is not familiar with ASMs just think of it as a simple program-
ming language with variables, functions/methods, some control structure like
an if-then-else, loops, etc. Now every action of the SUT is specified as fol-
lows:

if g1 then R1

. . .
if gk then Rk

where the gi are boolean guards and the Ri are further instructions which are
not allowed to make use of the if-then-else construct anymore (this is a kind
of normal form, one can be less strict when specifying). As expected the initial
values of the variables determine the initial state of a program run. When an
action a is executed the program moves to a next state, which can be seen as a
transition with label a between two program states.

The main problem is that such an ASM has usually an infinite number of
reachable states (unless all possible runs terminate). Hence it is necessary to re-
duce the number of states by grouping them according to a suitable equivalence
relation. To get a satisfying result this relation must guarantee that firstly the
number of resulting equivalence classes (also called hyperstates) is finite, other-
wise the algorithm does not terminate. Secondly the number should not be too
small, i.e. the result does not reflect a meaningful test purpose anymore. In fact
you can consider the definition of the equivalence relation as a kind of very gen-
eral test purpose definition, respectively test selection. The resulting hyperstates
basically become the states of the generated FSM.

The equivalence relation is based on a set of boolean conditions {b1, . . . , bn}.
Two states of the ASM lay in the same class iff none of the bi distinguishes them.
Therefore at most 2n hyperstates are possibly reachable. For example take the
gi of the action specifications as mentioned above as a base for the condition-set.
Using them one can define that states differ (represent different hyperstates) iff
their sets of executable actions differ. Other obvious selections are conceivable.
Beside the potentially exponential number of resulting hyperstates the problem
of computing the so called true-FSM, which covers all reachable hyperstates, is
undecidable (and in a bounded version still NP-hard).

The extracting algorithm which computes the FSM does a kind of graph
reachability analysis. A pragmatic solution to the stated problems is to addition-
ally define a so called relevance condition which tells the extraction algorithm if
the actually encountered ASM-state is worth being taken into account for fur-

414 Axel Belinfante, Lars Frantzen, and Christian Schallhart

ther traversing, even if it does not represent a new hyperstate. Such a relevance
condition usually demands a certain domain specific knowledge to produce a
good result, i.e. a FSM which is as much as possible similar to the true-FSM.

The resulting FSM represents the specified behavior of a system based on the
offered method calls. Hence the method calls constitute the input actions and
their return values correspond to the output actions. For further information see
[GGSV02].

Tool Interfaces

The close embedding of AsmL into .NET enables it to interact with the frame-
work and other .NET languages. Guidance by the user is necessary to construct
test cases as paraphrased above. This process is supported by a GUI and a pa-
rameter generator which generates parameter sets for methods calls. In addition
to the mentioned abstractions (hyperstates, relevance condition), filters can be
used to exclude states from exploration and a branch coverage criteria can be
given to limit the generation process. To carry out the test cases, the SUT must
be given as any managed .NET assembly, written in a .NET language. The bind-
ing of the specification methods with the implementation methods is supported
by a wizard. A test manager is then able to carry out the generated test cases,
see [BGN+03].

Summary

The process of generating an FSM out of an ASM is a difficult task which
requires a certain expertise from the tester for firstly defining a hopefully suitable
equivalence relation and secondly giving a relevance condition which prunes the
state space into something similar like the true-FSM. It is also problematic that
the resulting FSM may become nondeterministic (even if the specification ASM
is not). This makes FSM-based test generation complicated and the AsmL test
generator can not handle it. Dealing with nondeterminism seems to be the main
focus of current research activities. In [BGN+03] one application of the FSM
sequence generator is mentioned but no papers about case studies exist yet.
Note that ASM based testing is a quite new topic and ongoing research may
produce results which extenuate the actual obstacles.

Related Papers

• Tool Overview: [BGN+03]
• Underlying Theory: [Gur94, GGSV02]

14.2.9 Cooper

Introduction

Cooper [Ald90] is a prototype implementation of the Canonical Testers the-
ory [Bri89]. It was developed in the LotoSphere project [BvdLV95, Lit]. Cooper

14 Tools for Test Case Generation 415

has never been applied to case studies; its main function is educational, to il-
lustrate the Canonical Tester theory and the Co-Op method [Wez90, Wez95]
to derive canonical testers. The underlying theory is discussed in Section 6.4.2
(page 166).

Test Generation Process

(Most of the following is quoted/paraphrased from [Wez95].)
Cooper implements the implementation relation conf of [Bri89]. In this no-

tion a process B1 conforms to B2 if and only if B1 contains no unexpected
deadlocks with respect to traces of B2. So, if B1 performs a trace that can also
be done by B2, and at a certain point B1 deadlocks, then also B2 should be
able to perform the same trace and deadlock at the same point. This notion of
conformance allows B1 to perform traces that are not in B2. But when we place
B1 in an environment that expects B2, it will not deadlock unexpectedly with
the environment.

A canonical tester is then a process that can test whether an implementation
conforms to a specification with respect to the conf relation. To test whether a
process P conforms to B we place a canonical tester T (B) in parallel with P .
The tester synchronizes with P , as explained below.

In the initial version of the Co-Op method on which Cooper is based, we only
have basic actions (events) without values. There is no partitioning in input and
output actions, and interaction between tester and implementation is by syn-
chronizing on observable actions. This means that an action can only “happen”
if both the tester and the implementation can “do” it. If only one of them (tester
and implementation) is willing (or able) to do an action, and the other one can
not do the action, then it can not happen. If at a given moment the tester or
the implementation has no actions that it can do, or if the intersection of the
sets of actions that they can do is empty (which means that there are no ac-
tions that they can do together), then they deadlock. There is the notion of an
unobservable, internal (τ) action. And, from there, there is the notion of stable
and unstable states. Stable states are those from which the implementation will
only move after an interaction with its environment. Unstable states are states
from which the implementation can move by itself, by performing some internal
action.

If the tester tries to test an action x that is performed from an unstable
state, it is possible that the implementation has moved to a different state and
no longer wants to do x . So, x can be seen as an action that is (for the given
state) optional in the implementation (the implementation may want to do it,
but it also possible that the implementation no longer can do it because it moved
to a different state where the action is not possible). However, in general, after
the implementation has moved (by doing an internal action) “through” zero or
more unstable states, it will end up in a stable state from which it cannot move
by itself (there are no internal actions possible). For such a stable state, the
tester must be willing to do at least one of actions that the implementation
wants to do from there. Otherwise the tester might deadlock with a correct

416 Axel Belinfante, Lars Frantzen, and Christian Schallhart

implementation. The Co-Op method of deriving a canonical tester is based on
the above observations.

To slightly formalize the above we can say that the outgoing transitions from
a state s can be divided in two sets: Options(s) is the set of actions that s can
perform from its unstable states, and Compulsory(s) is a set of of sets of actions,
where each of the sets of actions corresponds to a stable state that can be reached
from B , and contains exactly the outgoing actions of that stable state.

The initial behavior from the tester is constructed using Compulsory and
Options . The tester may initially try to test any of the actions in Options(s).
The implementation may interact, but this is not guaranteed. Alternatively (or
after trying several Options), the tester may internally move to a state from
which it offers to interact with any of a set of actions: this set is chosen such
that it contains exactly one action of each of the elements of Compulsory(s).
We assume that eventually the implementation moves to one of its stable states,
and from there must be able to perform at least one of the actions offered by the
tester. An implementation that does not interact within some limited time is not
regarded as conforming. If a process s may, after performing a series of internal
actions, enter a deadlocking state from which it cannot perform any actions,
Compulsory(s) will contain the empty set. The tester may then try to do any of
the observable outgoing transitions of s , but no interaction is guaranteed. The
tester may then, after trying zero or more actions, deadlock.

The behavior of the tester after doing an action is computed by first collecting
all states subsequent that can be reached by doing that transition, computing the
initial behavior for the tester from those states (using Compulsory and Options
as above), and combining these initial behaviors.

To paraphrase: this is about who takes the initiative to force a decision in the
case of non deterministic choices. If the specification can decide to do something,
the tester must be able to follow, but if the specification leaves the choice to its
environment, the tester can make (force) the decisions. This means that in the
resulting tester, we see internal steps where the tester may make a decision (to
select between multiple actions offered from stable states of the implementation),
and actions directly offered (without preceding internal step) where the tester
must be able to interact directly with actions from unstable states.

User Interaction

Cooper is started with a given specification. It then shows the user this speci-
fication, together with the initial canonical tester for it, which is the canonical
tester derivation function T applied to the whole expression of the specification.

The user can then zoom in and step by step apply the canonical tester deriva-
tion function on expressions and subexpressions, every time replacing a sub ex-
pression by its initial tester, which leaves the canonical tester to be applied on
the sub expressions that follows the initial actions in initial tester, from which
can then in turn the initial tester can be computed, etc.

Cooper allows the user to select a behavior expression, and then computes
the corresponding canonical tester by computing the tester for the left-hand side

14 Tools for Test Case Generation 417

(prefix) of the expression, and combining that with the recursive application to
the remaining parts of the expression.

Tool Interfaces

Cooper is part of the toolkit Lite (LOTOS Integrated Tool Environment) [Lit]
that was developed in the LotoSphere project for the specification language LO-
TOS. All tools in this toolkit work on LOTOS. Cooper only accepts a restricted
version of LOTOS, called basic LOTOS, that does only contain actions, with-
out data. [Wez95] extends the theory to full LOTOS, but this has not been
implemented.

The canonical tester that Cooper (interactively) generates also has the form
of a LOTOS specification. Test execution is not possible, except by taking the
LOTOS text from a specification or implementation and the LOTOS text of
a tester and manually combining these into a new specification. In this new
specification the behaviors of the original specification (or implementation) and
the tester are put in parallel composition, synchronizing on all actions (this is
actually just a small matter of text editing).

Summary

Even though Cooper is not useful for practical work, it nicely demonstrates the
canonical tester theory underlying it, and the way in which the Co-Op method
allows compositional derivation of canonical testers.

Related Papers

• Tool Overview: [Ald90]
• Input Language: [ISO88, BB87]
• Underlying Theory: [Bri89, Wez90, Wez95]

14.2.10 TGV

Introduction

TGV [JJ02] has been developed by Vérimag and IRISA Rennes, France. It is a
test generator that implements the ioco implementation relation9 [Tre96c] (see
Section 7.4, page 178).

TGV is available as part of the Caesar Aldebaran Development Package
(CADP) [FGK+96]. It has also been integrated as one of the two test generation
engines in the commercial tool TestComposer of ObjectGéode(for SDL), and
it is used as test generation engine in AGEDIS, discussed in Section 14.2.13
(page 427).

Different versions of TGV have been used for a number of case studies in
various application domains and with different specification languages.
9 We think that TGV has always implemented ioco, notwithstanding an earlier pub-

lication [FJJV96] that refers to ioconf [Tre96a] as the implementation relation.

418 Axel Belinfante, Lars Frantzen, and Christian Schallhart

Test Generation Process

The underlying model of TGV is an Input Output Labeled Transition System
(IOLTS). An IOLTS is like an LTS, but with the labels partitioned into three sets:
one containing stimuli, another containing observations, and a third containing
(invisible) internal actions.

The implementation relation implemented is ioco. Hence, the assumption
is made that the SUT is input complete, which means that we assume that it
will never refuse a stimulus, as long as the stimulus is taken from the set from
stimuli.

The input to TGV consists of a specification and a test purpose. Both are
IOLTSes. The generated test cases are IOLTSes with three sets of trap states:
Pass, Fail and Inconclusive, that characterize the verdicts.

The authors of the papers about TGV define test purposes as follows. Note
that this differs from the definition in the glossary. Formally, a test purpose is a
deterministic and complete IOLTS, equipped with two sets of trap states Accept
and Refuse, with the same alphabet as the specification. Complete means that
each state allows all actions (we will see below how this is accomplished), and
a trap state has loops on all actions. Reaching a state in Accept means that
the wanted behavior has been seen; the Refuse set is used to prune behavior
in which we are not interested. In a test purpose the special label “*” can be
used as a shorthand, to represent the set of all labels for which a state does
not have an explicit outgoing transition. In addition, regular expressions can be
used to denote sets of labels. For states where the user does not specify outgoing
transitions for all labels, TGV completes the test purpose with implicitly added
“*” loop transitions. This increases the expressive power of the test purposes, but
at the same time may make it (at least for the inexperienced user) more difficult
to come up with the “right” test purpose that selects the behavior that the user
had in mind (because the implicitly added “*” may make it harder to predict
the result). As mentioned in [RdBJ00], in practice, usually some iterations are
needed in which one defines or refines a test purpose, generates a test suite, looks
at it, and modifies the test purpose, etc.

The test generation process consists of a number of steps; we will briefly
describe them below.

From the specification and the test purpose first a synchronous product is
computed, in which the states are marked as Accept and Refuse using informa-
tion from the test purpose. In the next step the visible behavior is extracted,
after which quiescent states (states in which no observations from the SUT are
expected) are marked. To the quiescent states special δ loop transitions are
added. These δ transitions represent an observation of quiescence: the absence
of output from the SUT.

The result is determinized by identifying meta-states. Determinization is
needed to be able to deal with states that have multiple outgoing transitions
with the same label. Then, test cases are extracted by selecting accepted be-
haviors, i.e. selection of traces leading to Accept states is performed. TGV can
generate both a complete test graph, containing all test cases corresponding

14 Tools for Test Case Generation 419

to the test purpose, and individual test cases. To compute the complete test
graph, the traces not leading to an Accept state are truncated if possible, and
an Inconclusive verdict is added. Pass verdicts are added to traces that reach
Accept. Fail verdicts are implicit for observations not explicitly present in the
complete test graph. Finally, from the complete test graph a controllable sub-
graph is extracted. This controllable subgraph no longer has states that offer
the choice between stimuli and observations, or that offer the choice between
multiple stimuli. In the controllable subgraph each state offers either a single
stimulus, or one or more observations. If the result should be a single test case,
it can be derived from the complete test graph, by making similar controllability
choices.

TGV does most of the steps in an on the fly manner, and here on the fly
means the following. The steps of the algorithm are executed in a lazy (demand
driven) way, where earlier steps are driven by the demand of the later ones, to
avoid doing work in earlier steps that will not be used by later ones. So, it is
not the case that each step is run to completion, after which the complete result
of the step is passed on to the next step. This use of on the fly should not be
confused with the use of the words on the fly for the other tools like Lutess,
Lurette or TorX: there it refers to continuously alternating between generation
of a test step, and execution of the test step (after which the next test step is
generated, and executed, and the next, etc.).

Tool Interfaces

To interface with the outside world (both for specification and test purpose, and
for generating formalism in which the resulting test suite is presented) TGV uses
APIs, which makes it quite flexible.

The specification languages accepted by TGV include LOTOS (via CADP
[FGK+96], needs an additional file specifying input/output partitioning), SDL
(either using the simulator of the ObjectGéode SDL tool, or using the com-
mercial tool TestComposer [KJG99] that integrates TGV), UML (using UM-
LAUT [UMLb, HJGP99] to access the UML model) and IF (using the simulator
of the IF compiler [BFG+99]). TGV also accepts specifications in the other for-
mats/languages made accessible by the open/caesar interface [Gar98] (API) of
the CADP tool kit. It is also used as test generation engine in AGEDIS (see
Section 14.2.13). The resulting test suite can be generated in TTCN or in one
of the graph formats (.aut and .bcg) of CADP.

Summary

TGV is a powerful tool for ioco-based test generation from various specification
languages. New specification languages or test suite output formats can relatively
easy be connected thanks to the open APIs TGV uses. The main contribution
of TGV lies in the algorithms that it implements, and in its tool architecture.

420 Axel Belinfante, Lars Frantzen, and Christian Schallhart

TGV uses test purposes to steer the test generation process; coming up with
the “right” test purposes to generate the tests envisioned may take some itera-
tions.

A limitation lies in the non-symbolic (enumerative) dealing with data. Be-
cause all variables in the specification are instantiated for all possible values (or,
in the case of infinite data types, for a finite subset), the resulting test cases can
be big and therefore relatively difficult to understand (compared to what could
be the result if more symbolic approaches would be used).

Related Papers

• Tool Overview: [JJ02]
• Related Tools: [FGK+96, Gar98, UMLb, HJGP99, KJG99, BFG+99]
• Underlying Theory: [Tre96c]
• Case Studies: there is an overview in [JJ02]

14.2.11 TorX

Introduction

In the late nineties the Dutch academic-industrial research project Côte de
Resyste [TB02] had as its goal to put into practice the (ioco) testing the-
ory that had been developed so far. The way to put the theory in practice was
by developing a testing tool based on this theory, by applying the tool to case
studies to evaluate it, and by forcing it to progress by offering it new challenges.
The case studies ranged from toy examples to (not too big) industrial applica-
tions [BFdV+99, dBRS+00, dVBF02].

The testing tool result of this project is TorX. TorX is both an architecture
for a flexible, open, testing tool for test derivation and execution, and an imple-
mentation of such a tool. The ioco implementation relation that it implements
has already been discussed in Chapter 7 (page 173) and will be revisited when
we discuss the test generation algorithm of TorX.

TorX can freely be downloaded [Tor], its license file lists the conditions for
use.

Test Generation Process

TorX is both a testing tool architecture and an implementation of a testing tool.
With “TorX” we refer to the testing tool; unless we explicitly say otherwise. TorX
can be used both for test generation and test execution. TorX, the architecture,
offers two modes of operation: batch and on the fly generation and execution.
TorX, the testing tool, does not implement all possibilities offered by the TorX
architecture.

14 Tools for Test Case Generation 421

Batch Mode The batch mode works with two separate phases in which first a
test suite is generated, and then executed. The batch generation mode has not
been implemented in TorX. The batch execution mode is implemented as on the
fly generation and execution (as discussed below) from degenerate models (that
only describe a single test case). The batch execution mode has been used to
execute test cases generated by TGV [dBRS+00].

On the Fly Mode The on the fly generation and execution mode works in a dif-
ferent way. In this mode generation and execution go hand in hand. Or, phrased
differently, during execution the test suite is generated on demand (comparable
to lazy evaluation in functional programming languages). As soon as a test step
is generated, it is also executed, after which the next test step is generated, and
executed, etc. The advantage of this approach is that it is not necessary to ex-
pand the complete state space during test generation – in on the fly mode TorX
expands only that part of the state space that is needed for a particular test
run. How a particular test run is chosen will be discussed below.

Implementation Relation TorX implements the implementation relation ioco
[Tre96c]. The underlying model is that of Labeled Transition Systems (LTS). The
visible labels (L) in the LTS are partitioned into stimuli (I) and observations
(U). There are two special labels (actions), τ and δ. τ represents the internal (in-
visible) action. δ represents quiescence, the observation of the absence of output
(the observation that there is nothing to observe). How quiescence is actually
observed depends on the (interfaces to) the implementation. For message-based
interfaces, usually a timer will be set, and when no message is received by the
time the timer expires, it is assumed that no message will come at all (until a
further stimulus is send), so quiescence has been observed. In other cases there
may be other ways to observe quiescence.

The main characteristic of ioco is that for any trace of actions allowed by the
specification, the output (in U∪δ) that can be observed from the implementation
after doing this trace is allowed in the specification. The assumption is that the
implementation is input-enabled, which means that it will be able to consume
all stimuli that the tester sends to it. On the other hand, the tester is able to
consume all outputs (observations) of the implementation.

TorX Algorithm From the above we can come to an informal description of
the algorithm implemented in TorX. We do a walk through the state space of
the specification. For now we assume a random walk, so whenever the algorithm
has to make a choice, the choice will be made randomly; in the next section we
will discuss how the walk (rephrased: how the choices made by the algorithm)
can be guided by test purposes (test case specifications). Elsewhere it has been
discussed why random walks are effective in protocol validation [Wes89] – similar
reasons apply to testing. For a comparison of random walk and other approaches
for testing see Section 11.4 (page 301).

422 Axel Belinfante, Lars Frantzen, and Christian Schallhart

If the specification contains nondeterminism, we simply follow multiple paths
at the same time.

We start at the initial state of the specification. We choose between stimu-
lating and observing. If we want to observe, we get an observation from the SUT
and check if it is allowed by the specification. If we want to stimulate, we derive
a stimulus from the specification (if there are multiple possibilities, we choose
one) and we send the stimulus to the implementation. We do this until we find
an inconsistency (an observation from the implementation was not allowed by
the specification), or until we have done a given (pre-decided) number of test
steps. In the first case, we give the verdict fail, in the second, the verdict pass.

If we make the choices randomly, so each test run maps to a random walk in
the specification, and we do this often enough, and/or long enough, we should be
able to find all errors (provided the random walks are indeed random so we do
not consistently ignore certain parts of the specification). The case studies done
with TorX, where choices were made randomly, seem to confirm this. Note that
for this approach we do not need a test purpose – however, we cannot control
the random walk through the specification, other than by deciding on the seed
for the random number generator.

Test Purposes To have more control over which part of the specification is
walked, the TorX architecture, and the tool, allow the use of a test purpose. In
TorX, a test purpose can be anything that represents a set of traces over L∪{δ}.
During the random walk, the random decisions to be made (the choice between
stimulating and observing, and, when stimulating, the choice of the stimulus
from a set of them) are constrained by the traces from the test purpose. If the
test purpose traces allow (at a certain point) only stimuli, or only observations,
the choice between stimulating and observing is decided by the test purpose. In
the same way, the choice of a stimulus is constrained by those that are allowed
by the test purpose. If (at a certain point in the random walk) the intersec-
tion of the actions allowed by the test purpose and the actions allowed by the
specification becomes empty, the test purpose has not been observed (we have
missed it [VT01]) (there is one exception to this which we will discuss below).
This corresponds to the traditional inconclusive verdict. On the other hand, if
we reach the end of one of the traces of the test purpose, we have successfully
observed (hit in [VT01]) (one of) the behavior(s) of the test purpose.

The one exception mentioned above is the following. One can think of a
test purpose that triggers an error in an erroneous implementation. The last
action of such a test purpose can be the erroneous output (observation) triggered
by the test purpose. Running such a test purpose with the specification and
an erroneous implementation will yield a fail verdict, but the last (erroneous)
output of the implementation will be the last action in the test purpose, so the
test purpose is hit, even though the intersection between the (correct) behavior
specified in the specification and the incorrect behavior described in the test
purpose is empty. The result of the execution will be the tuple 〈fail , hit〉.

As implicitly suggested above, correctness (pass and fail verdicts) and the
success (hit or miss) of observing a desired (or undesired) behavior are treated

14 Tools for Test Case Generation 423

as two different dimensions, such that when a test purpose is used, the verdict of
TorX is a tuple from {pass , fail}×{hit ,miss}, which is slightly more informative
than the traditional singleton verdict from {pass , fail , inconclusive}.

Tool Interfaces

In principle, TorX can be used for any modeling language of which the models can
be expressed as an LTS. As much as possible, it tries to connect to existing tools
that can generate an LTS for a particular specification language. So far, it has
been connected to the Caesar Aldebaran Development Package (CADP, offering
.aut, LOTOS) [FGK+96], to Trojka (a program, based on SPIN [Hol91], that
derives test primitives from systems described in Promela) [dVT98]. to the LTSA
tool (giving access to the language FSP) [MK99], and to the LOTOS [ISO88]
simulator Smile [EW92, Eer94].

In this way, TorX can be used with specifications written in the languages
LOTOS, Promela [Hol91] and FSP, and in a number of the formats made avail-
able via the open-caesar interface of the CADP tool kit [Gar98] (Aldebaran
(.aut), binary coded graphs (.bcg)).

For the test purposes TorX uses a special regular expression-like language and
tool, called jararaca. The tool jararaca gives access to the LTS (i. e. the traces)
described in the test purpose. Also other languages can be used to describe
test purposes; initial experiments have been done by describing test purposes in
LOTOS and accessing the LTS via the connection to CADP.

The interfaces between the components in TorX are documented, so the user
is free to connect his or her own specification language to TorX (as long as it
can be mapped onto an LTS).

TorX expects the user to provide the connection to the SUT, in the form
of a program (glue code) that implements the TorX Adapter interface. In this
interface abstract input and output actions are exchanged. It is the users re-
sponsibility to provide in the glue code the encoding and decoding functionality,
and the connection to the SUT.

Summary

TorX is a flexible, open tool that is based on the ioco implementation relation.
It allows (non-deterministic) specifications in multiple languages (in principle
any language which can be mapped on an LTS can be connected). It can use
but does not need test purposes. It has an open, well defined interface for the
connection to the SUT; however, the end user has to provide the glue code to
make this connection.

Related Papers

• Tool Overview: [TB02]
• Input Languages: [ISO88, BB87, Hol91, MK99]

424 Axel Belinfante, Lars Frantzen, and Christian Schallhart

• Related Tools: [FGK+96, Gar98, dVT98, MK99, EW92, Eer94]
• Underlying Theory: [Tre96c, VT01]
• Case Studies: [BFdV+99, dBRS+00, dVBF02]

14.2.12 STG

Introduction

STG (Symbolic Test Generator) [CJRZ02] has been developed at IRISA/INRIA
Rennes, France. It is a tool that builds on the ideas on which TGV and TorX are
based, and adds symbolic treatment of variables (data) to these. In TorX and
TGV all variables in the specification are instantiated for all possible values10.
In contrast, variables in STG are treated in a symbolic way, leading to symbolic
test suites that still contain free variables, which are then instantiated during
test execution. So, STG supports both generation of symbolic test suites, and
execution of these.

STG is a relatively new tool. The theory underlying it has been published in
2000 [RdBJ00]; the tool was reported first in 2002 [CJRZ02]. STG has been used
to test simple versions of the CEPS (Common Electronic Purse Specification)
and of the 3GPP (Third Generation Partnership Program) smart card. The
results of the CEPS case study are summarized in [CJRZ01]. STG was used to
automatically generate executable test cases, and the test cases were executed on
implementations of the systems, including mutants. Various errors in the source
code of the mutants were detected.

At the time of writing, STG is not publicly available (this may change in the
future).

Test Generation Process

As mentioned in the introduction, STG supports both test generation, and test
execution, where the test cases that are generated and executed are symbolic. It
implements a symbolic form of ioconf [Tre96a] but without quiescence (for an
overview of implementation relations see Section 7.4, page 178).

STG takes as input a specification in the form of an (initialized, discussed
below) Input Output Symbolic Transition System (IOSTS) and a test purpose
and produces from these a symbolic test case. Such a symbolic test case is a
reactive program that covers all behavior of the specification that is targeted by
the test purpose.

For execution, the abstract symbolic test case is translated into a concrete test
program that is to be linked with the implementation. The resulting executable
program is then run for test execution, which can yield three possible results:
Pass, Fail or Inclusive, with their usual meaning.

An IOSTS differs from an LTS in the following way. An IOSTS has specifi-
cation parameters and variables. Actions are partitioned into input, output and

10 Except when Promela, or LOTOS with Smile, are used in TorX.

14 Tools for Test Case Generation 425

internal actions. With each action a signature (a tuple of types) is associated
(the types of the messages exchanged in/with the action). An IOSTS does not
have states, but (a finite set of) locations. A state is now a tuple consisting of
a location and a valuation for the variables and parameters. Transitions now
not only associate a source (origin) location with a destination location and an
action, but also have a boolean guard, a tuple of messages (the messages sent/re-
ceived in the action), and a set of assignments. An IOSTS can be instantiated
by providing values for its parameters. An instantiated IOSTS can be initialized
by providing an initial condition that assigns a value to each variable. In a deter-
ministic IOSTS the next state after execution of an internal action only depends
on the source state, and the next state after execution of a valued input or valued
output action only depends on the source state and the action. Rephrased, once
we know which action is executed, we also know the successor state. So, in an
initialized, deterministic IOSTS we resolve the free variables as we execute the
actions, i.e. for each transition, the free variables that it introduces are resolved
(bound) when the action is executed. Free variables in subsequent behavior only
originate from actions that still have to be executed – once these actions are
executed as well, also those free variables are bound.

The authors of the STG papers define test purposes as follows (note that
this differs from the definition in the glossary, but is relatively close to the test
purposes of TGV discussed in Section 14.2.10 on page 417). The test purpose
is also an IOSTS. This IOSTS can refer to parameters and variables of the
specification to select the interesting part of the specification. A test purpose has
two specially named locations: Accept and Reject. Reaching the Accept location
means that the test purpose has been successfully passed. The Reject location
is used to discard uninteresting behavior. The user does not have to write a
“complete” test purpose, because it is implicitly completed, as follows. For each
“missing” outgoing action a self loop is added, and for each outgoing action
with guard G, a transition to Reject, with guard ¬G, is added. Nevertheless,
Rusu et al. mention that according to their experience with the tool TGV, the
development of “good” test purposes is an iterative process in which the user
writes down a test purpose, examines the result, modifies the test purpose and
repeats until a satisfactory result is obtained [RdBJ00].

From a specification and a test purpose a test case is generated by taking
the product of the specification and the test purpose. We will skip the details
here, and just mention the steps in test case generation. In a first step, the
product of specification and test purpose is computed. From this product, the
internal actions are removed, which may involve propagating guards of internal
actions to the nearest observable actions. In a subsequent step, nondeterminism
is eliminated, to avoid that verdicts depend on internal choices of the tester. The
last step consists of selecting the part that leads to the Accept locations, and of
adding transitions to a new location fail for “missing” observation actions. The
result should be an initialized, deterministic, observation-complete, sound test
case. These properties are proven in the paper.

The test case can still contain parameters and variables, these are filled in
during test execution. How the parameters and variables are selected is not

426 Axel Belinfante, Lars Frantzen, and Christian Schallhart

discussed in the papers describing STG. Formally, a test case is an initialized,
deterministic IOSTS together with three disjoint sets of locations Pass, Incon-
clusive and Fail.

During test generation and test execution, STG has to do symbolic evaluation
of guards, to be able to prune actions that have conflicting guards. If STG
would have implemented (a symbolic form of) ioco, it would not only have been
important for efficiency, to avoid exploring parts of the specification that are
“unreachable” anyway, but also for correctness, to be able to mark the right
states as quiescent.

The IOSTS model is defined such that it can be easily translated to the
input languages of tools like the HyTech model checker [HHWT97] and the
PVS theorem prover [ORSvH95]. Rusu et al. demonstrate this by showing how
HyTech and PVS can be used to simplify generated tests to prune parts that are
unreachable due to guards that contain conflicts [RdBJ00]. STG has been used
in conjunction with PVS for combined testing/verification [Rus02].

Tool Interfaces

The tool STG [CJRZ02] can be seen as an instantiation of the approach to
symbolic test generation described by Rusu et al. [RdBJ00].

STG accepts specifications and test purposes in the LOTOS-like language
NTIF [GL02], a high-level LOTOS-like language developed by the VASY team,
INRIA Rhône-Alpes. The specification and the test purpose are automatically
translated into IOSTS’s, after which the test generation process produces a sym-
bolic test case, which is also an IOSTS. For test execution the symbolic test case
is translated into a C++ program which is to be linked with the (interface to
the) SUT. The test case C++ program communicates with the (interface to the)
SUT via function calls.

For each action of the test case, the (interface to the) SUT should implement
a function that has the same signature as the action, such that the messages of
the action are passed as parameters to the function.

STG uses OMEGA [KMP+95] for symbolic computations (to compute sat-
isfiability of guards). As a consequence, the data types that are allowed in the
specification are limited to (arrays of) integers, and enumerations.

Summary

STG builds on existing theory and tools (algorithms) of mostly TGV, and adds
symbolic treatment of data to this, which results in smaller and thus more read-
able test cases than achieved with the enumerative approaches used so far.

The ability to do symbolic computation (e.g. to detect conflicts in predicates,
such that behavior can be pruned) is non-trivial. STG uses the tool OMEGA
to do this. The capabilities of OMEGA (what data types does it support) are
reflected in the input language for STG.

14 Tools for Test Case Generation 427

Related Papers

• Tool Overview: [CJRZ02]
• Input Language: [GL02]
• Related Tools: [KMP+95, ORSvH95, HHWT97]
• Underlying Theory: [RdBJ00]
• Case Studies: [CJRZ01, CJRZ02]

14.2.13 AGEDIS

Introduction

AGEDIS [AGE] (Automated Generation and Execution of test suites for DIs-
tributed component-based Software) was a project running from October 2000
until the end of 2003. The consortium consisted of seven industrial and academic
research groups in Europe and the Middle East, headed by the IBM Research
Laboratory in Haifa. The goal was the development of a methodology and tools
for the automation of software testing in general, with emphasis on distributed
component-based software systems. Starting from a specification expressed in
a UML-subset, basically the TGV algorithms are used for the test generation.
Another tool which partly found its way into AGEDIS is GOTCHA from IBM.

Test Generation Process

An open architecture was a fundamental principle of the AGEDIS design. There-
fore interfaces play a vital role. The main interfaces are as follows:

• Behavioral modeling language
• Test generation directives
• Test execution directives
• Model execution interface
• Abstract test suite
• Test suite trace

The first three constitute the main user interface while the last three are more
of internal interest. In the following the actual instantiations of the interfaces
are shortly introduced.

AML (AGEDIS Modeling Language), which is a UML 1.4 profile, serves as
the behavioral modeling language. Class diagrams together with associations
describe the structure of the SUT. The behavior of each class is fixed in a cor-
responding state diagram, where Verimags language IF serves as the action lan-
guage. Attached stereotypes are used to describe the interfaces between the SUT
and its environment. A full description of AML is available at the AGEDIS web
page [AGE].

Test purposes are given in the test generation directives which are modeled
with system level state diagrams or MSCs. Also simple default strategies are
possible. As TestComposer (which also builds on TGV), AGEDIS allows here to

428 Axel Belinfante, Lars Frantzen, and Christian Schallhart

use wildcards to specify abstract test purposes which are completed by the tool
in every possible way to allow abstraction from event-ordering. AGEDIS offers
five predefined strategies to generate test purposes:

• Random test generation
• State coverage – ideally cover all states of the specification
• Transition coverage – ideally cover all transitions of the specification
• Interface coverage – ideally cover all controllable and observable interface

elements
• Interface coverage with parameters – like interface coverage with all param-

eter combinations

The abstract specification parts like classes, objects, methods and data types
have to be mapped to the SUT. This, and the test architecture itself, is described
in an XML schema which instantiates the test execution directives interface.

The model execution interface encodes all the behavior models of the SUT,
i.e. the classes, objects and state machines. Again IF is used to do so. See also
here the web site for a detailed description.

Both the abstract test suite and test suite traces are described by the same
XML schema. A test suite consists of a set of test cases, zero or more test suite
traces and a description of the test creation model. Each test case consists of a
set of test steps which in turn may consist of stimuli (method calls), observations,
directions for continuation or verdicts. Several stimuli may occur in one test step
and they can be executed sequentially or in parallel. The common verdicts pass,
fail and inconclusive are possible. Alternative behavior within a test case is used
to model nondeterminism. Test cases can also be parameterized to be run with
different values and other test cases can be evoked within a test case. AGEDIS is
restricted to static systems, i.e. objects can not be created or destructed during
test case execution.

The AGEDIS tools are written in Java. Currently, the specification modeling
in AML and the creation of test generation directives are only supported using
the commercial Objecteering UML Editor together with an AML profile. The
designed model can be simulated with an IF-simulator. Test generation based
on the model and the test generation directives is done by the TGV algorithms.

AGEDIS also allows an execution of the generated test suite. The execution
framework is called Spider. It is able to execute test cases on distributed com-
ponents written in Java, C or C++. Spider takes care of the distribution of the
generated test objects. Furthermore it controls the whole test run, i.e. provid-
ing synchronous or asynchronous stimuli, observing the outputs, checking them
against the specification and writing the generated traces in the suite as XML
files. Two tools are provided for test analysis, a coverage and a defect analyzer.
The first one checks for uncovered data value combinations and method calls.
It generates new test cases to cover these missed parts and a coverage analysis
report. The defect analyzer tries to cluster traces which lead to the same fault
and generates one single fault-trace out of them to ease the analysis when many
faults are detected.

14 Tools for Test Case Generation 429

Tool Interfaces

As outlined above, AGEDIS is based on a specification given in AML. It is able
to execute the generated test suite in a distributed environment with components
written in Java, C or C++. Widely accepted formats like XML and the open
interface structure of AGEDIS offer easy access to extensions and variations of
the framework.

Summary

AGEDIS is currently not obtainable for academic use. The list of available publi-
cations is also rather small, basically only the motley selection from the AGEDIS
website is accessible. Decisions regarding further propagation and succeeding
projects will determine the progression of the toolset. The main strength of
AGEDIS is its open and user friendly embedding of the theory in a UML-based
environment. A related modeling concept is the U2TP (UML Testing Profile)
which is about to find its way into UML 2.0 and will therefore gain a great atten-
tion by the test-tool vendors. See chapter 17 for more information. Furthermore
it is based on UML 2.0 concepts and in that sense better equipped to become the
favored test-related modeling language in the UML community. Nonetheless the
open concept of AGEDIS may pay off and further development (e.g. regarding
dynamic object behavior, converge to U2TP) can make AGEDIS an interesting
UML-based testing environment for distributed systems.

14.2.14 TestComposer

Introduction

TVEDA and TGV constitute the basis of TestComposer, which was commer-
cially released in 1999 as a component of ObjectGeode by Verilog. In Decem-
ber 1999 Telelogic acquired Verilog. Together with the Tau toolset, in which
AutoLink is the test component (also Telelogic), they form the two major SDL
toolsets. TVEDA was integrated in the test purpose generation process. Some
extensions were applied to facilitate the processing of multi-process specifica-
tions (TVEDA was only designed for single-processes). The test case generation
was taken over by the TGV algorithms.

Test Generation Process

The whole testing process is based on an SDL specification of a (possibly dis-
tributed) system. Any block within the SDL specification can be identified as
the SUT. The channels which are connected to the block become PCOs (Points
of Control and Observation). In the case of a distributed system TestComposer
is restricted to a monolithic tester, i.e. one tester takes care of the whole testing
process.

430 Axel Belinfante, Lars Frantzen, and Christian Schallhart

To generate a test suite a set of test purposes is needed, which represent
sequences of input and output events exchanged between the SUT and its envi-
ronment (black box testing). Two modes are offered to generate them. In the in-
teractive mode the user can define test purposes with the help a SDL-simulator.
Guiding a stepwise simulation of the system one can construct a sequence of
interest.

Based on the SDL specification the tool can automatically complete a set of
test purposes based on a state space exploration to achieve a given percentage
of system-coverage. As in AutoLink the coverage unit is an observational step,
i.e. a sequence of events connecting two states in which the only possible actions
are an input stimuli or a timeout of an internal timer (so called stable states). A
test purpose corresponds to such an observational step which again corresponds
to one or many basic blocks, i.e. blocks of SDL instructions without branching.
It is the same approach as the one from AutoLink and hence there is the same
problem with nondeterminism, see 14.2.15.

In addition to depth-first and supertrace algorithms TestComposer offers a
breadth-first search to traverse the reachability graph. To narrow the search it
is possible to exclude parts of the SDL specification (like transitions, processes
or whole blocks) from the state exploration. To automatically generate postam-
bles which bring the SUT back to a suitable idle-state, TestComposer allows to
manually define boolean expressions that signalizes such idle states and there-
fore allow a search back to them. Test purposes are automatically partitioned
into preamble, test body and postamble. Observer processes can also be used as
abstract test purposes. They do not have to be transformed into MSCs like in
AutoFocus. Such an observer can be used to prune paths of the state space or
generate reports when a given condition holds.

A test purpose does not have to cover a complete sequence of observable
events, it can be incomplete (respectively abstract). TestComposer computes the
missing events needed to bind the specified ones together. There can be many
ways to complete the abstract sequence which allows an abstract test purpose
to describe the set of all possible completions. This is especially useful when the
order of signals does not matter which is a common situation when different
communication channels are involved.

To generate test cases, paths in the SDL specification have to be found which
correspond to the test purposes. Here come the TGV algorithms into operation
which perform also the postamble computation.

Tool Interfaces

SDL specifications serve as inputs. An API (Application Programming Lan-
guage) allows the user to construct interfaces with arbitrary test specification
languages. A module for TTCN is already included.

Summary

TestComposer is very similar to AutoLink. Some of the comparative results of
[SEG00] will be addressed in 14.3.

14 Tools for Test Case Generation 431

Related Papers

• Case Studies: [SEG00]

14.2.15 AutoLink

Introduction

autolink [KGHS98, SEG00] is a test generation tool that has been developed
at the Institute for Telematics in Lübeck and is based on the former work of the
SaMsTaG project [GSDH97]. It has been integrated in (added to) the Tau tool
environment of Telelogic in 1997.

AutoLink has been used extensively within the European Telecommunica-
tions Standards Institute (ETSI) for the production of the conformance test
suite for the ETSI standard of the Intelligent Network Protocol (INAP) Capa-
bility Set 2 (CS-2).

Attention has been given to the production of readable output (TTCN) –
the resulting test suite is not something that is just to be given to a (TTCN-)
compiler to produce an executable test program, it is also to be meant to be
amenable to human apprehension.

Test Generation Process

AutoLink uses test purposes to guide the test generation process. It does this
by exploring the state space of the specification. These test purposes can be
written by hand, obtained by simulation, or generated fully automatically. The
automatic generation of test purposes is based on state space exploration, where
the decisive criterion is to get a large structural coverage of the specification.
Each time a part of the specification is entered that has not been covered by a
previous test purpose, a new one is generated. The basic unit of coverage is a
single symbol of the specification. To avoid generating many identical test cases,
larger sequences of coverage units that lead from one stable state to another are
examined. A stable state is a state in which the system either waits for a new
stimulus from its environment or the expiration of a timer. Such sequences are
called observation steps. Each automatically generated test purpose contains at
least one observation step. In most cases, an observation step includes a stimulus
from the tester and one or more responses from the SUT.

Due to non-determinism, a single observation step can correspond to multi-
ple parts of the specification, i.e. one cannot be sure that an observation step
indeed tests the intended part of the specification. Schmitt et al. claim that the
computation of Unique Input/Output sequences would solve this problem, but
that in practice it is most of the time not necessary to prove that a test includes
UIO sequences [SEG00] .

To explore the state space, both depth-first and supertrace algorithms are
offered. The user can also provide a path from the initial state to a point from
which automatic exploration is done. Also other strategies/heuristics are imple-
mented.

432 Axel Belinfante, Lars Frantzen, and Christian Schallhart

AutoLink also allows test generation using observer processes. The observer
process runs in parallel with the specification, and has access to all internal
elements of the specification. This seems similar to the power of the test purposes
in other test tools discussed here like e.g. STG, TGV, TorX, Lutess. However,
the observer process has first to be transformed to a set of message sequence
charts, because AutoLink requires (complete) Message Sequence Charts for test
purposes.

AutoLink can also generate test cases from only test purposes, so, without
specification. Schmitt et al. mention that this can be beneficial, because it is
not always possible to simulate a test purpose [SEG00]. One reason for this
could be that the specification is incomplete and only partial specifications are
available, and thus the behavior one wants to test is not present in the (partial)
specification [KGHS98]. We did not study this in detail, but we are worried
about the correctness (soundness) of the resulting test cases, because, how can
you be sure that the tests that you generate in this way will not reject a correct
implementation?

Once the test purposes are available, the test generation from them is divided
in three steps. In the first step the data structures for a new test case are initial-
ized, the test purpose is loaded, etc. In the second step the actual state space
exploration is performed, and a list of constraints is constructed. Constraints
are definitions of data values exchanged between the tester and the SUT; one
could say that these definitions impose constraints on, for example, values for
message parameters, hence the name which originates from TTCN terminology.
Basically, for each send and receive event in the test case a constraint with a
generic name is created. Usually, these generic names are not very informative.
Therefore, a mechanism has been added to AutoLink to allow the user to control
the naming and parameterization of these constraints via a configuration file in
which rules can defined using a special language. Finally, in the third step the
data structure for the resulting test case may be post processed, and identical
constraints are merged. Usually, this greatly reduces the number of constraints,
and this increases the readability of the generated test suite.

AutoLink supports a generic architecture for distributed testers. The user
has to explicitly state synchronization points in the test purpose, after which
coordination messages can be generated automatically.

Schmitt et al. state that AutoLink uses on-the-fly generation in the same way
as TGV.

Tool Interfaces

AutoLink accepts specifications in SDL. Test purposes should be provided as
Message Sequence Charts (MSCs). The resulting test suite is generated in the
form of TTCN-2. The constraints (see above) are provided (generated) into
separate files, which can be modified by the user before the complete TTCN test
suite is generated.

A TTCN compiler can then be used to translate the generated TTCN into
an executable test program.

14 Tools for Test Case Generation 433

Summary

AutoLink is an (industrial strength) test generator to generate (readable) TTCN
test suites from SDL specifications. The test suite generation is guided by test
purposes that can be supplied by the user, or also generated fully automatically.
Unfortunately, a theoretical underpinning of the algorithms used in AutoLink
was not present in the papers we studied. Fortunately, it turned out to be possible
to reverse engineer the conformance relation definition for AutoLink [Gog01].
AutoLink has been used in a number of case studies.

Related Papers

• Tool Overview: [KGHS98, SEG00]
• Related Tools: [GSDH97]
• Underlying Theory: [Gog01]

14.3 Comparison

Many aspects can be addressed when comparing tools. Below we name just a
few, grouped by separating theoretical aspects from more practical ones.

• Theoretical aspects
– Are the test generation algorithms based on a sound theory? How do

these theories relate to each other?
– Which error-detecting power can be achieved theoretically?
– What is the time/space complexity of the underlying algorithms?
– Is the theory suited for compositional issues? Can models be congruently

composed?
– Is the theory suited for distributed issues? Is it possible to generate

several distributed testers or is only a monolithic one possible?
– How is data handled by the formalisms? Is the theory restricted to simple

sets of actions or is there support for complex/symbolic data, e.g. infinite
domains? How is this handled?

– Is there a notion of time? Is it possible to guarantee time constraints
during the test execution (which is necessary for real time systems)?

– Can it deal with nondeterministic SUTs, or only with deterministic ones?
– Can it deal with non nondeterministic specifications?

• Practical aspects
– Which error-detecting power can be achieved practically (case studies)?
– Is it only possible to generate test suites or also to execute them on a

real SUT?
– How user-friendly is the tool? Is there a GUI facilitating the usage? Are

graphical models used (e.g. UML)?
– Which are the supported test case specifications?
– How difficult is it to create a suitable input (e.g. defining test purposes)?

Are many parameters needed and does the tool help in setting them?

434 Axel Belinfante, Lars Frantzen, and Christian Schallhart

– Are the interfaces open or proprietary? Are widely accepted standards
used?

– To which operational environment is the tool restricted?
– What practical experience is there (what test cases are performed) with

the tool?

We will focus on two comparison approaches that we found in the literature:
theoretical analysis and benchmarking. In a theoretical analysis, one compares
the test generation algorithms implemented in the tools, and tries to deduce
conclusions from that. In benchmarking, one does a controlled experiment, in
which one actually uses the tools to find errors, and tries to deduce conclusions
from that.

Below we discuss each of the approaches in more detail. In the discussion we
will mainly focus on theoretical and practical error-detecting power. Regarding
the other aspects, we have tried to give as much information as possible in the
individual tool descriptions, and leave it to the interested reader to follow the
references.

14.3.1 Theoretical Analysis

Goga analyzes the theory underlying the tools TorX, TGV, AutoLink and
PHACT [Gog01]. For PHACT, the theory underlying the Conformance Kit is
analyzed; it implements a UIO test generation algorithm. Goga maps the algo-
rithms used in the tools onto a common theory in order to compare the con-
formance relations that they use. To be able to do so, he also constructs the
conformance relation for AutoLink. Then, by comparing their conformance re-
lations, he can compare their error-detecting power. The rough idea is that, the
finer the distinction is that the conformance relation can make, the more subtle
the differences are that the tool can see, and thus, the better its error-detection
power is. For the details we refer to [Gog01].

The result of this comparison is the following (here we quote/paraphrase
[Gog01]). TorX and TGV have the same error-detection power. AutoLink has less
detection power because it implements a less subtle relation than the first two (for
certain kinds of errors TGV and TorX can detect an erroneous implementation
and AutoLink can not).UIO algorithms (PHACT) have in practice less detection
power than AutoLink, TGV and TorX. In theory, if the assumptions hold on
which UIOv is based, it has the same detection power as the algorithms of the
other three tools. These assumptions are:

A) the specification FSM is connected
B) the specification FSM is minimal
C) the number of states of the implementation is less than or equal to the

number of states of the specification.

Because in practice assumption C) rarely holds, we conclude that in practice the
three other algorithms are in general more powerful than UIOv algorithms.

14 Tools for Test Case Generation 435

These theoretical results coincide with the results obtained with the bench-
marking experiment discussed below.

Regarding the other theoretical aspects we have tried to give as much infor-
mation as possible in the tool descriptions. Not all facts (especially complexity
issues) are known for every tool and some aspects are still actual research topics.
Examples of the latter are compositionality, complex data and real time issues.

14.3.2 Benchmarking

The benchmarking approach takes the view that, as the proof of the pudding is
in the eating, the comparison (testing) of the test tool is in seeing how successful
they are at finding errors. To make comparison easier, a controlled experiment
can be set up. In such an experiment, a specification (formal or informal) is
provided, together with a number of implementations. Some of the implementa-
tions are correct, others contain errors. Each of the tools is then used to try to
identify the erroneous implementations. Ideally, the persons doing the testing do
not know which implementations are erroneous, nor do they know details about
the errors themselves. Also, the experience that they have with the tools should
be comparable (ideally, they should all be expert users, to give each tool the
best chance in succeeding).

In the literature we have found a few references to benchmarking or similar
experiments.

Other disciplines, for example model checking, have collected over time a
common body of cases or examples, out of which most tool authors pick their
examples when they publish results of their new or updated tools, such that
their results can be compared to those of others.

In (model-based) testing this is much less the case, in our experience. Often
papers about model-based testing tools do refer to case studies done with the
tools, but usually the case studies are one-time specific ones. Moreover, many
of the experiments done for those cases cannot be considered controlled in the
sense that one knows in advance which SUTs are erroneous. This does make those
experiments more realistic – which is no coincidence since often the experiments
are done in collaboration with industry – but at the same time it makes it hard
to compare the results, at least with respect to error-detecting power of the tools.

Of course, there are exceptions, where controlled model-based testing exper-
iments are conducted and the results are published. In some cases those experi-
ments are linked with a particular application domain. For example, Lutess has
participated in a Feature Interaction contest [dBZ99].

Also independent benchmarking experiments have been set up, like the “Con-
ference Protocol Benchmarking Experiment” [BFdV+99, HFT00, dBRS+00] that
we will discuss in more detail below. The implementations that are tested in such
an experiment are usually much simpler than those that one has to deal with in
day-to-day real-life testing – if only to limit the resources (e.g. time) needed to
conduct or participate in the experiment. There is not much one can do about
that.

436 Axel Belinfante, Lars Frantzen, and Christian Schallhart

Conference Protocol Benchmarking Experiment The Conference Proto-
col Benchmarking Experiment was set up to compare tools where it counts: in
their error-detecting capability. For the experiment a relative simple conference
(chat box) protocol was chosen, and a (reference) implementation was made for
it (hand written C code). This implementation was tested using “traditional
means”, after which it was assumed to be correct (we will refer to this one as
the correct implementation from now on).

Then, the implementor of the correct version made 27 “mutants” of it by
introducing, by hand, small errors, such that each mutant contains a single error
that distinguishes it from the correct version. The errors that were introduced
fall in three groups.

The errors in the first group are introduced by removing a program statement
that writes an output message. The effect of these errors is visible as soon as the
(now removed) statement is reached during program execution.

The errors in the second group are introduced by replacing the condition in
an internal check in the program by “true”. The effect of these errors may not
be immediately visible.

The errors in the third group are introduced by removing a statement that
updates the internal state of the program. The effect of these errors is not im-
mediately visible, but only when a part of the program is reached where the
absence of the preceding internal update makes a difference. So, the error has
to be triggered first by reaching the code where the internal update has been
removed, and then the error has to be made visible by reaching a part of the
program where the erroneous internal state causes different output behavior.

Then, the informal description of the protocol, the source of the implementa-
tion and the mutants, and a number of formal specifications were made available
via a web page.

Finally, several teams took a model-based testing tool (usually, their own,
that they mastered well), reused, or adapted a given specification, or wrote a new
one, if necessary, tried to devise test purposes, and tried to detect the incorrect
implementations, without knowing which errors had been introduced to make
the mutants. To our knowledge, this has been done with the following tools (and
specification languages): TorX (LOTOS, Promela); TGV (LOTOS); AutoLink
(SDL); Kit/PHACT (FSM). We will briefly mention the results here; for the
discussion of the results we refer to the papers in which the results have been
published.

TorX and TGV With TorX and TGV all mutants have been detected11. With
TorX all mutants were found using the random walk testing strategy, so no
test purposes were used. With TGV it turned out to be pretty hard to come
up (by hand) with the right test purposes to detect all mutants; one mutant

11 That is, all 25 mutants that could be detected with respect to the specification that
was used. It turned out that two mutants needed behavior outside the specification
to be detected. As a consequence, these mutants are ioco-conformant with respect
to the specification used.

14 Tools for Test Case Generation 437

was detected by a test purpose that was not hand written, but generated by a
random walk of a simulator. Elsewhere it has been discussed why random walks
are effective in protocol validation [Wes89] – similar reasons apply to testing. For
a comparison of random walk and other approaches for testing see Section 11.4
(page 301).

AutoLink With AutoLink not all ioco-erroneous mutants were detected: it
detected 22 mutants. Here, most likely, the lack of complete success had to do
with the test purposes that were hand written12. Only after the experiment, the
(inexperienced) user of the tool learned of the possibility to let the simulator
generate a set of test purposes fully automatically, so unfortunately this feature
has not been evaluated.

Kit/PHACT With Kit/PHACT the fewest mutants (21) were detected. Here,
no test purposes were needed, but a test suite was automatically generated using
the partition tour strategy.

All test cases of the test suite were executed as one large single concatenated
test case, without resetting the implementation between individual test cases.
This actually helped to detect errors. In some of the test cases an error was
triggered in one test case, without being detected there. However, some of the
mutants contained an error that made the synchronizing sequence fail to do
its job, which thus failed to bring the implementation to its initial state. As a
result, it happened that much later, in a different test case, the implementation
responded erroneously as a consequence of the error triggered much earlier.

Analysis of the mutants that were not detected showed that in two cases,
due to the error, the mutant contained a state not present in the specifica-
tion. Such non-detected errors are typical for the partition tour method used
by PHACT [HFT00]. One other mutant was not detected because the decoding
function in the glue code to connect to the SUT was not robust for incorrect
input and thus the test execution was aborted by a “core dump”. The remaining
undetected mutant was not found, because only the explicitly specified tran-
sitions were tested. A PHACT test suite that tests all transitions (which is a
possibility with PHACT) would probably detect this mutant.

Conclusions with respect to the Benchmarking Approach Performing a controlled
benchmarking experiment allows comparison of testing tools where it counts: in
their error-detecting capability. However, doing a fair comparison is difficult, be-
cause it can be hard to find experimenters that have comparable experience with
the tools and specification languages involved. As a consequence, the absolute
comparison results should be taken with a grain of salt.

Such benchmarking can also provide information about some of other prac-
tical aspects that we listed. For example, the experimenters in the Conference

12 To be more precise, obtained by taking the traces of manual simulation of the spec-
ification.

438 Axel Belinfante, Lars Frantzen, and Christian Schallhart

Protocol Benchmarking Experiment also gave estimations of the amount of time
invested by humans to develop specifications and test purposes, versus the com-
puter run time needed to generate and execute the tests [BFdV+99, dBRS+00].
Such estimations give some idea of the (relative) ease with which errors can be
found with the respective tools.

14.4 Summary

System vendors focus more and more on the quality of a system instead of
increasing functionality. Testing is the most viable and widely used technique
to improve several quality aspects, accompanying the entire development cycle
of a product. Motivated by the success of model-based software development
and verification approaches, model-based testing has recently drawn attention
of both theory and practice.

System development tools reflect this tendency in many ways, automatic
model-based generation of test suites has incipiently found its way into prac-
tice. TestComposer and AutoLink are the dominating design tools in the SDL
community. The UTP serves the need for test support within UML-based soft-
ware development, and Microsoft’s AsmL is another example for the effort major
companies make to benefit from the existing theory.

But whatever theory is chosen as a basis, none of them can belie the domi-
nating problem of system complexity. Even simple behavioral models like FSMs
or LTSs can generally not be specified or exploited exhaustively. In that sense
testing is always a David vs. Goliath struggle, even when pragmatical approaches
were chosen.

Nevertheless it is worth the effort of improving the theory w.r.t. practicability.
Furthermore there are system criteria which are not treated satisfactorily yet,
like real-time constraints or symbolic data, e.g. infinite data domains.

Although automatic testing is still in the fledgling stages it can already be ex-
erted successfully to improve the quality of real world systems. Further research
is needed to improve and ease its application. It is a promising field where formal
methods find their way into practice.

15 Case Studies

Wolfgang Prenninger1, Mohammad El-Ramly2, and Marc Horstmann3

1 Institut für Informatik
Technische Universität München
prenning@in.tum.de

2 Department of Computer Science
University of Leicester, UK
mer14@le.ac.uk

3 Institut für Verkehrssicherheit und Automatisierungstechnik
Technische Universität Braunschweig
m.horstmann@tu-bs.de

15.1 Introduction

In this chapter, we review and analyze some of the significant case studies pub-
lished on the application of model-based testing. We focus on case studies done
in industrial contexts in order to evaluate how model-based testing is applied in
practice and how far it is applied. But we also review a few proof of concept and
benchmarking case studies. We review case studies on model-based testing of
processors [DBG01, SA99, FKL99], smart cards [PPS+03, CJRZ01], protocols
[KVZ98, BFdV+99], Java and POSIX [FHP02]. This list is not exhaustive; but it
is a good representation of the range of applications, methods and tools used in
the available model-based testing case studies. There could be other case studies
which we did not detect or have been published recently.

We shall observe that all case studies follow a similar process for model-based
testing. Thus, we structure the chapter as follows: Sec. 15.2 gives the big picture
and provides a fast overview of the abstract model-based testing process which
all case studies have in common. Sec. 15.3 describes the different application
domains and their characteristics where model-based testing has been applied.
Sec. 15.4 through Sec. 15.8 document in detail which techniques and method-
ologies are used by the different approaches to instantiate the different phases
of the abstract process. Sec. 15.9 summarizes and concludes this chapter.

For technical foundation about test case generation we refer to Chap. 11 and
12. For a thorough overview about test generation tools we refer to Chap. 14.

15.2 The Abstract Process

By studying the reviewed case studies listed in Sec. 15.1 and described in Sec. 15.3
we observe that the underlying process is very similar. All case studies start with
an abstract formal test model which is derived either (semi-)automatically out of
system development models or manually out of the systems requirements spec-
ification. In the later case, manual validation of the test model against system
requirements specification should be done first in order to find possible errors

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 439-461, 2005.
 Springer-Verlag Berlin Heidelberg 2005

440 Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann

in the test model, otherwise the derived test cases may be significantly flawed.
Together with an equally formal test specification, where the selection criteria
of how to choose test cases is covered, the automatic generation of test cases
can be performed. After that, a concretization of test cases has to be done. This
is because the derived test cases are on the same abstraction level as the test
model but have to be executed on concrete System Under Test (SUT) level. At
last, the test evaluation is done either on SUT level or on abstract test case level.

System Requirements/Specification

System under Test

Abstraction
level 1

Abstraction
level 2

Abstraction
level ...S

ys
te

m
 D

ev
e

lo
p

m
en

t/C
on

cr
e

tis
at

io
n

Test Case
Generation and
Concretisation

Test
Specification

Test Model

Test Case Execution

SUT response
abstraction

D
ev

el
op

m
en

t M
od

el
s

Test Evaluation
Test Result

Special Test Models

Fig. 15.1. The Abstract Process of Model-Based Testing

Fig. 15.1 shows the different activities and results of model based testing in
the context of the SUT development process. The arrow at the left side symbol-
izes the progress in development and concretization of the SUT, where different
abstraction layers can exist between the system requirements specification and
the SUT. The test model can either be based on the requirement specification
by building a special test model or it can be derived out of a certain abstraction
level in case that a suitable model exists. A second interface between system de-
velopment and model based testing is the test purpose that should be defined in
the requirement specification and has to be formalized into a test specification.
After generation and concretization of test cases the third interface is given by
applying the test cases to the SUT and executing them. In the following para-
graphs the activities and results of model based testing will be described in an
abstract manner before the other sections will explain them in more detail.

15 Case Studies 441

Test Model Since the term test model is not part of the glossary it will be
introduced here. We call the abstract formal behavior model of the SUT, which
is used in conjunction with the test specification to derive test cases, a test
model (also abstract test model or sometimes if the context is defined only
model). In principle there are two ways for deriving test models. The first is to
benefit from an existing model, whether it is a formal specification or a system
development model of the SUT. For example, usually in the case studies that
involve a hardware SUT, a design model is available that is then abstracted to
build a test model. The abstraction becomes necessary due to constraints given
by the test case generator and the potential available test model traces, which
have to be limited. The second way is to build the test model manually, based on
information from the natural language specification of the SUT. For both cases
a validation of the test model has to be assured. Sec. 15.4 illustrates both ways
in more detail.

Test Specification Besides a test model, a test specification is necessary in order
to direct the test case generation. It has two aims, first to define formally what
will be tested and second to restrict the amount of resulting test cases. The test
specification defines which of the potential available test model traces will form
the test suite. Based on a test purpose, which can exist in different degrees of
formalization, the test specification has to be in an operational state in order to
use it in conjunction with the test model as input for the test case generator.
The type of test specification for the considered case studies can be categorized
into functional, structural or stochastic specifications (cf. also Chapter 11):

• Functional specifications represent a set of environment behaviors or use
cases in order to constrain the behavior of the test model to certain func-
tionalities.
• Structural specifications can be applied to decomposed components, where

different coverage criteria starting from simple statement coverage up to path
coverage are available.
• Stochastic specifications select test cases by random or by a probability

distribution and have been observed to be also useful in some fields, e.g. in
partition testing [Nta98].

Test Case Generation Once the test model and test specification are defined,
test case generation can be started which results in a test suite. A test case is
generated by constructing an execution path of the test model which complies
also to the restrictions of the test specification. This process continues until all
specified test cases are found.

Test Case Instantiation In order to concentrate on the essential aspects of the
SUT to be verified and to handle, in a lot of cases, the state explosion problem
of the considered SUTs, the test models have to be on an abstract level. Thus
the generated test cases/test suites are also at this abstraction level. Before the
execution of these test cases, a concretization of the previously done abstractions

442 Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann

has to be performed. Abstraction mechanisms used in the considered case studies
are

• Functional Abstraction
• Data Abstraction
• Temporal Abstraction
• Communication Abstraction

which are described in more detail in Sec. 15.7.

Test Execution and Test Evaluation The aim of the test execution and test
evaluation is to detect whether a test case passes or not. To determine this,
the expected and actual behaviors have to be compared. While the expected
behavior is specified in the test model, the actual behavior is determined by the
SUT. The problem of test evaluation is that expected and actual results are at
different abstraction levels. To overcome this difference, two possibilities exist:

• Evaluation on the level of the SUT makes it necessary to translate the com-
plete test consisting of inputs and outputs to the level of the SUT.
• Evaluation on the level of test model implies to apply again abstraction

mechanism and to perform the test evaluation at the abstract level.

15.3 Application Domains

This section provides an overview of some of the domains that have reported
success in applying model-based testing. Naturally, applications that involve
systems described in formal specifications are better candidates for model-based
testing. However, in other cases, model-based testing was applied successfully to
systems with natural language specifications. The case studies covered in this
chapter include testing processor architectures, protocols, operating systems,
part of the Java language specification and smart card applications. In this
section, we elaborate on each of these domains.

Processor Architectures Typically, processor architectures are described at a high
level of abstraction using a hardware description language, e. g., Verilog HDL or
VHDL. Languages like VHDL offer different levels of abstraction for hardware
design. The highest is the behavior abstraction level, which is similar to writing
a computer program in a high level language. One more concrete level down
is the dataflow abstraction. At this level, the design is described in terms of
how data move through the system. At the heart of most digital systems today
are registers. Dataflow abstraction describes how information is passed between
registers in the system. Thus this level is called Register Transfer Level (RTL).
The lowest and third level of abstraction, structure abstraction. It is used to
describe a system in terms of its components, e.g., gates, flip-flops, etc. Designers
simulate and debug the system at the behavior level and then use a top-down
approach to refine and debug the system gradually down to the structure level.

15 Case Studies 443

Different studies in model-based testing of hardware systems use hardware
specifications at different levels of abstraction as the basis for modeling the
SUT. In [DBG01] for example, the SUT was the Store Data Unit (SDU) block
of ST100, a high performance digital signal processor (DSP). The SDU is a block
of the Data Memory Controller that is responsible of storing data to memory.
In this study, the design was described at behavior abstraction level in MµALT
(Modeling Micro-architecture Language for Traversal), which is a VHDL-based
language.

In [SA99], the SUTs were two general-purpose microprocessors. The first is
GL85, which is a model of the Intel 8085 processor, designed in VHDL. The sec-
ond is ARM, which is a downscaled model of the commercial ARM-2 processor.
ARM is designed in Verilog. In both cases, the SUT was described at the RTL
level.

What is common in these studies is that a full formal description of the
SUT is available at one level or another. This opens the door to introduce some
automation during model abstraction via a tool that can take the formal de-
scription as input and partially infer a state machine from it. This idea was
implemented only in [SA99].

In [FKL99], an Architecture Validation Suite (AVS), which is a suite of tests
to verify the compliancy of an architecture implementation against the archi-
tecture specifications, was built for IBM PowerPC processor architecture. Like
the cases above [SA99, DBG01], a formal description of PowerPC architecture
was built. But additionally, a behavioral simulator that implements PowerPC
architecture was used as a reference model. The simulator is a software that
simulates a PowerPC processor. So, given a certain state for the processor and
an input, the simulator determines the next state and the output. The basic
idea of using the simulator is that a behavioral simulator can be viewed as a
formal, correct and complete representation of the architecture. This is because
very early in the verification phase, the simulator was used heavily, debugged
and tested. Hence, generating an AVS for the SUT can be reduced to generating
an AVS for the simulator.

Protocols A protocol is a formal description of the message formats and the rules
that two devices or parties must follow to exchange those messages. A number
of case studies were done for automatic generation of test suites for protocols.
In [KVZ98], the SUT was an implementation of the cache coherency protocol of
Bull’s CC-NUMA (Cache-Coherent Non Uniform Memory Architecture) multi-
processor architecture. Bull’s CC-NUMA consists of a scalable interconnection
of modules; the memory is distributed among different modules. Each module
contains a set of processors. The key feature of Bull’s CC-NUMA architecture is
its distributed directory-based cache coherency protocol, which uses a Presence
Cache and a Remote Cache in each module.

In [BFdV+99], the SUT was an implementation of the Conference Protocol
described in [Pir95]. The conference provides a multicast service, resembling a
chat box, to the users participating in a conference. A conference is a group of
users that can exchange messages with all conference partners in that conference.

444 Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann

The partners in a conference change dynamically, as users are allowed to join and
leave a conference. Multiple conferences can exist at the same time, but a user
can participate only in one conference at a time. This experiment [BFdV+99] is
one of a few benchmarking experiments done to compare model-based testing
tools using the conference protocol [BFdV+99, HFT00, dBRS+00]. A summary
of these experiments is introduced in Sec. 14.3.2.

Operating Systems and Language Specifications In these applications [FHP02],
model-based testing was applied to automatically generate test cases for parts of
the Portable Operating System Interface (POSIX) System API and Java excep-
tion handling standards. POSIX defines an operating system interface and envi-
ronment based on UNIX operating system. This interface supports application
portability at the C language source level. The operational behavior of the Java
exception handling facility is part of the Java language specification [GJS97].
In both case studies, the available specification of the standard (POSIX System
API and Java) was an English language document, with some diagrams and ta-
bles. This document specifies the valid stimuli to the software and its excepted
responses.

Smart Cards Smart cards are becoming increasingly popular and used in tele-
phones, transportation, banking, and healthcare transactions, and so on. A smart
card is basically a one-chip computer with microprocessor, RAM, ROM, EEP-
ROM, a serial interface for communication with a terminal, e.g., an ATM or a
cellular phone, and possibly a coprocessor for cryptography operations. Smart
card applications are command-driven. The card processor reads a command
from its input channel, executes it and transmits the response via its output
channel.

A number of studies on model-based testing for smart card applications were
conducted with documented success. For example, in [CJRZ01], a study on auto-
mated test generation for a feature of the CEPS e-purse specifications is reported.
CEPS (Common Electronic Purse Specification) is a standard for creating inter-
operable multi-currency smart card e-purse systems [CEP00]. It was developed
by the leading smart card industry players to leverage existing investments by
making use of the banks’ current payment infrastructure.

In [PPS+03], a case study was performed on the WAP Identity Module
(WIM), which is used in the wireless access protocol extension of the GSM
standard [CEP95] for cellular phones to provide transport level security, digital
signatures and, in general, public key cryptography. The WIM is deployed as a
smart card application. Both the CEPS and WIM specifications are written in
English language.

15.4 Building an Abstract Model of the SUT

This section is an overview of the different methods used for abstracting the SUT
into a test model. Obviously, abstraction methods vary depending on whatever

15 Case Studies 445

system specifications are available. The more formal the system specifications
are, the better the chance of automating this step. In the following, we divide the
case studies reviewed in this chapter into two categories. The first includes the
case studies where the test model was driven from formal specification and/or
implementation description of the SUT. The second includes the case studies
where the model was driven from natural language specifications of the SUT.

Modeling from Formal Specifications and Implementation Descriptions In the
cases where a formal description of the system was available, e.g., the proces-
sor architectures tested in [DBG01, SA99], a test model of the SUT could be
extracted manually or semi-automatically. In [DBG01], the MµALT design is
translated manually to an FSM in GOTCHA Definition Language (GDL) which
formed the test model [HN99]. GOTCHA (an acronym for Generation of Test
Cases for Hardware Architectures) is a tool for generating an abstract test suite
from a test model of the SUT and a set of testing directives, i.e., a test spec-
ification. It is part of IBM GOTCHA-Spider (previously known as GOTCHA-
TCBeans) [IBM]. The GOTCHA compiler builds a C++ file that contains the
embodiment of the FSM.

In [KVZ98], the test model is a formal specification in LOTOS (Language of
Temporal Ordering Specifications) of Bull’s CC-NUMA cache coherency proto-
col. The LOTOS specification was manually produced, while the multiprocessor
architecture was under design. Then the specification was checked using the
CADP (CAESAR/ALDEBARAN Development Package) verification tools, a
toolbox with formal verification capabilities. The specification consisted of 2000
LOTOS lines where 1000 lines describe the control part and the other half de-
fines the ADT (Abstract Data Types) part. The specification was debugged and
verified with appropriate formal verification techniques and then used as a test
model of the SUT. This model is then input to TGV (Test Generation with Ver-
ification technology). TGV is a prototype for the generation of conformance test
suites for protocols (cf. Sec. 14.2.10). TGV translates the LOTOS test model
into an Input Output Labeled transition System (IOLTS).

In [SA99], a test model of the microprocessor was built semi-automatically.
A microprocessor RTL model is usually partitioned into datapath and control
parts. Abstracting the whole complex processor into a single FSM is infeasible.
So, since products of events in control modules are sources of hard-to-discover
bugs, the authors focused on modeling control logic. The control part in the
initial design is generally implemented using an FSM that encapsulates the de-
scription of control behavior. The states of this FSM are naturally selected as
candidates of the test model states. The authors developed an algorithm to ex-
tract these states automatically from the microprocessor RTL Verilog or VHDL
design. The idea is to construct a control flow graph for the Verilog or VHDL
description, with multi-way branching statements taken as decision nodes. Then,
the algorithm selects variables in the controlling expressions of the decision nodes
that are assigned values in all branches as candidate state variables. The candi-
date variables that change most frequently are selected as control state variables.

446 Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann

The control flow graph is searched for the transition conditions between the dif-
ferent states of each selected variable.

The abstract FSM has the same timing as the original processor. It encapsu-
lates the same control behavior in terms of the movement of instructions through
the processor. In complex designs, the control might consist of multiple commu-
nicating FSMs. In this case, the FSM that changes most frequently, its states are
chosen as the primary control states. For example if the cycle of an FSM needs
5 cycles of another FSM, then the control states of the later are chosen as the
primary control states. Other variables or inputs, which affect the control state
transition or the datapath operation at different states of the FSM, are selected
and added to the FSM manually.

In [FKL99], an Architecture Validation Suite (AVS) was generated for IBM
PowerPC architecture using Genesys. Genesys is a directed-random test genera-
tor developed by IBM for verification of various processor architectures. Genesys
dynamically generates tests using a generation-simulation cycle for each instruc-
tion. Genesys needs two models of the SUT. The first is a formal test model
of the SUT. This is created manually from PowerPC architecture books. The
second is an implementation description in the form of a behavioral simulator
for the SUT, which is used to predict the results of instruction execution. Result
prediction is done automatically by just running the simulator to execute the
desired instruction sequence. However, the simulator itself was built manually.

Modeling from Natural Language Specifications In cases where the SUT was spec-
ified in natural language with no formal specifications, hand-built test models
needed to be constructed. In [FHP02], this was done for parts of POSIX stan-
dard and Java exception handling facility. In both cases, the model was crafted
as an FSM in GDL. At this stage, specification defects and inconsistencies were
discovered.

In [CJRZ01], the test model was a hand crafted FSM for the part of CEPS
that was tested, using IOSTS (Input-Output Symbolic Transition Systems).
IOSTS is a modeling language for reactive programs with symbolic processing
of variables, parameters and inter-process value passing. IOSTS is rather low
level. So, using a higher level language that translates to IOSTS would ease the
modeling process.

In [BFdV+99], the SUT is an implementation of the Conference Protocol
described in Sec. 15.3. The purpose of this study was to study the feasibility of
automatic test derivation and execution from a number of formal specifications
and different test execution approaches. Test generation was done with TorX, a
generic model-based testing environment. TorX allows plugging in different test
generation tools, which accept models of the SUT in different formal languages
(cf. Sec. 14.2.11). Since this is a benchmarking experiment, three formal models
of the same SUT were built for this study in LOTOS , SDL and PROMELA, each
to use with a different test tool. More details of this experiment were introduced
in Sec. 14.3.2.

In [PPS+03], the modeling language of AutoFocus was used to build a test
model for the WAP Identity Module (WIM). AutoFocus is a tool for develop-

15 Case Studies 447

ing graphical specifications for embedded systems based on concise description
techniques and a simple, formally defined clock-synchronous semantics, which
makes it rather well suited for the command/response sequences of smart cards
(cf. Sec. 14.2.4). A model in AutoFocus is a hierarchically organized set of time-
synchronous communicating EFSMs which use functional programs for its guards
and assignments.

Manual development of a test model for a SUT from natural language specifi-
cations is labor intensive. This raises the question of cost-effectiveness of applying
model based testing in this case. However, if a decision is made to do it, manual
modeling comes with an advantage. For the WIM, abstracting the textual re-
quirements and transforming them into a deterministic, complete and executable
model exposed some contradictions and ambiguities in the specifications.

To conclude this section, Tab. 15.1 classifies the reviewed case studies accord-
ing to the type of specification used to build the test model and the abstraction
method (manual or semi-automatic) used.

Modeling from Formal Specifications Modeling from Natural
and Implementation Description Language Specifications

Manual [DBG01] SDU of ST100 DSP [FHP02] POSIX/Java
Modeling [KVZ98] Cache Coherency Protocol [CJRZ01] Smart Cards: CEPS

[BFdV+99] Conference Protocol [PPS+03] Smart Cards: WIM
[FKL99] Power PC

Semi-automatic [SA99] Microprocessors
Modeling

Table 15.1. The Specifications and Methods Used for Building an Abstract Model

15.5 Test Specification

In order to obtain test cases from the test model, a test specification is required.
The specification defines what is to be tested. The aim is to find a reasonable
number of meaningful test sequences. As listed in Sec. 15.2 and defined in the
glossary three main classes of test case specifications can be identified:

• Functional specification
• Structural specification
• Stochastic specification

Tab. 15.2 gives an overview of the used test specification classes in the considered
case studies, which will be discussed in details in this section.

Functional Specification The idea of functional specifications is to extract test
cases concerning certain functionalities of the SUT to be tested. This is achieved
by focusing on a special part or a special view of the system. By doing so, the

448 Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann

Functional Structural Stochastic
specification specification specification

[BFdV+99] Conference Protocol X

[CJRZ01] Smart Cards: CEPS X X

[DBG01] SDU of ST100 DSP X

[FHP02] POSIX/Java X X

[FKL99] PowerPC X X

[KVZ98] Cache Coherency Protocol X X

[PPS+03] Smart Cards: WIM X X X

[SA99] Microprocessors X

Table 15.2. Test Specification Classes Used in the Reviewed Case Studies

number of possible test traces is reduced by defining additional functional con-
straints concerning the system itself or its environment. Functional specifications
cover I/O relations which refer either to scenarios of specification documents as
described in Philipps et al. [PPS+03] or other more special views that result
from experience, like fault intensive known sections as described in Fournier
et al. [FKL99]. In the majority of cases these requirements describe sequences
which can be completed to a state diagram, for example. The state diagram on
its own forms only one part of the specification, additional declarations about
the traces to be generated are necessary, for instance a restriction of the path
length. Otherwise, test cases of infinite size can be found. To overcome this
problem, often a functional specification is used in conjunction with structural
or stochastic test specifications. Functional specifications are used by three case
studies [FHP02, KVZ98, PPS+03].

Structural Specification For the structural specifications, typical code coverage
criteria can be used which are lifted to the level of the test model. The spec-
trum of coverage criteria varies from statement coverage [FKL99], state cover-
age [DBG01], the MC/DC criterion [PPS+03] up to path coverage [SA99] (for
an overview about existing coverage criteria cf. Sec. 11.3). Regardless of how
the test model is derived (SUT abstraction, manual modeling), the options of
which coverage criteria can be used depend on the complexity of the test model.
Those case studies where the resulting test model is already strongly tailored
to main test purposes, e.g. by an additional functional test specification or by
focusing on a special system part, use path coverage with a given trace length
[KVZ98]. Other studies using complex test models have to use more simple crite-
ria like state coverage [DBG01] or the MC/DC criterion [PPS+03]. If structural
specification is used in combination with functional specification, then, it is im-
portant that the structural criteria are applied to the model of the system and
the environment model with the defined constraints.

Stochastic Specification In Philipps et al. [PPS+03] additional stochastic speci-
fications are applied to the result of structural specifications in order to reduce
the number of test cases. Belinfante et al. [BFdV+99] use only this type of crite-

15 Case Studies 449

rion. Stochastic test specifications can be equally distributed, e.g. every second
test case of a randomly generated set will be chosen, or non-equally distributed
following a certain distribution function, cf. also Sec. 11.2.

Formalisms used for test specifications In most of the considered case studies,
the formalism used for the test specification and the formalism for the test model
are identical. Here, we brief the list of formal notations used in the case studies.

• Conference Protocol [BFdV+99]: Since in this case study only stochastic
test specifications are used where a random number generator selects the
test cases, a special additional formalism is not necessary, but configura-
tion parameters concerning input and output gates or the random number
generator have to be defined.
• Smart Cards - CEPS [CJRZ01]: Test model and test specification are ex-

pressed in the Input/Output Symbolic Transition System (IOSTS) formal-
ism.
• SDU of ST100 DSP [DBG01]: Here first the MµALT (Modeling micro-

Architecture Language for Traversal) language is used. A coverage model
is basically determined by adding special attributes to interesting signals or
variables. These test constraints restrict the way targeted states are reached.
Second, the test generation tool GOTCHA (Generator of Test Cases for
Hardware Architecture) is used for generating test cases as execution paths
to the state coverage task and continuing to a final state.
• POSIX/Java [FHP02]: GOTCHA and its definition language (GDL) are used

to describe a set of coverage criteria and test constraints to form the test
specification. As in [DBG01], GOTCHA is also used for test case generation.
• PowerPC [FKL99]: A tool named Comet which is developed at IBM is used.

The definition of the coverage model is written in SQL.
• Cache Coherency Protocol [KVZ98]: In this case study different formalisms

for test model and test specification are used. LOTOS is used for the test
model. Automata in Aldebaran format are used for the test specification.
Both are inputs for the test case generator TGV.
• Smart Cards - WIM [PPS+03]: The CASE tool AutoFocus is used where

graphical description techniques that are loosely related to the notations of
UML-RT form the test model and test specification. For test case generation,
the test model and the test specification are automatically translated to CLP
(constraint logic programming).
• Microprocessors [SA99]: FSMs where interesting control states and interest-

ing events as state associative control signals are specified, from the test
specification. The formalism used therefore is not mentioned.

15.6 Abstract Test Case Generation

This section covers the different methods used for test case generation in the
case studies reviewed in this chapter, assuming that a test model of the SUT
and a formal description of the test specification are available. Clearly, whenever

450 Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann

existing tools are used, there is not much freedom in selecting a test case gen-
eration method, as the study is then constrained by the methods supported by
the tool. All the methods used employ some search algorithm(s). The output of
a test case generation algorithm is a suite of abstract test cases that still need to
be instantiated as described in the next section. In the following we elaborate on
the different methods used for test case generation in the case studies reviewed.
We focus on the methods and tools not covered in Sec. 14.2.

In [SA99], the authors used their own system prototype for test generation.
The prototype enumerates all the possible paths on the FSM (i.e. the test model)
of the SUT of a given finite length. Despite the small size of the FSMs extracted
in this case study, it is infeasible to enumerate all possible state transition paths
from the initial state due to the presence of loops. Each generated path is an
abstract test case, consisting of a sequence of processor instructions with different
events at different stages. In this study, two types of abstract test cases were
generated: snapshot and temporal test cases. In a snapshot test case the exact
timing of events is considered, while in a temporal test case, only the order of
events matters.

Abstract Test Case Generation Using TGV As indicated in [CJRZ01] and
[KVZ98], TGV was used for abstract test case generation in these two stud-
ies. TGV outputs a test case DAG (Directed Acyclic Graph). The paths of this
DAG represent possible system runs of the SUT. Detailed discussion of TGV is
in Sec. 14.2.10.

Abstract Test Case Generation Using GOTCHA In [DBG01] and [FHP02], the
process of test generation is automated by GOTCHA [HN99], which explores the
state space described by the input GDL model. The test engineer has several
alternative test generation strategies, including performing breadth-first search
and coverage-directed search, from each of the start states. Coverage-directed
search involves giving priority to exploring states that lead to new coverage tasks.
Coverage is a measure of the completeness of a test suite, i.e., the percentage
of a program exercised by the test suite. This will typically involve collecting
information about which parts of a program are actually executed when running
the test suite in order to identify which branches of the conditional statements
have been taken. The most basic level of test coverage is code coverage testing
and the most methodical is path coverage testing. A coverage task is a task
specified in the test specification that the test suite must satisfy. This is done
by including in the test suite a set of test cases that satisfy the task. Coverage-
directed search aims to find paths through the FSM model that satisfy each
coverage task. To do so, GOTCHA starts by constructing a search tree that
explores the entire state space. This is done by traversing all the reachable
states of the FSM model. After enumerating the entire reachable state space, a
random coverage task is chosen from those that have not yet been covered or
proved to be uncoverable. A test case is generated by constructing an execution
path to the coverage task (state in this case) then continuing on to a final state.
At the point when the recommended test length is exceeded or a final state is

15 Case Studies 451

reached, the test is output. If the randomly chosen coverage task cannot reach a
final state then no test is generated. GOTCHA outputs abstract test cases, each
consists of a sequence of states.

Abstract Test Case Generation with Constraint Logic Programming In the case
study of model-based test case generation for smart cards described in [PPS+03],
Constraint Logic Programming (CLP) was used to compute the set of all possible
execution traces of finite length. First, the test model developed in AutoFocus is
translated into a CLP program. Second, the test specification is also translated
into the CLP language and added to the CLP program of the model. Finally,
a logic programming engine solves the program using depth-first search with
backtracking and computes the set of all possible execution traces of the model
up to a certain length. These traces are the abstract test cases. More details
on the use of CLP for test case generation in this case study [PPS+03] were
presented in Sec. 12.3.2. More details on AutoFocus are available in Sec. 14.2.4.

Abstract Test Case Generation Using Genesys In [FKL99], Genesys was used to
generate an architecture validation suite for PowerPC architecture to be used
for testing PowerPC implementations. Genesys is specifically designed for testing
processor architectures.

The inputs to Genesys are a test model and a behavioral simulator for the
SUT and a test specification. The test specification allows the incorporation of
complex heuristic testing knowledge in the form of generation and validation
functions coded in C by test engineers. These functions serve many purposes,
e.g., they enable adjusting the probability distribution of the targeted test space.
As a simple example, the result of zero for an ADD instruction is typically of
special importance while its relative probability to occur randomly is practically
inexistent. A generation and validation function can be implemented to inform
the test generator that the result of zero is important, and should thus be gener-
ated with a reasonable probability. More generally, these functions can be used
to give adequate weights to corner cases which otherwise would be occurring
with negligible probability.

Genesys directly generates executable test cases by combining abstract test
generation and concretization. Genesys outputs a test file, which consists of a
sequence of instructions starting from a given initial state, and a section of ex-
pected results describing the expected values of the various processor resources.

Test case generation is done using depth-first search with backtracking and
checking against validation functions. First, the test model has the PowerPC
instructions modeled as trees at the semantic level of the processor architecture.
An instruction tree includes the instruction’s format and a semantic procedure
at the root, operands and sub-operands as internal nodes and length, address
and data types of each operand as leaves of the intermediate node representing
this operand. Second, generation of an instruction instance is done by traversing
the instruction tree in a depth-first order. Traversing a node involves invoking
all the generation and validation functions associated with it.

452 Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann

Finally, to generate a sequence of instructions, the test generation procedure
accepts the required number of instruction instances as input and activates the
instruction tree traversal. It also interleaves instruction generation with instruc-
tion execution using the behavioral simulator. The intermediate processor state
is checked after the new instruction instance has been executed and a decision
is taken whether to include the new instance in the test or reject it. If the sim-
ulator state after an executed instruction is undesirable, then it is rejected and
the state of the simulator is reverted.

15.7 Test Case Instantiation

Let us recall the following part of the model-based process described in Sec. 15.2:
A test model together with a test specification is used to generate one or more
test cases. Since the test model is an abstraction from the SUT the generated
test cases are abstract, too. In order to be able to execute the generated test
cases with the SUT they have to be instantiated. With this part of the process
in mind we describe the following aspects in this section:

• What is the motivation for the abstract test models and what abstraction
techniques are used in the literature?1

• What limitations for testing are implied by these abstractions?1

• What structures of test cases can be found in the literature?
• What methods are used to translate an abstract test case to a concrete one?

Note that the abstraction of the test model in respect to the SUT arises three
times in the model-based testing process: firstly, when building the abstract test
model, secondly, when bridging the abstraction gap between abstract test cases
and the SUT by instantiating the test cases, and finally, when evaluating the
test executions by comparing the abstracted system runs of the SUT with the
expected ones of the test model.

15.7.1 Abstractions in the Test Model

The purpose of the test models is: to support the validation process and the ver-
ification process of the system under development. On the one hand the model is
used to formalize and to validate the system’s requirements. On the other hand
the model serves as specification and is used to test a system’s implementa-
tion in order to verify the implementations behavior. Due to these requirements
the models abstract as far as possible from implementation details and concen-
trate on the main aspects of the system. In this section we summarize briefly
the motivation for specifying abstract test models and we describe the different
abstraction techniques which are used in the reviewed literature.

1 the corresponding paragraph is partly taken from [PP04].

15 Case Studies 453

Motivations for the Abstractions The test models of the SUTs described in the
literature are all abstractions of the SUTs. Note that the test model must be
an abstraction and a simplification of the SUT because if not one could validate
directly the SUT without spending extraordinary efforts to build and validate a
model. Generally the description techniques for modeling are independent of the
implementation languages of the SUTs. The models represent artifacts of the
the SUT symbolically in order to be more human readable and comprehensible.

The most important motivation is probably that models are specified to
support the validation process. Because the test models concentrate on the parts
or certain aspects of the SUT that are to be verified, they are simpler and
easier to understand than the whole complexity of the SUT. Hence they can be
managed intellectually, validated by reviews and maintained more easily. Even
formal methods like model checking or theorem proving are applicable to them
sometimes. In other words, we get the confidence more easily that the model
meets the requirements of the system and thus the model serves as an abstract
reference implementation of the SUT.

Another important motivation is a technical one: generally the test generators
suffer from the state explosion problem. In order to support efficient test case
generation the models have to be as simple i.e. as abstract as possible.

Yet another aspect is that in some cases the models should be platform inde-
pendent, i.e. independent from, respectively, the test framework, the simulation
environment or the implementation language of SUT. This is achieved by model-
ing the SUT’s artifacts symbolically and by building an adaptor which translates
the abstract test cases to concrete ones (cf. Sec. 15.7.3). Hence the models can
be used to test several implementations realized on different platforms because
the model leaves unchanged and only the adaptor has to be adjusted. Clearly,
in this case, platform-specific issues cannot be tested.

Functional Abstraction The purpose of functional (or behavior) abstraction is
to concentrate on the “main” functionality of the SUT which has to be verified.
This leads to an omission of cumbersome details in the test model that are not in
the focus of the verification task.2 By doing so the model often implements only
parts of the complete behavior determined in specification documents, i.e., the
model does not completely define the intended behavior of the SUT but models
significant aspects only. In addition, functional abstraction supports the model-
based testing process: if the SUT’s functionality can be divided into independent
parts, one can build a separate model for each part in order to verify each
functionality separately. An obvious drawback is that only the modeled parts
of the specification can be tested and that special care must be taken to detect
feature interactions between different functionalities.

Examples for functional abstraction The case study described by Philipps and
Pretschner [PPS+03] concentrates on testing the protocols between a smart card

2 This does not necessarily mean that special cases are omitted—if these have to be
tested, they have to be modeled.

454 Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann

and its environment, a terminal. Therefore the test model abstracts from the
complex realization of all cryptographic functions implemented by a smart card.
These functions and their responses are represented only symbolically by yield-
ing data of type encryptedData when a command encrypt(data) is issued. No
cryptographic computations are performed in the model. Instead, these compu-
tations are performed at the level of the test platform (cf. Sec. 15.8).

The approach described by Farchi, Hartman, and Pinter [FHP02] uses sepa-
rate models for testing different functionalities of the POSIX standard. The first
model was developed for testing the byte range locking interface fcntl. This
interface provides control over open files in order to deal with processes which
are accessing the files. The model restricts the POSIX standard by allowing the
extension of a file only once. The paper mentions a second model which was
developed for testing the POSIX fork() operation.

Other examples for partial modeling i.e. omitting parts of the behavior of
the SUT in the test model are that the model does not determine its behavior
in certain states for some input values, or the model abstracts completely from
exception handling.

Data Abstraction The idea of data abstraction is to map concrete data types
to logical or abstract data types in order to achieve a compact representation
or a reduction of data complexity at the abstract level. A frequently cited ex-
ample for data abstraction is to represent binary numbers with integers at the
abstract level. However, this example changes only the representation of num-
bers but does not cause any information loss between the levels of abstraction
in the sense that it is trivial to have translations in both directions. A common
data abstraction technique with information loss is to represent only equivalence
classes of concrete data values in the model. Examples that involve information
loss are described below. As mentioned above the key of data abstraction is to
construct a mapping between concrete and abstract data types and their ele-
ments. Since the abstract data types are used to specify the behavior of the
model one test goal is that the operations performed by the SUT on concrete
values are correctly implemented with respect to the (abstract) operations on
abstract values in the model.

Examples for data abstraction In the case study described by Dushina et al.
[DBG01], the SUT is the Store Data Unit (SDU) of a Digital Signal Processor
(DSP). The behavior of the DSP depends heavily on the fill level of an SDU’s
queues. Therefore the status of a queue has been represented in the test model
by the abstract data type empty, valid, quasifull or full. Then testing dis-
covered a performance bug in the SUT because it turned out that the SDU fills
its queues only to quasifull status and does not exploit the full capacity of the
queues.

For smart card testing [PPS+03], a radical data abstraction was applied in
the test model by abstracting from the file contents of a smart card. The files of
the smart card were only represented by symbolic names in the model. This led

15 Case Studies 455

to a heavy simplification in the model but on the other side it could only test if
the fixed file lengths of the smart card conformed to the specifications.

Shen and Abraham [SA99], Philipps and Pretschner [PPS+03] apply another
form of data abstraction. They abstract the data types of operands to equivalence
classes in the model. For test case instantiation, these symbolic operands are
substituted by concrete values which are randomly selected or determined by
means of a configuration file.

Communication Abstraction The most prominent application of the communi-
cation abstraction principle is the ISO-OSI reference model. Here a complex
interaction at a concrete level is abstracted to one operation or message at the
more abstract level. At the abstract level, this operation is treated atomically.
This is even though in general the corresponding operations at a concrete level
can be interleaved with other operations. Using this abstraction principle, one
can aggregate handshaking interactions or sequences of causally dependent op-
erations to one operation at an abstract level. For test case instantiation these
abstract operations can simply be substituted by the corresponding interaction.
For building models, communication abstraction is often combined with func-
tional abstraction.

Examples for communication abstraction In hardware verification [BCG+00] and
processor testing [DBG01], a concrete aggregation of pin values, several consec-
utive signals of different buses, or recurring sequences of processor instructions
are abstracted to one symbolic operation in the test model.

In protocol testing [KVZ98], causally dependent operations concerning the
same transaction are collapsed into one atomic operation in the test model al-
though the concrete representation can be interrupted by other operations.

Sometimes communication abstraction is combined with data abstraction:
Philipps and Pretschner [PPS+03] abstract the concrete byte string commands
of a smart card (represented by sequences of hex numbers) to symbolic and
human readable messages in the smart card model.

Temporal Abstraction The idea of temporal abstraction is that only the order-
ing of events is relevant for modeling, i.e., the precise timing of events at the
concrete level is deemed irrelevant. We consider abstractions in which the or-
dering of certain events is irrelevant—as used with partial order reductions—as
communication abstractions.

One kind of temporal abstraction is that the test model and the SUT use
different granularities of discrete time. Then the granularity of time at the ab-
stract level is coarser than it is at the concrete level. Ideally, a mapping between
abstract time steps and the corresponding intervals of lower level time steps
is given. This can be a challenging task because in many cases one abstract
step does not always correspond to a constant or predictable time interval at
the concrete level. This form of temporal abstraction is often used in hardware
verification and testing [DBG01, SA99, BCG+00, Mel88] by relating one clock
cycle in the model to many clock cycles at the implementation level. Temporal

456 Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann

abstraction can be effectively combined with communication or/and functional
abstraction.

Another form of temporal abstraction is that the test model abstracts from
physical time. For example, the concrete implementation may depend on using
a timer of 250 ms duration. This timer is abstracted in the model by introducing
two symbolic events—one for starting the timer, and one for indicating expiration
of the timer. By doing so, the physical duration of the timer is abstracted away
even if the duration of certain timers changes over runtime at the concrete level.

One might well argue that this kind of abstraction is the special case of a
more general abstraction, namely abstraction from quality-of-service.

In Tab. 15.3 we summarize the abstraction principles which were used in
the documented case studies. The table entry yes indicates that the abstraction
principle was used in the case study and no indicates the opposite. We marked
the entry with ? if we could not find any hint if the abstraction principle was
used or not. It turns out considerably that most of the case studies explicitly
mentioned that functional abstraction and data abstraction was used.

functional data temporal communication
abstraction abstraction abstraction abstraction

[DBG01] SDU of ST100 DSP yes yes no yes
[SA99] Microprocessors yes yes yes yes
[FKL99] PowerPC yes ? ? ?
[PPS+03] Smart Cards: WIM yes yes yes yes
[CJRZ01] Smart Cards: CEPS ? ? ? ?
[KVZ98] Cache Coherency Protocol yes ? ? yes
[BFdV+99] Conference Protocol ? yes ? ?
[FHP02] POSIX/Java yes yes ? ?

Table 15.3. Used Abstraction Principles

Limitations of the Abstractions It is crucial that the modeler is aware of the
limitations, and therefore decides for the right trade off between abstraction and
precision when building appropriate test models for testing the critical aspects
of the SUT. There is an inherent complexity in real systems. If some of them
are abstracted in the test model in the sense that it cannot be compensated
afterwards by the test driver component there is no way to detect faults in the
SUT concerning these abstractions. In the following we mention a few limitations
and consequences.

Often enough, test models suffer from a more or less distinct and implicit
“happy world assumption” which stems from functional abstraction. A typical
example is that models assume that parameters of input messages or input op-
erations are within allowed bounds or have the permitted length or arity. With
the aid of such models, it is not possible to test the SUT’s behavior if it receives
messages with illegal parameters. For example, in the smart card domain an
operation including its operands is represented by a byte string at the concrete

15 Case Studies 457

level. In the test model, an operation and its operands are conveniently symbol-
ized by a string (a name). With this kind of model, the behavior of the smart
cannot be tested directly if it receives byte string which are for example one byte
too short or too long, respectively. It is up to the test engineer to decide whether
to cope with such illegal input at the level of the model, or at the level of the
driver component.

Intense data abstraction can lead to information loss that cannot be coped
with for test case generation. For example the smart card model developed by
Philipps and Pretschner [PPS+03] abstracts completely from file contents, and
symbolizes files and operations on them without any implementation in the
model. Hence the contents of the files and their evolution over runtime could
not be tested with this model. Only static properties like file length could be
verified.

It is hard to detect feature interaction if functional abstraction is applied
to build separate test models for testing distinct functionalities. For instance,
Farchi et al. [FHP02] use separate models to test different operations of the
POSIX standard. These models help to verify the correct functioning of these
operations in a stand-alone manner, but do not help to verify the behavior of
the whole SUT where these operations are used in combination. In other words
unmeant behavior (bad feature interaction) of the SUT caused by combination
of operations which were verified separately cannot detected by this approach.

Finally, problems can arise if temporal abstraction is intensively used in the
test model. Obviously, in the domain of distributed real time systems a rigor-
ous use of temporal abstraction can prohibit the detection of faults which stems
from the sensitive interleaved timing behavior of the separate components. As a
counterexample, Dushina et al. [DBG01] explicitly do not use temporal abstrac-
tion in their test model. In order to trace generated test cases and to check the
expected performance a clock cycle in the test model corresponds exactly to a
clock cycle in the real processor design.

15.7.2 Structure of Test Cases

A test case generated from the abstract test model and a test specification
contains inputs for the SUT and expected outputs and observable states from
the SUT. In the literature we find the different kinds of structuring a test case
as follows:

Test case is a trace In most model-based testing approaches an abstract test
case is a trace of the abstract test model. The test generator computes them
according to the test specification. In the approach described by Philipps and
Pretschner [PPS+03] it is trace of input and output signals, in other approaches
[SA99, FKL99, DBG01, FHP02] it is a trace of the model’s FSM containing
actual states of input, output and internal variables. Overall, the trace describes
inputs/stimuli for the SUT and expected outputs or observable states of the
SUT for the verdict definition. Roughly, one abstract test case corresponds to
one concrete system run of the SUT.

458 Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann

Test case is an automaton In the case studies described by Clarke et al. [CJRZ01]
and Kahlouche et al. [KVZ98] an abstract test case is an automaton or a tree-
like structure, respectively. Here, the paths in the automaton correspond to
system runs of the SUT. Hence one test case describes an set of possible system
runs of the SUT. The advantage of this approach is seen being able to encode
nondeterminism in the test case, i.e. the SUT is partly allowed to choose the
order in which the operations are executed.

Inner structure of test case Some approaches distinguish different parts of a
test case. They distinguish between preamble, test body, verdict and postamble
(synonyms are prologue, epilogue etc.):

• A preamble at the beginning of a test case initializes the SUT, i.e. after the
preamble has been executed the SUT has reached the state being the origin
for the actual test.
• The test body contains operations and stimuli corresponding to the actual

test purpose.
• The verdict defines a criteria which determines upon outputs or observable

states of the SUT if the test passes or fails. The verdict is often a part of the
test body.
• The postamble at the end of the test case releases the SUT in a defined final

state. For example the postamble prepares the SUT for the next test case or
resets the SUT. Furthermore it may be used to check the inner state of the
SUT by observing certain behaviors.

15.7.3 Translation of Abstract Test Cases to Concrete Test Cases

In Sec. 15.6 we described the generation of test cases. Since the generated test
cases are abstract like the test model, i.e. significant information is missing in
the generated test cases to be executable with the concrete SUT, the abstract
test cases have to be concretized. For example, due to temporal abstraction on
the one side an abstract test case contains no timing constrains but on the other
side the behavior of the SUT depends on the timing of some events. Hence the
precise timing of events has to be introduced in the test case. Due to this fact
the model-based testing approaches use a component (we call it tc-translator)
which translates the abstract test cases to concrete ones. Then the concrete test
cases are applicable to the test platform of the SUT which is, respectively, a
simulation environment, a test framework or directly the SUT itself. In other
words the tc-translator’s task is to bridge the abstraction gap between the test
model and the SUT by adding missing information and translating entities of the
abstract test case to concrete constructs of the test platform’s input language.

For example, if the data type values of an operation’s operand are abstracted
to equivalence classes in the test model, the tc-translator randomly selects a
concrete and type-correct operand for that operation [SA99]. Some model-based
testing approaches use a configuration file or table to configure the tc-translator
[PPS+03, FHP02, SA99]. This table contains the translation relation between

15 Case Studies 459

abstract entities (states, operations etc.) of the model and concrete instructions
for the SUT’s test platform. By doing so, the tc-translator can easily be adjusted
for different test platforms. Often one operation in the model is a macro for the
tc-translator and is substituted by many instructions at concrete level (commu-
nication abstraction). Furthermore the table may specify how to determine the
precise timing of operations in a concrete test case if the test model abstracts
from timing issues.

Other approaches pre-process the abstract test case before they translate
them. For example, Dushina et al. [DBG01] remove all variables of the abstract
test sequence not corresponding to inputs of the SUT from the generated test
sequence. Furthermore they extend the test sequence with reset instructions
before it translated in micro code.

15.8 Test Execution and Test Evaluation

In general, a simulation environment or a test framework (we call it test platform)
of the SUT executes and evaluates the concrete test cases. A test case is evaluated
to the verdicts pass or fail. Pass means that SUT conforms with the abstract
test model restricted to the behavior specified by the executed test case. Fail
means the reverse, i.e., an error was detected during test case execution. Clarke
et al. [CJRZ01] introduce in addition to pass and fail a third verdict called
inconclusive. Inconclusive means that test execution reached a point where no
error has occurred but the test purpose cannot be satisfied any more.

Test evaluation is based on a abstraction/concretization relation between the
traces of the abstract test model and the concrete system runs of the SUT that
has to be determined. None of the reviewed papers defines this relation explicitly.
Only Belinfante et al. [BFdV+99] state that it is important to have it but do
neither describe it nor declare it. Nevertheless this relation is indicated implicitly
in the literature by the description of the applied test evaluation method. We
found the following approaches:

• The approach of Farchi et al. [FHP02] translates the complete abstract test
case consisting of inputs and expected outputs or observable states of the
SUT. The abstract inputs are translated to concrete stimuli of the SUT.
The abstract outputs and states are translated to executable verification
statements (verdicts) which decide if the output of the SUT conforms with
the test model or not. Thus the evaluation of the test is done at the concrete
level within the concrete test case.
• The approaches of Philipps et al. [PPS+03] and Dushina et al. [DBG01]

translate only the inputs of the abstract test case to concrete level. These
concrete stimuli are injected in the SUT by the test platform. The test
platform monitors the outputs of the SUT, abstracts them to the abstract
level of the test model and compares them with the expected outputs encoded
in the abstract test case. Hence the test evaluation in done at the abstract
level by comparing the abstracted SUT outputs with the expected output of
the test model.

460 Wolfgang Prenninger, Mohammad El-Ramly, and Marc Horstmann

• Kahlouche et al. [KVZ98] describe a special case which does not fit in any
of the previous two. Here, the SUT is stimulated with inputs and the ob-
servable behavior of the SUT is monitored and saved completely during test
execution. Then the monitored trace is translated to the abstract level. Since
in this approach the abstract test case has a tree-like structure, the test is
evaluated to pass iff the monitored trace is a branch of the test case structure.

As stated above, the abstraction/concretization relation is only indicated in the
literature. The main part is hidden in the mechanisms which concretizes the
abstract test cases or abstracts the monitored behavior, respectively. There is no
information about what advantages each of the approaches has, e.g., concerning
scalability or performance.

15.9 Conclusion

In this chapter we reviewed eight case studies from different domains applying
model-based testing mostly in an industrial context. In conclusion, we make four
important observations.

First, application of model-based testing is motivated by the fact that real
world systems (SUTs) are getting more and more complex. Currently, most
systems are tested in an unstructured way by manually written test cases. Due
to the increasing complexity, it is getting more and more difficult to achieve
sufficient test coverage by this approach effectively. Additionally, test suites are
growing huge. For example, in [FKL99], the Architecture Validation Suite (AVS)
developed for PowerPC architecture consisted of about 87,000 test cases for the
32-bit design and 150,000 test cases for the 64-bit design. More general, it is
getting too hard to validate systems against their requirements directly and
effectively.

Second, we observed that all case studies follow a common abstract process.
The process builds an abstract test model of the system’s behavior, which in-
corporates only the crucial aspects of system in an abstract way. Due to the
reduction of complexity in the test model, validating the test model is consider-
ably easier and more effective than directly validating the complex SUT. Then,
by means of test case specification, generation, concretization, execution and
evaluation, the behavior of the SUT is verified against the abstract test model.
This approach leads to a structured test process and enables wide and measur-
able test coverage. For building abstract test models, we identified four classes
of abstraction techniques that were applied in the case studies.

Third, we observed that model-based testing starts to be broadly applied in
industry in the domain of processor verification. This stems from the fact that
there is a well-understood development process with well-defined abstraction
levels (e.g., from VHDL down to RTL) in this domain. Actually, this enables
partial automation of the abstract test model building. In the other case studies
the test models are built in an ad-hoc manner due to the lack of well-defined
abstraction levels in their domains. Nevertheless these case studies are promising
proofs of concept.

15 Case Studies 461

Finally, we observed that none of the case studies provides results in terms of
an rigorous assessment of model-based testing. They do not contain any state-
ments about effectiveness and costs in comparison with traditional testing tech-
niques or other quality assurance techniques like reviews or inspections.

Overall the case studies revealed that a common model-based testing process
is settled and the model-based technology for generating test cases is mature
enough for industrial application. Yet for a full scale industrial application, do-
main specific abstraction methods integrated in the development process have
to be developed in order to support model-based testing effectively and the as-
sessment of model-based testing has to be investigated.

Acknowledgments: The authors are grateful to Alexander Pretschner for valuable
discussions and comments and to the anonymous referees for their insightful
remarks and suggestions.

Part V

Standardized Test Notation and Execution

Architecture

The previous parts of this volume dealt mainly with test case generation. We
have presented methods or finite-state machines and for transition systems and
reviewed tools and case studies. In this part, we give two examples for formal
test notations. While the two description methods have been designed for speci-
fying test cases manually, it is in general possible to use these notations also for
automatically generated test cases, which gives the link to the previous parts.

Chapter 16 gives an introduction to TTCN-3, the Testing and Test Control
Notation, which is a standardized language to formulate tests and to control
their execution.

In Chapter 17, the standardized UML 2.0 test profile is explained. It provides
means to use UML both for system modelling as well as test case specification.

16 TTCN-3

George Din

Fraunhofer Fokus – Institute for Open Communication Systems
din@fokus.fraunhofer.de

16.1 Introduction

This chapter presents TTCN-3, the Testing and Test Control Notation, which
is the most used technology in the protocol testing field. Many of the previous
chapters concern the problem of how to create tests for a system we want to
test. In this chapter we consider the problem of test execution. Test execution
comprises the following activities: test data is applied to a SUT, the behavior
of the SUT is monitored, and expected and actual behaviors are compared in
order to yield a verdict.

Before presenting details about test execution with TTCN-3 we consider it
is worth presenting shortly the evolution of TTCN-3. The creation of TTCN-3
was an incremental process starting from a version which was adequate only
for protocol testing and finishing with a standardized, full-featured language
applicable for many testing domains.

16.1.1 Evolution of TTCN-3

The design process of TTCN language is presented by ITU (International Or-
ganization for Standardization) in [ITU02]. TTCN was first published in 1992,
as an ISO standard. Since then, TTCN language has been intensively used to
specify tests for different technologies like Global System for Mobile Commu-
nication (GSM), Digital Enhanced Cordless Technologies (DECT), Inteligent
Network Application Protocol (INAP), Integrated Services Digital Network (N-
ISDN, B-ISDN). This first version of TTCN was not a proper language, but a
tabular notation. It was not possible to describe concurrent behaviors within
the test system, which was an impediment to apply TTCN to test in parallel
the different facets of the system under test. There were missing concepts like
packaging, encapsulation and there was also no support for manipulating exter-
nal data like ASN11 (Abstract Syntax Notation One). All these became possi-
ble in the TTCN-2 (Tree and Tabular Combined Notation) version proposed
in ISO/IEC (International Organization for Standardization and International
Electrotechnical Commission) and in ITU-T (International Telecommunications
Union-Telecommunications Standard Sector) in 1998.

Although the language was improved, TTCN-2 was rather associated with
conformance testing and was not suitable for various kinds of testing such as
1 ASN.1 is the language used by the Open System Interconnection (OSI) protocols for

describing abstract syntax.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 465-496, 2005.
 Springer-Verlag Berlin Heidelberg 2005

466 George Din

inter-operability testing, robustness testing, regression testing, system testing.
It was even more difficult to apply it in the areas of mobile protocol testing,
service testing or CORBA-based platform testing.

In 1998, as a consequence of a urging need for a proper test language, ETSI
(European Telecommunication Standards Institute) proposed a Specialists Task
Force to develop a new version of TTCN, namely TTCN-3. The development
of TTCN-3 was encouraged by key players of the telecommunication industries
and science to define a common test notation for all black-box testing needs. The
standardization process, lead by ETSI PTCC (Protocol and Testing Competence
Center), finished in 2000. The new language is a text-based language and has
the form of a modern programming language, which is obviously easier to learn
and to use. TTCN-3 inherits the most important typical programming language
artifacts, but additionally it includes important features required for test suite
specification. It can be easily used as interchange format between TTCN tools
and has a well defined syntax and semantics. TTCN-3 was submitted to ITU-
T as Z.140 series and was approved in July 20012. Currently, all ETSI test
specifications are written in the TTCN-3 language as Wiles presents in [Wil01].

16.1.2 Practical Importance of TTCN-3

Wiles presents in [Wil01] the testing activities of ETSI which mainly concentrate
on testing with TTCN-3. The TTCN-3 language was created due to the impera-
tive necessity to have a universally understandable language syntax to describe
test behavior specifications. Its development was imposed by industry and sci-
ence to obtain a single test notation for all black-box testing needs. In contrast to
earlier test technologies, TTCN-3 encourages the use of a common methodology
and style which leads to a simpler maintenance of test suites and products. In
TTCN-3, the tester specifies the test suites at an abstract level and focuses on
the test purpose itself rather then on the test system adaptation and execution.
A language which is standard, is an advantage for both test suite providers and
users; the test suite providers concentrate on the test specification standardiza-
tion and accuracy, making them available to everybody in order to certify the
quality of products. Moreover, the use of a standard language reduces the costs
for education and training, since a great amount of documentation and examples
is available. It is obviously preferred to use always the same languages for test-
ing, than learning different technologies for distinct test classes. Constant use
and collaboration between TTCN-3 consumers ensures a uniform maintenance
and development of the language.

TTCN-3 enables systematic, specification-based testing for various kinds of
tests including functional, scalability, load, inter-operability, robustness, regres-
sion, system and integration testing. It is a language to define test procedures
to be used for black-box testing of distributed systems. It allows an easy and

2 In this chapter we use the terminology defined by ITU for testing. The same terminol-
ogy was adopted also in the ETSI documents related to TTCN-3. Thus, definitions
like ”test case”, ”test system” differ from the glossary of this book

16 TTCN-3 467

efficient description of complex distributed test behaviors in terms of sequences,
alternatives, and loops of stimuli and responses. The test system can use a num-
ber of test components to perform test procedures in parallel. TTCN-3 language
is characterized by a well-defined syntax and operational semantics, which allow
a precise execution algorithm. The task of describing the dynamic and con-
current configuration is easy to perform. The communication between the test
system and system under test can be realized either synchronously or asyn-
chronously. To validate the data transmitted between the entities composing the
test system, TTCN-3 supports definition of templates which ensure a powerful
matching mechanism. To validate the described behaviors, a verdict handling
mechanism is provided. The types and values can be either described directly
in TTCN-3 or can be imported from other languages (i.e. Abstract Syntax No-
tation (ASN.1), Extended Markup Language (XML), Interface Definition Lan-
guage (IDL)). Moreover, in TTCN-3, the parameterization of types and values
is allowed. The selection of the test cases to be executed can be either controlled
by the user or can be described within the execution control construct.

16.1.3 Related Standards

Figure 1.1 shows an overview of the TTCN-3 language. TTCN-3 is based on a
core language which provides interfaces to reference data defined in other descrip-
tion languages. As the figure shows, one can import types and values specified
in non-TTCN-3 languages. The front-end can be either the core language itself
or one of the presentation formats (tabular format, graphical format etc).

TTCN-3
Core
Language

Presentation
formatn

TTCN-3 User

ASN.1 Types
& Values

Other Types
& Values n

Graphical
format

Other Types
& Values 2

The shaded boxes are not
defined in this document

Tabular
format

TTCN-3
Core
Language

Presentation
formatn

TTCN-3 User

ASN.1 Types
& Values

Other Types
& Values n

Graphical
format

Other Types
& Values 2

The shaded boxes are not
defined in this document

Tabular
format

Fig. 16.1. The overall view of the TTCN-3 core language.

The ETSI standard for TTCN-3 comprises six parts which are grouped to-
gether in the ”Methods for Testing and Specification; The Testing and Test
Control Notation version 3” document (all parts are cited in the enumeration
below).

• TTCN-3 Core Language. This document specifies the syntax of TTCN-3
language [Ins03].

468 George Din

• Tabular Presentation Format. TTCN-3 offers optional presentation formats.
The tabular format is similar in appearance and functionality to earlier ver-
sions of TTCN. It was designed for users that prefer the TTCN-2 style of
writing test suites. A TTCN-3 module is presented in the tabular format as
a collection of tables [Ins03].
• Graphical Presentation Format. It is the second presentation format of

TTCN-3 and is based on the MSC format [ITU99] (Message Sequence
Charts). The graphical format is used to represent graphically the TTCN-3
behavior definitions as a sequence of diagrams [Ins03].
• Operational semantics. This document describes the meaning of TTCN-3

behavior constructs and provides a state oriented view of the execution of a
TTCN-3 module [Ins03].
• The TTCN-3 Runtime Interface (TRI). A complete test system implemen-

tation requires also a platform specific adaptation layer. The TRI document
contains the specification of a common API interface to adapt TTCN-3 test
systems to SUT [Ins03].
• The TTCN-3 Control Interfaces (TCI). This part provides an implementa-

tion guide-line for the execution environments of TTCN-3. It specifies the
API the TTCN-3 execution environments should implement in order to en-
sure the communication, management, component handling, external data
control and logging [Ins03].

16.1.4 Chapter Overview

The rest of the chapter is structured as it follows: Section1.2 introduces a web-
service test example which will be used among all sections to exemplify the
TTCN-3 concepts, Section1.3 introduces the semantic of the TTCN-3 language
artifacts, next, Section1.4 presents some issues on TTCN-3 compiling. Section1.5
introduces TCI and TRI specifications and presents how the TTCN-3 test sys-
tems can be realized on top of these interfaces. Section1.6 concentrates on test
configuration and deployment revealing some of the related problems. Summary
and an outlook are presented in Section1.7

16.2 Web Service Testing Example

In this section we try to show how easy or how complex it is to use TTCN-3 by
using an web service test as example. The main idea is to define a test system for
interaction with the system under test (the web service) and validate its basic
functionality (i.e. simple queries). TTCN-3 test components are used to emulate
system clients. These test components perform the basic functional tests in order
to evaluate the reaction of the system to selected service requests or complex
service request scenarios. The combination of test components performing dif-
ferent basic functional tests and their parallel execution leads to different test
scenarios for the system under test.

In our example we use a dinosaurian database web service (Dino web service)
which contains dinosaurian information stored in form of database entries. A

16 TTCN-3 469

dinosaur entry is given as a collection of information about the dinosaur. It
is described in terms of the name, time, place, length and location. The web
service interface offers different functionalities like search, add, remove, update
of dinosaur registrations. The purpose of our TTCN-3 based test system is to
validate the correct behavior of these operations. In TTCN-3 we define the test
data which the test cases interchange with the SUT, the test configuration by
means of test components and ports, and the validated test behavior.

The data format of the entries in the Dino web service is given in form of
XML Schema. All entries in the Dino web service must follow this structure.

<schema>
<element name="dinosaur">

<complexType>
<sequence>

<element name="name" type="string"/>
<element name="length" type="string"/>
<element name="location" type="string"/>
<element name="place" type="string"/>
<element name="time" type="string"/>

</sequence>
</complexType>

</element>
</schema>

A web service is a URL-addressable resource returning information in re-
sponse to client requests. Web services are integrated into other applications or
web sites, even though they exist on other servers. So for example, a web site
providing quotes for car insurance could make requests behind the scenes to a
web service to get the estimated value of a particular car model and to another
web service to get the current interest rate.

This example will be used in all following sections in order to exemplify
the presented concepts. We will introduce the language by enumerating its main
elements and in parallel we will design a complete test system for our web service
example. Similarly, we describe the components of the execution environment
by showing, on top of this example, how these components are applicable in
practice.

16.3 TTCN-3 Based Test Specification

This section is an overview of the TTCN-3 core language and it introduces al-
most all its key elements. The chapter groups the concepts in four parts: Section
1.3.1 presents the structure of a TTCN-3 test suite, 1.3.2 discuses the test sys-
tem configuration, 1.3.3 groups together all possibilities to specify test data in
TTCN-3, and 1.3.4 describes how the test behavior can be defined in TTCN-3.

470 George Din

16.3.1 Test Building Blocks

The top-level building-block of TTCN-3 is the module. A module contains all
other TTCN-3 constructs, but cannot contain sub-modules. It can import com-
pletely or partially the definitions of other modules. The modules are defined
with the keyword module.

In our web service example we define the WebServiceModule. This module
imports all definitions from UtilsModule. The module parameter serviceId is a
parameter which can be configured by the tester at execution and which indicates
the service to be tested (serviceId takes the default value ”0”.

module WebServiceModule {

// imports some util functions from another module
import from UtilsModule all;

// module parameter -> the id of the tested service
modulepar { integer serviceId := 0; };

// other definitions ...
}

The modules can be parameterized; parameters are sets of values that are
supplied by the test environment at runtime. A parameter can be initialized with
a default value which can be changed, later, at execution time.

A module has two parts: the module definition part and the module control
part. The definition part contains the data defined by that module (functions,
test cases, components, types, templates), which can be used everywhere in the
module and can be imported from other modules. The control part is the main
program of the module, which describes the execution sequence of test cases or
functions. It can access the verdicts delivered by test cases and, according to
them, can decide the next steps of execution.

We define, in our example, a control part which tests if a Dino entry exists in
the web service database. If the verdict is fail, which means that the entry does
not exist, another test case is started. The float values in the execute commands
represent the maximal time the execution environment must wait until the test
cases finish. If the test case does not finish in the indicated period of time, the
test case is stopped with the verdict inconc.

// CONTROL PART
control {
verdicttype v;
v := execute(SeparateSearchFunctionalTest(serviceId), 1.0);
if(v == fail){

v := execute(SeparateAddFunctionalTest(serviceId), 2.0);
}

}

16 TTCN-3 471

The control part of a module may call any testcase or function defined in the
module to which it belongs. Testcases may call functions or altsteps, but they
are not allowed to call other test cases. Similarly, functions are allowed to
call other functions or altsteps but no test cases. (function and altstep
constructs are defined in Section 1.3.4).

16.3.2 Test System Configuration

TTCN-3 allows the specification of dynamic and concurrent test systems (i.e.
the test components can be created dynamically at runtime, the execution of
the test behavior can be influenced by the reactions of the SUT). Figure 1.2
shows the conceptual view of a test system configuration. A system configuration
is the specification of all test components, ports, connections and test system
interface involved in the test system. Every test system shall have only one Main
Test Component (MTC). The MTC is created automatically by the system at
the start of any test case execution. The MTC is the component on which the
behavior of test cases is executed. The other test components defined within the
test system are called parallel test components (PTC). PTCs can be created
dynamically at any time during the execution of a test case. The tested object
is called System Under Test (SUT) and the interface to communicate with it is
the Abstract Test System Interface.

SUT

Abstract Test System Interface

Real Test System Interface

MTC PTC1

TTCN Test system

PTC2

Fig. 16.2. The conceptual view of a test system configuration

The test case execution terminates when the MTC terminates. Before ter-
mination of MTC, all other PTCs, which are still running, are stopped by the
execution environment. At termination, the MTC collects all PTC verdicts and
computes the final verdict.

The test components are defined in the module definition part (which was
introduced in 1.3.1). A test component definition may contain a list of ports
used for communication, timers, variables and constants. The declarations made
for a component are visible to all behaviors which run on that component. The

472 George Din

Abstract Test System Interface can also be defined as a component, since its
definition is the same as a component definition: a collection of ports used to
connect and communicate with other components.

For Dino web service test we define the MTCType, PTCType and SUTType
components. The SUTType component defines a component type which contains
an array of ports. This component represents, at an abstract level, the SUT. Ac-
cording to SUTType definition the SUT provides many connection ports which
implies that many PTCs can interact with the SUT at the same time.

type component MTCType {}

type component PTCType {
port httpTestPortType httpPort;
timer localTimer := 3.0;

}

type component SUTType {
port httpTestPortType httpTestSystemPort[NUMBER_OF_PTCS];

}

The communication between test components as well as the one between test
components and test system interface are realized over ports. There are two types
of communication: message based (the communication is based on asynchronous
interchange of messages) and procedure based (the communication is realized
in form of synchronous remote procedure invocations). Therefore, TTCN-3 sup-
ports two types of ports: message-based and procedure-based ports. Data trans-
mission directions can be defined for each port: in (the received data), out (the
sent data), inout (the data can be both sent or received). Ports can also be
mixed; they can be used both for message-based and for procedure-based com-
munication.

In our example, we use the httpTestPortType port to connect a test com-
ponent to the web service (SUT). Since the communication with the SUT is an
asynchronous one, we define this port of type message. This port allows to send
request messages like search, update, add or remove. The incoming messages can
be of type dinosaur, updateAck, addAck or removeAck.

type port httpTestPortType message {
out search;
out update;
out add;
out remove;
in dinosaur;
in updateAck;
in addAck;
in removeAck;

}

16 TTCN-3 473

The system configurations are set by using configuration operations. These op-
erations are used in test cases, functions and altsteps, and regard the test com-
ponents creation and the ports connections. The ports of a component can be
connected to other ports by using connect or map operations. When connecting
ports of two PTCs, the operation used is connect. When connecting a port of
a PTC to a port of SUT, the operation used is map. To disconnect ports the
opposite operations are used, namely disconnect or unmap. For our web service
test we define the following system configuration:

var PTCType PTC := PTCType.create;
map (PTC: httpPort, system: httpTestSystemPort[portNumber]);
PTC.start (SeparateSearchFunctional(system, serviceId));
PTC.done;
unmap(PTC: httpPort, system: httpTestSystemPort[portNumber]);

In this example we create the PTC component of type PTCType. The map
operation is than used to map the httpPort to one of the system ports httpTest-
SystemPort (indexed by portNumber). With start operation we run the Sepa-
rateSearchFunctional behavior on the PTC component. The PTC.done statement
determines the execution of the test case to wait until the behavior of the PTC
component finishes. unmap operation disconnects the ports.

16.3.3 Describe Test Data

Any test system needs to exchange data with the SUT. The communication with
the SUT can be either asynchronous, by sending/receiving messages to/from
SUT or synchronous, by calling procedures of the SUT. In both cases, the test
data must be described within the test system, according to the SUT spec-
ification. TTCN-3 offers different constructs to describe the test data: types,
templates, variables, procedure signatures etc. They can be used to express any
type of protocol message (PDU) or procedure signature. Besides this, TTCN-3
offers also the possibility to import data described in other languages (i.e. ASN.1,
IDL, XML).

To describe basic data types, TTCN-3 provides types which are similar to
basic types of well-known programming languages (Java, C). Some of them are
only testing domain specific, and should be further detailed:

• verdicttype is an enumeration which defines the possible verdicts that can
be associated to a test case: pass, fail, inconc, error, none.
• anytype is a union of all known TTCN-3 types; the instances of anytype are

used as a generic object which is evaluated when the value is known.
• default is used for default handling and represents a reference to a default

operation.

TTCN-3 supports ordered structured types such as: record, record of, set,
set of, enumerated and union.

A record is a structured type which contains fields. These fields can be of
almost all known types: basic types, structured types or user defined types. A

474 George Din

field can be marked as optional, which indicates that the field can be omitted
when setting the record.

In our example we use record to define a dinosaurian type. The dinosaur
entry is a record of five charstrings which represents the characteristics of the
dinosaur.

type record dinosaur {
charstring name,
charstring len,
charstring mass,
charstring time,
charstring place

}

We use the record type to define also the requests we send to the SUT. An
update request shall contain the URL of the service (the web service), the name
of the dinosaur and the characteristics we want to change. Please note that len,
mass, time and place are optional as it might be possible that we do not want
to change all of them (thus we may set the value of the fields we want to change
and leave the others optional).

type record update {
url serviceURL,
charstring name,
charstring len optional,
charstring mass optional,
charstring time optional,
charstring place optional

}

To define a record value, each field of the record must be assigned a value.
There are two possibilities to assign values to fields: by using assignment nota-
tion where each field is assigned a value or by using value list notation where
the values are enumerated in a list. The fields which were defined optional
may not be assigned, they are just marked with the ”-” symbol or with the
omit keyword. The fields of a record are accessed by using the dot notation:
RecordValue.ElementId, where ElementId is the name of a field of the record
RecordValue.

In the web service example we define the variable D of type dinosaur and
initialize it by using the value list notation. The value of len field is changed
again by using the assignment notation.

var dinosaur D := {"Brachiosaurus", "22 m", "30 tonnes",
"Kimmeridgian", "Portugal"};

D.len := "23 m";

16 TTCN-3 475

Templates Templates are data structures used to define message patterns for
the data sent or received over ports. They are used either to describe distinct
values that are to be transmitted over ports or to evaluate if a received value
matches a template specification.

The code below defines the Brachiosaurus template used to validate the
data received from web service as result of a search query. The template says
that the Brachiosaurus entry must have the length of 22 m, the values of mass
and time must be present and the place can be present or omitted.

template dinosaur Brachiosaurus := {
name := "Brachiosaurus",
len := "22 m",
mass := ?,
time := ?,
place := *

}

Templates can be specified for any type or procedure signature. They can be
parameterized, extended or reused in other template definitions. The declaration
of a template contains a set of possible values. When comparing a received
message with a template, the message data shall match one of the possible
values defined by the template.

The templates used in send operations declare a complete set of values which
are sent over the test ports; this kind of templates are similar to variables, since
the templates are here rather values of the template type. The templates used in
receive operations define the data patterns applied to match the incoming data.

The updateRequest is a template used to request the web service to update
the Brachiosaurus entry.

template update updateRequest := {
serviceURL := requestURL,
name := "Brachiosaurus",
len := "22 m",
mass := "30 tonnes",
time := "Kimmeridgian",
place := "Portugal, Spain"

}

Templates can be used also to express instances of procedure parameters. In
this case, the templates reference the associated signature definition. In call or
reply operations, the signature templates define complete sets of values which are
used for remote procedure invocation. In getcall operations, templates are used
to define patterns for the accepted values in the parameter list of a procedure.

For both type and signature templates, TTCN-3 offers several specific con-
structs which make the template definition very flexible:

• pattern: defines a pattern for a string
• ?: wildcard for any value

476 George Din

• omit: the value is omitted
• *: wildcard for any value or no value at all
• (...): list of valid values
• complement(...): complement of a list of values
• ifpresent: for matching of optional field values
• length: restrictions for string length for string types

16.3.4 Test Behavior

The program elements provided by TTCN-3 are: test case, function and altstep.
They are used to structure and express test behaviors, to define default behaviors
and to organize items of functionality, which are used in other behaviors.

Test Cases The test cases define the behaviors that are to be validated; they
check if the SUT fulfills a requirement or not. Each test case has an associated
verdict, which can be set at runtime. A test case runs always on a test component.
The test cases can be parameterized and can access the variables, timers or ports
of the test component on which they are executed.

We define SeparateSearchFunctionalTest test case to test if the dino web
service contains entries the user chooses. The test case runs on MTC component
and creates a PTC. On PTC we start the SeparateSearchFunctional behavior.
In TTCN-3 any function started from a test case is allowed to set the verdict of
the test case which started it. Thus the SeparateSearchFunctional is allowed
to set the verdict of SeparateSearchFunctionalTest.

testcase SeparateSearchFunctionalTest(in integer serviceId)
runs on MTCType system SUTType {

var PTCType PTC := PTCType.create;
integer portNumber := getNextPortNumber();
map (PTC: httpPort, system: httpTestSystemPort[portNumber]);
PTC.start (SeparateSearchFunctional(system, serviceId));
PTC.done;

}

Functions Functions are used to express behaviors (like test cases), but also to
structure computations in a module. When the functions are used to describe
behaviors, similarly to test cases, they must run also on a test component. A
function may return a value which is denoted by the return keyword. If the func-
tion does not access variables, timers or ports that are declared in a component
type definition, the runs on clause can be omitted. A function can be defined
inside the module (its body is defined also in the module) or externally (only the
interface is specified in the module). If the function is declared external, then
the user should implement the function in the test adapter of that module.

In our example, we define SeparateUpdateFunctional functions which runs
on a component of PTCType type. It activates the Default() altstep as default

16 TTCN-3 477

behavior (see next Section) and sends an updateRequest template to the SUT.
The localTimer time of the PTC component is started in order to measure
the response time. In the alt construct we validate if the SUT responds and
if the response matches the BrachiosaurusAck template. If the SUT does not
answer or the response does not match the BrachiosaurusAck template, then
the Default() altstep is called.

function SeparateUpdateFunctional(SUTType sys, integer serviceId)
runs on PTCType

... // identify service by serviceId

activate(Default());

httpPort.send (updateRequest);

localTimer.start;
alt {

[] httpPort.receive (BrachiosaurusAck) {
localTimer.stop;
setverdict (pass);

}
}

deactivate(Default());
}

Altsteps Altsteps are used also for describing and structuring component be-
haviors. An altstep defines an ordered set of alternatives and is called from an
alt construct. The body of altsteps is similarly to alt statements; it contains a
set of alternative behaviors which are called top alternatives. It may also invoke
further functions or altsteps; optional statements may also be specified. If the
altstep uses ports, timers or variables of a test component or invoke other alt-
steps or functions with runs on clause then it must be defined with the runs
on clause.

Altsteps can be defined also as default behaviors to handle communication
events which may occur, but which are not important for the test. To use an
altstep as default behavior activate is used. With deactivate the default is
deactivated. The default behavior is specified at the end of an alt construct and
is called if for the current alt statement no alternative is selected.

In our example we use the Default() altstep as default behavior. We define
in SeparateUpdateFunctional an alt statement with one alternative. If that
alternative does not match, the Default altstep is also executed. Thus, the run-
time checks if the httpPort received other data than BrachiosaurusAck or if
the timer localTimer timed-out.

478 George Din

altstep Default() runs on PTCType {
[] httpPort.receive {

localTimer.stop;
setverdict (fail);

}
[] localTimer.timeout {

setverdict (fail);
}

}

Program Statements A program element (test case, function or altstep) may
contain different types of statements and operations:

• program statements: expressions, assignments, loop constructs
• behavioral statements: sequential behavior, alternative behavior, interleav-

ing, defaults
• communication operations: send, receive, call, getcall
• timer operations: start, stop, running
• verdict handling: set

Snapshot Semantic One of the most important features of TTCN-3 is the
snapshot mechanism which allows the definition of complex interleaved or par-
allel behaviors. Alternatives are complex behaviors whose sequences of state-
ments are defined as multiple alternatives. To define a branch in an alternative
behavior, the alt statement is used.

The execution environment will execute the alternatives by using snapshots.
Each branch of an alternative has an associated guard. The guard represents one
or more conditions (boolean expressions) that must be fulfilled in order to enter
a branch. A snapshot is a state of the test system that includes all information
necessary to evaluate the guard of an alt branch. A snapshot is taken when
executing an alt statement; that means that all relevant information is collected
and used for evaluation of guards. This information contains the states of the
components, the timer events and the port enqueued messages. The test system
may change its configuration, but the alt statement is evaluated accordingly to
the snapshot. The execution environment selects only the branches whose guard
conditions are fulfilled. If there is more than one valid guard, then the first one
is chosen. If none is valid, then the alt is reevaluated with a new snapshot.

Communication Operations The communication operations are some of the
most important operations used to specify test behaviors. TTCN-3 supports
message-based and procedure-based communication. The communication oper-
ations can be grouped into two parts: stimuli which send information to SUT
(send, call, reply raise) and responses used to describe the reaction of the SUT
(receive, getreply, trigger, catch).

16 TTCN-3 479

To apply a sending operation (stimuli) there shall be specified a port used to
send the data, the value to be transmitted, and optionally an address to identify
a particular connection if the port is connected to many ports. Additionally, at
procedure based communication the response and error operation are needed;
they are specified by using the getreply and catch operations.

These operations are

• send: send a message to SUT,
• call: to invoke a remote procedure,
• reply: to reply a value when an own procedure is called,
• raise: to report an exception when an own procedure is called an something

is wrong in the procedure call.

The message based communication is asynchronous communication. The
sending operations are non-blocking; after sending the data, the system does
not wait for response. The receive operations block the execution until a match-
ing value is received.

A receiving operation specifies a port at which the operation takes place,
defines a matching part for selection of valid receiving values and optionally
specifies an address to identify the connection (if the port is connected to many
ports).

These operations are

• receive: receive a message from SUT
• getreply: specifies that a method is invoked
• trigger: specifies a message that shall receive in order to go to the next

statements
• catch: to collect an exception reported at remote procedure invocation.

Timer Operations The behavior specification may use timers. A timer is used
as a type; therefore instances of it can be declared. The operations with timers
are start, stop, read (to read the elapsed time), running (to check if the timer
is running) and timeout (to check if timeout event occurred). At the declaration
of a timer, a value can be assigned; the value is of type float. The start command
may be used with parameter (the duration for which the timer will be running)
or without parameter (when the default value specified at declaration is used).

In our example, we define a timer on PTCType component and use it in the
SeparateSearchFunctional behavior. In general, timers are used to measure
the time between sending a stimuli and the SUT’s response. If the SUT’s answer
does not come in a predefined period of time, usually the verdict is set to fail.

Verdict Handling The verdicts can be set and retrieved by using the setver-
dict and getverdict operations respectively. These operations are allowed in test
cases, functions and altsteps. For verdict declaration and instantiation, TTCN-3
provides the verdicttype type. This type is an enumeration of five values: pass,
fail, inconc, none and error.

480 George Din

alt {
[] httpPort.receive (BrachiosaurusAck) {

localTimer.stop;
setverdict (pass);

}
}

Each test component has an associated verdict; this is called local verdict.
The local verdict is handled during execution by using the verdict operations.
Additionally, there is a global verdict which is updated when a PTC terminates
its execution. The global verdict cannot be accessed with getverdict or setverdict
operations. The global verdict is returned always when the test execution of a
test case terminates. This verdict can be assigned to a verdict variable in the
control part (remember, the testcases can be started only from the control part).
If the control part does not collect the verdict, this information is lost.

verdicttype v;
v := execute(SeparateSearchFunctionalTest(serviceId), 1.0);
if(v == fail){

v := execute(SeparateAddFunctionalTest(serviceId), 2.0);
}

16.4 TTCN-3 Compiling

TTCN-3 is an abstract notation; the code written in TTCN-3 is usually called
ATS (Abstract Test Specification). A compiler translates the ATS and produces
a program/library called ETS (Executable Test Specification). The ETS can be
any known language: Java, C, C++, etc. The user is not aware of the translation,
as this process is supplied by a TTCN-3 compiler provider. The ETS is deployed
into an execution environment whose architecture and design is presented in the
next Section.

16.5 TCI and TRI Based Execution Environment

ETSI standardized also the architecture of the execution environment of
TTCN-3, besides the core language, semantic and presentation formats. The
standard architecture of a test system consists of several entities which commu-
nicate mutually through predefined interfaces. The ETSI specification is com-
prised in two documents: TTCN-3 Runtime Interface (TRI) which is the fifth
part of the standard [Ins03] and TTCN-3 Control Interfaces (TCI) which is the
sixth part of the standard [Ins03]. The Runtime Interface and Control Inter-
faces provides an unified model to realize the TTCN-3 based systems [SVG02],
[SVG03].

This section explains the implementation of TTCN-3 based test systems.
Here are presented the architecture of a Test System, the main system sub-
components which build a test system and the standard APIs defined for the
communication between the subcomponents.

16 TTCN-3 481

16.5.1 Test System Architecture

The general structure of a distributed TTCN-3 Test System is depicted in Fig-
ure 1.3. A TTCN-3 Test System is build up of a set of interacting entities which
manage the test execution (interpret or execute the TTCN-3 code), realize the
communication with the SUT, implement external functions and handle timer
operations.

Fig. 16.3. Test System Architecture.

The test system contains the executable code produced during compilation
- TTCN-3 Executable (TE), which communicates with the Test Management
(TM), the Component Handling (CH) and the Codec (CD) via the TTCN-3
Control Interfaces. The communication with the System Under Tests is real-
ized by using the TTCN-3 Runtime Interfaces (TRI) which define the interfaces
between the TE, the System Adapter (SA) and the Platform Adapter (PA).

The main components of the test system are:

• TTCN-3 Executable (TE) interprets or executes the compiled TTCN-3 code.
This component manages different entities: control, behavior, component,
type, value and queues, entities which are the basic constructors for the
executable code.
• Component Handler (CH) handles the communication between components.

The CH API contains operations to create, start, stop test components, to
establish the connection between test components (map, connect), to handle
the communication operations (send, receive, call and reply) and to manage
the verdicts. The information about the created components and their phys-
ical locations is stored in a repository within the Execution Environment.

482 George Din

• Test Management (TM) manages the test execution. It implements opera-
tions to execute tests, to provide and set module parameters and external
constants. The test logging is also realized by this component.
• Coding/Decoding (CD) encodes and decodes types and values. The TTCN-3

values are encoded into bitstrings which are sent to the SUT. The received
data is decoded back into the TTCN-3 values.
• System Adapter realizes the communication with the SUT. The communi-

cation operations send, receive, call, getcall, reply, used to interact with the
SUT, are defined and implemented by the System Adapter.
• Platform Adapter implements the timers and the external functions. Timers

are platform specific elements and have to be implemented outside the test
system. The Platform Adapter provides operations in order to handle timers:
create, start, stop. External functions (whose signature is specified in the
TTCN-3 specification) are implemented also in the Platform Adapter.

The TCI and TRI operations represent the mapping to a technology specific
interface description language (ex. IDL) of a subset of TTCN-3 operations. The
test configuration, intercomponent communication and the timer handling be-
long to this subset of operations. They shall be implemented outside the Test
Executable (TE), which is the generated code. This approach allows the use of
different Test Systems entities implementations. For instance, CH (which imple-
ments the intercomponent communication and the component handling) can be
implemented either with CORBA or with RMI or other technology. The imple-
mentation of CH is transparent to TE; TE just calls the operations provided by
CH which handles the request.

CD

PASA

TE
TECH

TM

TE
TE

...

SA PA

Special TE:
Initiating StartTestCase &
Calculating Final Verdict

SA PA

CD

CD

CD

PASA

TE
TECH

TM

TE
TE

...

SA PA

Special TE:
Initiating StartTestCase &
Calculating Final Verdict

SA PA

CD

CD

Fig. 16.4. Distributed Test System Architecture.

TTCN-3 tests can be distributed over several test devices. Figure 1.4 shows
the distributed perspective of the test system architecture. The TE is instanti-
ated on each test device. The handling of components, which may be created
on different nodes, is realized by CH. The TM is responsible for the logging of
the distributed tests and for the presentation of the results to the test system

16 TTCN-3 483

user. The CD, SA and PA entities are instantiated on each device because their
implementation may differ depending on their underlying heterogeneous devices.

16.5.2 Test Control Interfaces

The TTCN-3 Control Interfaces provide a standardized adaptation for the man-
agement and the handling of test components and for the encoding/decoding of
a test system to a particular test platform.

The 6th part of the ETSI TTCN-3 standard defines the interaction between
three main entities: Test Management (TM), Test Component Handler (CH)
and Coder/Decoder (CoDec). The test can be distributed over many test hosts
and different test behaviors can be executed simultaneously. As it is conceived
within the standard, on each host, an instance of the test system is created. The
Test Execution (TE) must be distributed on each host with its own codec (CD),
System Adapter (SA) and Platform Adapter (PA). The Component Handling
(CH) supplies the communication between the test components created, that run
on different hosts. The Test Management coordinates and manages the execution
of the test.

The interaction between the main entities is defined as a set of interfaces. The
API, conceived within the interfaces, defines operations which the entities either
provide or use. For this reason, there are two classes of interfaces: provided and
required. Provided interfaces contain operations which are offered by an entity;
the required interfaces contain operations that an entity expects from the other
entities.

Data Types The TTCN-3 data described in the test module must be trans-
formed into concrete data values which are handled by the entities implementing
the test system. TE contains the data values which are generated at compilation.
In order to maintain a common data model, the TCI standard defines the Ab-
stract Data Type Model, which describes the interfaces that handle the TTCN-3
data from TE. Each abstract data type has associated a set of operations which
defines its functionality.

The Abstract Data Type Model contains two parts: the data type Type, which
represents all TTCN-3 types of a module, and data types that represent TTCN-3
values (instances of TTCN-3 types). All TTCN-3 types provide the same inter-
face. One may obtain for a type the module where it was defined, its name
or class and the type of encoding. Any type can be instantiated by using the
newInstance method. The different types of values, which can appear in a TE,
are presented in Figure 1.5.

All types of values inherit the Value type and provide the core operations:
getValueEncoding, getType and notPresent. The Value types represent the
mapping of the abstract TTCN-3 values to concrete ones. There are three cate-
gories of values: a) basic types (integer, float, boolean etc), b) string based values
(hexstring, octetstring, charstring etc) and c) structured types (union, record,
verdict). All of them provide additional operations (besides the operations ex-
tended from Value) to access their functionality.

484 George Din

Value

Type getType()

String getValueEncoding()

boolean notPresent()

IntegerValue ObjidValue UniversalCharValue

FloatValue BooleanValue CharValue VerdictValue

UniversalCharstringValue

HexstringValue OctetstringValue CharstringValue BitstringValue

UnionValue EnumeratedValue RecordOfValue RecordValue

Value

Type getType()

String getValueEncoding()

boolean notPresent()

IntegerValue ObjidValue UniversalCharValue

FloatValue BooleanValue CharValue VerdictValue

IntegerValue ObjidValue UniversalCharValue

FloatValue BooleanValue CharValue VerdictValueFloatValue BooleanValue CharValue VerdictValue

UniversalCharstringValue

HexstringValue OctetstringValue CharstringValue BitstringValue

UniversalCharstringValue

HexstringValue OctetstringValue CharstringValue BitstringValue

UniversalCharstringValue

HexstringValue OctetstringValue CharstringValue BitstringValueHexstringValue OctetstringValue CharstringValue BitstringValue

UnionValue EnumeratedValue RecordOfValue RecordValueUnionValue EnumeratedValue RecordOfValue RecordValue

Fig. 16.5. The TTCN-3 Value Types which can appear in a TE.

Management of the Test Execution The overall management of a test
system is realized by the Test Management entity (TM). The TM operations
can be split into two parts: operations which are used by the user to control the
test execution and operations provided to TE in order to notify the user about
changes in the execution status.

The user may start or stop the test cases and the control part. This function-
ality is implemented in TE. In response, the TE may notify the TM when a test
case or the control started or terminated. As presented in Section 1.3, the test
cases can be parameterized. This is also reflected in the TM - tciStartTestCase
method which has a TciParamterListType as argument. The TE, where the
MTC is executed, is called special TE and is used to start the test cases or the
control part.

The values of the parameters of a module are transferred to TE also via
TM interface. TE may ask TM about the value of a parameter by using the
tciGetModuleParameter.

A user may obtain information about the content of a module. With the
tciGetTestCases and the tciGetModuleParameters methods, the user may
acquire the list of test cases and module parameters.

Test Configuration The abstract operations used in the TTCN-3 test specifi-
cations in order to define test configurations (create, connect, disconnect, start,
stop etc) are mapped to concrete operations in the CH interface. All the configu-
ration operations are reflected by the CH API. The configuration operations are
called from behaviors (test cases, functions, control) which are contained by TE.
Since the TE does not know where to create or start components, the request
is sent to CH. Conceptually, CH has knowledge about every component. The
requests from TE are analized on the basis of the CH knowledge; CH decides if
the requests are to be handled locally or remotely (a component can be created
either locally or remotely). If the request is executed locally, it is sent back to
the local TE. If the request is to be executed on a remote node, the CH sends

16 TTCN-3 485

the request to the remote TE. CH keeps track of the modifications in the test
system configuration; it stores the references of the components, knows about
the running behaviors and manages the component connections. CH can also be
asked if a component is running or done. Whenever an error at execution inside
of a TE occurs, the tciReset operation is called in order to stop all the other
components (of all TEs).

Component Communication The communication operations between com-
ponents are realized also by CH. CH provides to TE a set of operations which
are called whenever data is transmitted between components. The CH com-
munication operations represent the mapping of the TTCN-3 communication
operations: send, receive, call, getcall etc. When a component sends data to
another component, the request is forwarded to CH. CH has the global view
over the distributed configuration and knows the host of the receiving compo-
nent as well. If the host is a remote one, the message is send to the remote
TE. TTCN-3 supports two types of communication: asynchronous and proce-
dure based. Consequently, CH supports also the two types of data communica-
tion by providing methods like tciSendConnected, tciEnqueueMsgConnected
for asynchronous communication, but also methods like tciCallConnected,
tciEnqueueCallConnected for procedure based communication.

Verdict Handling CH is informed about the termination of the components;
for this task, TE calls the tciTestComponentTerminatedReq method with the
verdict of type VerdictType as parameter. CH delivers all the verdicts to the
special TE, which computes the global verdict.

Errors, Logging In addition, TM provides methods to log the errors and the
log messages reported by TE. These messages are presented to the user by the
tciLog and tciError operations.

Data Encoding The TTCN-3 values must be converted to SUT specific data.
This task is solved by CD, which provides the tciEncode and the tciDecode
operations. The encoding operation is called by TE before the data is sent to the
Test Adaptor. The decoding operation is used by TE when data is received from
TestAdapter. To be able to decode, CD requires some information from TE; this
information is the decoding hypothesis. The behavior running in TE knows the
type of data that is to be received, so it asks CD to try to decode the received
data according with a certain expected type. If the decoding fails, CD is called
again with a new decoding hypothesis.

Test Control Interfaces Implementation In the previous sub-sections we
introduced the standard Test Control Interfaces used to execute and control the
test execution. These interfaces have to be implemented in the execution envi-
ronments, thus the user does not have to be aware about their implementation.

486 George Din

This task is rather tool specific and the tool provider must consider them as a
general layout for the implementation of the TTCN-3 execution environment.

Consequently we also do not have to do anything with respect to our web-
service example. We just take an execution tool (TCI complient) and run the
tests specified in TTCN-3. But before running we need to care about the adapter
to the SUT which is presented in detail in the next section.

16.5.3 Test Adaptation

The 5th part of the ETSI TTCN-3 standard [Ins03] defines the Test Runtime
Interfaces by means of communication of TE with the System Adapter (SA) and
with the Platform Adapter (PA). This part describes two tasks; firstly, the way
the TE sends data to SUT or manipulates timers, and secondly, the way the SA
+ PA notify the TE about the received test data and timeouts.

The TTCN-3 specifications use the operation system to access the SUT. The
component returned by the system operation is conceptually similar to the other
PTCs and is usually called system component; it may contain ports, variables,
timers etc and can be connected to other components. In contrast to normal
components, the ports of the system component are connected with the ports
of other components by using the map operation. As far as the test execution
is concerned, the system is handled differently. The configuration operations
map, unmap are not sent to CH, but to the Test Adapter. The communication
operations of the system component are handled in the Test Adapter as well.

Timer Operations The timer handling operations, used in the TTCN-3 spec-
ifications, are implemented in PA. The TTCN-3 timer operations are corre-
lated to the PA operations: triStartTimer, triStopTimer, triReadTimer
and triTimerRunning.

Communication with SUT SA implements all message and procedure based
communication operations. The SA interface defines the mapping of the TTCN-3
communication operations (send, receive, call etc). The data received from SUT
has to be transmitted to TE. The enqueue operations are implemented by TE,
so the Test Adapter implementation shall be concerned with the task of using
the enqueue operations to deliver the received data to TE.

Adapter Example A minimal example of a TestAdapter implementation is
shown in the next fragment of code. It is by no means complete, it is rather
provided to explain what the user should implement in order to execute the ATS.
This piece of code will be called by the execution environment whenever the SUT
is addressed. Before the first statement of the MTC will be executed by the TE
it will call the triExecuteTestcase() operation within SA, to indicate that
the referenced test case will be executed. The map and unmap operations used in
the TTCN-3 ATS are reflected in the adapter by the triMap() and triUnmap()

16 TTCN-3 487

methods. They are called when the runtime environment is executing the map
and unmap operations from ATS. These operations give the possibility to the
user to connect the abstract ports to concrete physical ports, in our case SOAP
ports (SOAP is the protocol used to connect to the web-service). The triSend()
is called whenever the TTCN-3 send operation is executed in ATS. It takes over
the task of sending the data to the SOAP port.

public class WebServiceSA implements TriCommunicationSA {
public TriStatus triExecuteTestcase(TriTestcaseId tcId,

TriPortIdList tsiPorts) {
// do nothing
return new TriStatus(TRI_OK);

}
public TriStatus triMap(TriPortId compPortId,

TriPortId tsiPortId) {
mapTTCNPortToSOAPPort(compPortId, tsiPortId);
return new TriStatus(TRI_OK);

}
public TriStatus triUnmap(TriPortId compPortId,

TriPortId tsiPortId) {
unmapTTCNPortToSOAPPort(compPortId, tsiPortId);
return new TriStatus(TRI_OK);

}
public TriStatus triSend(TriComponentId componentId,

TriPortId tsiPortId,
TriAddress address,
TriMessage sendMessage) {

findSOAPPort(tsiPortId).sendMessageOverSOAP(sendMessage);
return new TriStatus(TRI_OK);

}
}

16.6 Test Deployment and Configuration

16.6.1 Deployment

Test Deployment is related to the activities of installing, updating, configuring
and removing of Test Executables (TE). TE is the part generated by the compiler
which must be integrated within the execution environment built up of TM, CH,
CD, SA and PA. Any TE comes with a descriptor (usually automatic generated)
describing the user options of installation (test adapter configuration, module
and test cases configuration and component distribution options).

We assume that the execution environment is distributed, that means that
the Test Executable shall be deployed on all hosts of the execution environment.
Consequently, the test deployment shall consider the distributed aspects of load-
ing code for execution into hosts, of managing the hardware resources on remote

488 George Din

hosts, of preparing and configuring the communication platform (i.e CORBA,
sockets etc), of controlling the data transport layer and managing the control
data between hosts.

The characteristic operations required for deploying tests are:

(1) Packaging of the test component code and its descriptors into a test suite
archive.

(2) Assignment of one or more potential target nodes (component homes) for
each test component to install on. Assignment of just the initial main test
component (MTC) to a selected target node.

(3) Code upload and installation of the code of each component on the assigned
target node(s).

(4) Start of the component’s execution environment and instantiation of the
main test component as the only initial component. All further component
instances are created dynamically by the TTCN-3 mechanisms (TTCN-3
control part).

(5) Connection configuration step where the connections between components
are realized.

(6) Dynamic creation and connection of further component instances during the
run-time of the test suite by the TTCN-3 control part.

The architecture of a platform designed to handle these aspects is presented
in Figure 1.6.

TE

TM

SA

CHCD

PA

Container

Daemon Daemon
TE

TM

SA

CDCH

PA

CORBA

Test Specification Session Management
Test Control
and Execution

Test Deployment

Container

Test console

Fig. 16.6. Architecture of a Distributed Test Deployment and Execution Platform

The Test Console is the control point of the platform; it provides support to
specify TTCN3 test cases, create test sessions, deploy test suites into containers
and control the test execution. The tests are deployed, configured and executed in
the context of a test session. The test session has the major role to coordinate the
distribution aspects (to compute the hosts of the components according to user
preferences, performance requirements, distribution algorithms etc). It collects
also the information which must stay persistent after termination of the test

16 TTCN-3 489

execution (when the Test Executable is removed). The persistent information
consists usually of the verdict of the test execution, the errors occurred and the
logging information.

Daemons are standalone processes installed on any hosts. They manage the
containers which belong to test sessions. Containers intercede between Test Con-
sole and components, providing services transparently to both of them, including
transaction support and resource pooling. The containers are the hosts of Test
Executable; they manage installation, configuration and removal of the test com-
ponents.

As for the tests, containers are the target operational environment and com-
ply with the TCI standard for TTCN3 test execution environment. Within the
container, one recognizes the specific test system entities: TM, CH, CD etc. The
container subsystems are functionally bound together by the TCI interfaces and
communicate with each other via the CORBA platform. The Session-Manager
mediation allows many component behaviors to be specified at deployment time,
rather than in program code.

16.6.2 Toward Component Distribution

The flexibility of the distribution criteria and mechanisms plays an important
role for efficiency, which depends on the mode the components are distributed
over the nodes. Test distribution defines which components are to be distributed
and where they should be deployed.

To explain better the motivation for test distribution, a simple example is
presented. A typical test execution environment consists of heterogeneous re-
sources (computers with different capabilities: memory, CPU, bandwidth etc).
The execution environment considered for this example is depicted in Figure 1.7.
There are several assumptions for test execution:

• the SUT has different access points. They are accessed via different network
cards (of type X and Y)
• the host A has no connection to SUT.
• the host C has 128 MB memory while the hosts B and D have 256 MB
• the host B and C have network cards of type X (so that they can access the

access point X of SUT) while host D has network card of type Y so that it
may access the SUT at access point Y.

From the example, it is obvious that several distribution combinations are
not possible, while other may influence the efficiency of the system. It is not
possible to deploy components on host D which need to communicate via access
point X. It is also not possible to distribute components on host A which need
to communicate to SUT. The two hosts which allow communication with SUT
via access points of types X have different memory capacities. If the components
are distributed equally (for a huge number of components), then the host C may
be overloaded while host B still runs at optimal performance. In this case the
distribution should consider the amount of memory consumed by a component

490 George Din

MEM = 256 MB
CPU = 800 Mhz

MEM = 128 MB
CPU = 800 Mhz

MEM = 256 MB
CPU = 800 Mhz

MEM = 256 MB
CPU = 800 Mhz

BA C D

SUT

X

X X Y

X Y

MEM = 256 MB
CPU = 800 Mhz

MEM = 128 MB
CPU = 800 Mhz

MEM = 256 MB
CPU = 800 Mhz

MEM = 256 MB
CPU = 800 Mhz

BA C D

SUT

X

X X Y

X Y

Fig. 16.7. Example of a heterogeneous distributed execution environment

during the execution and distribute them between B and C according to their
memory capabilities.

Distribution of components is a mathematical function of different param-
eters. This function is applied either at deployment time for each component
(when its deployment is required) or for all components at once (if known)

In the following function definition, D is the distribution function, p1, p2, ...
pn are the parameters which influence the distribution and h1 is the home where
the test component should be distributed.

h1 = D(p1, p2, ..., pn)

Sometimes, it is also possible to compute the homes for all components (h1,
h2, ..., hm).

{h1, h2, ... hm} = D(p1, p2, ..., pn)

There are two types of parameters which are taken into consideration when
distributing test components:

• external parameters: bandwidth, CPU, memory
• internal parameters: the number of components, type of components, type

of behaviors, connections

The external parameters are application independent parameters whose val-
ues depend on the execution environment and are constant for all applications
running on that environment. The internal parameters are related to the com-
ponent based application itself and are different for each application.

The TTCN-3 test components are distributed on different hosts. Unfortu-
nately, in TTCN-3 it is not possible to recognize a component by its id. This
problem appears when creating test components without names like in the fol-
lowing example:

16 TTCN-3 491

for (i := 0; i < 100; i := i + 1) {
var PTCType c := PTCType.create;
map(c:port1, system:port1);
c.start(someBehavior1());

}

In this example, the component name c is always overwritten, so that the
execution environment can not decide which instance is c (the first, the sec-
ond or the last one). But there are some other characteristics of components in
TTCN-3 which can be used at execution to recognize the components. These
characteristics are of two categories:

• behavior independent; there are taken into account only parameters which
are not defined at the execution of the behavior. They are parameters which
can be accessed at the setup phase of the test (component creation, port
mapping), before the test behavior is executed.

– a component has a type which can be retrieved at execution
– on a component can be started a behavior
– number of the instance
– the ports belong to components, so at map operation, one can decide

where a component should be deployed.

• behavior dependent; these are characteristics which are considered for dis-
tribution, after the behavior is started. This is the case when the home of a
component is chosen during the behavior execution; the distribution criteria
depends on a particular state of the behavior. Of course, this task is very dif-
ficult to realize technically, since the deployment is supposed to be performed
after the start of the execution. This implies use of migration mechanism for
the components which require other hosts (at execution time). Another ap-
proach is based on analyzing the TTCN-3 code before starting the execution
and decide where the components should be deployed; but there are situa-
tions where this approach cannot be applied, so the only possibility is using
of migration mechanisms.

According to the previous assumptions, there are several items which are to
be considered for the distribution of TTCN-3 test components:

• component type
• component instance number
• behavior id
• port connections
• content of the behavior
• memory used
• bandwidth used
• CPU

492 George Din

A hardware load monitor is necessary in order to monitor the hardware
resource consume. This is a standalone subsystem of the execution environment
with the main task to monitor the hardware usage and to be able to report at
a certain time the status of resource usage. According to this report, the test
component distribution algorithms are able to decide how to deploy the test
components.

16.6.3 TTCN-3 Component Distribution Language

C1 C2 C3

C4

S1
S2

S3

S4

S

A (p1, p2, , pn)

C1 C2 C3

C4

S1
S2

S3

S4

S

A (p1, p2, , pn)

Fig. 16.8. Distribution of test components

The distribution aspects (i.e component and behavior distribution) are not
taken into account by TTCN-3 notation. Distribution is considered rather tool
specific and should be specified outside the test specification. TTCN-3 describes
only test data and test behaviors, it does not specify how the components are
distributed on nodes, though distributed setups can be defined in TTCN-3. The
advantage of this approach is that the distribution configuration is abstract and
it does not depend on a particular test environment. The same test specification
(distributed one) can be executed on different hardware environments and di-
verse distribution setups. For example, a test case which runs a behavior on 10
test components can be distributed on 5 hosts, but it can run on 3 or 2 hosts as
well.

As stated before, a component distribution language is required. A minimal
language for this purpose was defined by the author of this chapter when im-
plementing a distributed platform for test execution. To better understand the
concepts related to test component distribution, some examples written in this
language are presented here.

The distribution specification is the process of assembling components to
hosts (see Figure 1.8). The assembling process groups all components to be de-
ployed, in a big set. The assembling rules shall define sub-sets of components
with a common property (i.e. all components of type T1). A (sub-)set defines
a selector of components and the homes where the selected components are
placed. The filtering criteria of the selector handles component types, compo-
nent instance numbers, port connections and behavior IDs. The homes are the

16 TTCN-3 493

possible locations where the components may be distributed; the homes reflect
the user constraints for distribution.

The next piece of XML code is an example of a component assembly file.
The special tag indicates the host where the MTC component is deployed. The
selector defines a filter to select all components of type ptcType. The selected
components can be deployed either on container1 or on container2. One can
define deployment constraints for each container (ex. do not allow deployment
of more than 100 components on container2). The user can constrain the memory
usage, the CPU load, the number of components etc.

<component_assembly>
<!-- Description of the file -->
<description>Example to use TCDL language</description>

<!-- This sets the special container where the mtc will
be deployed -->

<special container="container1"/>

<!-- Example of a set -->
<set>

<component_selectors>
<componenttype>ptcType</componenttype>

</component_selectors>
<homes distribution="">

<container id="container1">
<max_components>10</max_components>

</container>
<container id="container2"/>

<max_components>100</max_components>
</container>

</homes>
</set>

</component_assembly>

Usually, the definition of constraints is a difficult task; for complex setups it
may be very difficult to describe an efficient distribution. Therefore, the task of
hardware options and constraints should be realized by the execution environ-
ment. It should provide services, which implement distribution algorithms that
are designed to be efficient for a certain type of problems. The task of the user
remains to select the algorithm which solves the problem best. The code below
shows a set which deploys the components of types ptcType2, ptcType3 and
the instances 1, 2 and 5 of type ptcType4 on the container2 and container3, ac-
cording with the mem50 algorithm. The mem50 is an example of an algorithm
which allows to deploy components on a container until the limit of 50 percent
of memory is reached.

494 George Din

<set>
<component_selectors>

<componenttype>ptcType2</componenttype>
<componenttype>ptcType3</componenttype>
<instance type="single">

<componenttype>ptcType4</componenttype>
<number>1</number>
<number>2</number>
<number>5</number>

</instance>
</component_selectors>
<homes distribution="mem50">

<container id="container2"/>
<container id="container3"/>

</homes>
</set>

The components which are not accepted by any set selector are deployed in
a default home. This home is defined by collector tag.

<collector>
<container id="container1"/>

</collector>

16.6.4 Stress Test for Dino Web Service

Let suppose we want now to run a stress test for our Dino web-service. In
TTCN-3 the test specification is independent on the platform where it will be
executed and no distribution option can be configured.

The next TTCN-3 code defines a stress test which creates a big number of
PTCs and starts on each one the SeparateSearchFunctional behavior. The
PTCs will try to access in parallel the SUT (Dino web-service), thus some stress
will be created.

testcase SeparateStressTest()
runs on MTCType system SUTType {

var integer numberOfPTCs := NUMBER_OF_PTCS;
var integer requestsPerPTC := 1;
var PTCType PTC[numberOfPTCs];
var integer i;

for (i := 0; i < numberOfPTCs; i := i + 1) {
//create the PTCs
PTC[i] := PTCType.create;

}
for (i := 0; i < numberOfPTCs; i := i + 1) {

//start the PTC’s behavior

16 TTCN-3 495

PTC[i].start (SeparateSearchFunctional(system, i));
}
for (i := 0; i < numberOfPTCs; i := i + 1) {

//wait for the PTCs to terminate
PTC[i].done;

}
}

The SeparateStressTest can be executed either on one host or on many. In
our example we choose a simple distribution scenario which supposes that the
PTCs are distributed equally on two test nodes. The below XML code provides
the distribution configuration for the chosen scenario. We select the container1
as special container where the MTC component will be installed. The other test
components of type ptcType will be installed equally (according to the bestfit
algorithm) on the two test nodes.

<component_assembly>
<special container="container1"/>
<set>

<component_selectors>
<componenttype>ptcType</componenttype>

</component_selectors>
<homes distribution="bestfit">

<container id="container1"/>
<container id="container2"/>

</homes>
</set>

</component_assembly>

16.7 Summary

In this chapter a detailed introduction into TTCN-3 is provided. It argues why
TTCN-3 language was created and presents its practical importance. The chap-
ter sums up in several sections the concepts behind TTCN-3, the TTCN-3 core
language, the implementation and execution of TTCN-3 test systems.

A complete example describes the steps the user shall follow in order to
run a TTCN-3 test system. First, the user defines the test cases in TTCN-3
language. It uses components, ports and connections in order to define a test
configuration, defines data types (records, sets, basic types etc), defines test data
(templates) and describe test behaviors (testcases, functions, altsteps). In Sec-
tion1.3 we concentrated on the most important concepts and constructs used in
TTCN-3 abstract test specifications. In parallel, a minimal test suite was de-
veloped to the Dino web-service in order to exemplify the practical use of the
language. Secondly, an Adapter must be implemented. The adapter implements
the TRI (TTCN-3 Runtime Interface). The adapter is SUT specific and shall be
implemented for each tested SUT. It contains basically all needed operations to

496 George Din

communicate with the SUT (call, send, etc). Third, the user must specify how
to distribute the tests if many hosts are used. A particular solution was intro-
duced and discussed (note that the distribution language is only an example not
a standard).

Beside the main flow (how to develop test systems with TTCN-3) we dis-
cussed several important issues related to implementation of TTCN-3 execution
environments based on TCI (TTCN-3 Control Interfaces), deployment and dis-
tribution.

Nowadays, TTCN-3 is more and more used, its applicability being extended
to many domains. Thanks to its powerful constructs it is perhaps the most
suitable technology for testing and makes it easy to apply to any testing needs.

17 UML 2.0 Testing Profile

Zhen Ru Dai

Fraunhofer Fokus - Institute for Open Communication Systems
Kaiserin-Augusta-Allee 31, 10589 Berlin
dai@fokus.fraunhofer.de

17.1 Introduction

The Unified Modeling Language (UML) is a visual language to support the de-
sign and development of complex object-oriented systems [RJB99]. While UML
models focus primarily on the definition of system structure and behavior, they
provide only limited means for describing test objectives and test procedures.
In 2001, a consortium was built by the Object Management Group (OMG) in
order to develop a UML 2.0 profile for the testing domain [OMG02, UMLa].

A UML profile provides a generic extension mechanism for building UML
models in particular domains. The UML 2.0 Testing Profile (U2TP) is such an
extension which is developed for the testing domain. It bridges the gap between
designers and testers by providing a means to use UML for both system modeling
as well as test specification. This allows a reuse of UML design documents for
testing and enables test development in an early system development phase
[SDGR03, DGNP04].

After two years’ work, the U2TP specification [U2T] has finally been adopted
by the OMG. Since March 2004, the profile has become an official standard at
the OMG [U2T04].

In the U2TP specification, the consortium does not only introduce new con-
cepts which extends the usability of UML regarding test perspectives. Further
thoughts have been made on the test execution of the test model. For that, the
U2TP specification provides mapping rules of U2TP concepts to two well-known
test languages called JUnit and TTCN-3 (Testing and Test Control Notation,
version 3) [Ins03]: JUnit is a popular test framework within the eXtreme Pro-
gramming community for Java unit tests. A JUnit test suite is written in Java.
Thus, the executable code can be compiled by Java compilers. In Chapter 16.3,
TTCN-3 and its execution environment have already been introduced. By means
of a compiler, a TTCN-3 abstract test suite (ATS) is translated into executable
test suite (ETS). By means of the standardized TTCN-3 execution environment,
the ETS is able to communicate with the system under test.

Besides the test concepts and the mapping rules, the U2TP specification
defines two meta-models. One meta-model is based on UML 2.0 [UML03b,
UML03a] meta-classes and the second meta-model is a MOF-based (Meta-Object
Facility) meta-model. The intention to build the MOF-based meta-model is to
have a UML 2.0 independent meta-model. The meta-modelling aspects in the

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 497-521, 2005.
 Springer-Verlag Berlin Heidelberg 2005

498 Zhen Ru Dai

U2TP document is not introduced in this seminar booklet since it is out of the
scope of this seminar1.

This chapter is structured as follows: in Section 17.2, we will explain the
main concepts of the U2TP. The mapping rules from U2TP concepts to JUnit
and TTCN-3 concepts are introduced in Section 17.3. In Section 17.4, a case
study is depicted, where U2TP concepts are applied to test a Bluetooth device
with roaming functionalities. The chapter concludes with a summary.

17.2 The U2TP

The UML 2.0 Testing Profile provides concepts to develop test specifications and
test models for black-box testing [Bei95]. The profile introduces four concept
groups covering the following aspects: test architecture, test behavior, test data
and time. Figure 17.1 shows the main concepts of U2TP [U2T04]. Together, these
concepts define a modeling language to visualize, specify, analyze, construct and
document a test system. In the following, the four concept groups are introduced:

Test Architecture Test Behavior Test Data Time
Concepts Concepts Concepts Concepts

SUT Test objective Wildcards Timer

Test context Test case Data pool Time zone

Test component Defaults Data partition

Test configuration Verdicts Data selection

Test control Validation action Coding rules

Arbiter Test log

Scheduler

Fig. 17.1. U2TP Concepts

Architecture Concepts The test architecture group contains the concepts needed
to describe elements involved in the test and their relationships.

The system or object to be tested is called the System Under Test (SUT).
One or more objects within a test specification can be specified as the SUT.
As the profile only addresses black-box conformance testing, the SUT provides
only a set of operations via publicly available interfaces. No information on the
internal structure of the SUT is available for use in the specification of test cases
using the U2TP.

Two test elements are defined in U2TP: test context and test component.
A test context declares variables, contains a collection of test cases of the same
initial test configuration, specifies the test configuration and the test control. Test
components are the various elements which interact with the SUT to realize the
test cases defined in the test context.
1 For more information, please read the U2TP spec.

17 UML 2.0 Testing Profile 499

A test configuration as an internal structure of a test context is used to
enable the definition of test components realizing a test case, it describes the
initial setup of the test components and the connection to the SUT and between
each other.

A test control is a specification for the invocation of test cases within a test
context. It is a technical specification of how the SUT should be tested with the
given test context. Often, decisions about further test case executions are made
within the test control specification in order to prevent spare time and resource,
e.g. if test case #1 fails, the whole test should be stopped, even if there are more
test cases specified which also should be performed, but are dependent of the
execution result of test case #1.

An arbiter is a denoted test component which calculates the final test result
derived from temporal test results. This is done according to a particular arbi-
tration strategy, which is provided in the implementation of the arbiter interface.
This interface provides two operations for use in verdict setting: getVerdict and
setVerdict. The setVerdict operation is used to provide updated information to
the arbiter by a test component regarding the current status of the test case in
which it is participating. Every validation action invokes the setVerdict opera-
tion on the arbiter. Every test context should have an implementation of the
arbiter interface. If there is no specific arbiter interface implemented, a default
arbiter will take into account.

A scheduler controls the execution of the different test components. The
scheduler will keep information about which test components exist at any point
in time, and it will collaborate with the arbiter to inform it when it is time to
issue the final verdict. It keeps control over the creation and destruction of test
components and it knows which test components take part in each test case.

Behavior Concepts The test behavior group includes concepts to specify test
behavior in the context of a test context.

A test objective allows the test designer to express the aim of a test. The
implementation of a test objective is a test case which is an operation within a
test context specifying how a set of cooperating components interact with the
SUT. The public test case operations of a test context are the test cases. In
addition, there may be other private or protected test cases that are used as
utilities within the concrete realization of the public test cases. The implemen-
tation of test cases is specified by a test behavior. A test case always returns a
test verdict.

A UML specification is not necessarily complete, i.e. it does not specify every
possible trace of execution. In a testing context, there is a need to have complete
definitions such that the number of erroneous test case executions can be kept
to a minimum. A default specification is a means to make partial behavior defi-
nitions of test components complete. Additionally, a test behavior specification
typically describes the normative or expected behaviors for the SUT. However,
if during test execution an unexpected behavior is observed, a default is applied.
The U2TP associates default applications to static behavioral structures. In In-
teractions, defaults are applied to interaction fragments, in State Machines to

500 Zhen Ru Dai

state machines, states or regions, and in Activity Diagrams to actions and ac-
tivities. Since each default in an Interaction applies only to one test component,
defaults are attached on interaction fragments to the intersection between the
fragment and the test component. In U2TP, defaults behaviors can be specified
on different behavior levels, e.g. on a state, interaction, instance etc.. If the in-
nermost default fail to recognize the observed behavior the default of the next
level is tried.

Test verdicts specify possible test results, e.g. pass, fail, inconclusive or er-
ror. The definition of the verdicts originate from the OSI Conformance Testing
Methodology and Framework [ISO94]: Pass indicates that the SUT behaves cor-
rectly for the specific test case. Fail describes that the test case has violated.
Inconclusive is used where the test neither passes nor fails. An error verdict
indicates exceptions within the test system itself.

A validation action can be performed by a test component to denote that
the arbiter is informed of a test result which was determined by that test com-
ponent. The coordination between arbiter and test components is controlled by
the scheduler.

Both a test context and a test case may trace their executions. These traces
are behaviors in general and are generated during the execution of a test case.
They can be recorded as test logs and become part of the test specification. A
test log has to be attached to a test context or a test case such that it is specified
from which test context or test case that test log has been taken.

Data Concepts This concept group contains concepts needed to describe test
data. There are means provided to specify test data for the data transmission
between the SUT and the test system.

Wildcards which can denote an omitted value, any value or any value or omit
(* or ?) are needed to specify test data, especially for data reception.

Test cases are often executed repeatedly with different data values to stim-
ulate the SUT in various ways. Also when observing data, abstract equivalence
classes are used to define sets of allowed values. Typically, these values are taken
from a partition of test data, or lists of explicit values. For this purpose, a data
pool provides a means for associating data sets with test contexts and test cases.
A data pool contains either data partitions which build equivalence classes, or
explicit values.

Data partition is used to define an equivalence class for a given type. By
denoting the partitioning of data explicitly U2TP provides a more visible differ-
entiation of data.

Data selectors are typically operations that operate over the contained values
or value sets. By means of data selectors, test data can be retrieved out of a data
pool or a data partition.

Coding rules are shown as strings referencing coding rules defined outside the
U2TP such as by ASN.1, CORBA or XML. Coding rules are basically applied to
data value specification to denote the concrete encoding and decoding for these
values during test execution.

17 UML 2.0 Testing Profile 501

Time Concepts When specifying tests, time concepts are essential to provide
complete and precise specifications. U2TP provides two additional time concepts
to the existing UML 2.0 simple time concepts: Timer and time zone.

Timers are utilized to manipulate and control test behavior, as well as to
ensure the termination of test cases. A timer is owned by an active class. A
timer can be started with a certain time value. The predefined time value of a
timer has always to be positive. An timer may be stopped as long as it is still
active. The expiration time of an active timer can be read and its live status
asked for. When a timer expires after its predefined time, a special timeout
message is generated automatically. It is sent immediately to the class which
owns the timer.

Timezones serve as a grouping mechanisms for test components within a
distributed test system. Each test component belongs at most to one timezone.
Test components of the same timezone have the same time value and thus are
considered to be time-synchronized. The timezone of a test component can be
accessed both in the model and at run-time. Comparing time-critical events
within the same timezone is allowed.

17.3 Test Execution Via Mappings

The U2TP document defines mapping rules for the test languages JUnit [JUn]
and TTCN-3 [Ins03]. The reason for choosing these two languages is quite sim-
ple: Firstly, JUnit is a Java based unit test framework which has become very
popular in the eXtreme Programming domain because of its simplicity and user-
friendliness and TTCN-3 is well-known in the tele-communication test domain.
Secondly, when U2TP is developed, the concepts of JUnit and TTCN-3 served
as roots for the U2TP. Therefore, the mapping rules are quite straight-forward,
though in some cases not complete. Especially the mapping from U2TP to JUnit
is not complete. The reason for that is that U2TP is also defined to specify more
complex tests, e.g. integration tests or system tests, whereas JUnit is only suit-
able for unit tests. Also for TTCN-3, not all concepts can be mapped because
U2TP provides some more advanced test concepts than TTCN-3.

Nevertheless, the provided mapping rules defined in the U2TP document are
not the only way to map between U2TP and JUnit to TTCN-3, respectively.
They only serve as references. In the following, we will firstly introduce JUnit
and TTCN-3 briefly and then explain their mapping rules to U2TP.

17.3.1 JUnit

In order to test that their code works, people watch the code using calls like
System.out.println or debugger. This approach has three problems: scroll blindness,
subjectivity and lack of automation [HL02b]. First, it is hard to tell if a complex
system is working because so many System.out.println methods are printing so
much garbage. Second, it is hard to follow all the printed lines on the console.
Third, when the develper makes changes in the code, things can break in an

502 Zhen Ru Dai

TestResult
runTest()
setUp()
tearDown()

run(TestResult)

fName

TestCase

runTest()

Test
run(TestResult)

addTest(Test)

run(TestResult)

TestSuite

Fig. 17.2. JUnit Classes

unexpected way. If one does not have an automated test, broken subsystems
may not be tested. For these reasons, unit-level tests assure that the code a
developer has written will be tested automatically, and thus give confidence in
the code.

JUnit is a framework for writing unit tests. This section introduces the JUnit
framework and provides the mapping from the U2TP concepts to JUnit concepts.

Fundamentals of JUnit JUnit is written by Erich Gamma and Kent Beck. It is an
open source framework for automated unit tests. JUnit tests are based on Java.
Thus, its execution code is also Java for which there exist various compilers.

By means of the JUnit framework, software developers can derive tests from
classes of the JUnit Framework and combine them into a test suite. A unit test
checks a single unit of the implementation code, e.g. a method or a class. Unit
tests are applied in a test driven design. The tests are developed in parallel to
code implementation. In the former, tests are even written before the codes are
implemented. The software developer writes the test routines for every piece of
code so that the test can be re-run every time the code is changed. For eXtreme
Programming [XP], where code integration and code testing are required per-
manently, unit tests are obligatory. Because of its simplicity, JUnit has become
very popular in the XP domain. JUnit is integrated in many toolkits, e.g. Eclipse
[ECla] or JBuilder [JBu].

In JUnit, a test case is the basic abstraction. A test case can be run in order
to check if the test passes. It contains the test methods setUp() and tearDown(),
a main() method which runs the test case and an optional suite() method which
groups test methods in a test suite (Figure 17.2). Usually, every class that is
written should have a test case. A JUnit test suite is structured in a hierarchical
way and is composed of test cases or other test suites. A test fixture allows test

17 UML 2.0 Testing Profile 503

U2TP JUnit

System Under Test
(SUT)

not to be identified explicitly.

Test component Cannot be mapped.

Arbiter
As a property of Test Suite of type TestResult.

Test context A class inheriting from the TestCase class.

Test control
Overloading the runTest operation of the fix-
ture.

Test case Operation.

Stimulus and observa-
tion

Cannot be mapped.

Coordination Any available synchronization mechanism.

Verdict
Predefined verdicts are pass, fail and error.
No inconclusive verdict.

Test configuration Cannot be mapped.

Wildcards Cannot be mapped.

Coding rules Cannot be mapped.

Timezone Cannot be mapped.

Timer Cannot be mapped.

Fig. 17.3. U2TP to JUnit Mapping Rules

cases to share common test data and to assure certain pre- and postconditions
for every test method. At the end of a test run, JUnit reports a pass, failure or
error as its test result by means of assertions. The JUnit framework provides a
textual and a graphical test runner.
When putting the concepts into practice, the following steps have to be done2:

(1) Derive a subclass from junit.framework.Testcase;
(2) If fixture objects are needed, override the setUp() method;
(3) Define a number of tests that return void and whose method name begins

with test;
(4) If resources of the fixture need to be released, override the tearDown()

method;
(5) If a related set of test cases need to be grouped, define a test suite.

Mapping to JUnit JUnit served as one basis for the development of U2TP. Table
17.3 provides the mapping rules from U2TP to JUnit. A lot of the U2TP concepts

2 In Section 17.4.5, an example is shown.

504 Zhen Ru Dai

can be mapped to JUnit concepts. But since JUnit is a framework only for unit
tests, there are a lot of concepts in U2TP which are not defined in JUnit and
also needed for unit tests.

A System Under Test does not need to be identified explicitly in JUnit. Any
class in the classpath can be considered as an utility class or a SUT class. An
arbiter can be realized as a property of the test suite of a type TestResult.
A test context is realized as a class inheriting from the JUnit TestCase class.
Test control is defined by overloading the runTest operation of he JUnit fixture.
A test case is an operation in JUnit. Coordination can be mapped using any
available synchronization mechanism available to the test components such as
semaphores. In JUnit, predefined verdicts are pass, fail and error. There is no
inconclusive verdict. Test components, stimulus, observation, test configuration,
timezone are not defined in JUnit since these concepts are only needed for system
tests. Also wildcards, coding rules and timers are not concepts of JUnit.

17.3.2 TTCN-3

Fundamentals of TTCN-3 The Testing and Test Control Notation - 3rd edition
(TTCN-3) is a test specification and implementation language to define test
procedures for black-box testing. At time, it is the only accepted standard for
test system development in the telecommunication area.

TTCN-3 is a modular language. It comprises concepts suitable for various
types of system testings. Additionally to typical programming languages, it also
contains features necessary to specify test procedures like test verdicts, matching
mechanisms, timer handling, dynamic test configuration specifications, specifi-
cation of encoding information, synchronous and asynchronous communications.

In a TTCN-3 module, stimuli are sent to the system under test (SUT). Its
reactions are observed and compared with the expected behavior defined in the
test case. Based on this comparison, the subsequent test behavior is determined
and a test verdict is assigned. If the expected and the observed responses differ,
a failure test verdict is assigned. A successful test is indicated by a test verdict
pass. Since TTCN-3 has been introduced in the last chapter in detail, the reader
is requested to read that chapter for a better understanding.

Mapping to TTCN-3 TTCN-3 served as a second basis for the development of
the U2TP. Nevertheless, there are concepts which differ from or are added to
the Testing Profile. Thus, a mapping from the Testing Profile to TTCN-3 is
complete but not the other way around.

Table 17.4 shows an excerpt of the most important mapping rules of the
standard. It compares the U2TP concepts with existing TTCN-3 testing con-
cepts. Almost all U2TP concepts have direct correspondence or can be mapped
to TTCN-3 testing concepts.

In order to represent the system under test, TTCN-3 provides the indirect
definition via ports from the test components to the SUT. Test components are
specified by component types. There is a default arbiter built in TTCN-3. If the
user wants to specify an explicit arbiter, it must be realized by the main test

17 UML 2.0 Testing Profile 505

U2TP TTCN-3

System Under Test
(SUT)

Indirect definition via ports.

Test component Component types.

Arbiter
A built-in. User-defined arbiters are realized by the MTC.

Test context Module definition part.

Test control Module control part.

Test case
Test case with behavior functions. The MTC creates and
starts test components.

Stimulus, observation,
coordination

Various TTCN-3 messages.

Verdict
Pre-defined verdicts pass, fail, inconclusive and error. For
user-defined verdicts, a special verdict type is needed.

Test configuration Configuration operations.

Wildcards Data matching mechanisms.

Coding rules Encode attributes.

Timer Timer and timer operations.

Timezone Cannot be mapped.

Fig. 17.4. U2TP to TTCN-3 Mapping Rules

component (MTC). The test context is mapped to the TTCN-3 module defi-
nition part. U2TP test case can be mapped to test cases and functions where
the MTC firstly creates test components and start their behavior by functions.
Stimuli, observation and coordinations are realized by various kinds of messages.
Verdicts are mapped to TTCN-3 verdict types with the predefined verdicts pass,
fail, inconclusive and error. Test configuration are realized by configuration op-
erations. Wildcards can be mapped to wildcards. Coding rules are realized by
encoding attributes. Timers and timer operations are present for U2TP as well
as for TTCN-3. Timezones are not TTCN-3 concepts. 3

3 Timezones are introduced in another approach of TTCN-3, called TimedTTCN
[DGN02]. The change request has already been submitted to ETSI (European
Telecommunication Standardization Institution) where TTCN-3 has been developed.

506 Zhen Ru Dai

17.4 Test Development with U2TP – A Case Study

In this section, a UML test model 4 is specified based on U2TP. For that, a
roaming algorithm for Bluetooth devices [PDGN03] is taken as a case study.

17.4.1 The Application

Bluetooth is an established standard for short-range wireless communication.
The Bluetooth specification enables small devices to interact within a short
range. The standards related to Bluetooth include both the hardware (radio,
baseband and hardware interface) and the basic protocol layers that allow Blue-
tooth software to run on different Bluetooth enabled devices.

The current Bluetooth standard does not support roaming of Bluetooth de-
vices [Blub]. If a device is losing the link to its master, no provision is made to
transfer the connection to another master. Nevertheless, roaming within Blue-
tooth piconets might be useful when having more than one Bluetooth LAN
access point, in order to have a seamless connection when moving. The need for
a basic roaming support for Bluetooth devices descends from a project [Blua]
situated in the medical domain. Its goal is to replace the traditional cable-based
monitoring of patients during surgical treatments with a wireless transmission
of the patient’s monitoring data using Bluetooth hardware devices.

Roaming for Bluetooth The an existing roaming approach [PDGN03], it is as-
sumed that all masters (i.e. data receivers) are connected to a fixed network.
The mobile devices (i.e. data sending slaves) are usually moving along the mas-
ters. If a slave runs the risk of losing connection to its actual master, the con-
nection must be handed over to the next master. The slave prevents the loss
by periodically checking the quality of the link to the master by sending a
HCI Get Link Quality command defined in the Bluetooth standard [Blub]. If
the quality drops below a certain threshold value the next master will be chosen.
The slave tries to connect directly to the next master, knowing to which master it
has to contact to next. Movements of the slave are tracked by a Location Server,
which updates and provides slave’s spacial information in form of a roaming list
whenever the slave changes its master.

The Activity Diagram in Figure 17.5 shows the activities of a slave necessary
for roaming. The slave tries to connect to a master. If the connection is successful,
the updated roaming list is transferred to the slave and data can be sent. In
parallel, the link quality between slave and master is observed. If the quality gets
bad, the slave will look in the roaming list for a new master and try to connect
to that master directly. If, for any reason, no connection can be established, a
warning message is sent to the user (e.g. by a warning light or a special sound
indicating that a problem has occurred). Another warning message is sent to

4 To clarify the terminologies: With design model, we mean the system design model
in UML. When talking about the test model, we mean the UML model enriched with
U2TP concepts.

17 UML 2.0 Testing Profile 507

send

Slave BTRoaming Activities

get
roaming list

new master
Connect to

[connection
confirmed]

[n
ew

 m
as

te
r

!=
 N

U
LL

]

[connection not confirm
ed]

[link quality =
=

 good]

get
link quality send data

calculate
new master

warnings

[link quality
== bad]

[new master
== NULL]

Fig. 17.5. Roaming Algorithm as Activity Diagram

the last master. If the connection to the last master is still alive, the reception
of a warning message can be used to initiate appropriate exception handling
mechanisms.

Figure 17.6 shows the design of the protocol stack resulting from the proposed
roaming approach: Special roaming layers (Slave Roaming Layer and Master
Roaming Layer) are added. They take care of the correct transfer of the con-
nections. Our roaming approach makes no use of the higher protocol stacks of
Bluetooth. Therefore, the roaming layers are implemented directly on the hard-
ware interface called Host Controller Interface (HCI). The application layers are
set upon the roaming layers. The interface from roaming layer to application
layer is called Slave Roaming Interface (SRI) and Master Roaming Interface
(MRI), respectively.

Additionally, a master is specified as a fixed network node. Thus, it also
embodies the LAN protocol stacks to be able to communicate with the local
network. The interface between the Master Roaming Layer and the Ethernet is
called Local Network Interface (LNI).

17.4.2 Test Preparation

Before specifying the test model, the focus of the test must be defined, i.e. which
classes should be tested and which interfaces does the tester need in order to get
access to these classes.

Figure 17.7 presents a test configuration with one slave and two masters.
The focus of the tests is the Slave BTRoaming layer of Figure 17.6. Thus, the Slave

508 Zhen Ru Dai

Baseband

Bluetooth Radio

Slave: Master:

LNIHCIHCI

Link Manager

Slave Application Master Application

Bluetooth Radio

Baseband LAN

Roaming Layer
Slave

Link Manager

Master
Roaming Layer

SRI

Hardware
BT−

MRI(Virtual Connection)

Data Exchange

Radio Connection

Hardware

Master
BT−

Slave

Fixed Connection

Fig. 17.6. Protocol Stack with Roaming Layer

Hardwaretest component

(SUT)
 System Under Test : Test Component Test Components: with existing classes

HCI

with new class
:

Master1
test component

Master

Coordinator

HCIHCI

Test-Coordinator
test component

Slave
BTRoaming

BT-HWs
Master

SRI

TCI

Test-

Master2SlaveApp

LNI

utiltity part

Location

Server

Location-DataBase

TCI

Slave

test componenttest component

BT-HW
Slave

ApplicationApplication
Master

Application
Master

MRI MRI

BTRoaming
Master

SUT

BTRoaming

Fig. 17.7. Role Assignment for System Components

Application layer is one test component. Other test components are the underlying
Bluetooth Hardware layer and the master components Master1 and Master2.

On the top of the slave and the masters, a new test component of class Test-

Coordinator is specified. This test component is the main test component which
administrates and instructs the other test components during the test execution.
The coordinator is also responsible for the setting of the test verdicts during test
case execution. The coordinator has access to the utility part Location-DataBase.
This data base embodies the Location Server, which owns the slave roaming lists
and the network structure table.

17 UML 2.0 Testing Profile 509

LNI

SRI

HCI

<<import>>

Roaming
Bluetooth−

Test−
Coordinator

TCI

LNI

LNI

TCIHCI LNIHCI

BluetoothTest

p1[4]

<<TestContext>>

BluetoothSuite

<<TestComponent>>
Location
DataBase

p_hw

Master

Application
Slave−

p_mp_s
<<TestComponent>><<TestComponent>>

<<TestComponent>>
p_ap

Hardware

p_co

(a) Test Package

<<TestCase>>

− verdict: Verdict

+ RList: list
− threshold: Integer

+ Connect_to_Master()
+ Bad_Link_Quality()
+ Good_Link_Quality()

BluetoothSuite
<<TestContext>>

− TestRoaming_withWarning(): Verdict

− TestRoaming_noWarning(): Verdict
<<TestCase>>

(b) Test Context

Fig. 17.8. Test Package & Test Context

In this case study, the following functionalities of the Slave Roaming layer
should be tested:

• Is the Slave Roaming layer able to choose a new master by looking up in its
roaming list when the connection with its current master gets weak?
• Does the Slave Roaming layer request a connection establishment to the chosen

master?
• Does the Slave Roaming layer wait for a connection confirmation of the master

when the connection has been established?
• Does the Slave Roaming layer send a warning to the environment, when no

master can be found and the roaming list is empty?

These test objectives assume that basic functionalities of the Slave Roaming layer
like data forwarding from the application layer to the hardware layer have already
been tested in a preceding capability test.

17.4.3 Test Architecture

First of all, a test package for the test model must be defined. The test package
is named BluetoothTest (Figure 17.8a). The test package imports the classes and
interfaces from a BluetoothRoaming package in order to get access to the classes
to be tested.

In Section 17.4.2, the Slave BTRoaming layer is assigned to SUT and other
system components are assigned to test components. The test package consists
of five test component classes, one utility part and one test context class. only
implicitly specified in the test system. triggered by validation actions in the
test cases. The test context class is called BluetoothSuite. It shows various test
attributes, some test functions and two test cases (Figure 17.8b).

Test configuration and test control are also specified in the test context class.
The test configuration (Figure 17.9a) corresponds with the test configuration in
Figure 17.7, except that it consists of one slave and four masters m1–m4. Ports
with interfaces connect the test components and the SUT to each other.

510 Zhen Ru Dai

Database

<<Test
Component>>

<<Test
Component>>

<<Test
Component>>

<<Test

co: Test−Coordinator
<<TestComponent>>

p_s p_m p_m p_m p_m

p_hw p_hw p_hw p_hw

p_co p_co p_co p_co

BluetoothSuite
<<TestContext>>

hw: Hardware

Location−

Component>>

m1:
Master Master Master Master

m4:m3:m2:

<<SUT>>
sr: SlaveRoaming

sa: Slave−
Application

<<TestComponent>>

<<TestComponent>>

p1[4]

(a) Test Configuration

TestRoaming_noWarning

TestRoaming_withWarning

BluetoothSuite
<<TestContext>>

verdict :=

[verdict==pass]

sd

[verdict==fail]

Bluetooth_TestControl

verdict :=ref

ref

(b) Test Control

Fig. 17.9. Test Configuration & Test Control

Figure 17.9b illustrates the test control, indicating the execution order of
the test cases: First, test case TestRoaming noWarning is executed. If the test
result is pass, the second test case TestRoaming withWarning will also be executed.
Otherwise, the test is finished.

17.4.4 Test Behavior

For the specification of test behavior, test objectives for the case study must be
defined. As an example, a test case for the following scenario is presented:

After the exchange of two data packages, the link quality between
Slave and its current master m1 becomes bad. The first alternative
master in the roaming list m2 cannot be reached since the link
quality is also weak. Thus, after at most two seconds, a further
master m3 is chosen from the roaming list and the connection is
established successfully.

Figure 17.10 shows a Sequence Diagram and depicts the test case for the
scenario above. Test case TestRoaming NoWarning starts with the activation of
the timer T1 of six seconds. T1 is a guarding timer which is started at the
beginning and stopped at the end of a test case. It assures that the test finishes
properly even if, e.g. the SUT crashes and does not respond anymore. In this
case, the timeout event is caught by a default behavior.

The function Connect To Master, which is referenced at the beginning of
the test case establishes a connection between the Slave and Master m1 (see
Figure 17.11a): The connection request (con request) is initiated by the Slave-

Application and is forwarded to the master. The master informs the Test-Coordinator

about that observation. Then, the master accepts the connection (con accept),
resulting in a confirmation sent from the Bluetooth hardware to both the slave
and the master. Thereupon, the master informs the Test-Coordinator about the
successful connection, which allows the Test-Coordinator to build a new roaming

17 UML 2.0 Testing Profile 511

list containing the masters (reference makeList) and to transfer it via the master
to the slave using the message roamingList([M2,M3,M4]). The entries of the roam-
ing list indicate that if the connection between slave and its current master gets
weak, master m2 should be tried next. If this connection cannot be established,
master m3 should contacted. As a last alternative, m4 should be chosen. If none
of the alternative masters can be connected to, warnings would be sent out.

When the referenced behavior of Connect to Master has finished in Figure
17.10, the slave has successfully connected to master m1 and Slave-Application

starts to send data to the master. Additionally, the link quality is checked peri-
odically. Checking the link quality is specified in the functions Good Link Quality

and Bad Link Quality in Figure 17.11b. Herein, Slave Roaming triggers the evalu-
ation request and receives the result from the hardware.

In the first evaluation of test case TestRoaming noWarning (Figure 17.10), the
Hardware has to be tuned to report a good link quality. Thus, further data can
be sent. In the second evaluation, the link quality is determined to be bad.
Therefore, a new master is looked up. According to the roaming list, the new

T2

con_request

T2(2s)

T1

datadata

Roaming
m3: Masterm1: Master m2: Master

con_accept

con_confirm("M3")

con_request

pass
<<ValidationAction>>

Conf_Default
<<Default>>

datadata

{0.5s..}

con_request("M2")

con_request("M3")

con_confirm_slave
con_confirm("M3")

roamingList(["M1","M2","M4"])

roamingList(["M1","M2","M4"])roamingList(["M1","M2","M4"])

TestRoaming_noWarning():Verdictsd

Application
co: Test−sr:Slave

T1(6s)

<<Default>>
Coord−Default

makeList

con_request
con_request

sa: Slave− hw:Hardware
Coordinator

Bad_Link_Quality

Good_Link_Quality

ref

ref

ref

ref

Disconnect
ref

Connect_To_Master("M1")

<<TestComponent>>
<<TestComponent>> <<TestComponent>><<SUT>> <<TestComponent>> <<TestComponent>> <<TestComponent>>

Fig. 17.10. Test Scenario

512 Zhen Ru Dai

ref
makeList

con_request

master: Master Test−Coordinator
co:

roamingList(["M2","M3","M4"]) roamingList(["M2","M3","M4"])

sdConnect_To_Master(master:string)

Application
Slave−ae:

con_confirm

con_accept

con_request con_request con_request

con_confirm

con_confirm(master)

sr:Slave
Roaming

hw:Hardware
<<TestComponent>> <<TestComponent>> <<TestComponent>><<SUT>> <<TestComponent>>

(a) Connect to Master Function

sr:Slave

sdGood_Link_Quality

Roaming

quality(good)

get_link_quality

hw:Hardware
<<SUT>> <<TestComponent>>

hw:Hardware

quality(bad)

get_link_quality

Bad_Link_Qualitysd

Roaming
sr:Slave

<<SUT>> <<TestComponent>>

(b) Link Quality Evaluation Functions

Fig. 17.11. Test Functions

master must be m2. A connection request is expected to be sent to m2 by the
SUT. As soon as it is observed and reported to the Test-Coordinator, a timer T2 of
two seconds is started. This timer assures that when the SUT cannot establish
a connection to a master, the SUT chooses a further master and tries to connect
to it within two seconds. If it is observed that the SUT requests a connection
to the correct master m3, the timer T2 is stopped by the Test-Coordinator. In
this test case, the connection is accepted (con accept) by master m3 and hence
confirmed (con confirm). After the Test-Coordinator noticed the connection to the
correct master, it assembles the new roaming list and sends it via the master
to the slave. In case that no connection confirmation is received, the default
behavior Conf Default is invoked. Finally, slave and master are disconnected, the
guarding timer T1 is stopped and the verdict of this test case is set to pass.

Besides the expected test behavior of test case TestRoaming NoWarning, de-
fault behaviors are specified to catch the observations which lead to a fail or
inconclusive verdict. The given test case uses two defaults called Coord Default

and Conf Default (Figure 17.12). In U2TP, test behaviors can be specified by
all UML behavioral diagrams, including interaction diagrams, state machines
and activity diagrams. Thus, Figure 17.12 shows how default behaviors can be
specified either as sequence diagrams (Figure 17.12a) or as state machines (Fig-
ure 17.12b).

17 UML 2.0 Testing Profile 513

<<Default>>
sd Coord_Default

alt

self

T2

T1

*

fail

inconc
<<ValidationAction>>

fail

<<ValidationAction>>

Disconnect

<<ValidationAction>>

Disconnect

<<Default>>
sd

alt

Conf_Default

self

<<ValidationAction>>
fail

<<ValidationAction>>
inconc

*

con_confirm(*)

(a) Default as Sequence Diagrams

statemachine
<<Default>>

Coord_Default

T2/setverdict(fail)
*

*/setverdict(inconc)

T1/setverdict(fail)

*

con_confirm(*)/setverdict(fail)

*/setverdict(inconc)

statemachine
<<Default>>

Conf_Default

(b) Default as State Machines

Fig. 17.12. Test Defaults

Coord Default is an instance-specific default applied to the coordinator. It
defines three alternatives. The first two alternatives catch the timeout events of
the timers T1 and T2. In both cases, slave and master will be disconnected and
the verdict is set to fail. After that, the test component terminates itself. The
third alternative catches any other unexpected events. In this case, the verdict
is set to inconclusive and the test behavior returns back to the test event which
triggered the default.

Conf Default is an event-specific default attached to the connection confirma-
tion event. In the Test-Coordinator, this default is invoked if either the connection
confirmation is not sent from the correct master or another message than the
connection confirmation is received. In the first case, the verdict is set to fail

and the test component finishes itself. In the latter case, the verdict is set to
inconclusive and the test returns to main test behavior.

17.4.5 Case Study: Mappings

This section depicts how to map the Bluetooth test model to JUnit and TTCN-3
by applying the introduced mapping rules (Section 17.3).

514 Zhen Ru Dai

SlaveRoamingListTest

BluetoothRoaming
<<import>>

<<TestCase>>

testSearchNextElement(): Verdict

testIsNull(): Verdict

BluetoothUnitTest

<<TestContext>>

(a) Test Package

searchNextElement(−):"M1"

searchNextElement()

sd

SlaveRoamingList
(["M1","M2","M3"])

SlaveRoamingList([])

SlaveRoamingList
RList:

SlaveRoamingList
emptyList:

testSearchNextElement():Verdict

<<TestContext>>
SlaveRoamingListTest

return pass

(b) Test Scenario

Fig. 17.13. JUnit Test Package and Scenario

Mapping to JUnit In the introduced roaming algorithm, the handling of the
slave roaming list plays an important role in order to guarantee the right choice
of the successory master. Therefore, class SlaveRoamingList will be tested. This
class provides the following methods:

• boolean isNull(): checks if the roaming list is empty. True, if the list is empty,
otherwise false.
• String searchNextElement(): looks for the next element in the roaming list.

Method isNull() asks whether or not is the roaming list empty, so that no
alternative new master can be found. In case of being empty, warnings will be
sent to the environment. Method searchNextElement() gives out the name of the
new master.

Figure 17.13 shows the unit test specification with U2TP. Figure 17.13a)
depicts a test package called BluetoothUnitTest. The package imports from the
implementation package of the package BluetoothRoaming, in which the methods
isNull() and searchNextElement() are specified. The test context in the test pack-
age is called SlaveRoamingListTest, which includes two test cases: testSearchNextEle-

ment() and testIsNull(). The names of the tests are similar to the methods which
should be tested. They just begin with the prefix ”test” for a better recognition.

17 UML 2.0 Testing Profile 515

/**** BluetoothUnitTest.java ***/

(0) import junit.framework.TestCase;
(1) import BluetoothRoaming;

(2) public class SlaveRoamingListTest extends TestCase {
(3) private SlaveRoamingList RList;
(4) private SlaveRoamingList emptyList;

(5) protected void setUp () {
(6) RList = new SlaveRoamingList ([”M1”,”M2”,”M3”]);
(7) emptyList = new SlaveRoamingList ([]);
(8) }

(9) public void testIsNull () {
(10) assertTrue (emptyList.isNull ());
(11) }

(12) public void testSearchNextElement () {
(13) String element = RList.nextElement ();
(14) assertTrue (element.equals(new String (”M1”)));
(15) }

(16) public static Test suite () {
(17) TestSuite suite = new TestSuite ();
(18) suite.adddTest (new SearchNewMasterTest (”testSearchNextElement”));
(19) suite.addTest (new SearchNewMasterTest (”testIsNull”));
(20) return suite;
(21) }

(22) public static void main (String args[]) {
(23) junit.textui.TestRunner.run (suite());
(24) }
(25) }

Fig. 17.14. JUnit Code

Figure 17.13b) shows a Sequence Diagram of the test case testSearchNextEle-

ment(), which returns a verdict as its result. The test case starts with the test
context instance SlaveRoamingListTest and firstly creates two instances RList and
emptyList of type SlaveRoamingList. RList has the entries [”M1”,”M2”,”M3”] mean-
ing that whenever the link quality between the current master and the slave
becomes bad, Master M1 should be the successory master, otherwise Master M2

and M3, respectively. emptyList has no entries. It is created to check whether
the method recognizes an empty list and thus send warning messages to the
environment.

After the two roaming list instances are created, RList is asked to provide the
next element of the roaming list. According to the ordering of the roaming list,
the return value is M1. After that, the test is finished and a verdict of value pass

516 Zhen Ru Dai

is returned to the test context instance. In case the return value is not M1, the
verdict will be fail 5.

Figure 17.14 presents the mapped JUnit code of the U2TP diagrams in Figure
17.13. The name of the test file is called BluetoothTest.java. In the beginning of
the JUnit code, the JUnit framework and the Bluetooth package are imported
(lines 0 and 1). An class called SlaveRoamingListTest is built, which corresponds
with the U2TP test context instance. Two methods are defined in the JUnit code
(lines 9 and 12) which are the test cases in the JUnit test suite. In the test fixture
(line 2-4), the objects RList and emptyList are created which is the mapping result
of the instance creation in the U2TP instance creations in the beginning of the
test case. Figure 17.13b) calls the method testSearchNextElement() (lines 12-15)
and asserts a pass verdict, if the test case returns M1 as a result. The lines 16-21
adds the three test cases to the test suite. The last three lines (lines 22-24) calls
up the JUnit textual test runner.

Mapping to TTCN-3 After having tested the functionalities of the class Slave-

RoamingList, it is time to test the whole Slave Roaming layer (Figure 17.6). There-
fore, we consider the Slave Roaming layer as a black-box, where only actions on
the system interfaces can be seen.

The TTCN-3 code in the Figures 17.15, 17.16 and 17.176 show the TTCN-3
module in order to test the Bluetooth Roaming. The TTCN-3 code derive from
the UML diagrams in the Figures 17.8, 17.9, 17.10 and 17.12. They are imple-
mented by means of the mapping rules indicated in Table 17.4. Figure 17.15
embodies the TTCN-3 module called BluetoothTest which imports all types and
functions from a BluetoothRoaming module (lines 1-27). After the definition of
some external functions and types, various port types are defined. In lines 4-8,
a port type called SA2SR Port PType is specified with its appropriate message
types of data Type, con request Type. Later on, this port type is needed to define
the communication port between the Slave Application and the Slave Roaming8.

After the port type definitions, test component types with their ports must
be specified. Lines 9-15 depicts the test component type SUT CType, including its
port between the Slave Application and Slave Roaming of type SA2SR Port PType

and the port between the Slave Roaming and the Hardware of type SR2HW Port-

PType .
Two defaults are specified in the test module. Conf Default is a event-specific

default (lines 16-22). Its task is to catch the con confirm message of any parame-
ter values other than ”m3” and set the verdict to fail. Coord Default (lines 23-34)
is a component-specific default which is invoked whenever the Test Coordinator
5 This is normally caught be a default behavior, which is defined separately from the

actual test case.
6 The TTCN-3 code in all three tables belong to one TTCN-3 module. They have been

separated into three tables for spatial reasons.
7 Blank lines are not counted.
8 Various other port types and component types are specified in the TTCN-3 module,

which we do not show in the example. The complete TTCN-3 module can be required
by the author.

17 UML 2.0 Testing Profile 517

/*** Bluetooth Roaming Test module ***/

(1) module BluetoothTest {
import from BluetoothRoaming all;

/** external functions and type definitions ... **/

/** Ports **/
(5) type port SA2SR Port PType mixed {

// Port between Slave Application and Slave Roaming
inout data Type, con request Type }

/* more port definitions ... */

/** components **/
(10) type component SUT CType {

// Slave Roaming layer is assigned to SUT
port SA2SR Port PType p sa; // port btw. SUT and Slave appl.
port SR2HW Port PType p sh // port btw. SUT and hardware
}

(15) /* more component definitions ... */

/** Defaults **/
altstep Conf Default () runs on TestCoordinator CType {

[] any port.receive (con confirm Type:{?}) {
setverdict (fail) }

(20) [] any port.receive {
setverdict (inconc) }

}

altstep Coord Default () runs on TestCoordinator CType {
timer T1, T2;

(25) [] T1.timeout {
Disconnect co ();
setverdict (fail) }

[] T2.timeout {
Disconnect co ();

(30) setverdict (fail) }
[] any port.receive {

Disconnect co ();
setverdict (inconclusive) }
}

Fig. 17.15. Bluetooth Test Module: TTCN-3 Types and Defaults

triggers a timeout of the timers T1 and T2 or receives an unexpected message.
Both defaults run on the test component type TestCoordinator CType. Their im-
plementations correspond to the diagrams in Figure 17.12.

Figure 17.16 shows two important functions in the test module. In our test
configuration, we determined the Test Coordinator to be the main test compo-
nent (MTC) because the Test Coordinator controls the roaming procedure by

518 Zhen Ru Dai

(1) /* test configuration function */
function BluetoothSuite Configuration
(inout SUT CType sut, inout TestCoordinator CType mtc comp,
inout SlaveApplication CType sa, inout Hardware CType hw,

(5) inout Master CType m1, inout Master CType m2,
inout Master CType m3, inout Master CType m4)
runs on TestCoordinator CType {

// TestCoordinator is assigned to MTC
sa := SlaveApplication CType.create;

(10) map (sut: p sa, sa: p sa);
hw := Hardware CType.create;
map (sut: p sh, hw: p sh);
m1 := Master CType.create;
connect (hw: p mh, m1: p mh);

(15) connect (m1: p co, mtc comp: p co);
m2 := Master CType.create;
connect (hw: p mh, m2: p mh);
connect (m2: p co, mtc comp: p co);
m3 := Master CType.create;

(20) connect (hw: p mh, m3: p mh);
connect (m3: p co, mtc comp: p co);
m4 := Master CType.create;
connect (hw: p mh, m4: p mh);
connect (m4: p co, mtc comp: p co);

(25) }

function NoWarning master (charstring master) runs on Master CType {
var default master def := activate (Master Default ());
if (master == ”M1”) {

Connect to Master ma m1 ();
(30) while (true) {

p hm.receive (data); }
}
else if (master == ”M2”) {

Connect to Master ma m1 ();
(35) p hm.receive (con request); // failed request

p co.send (con request);
}

else if (master == ”M3”) {
Connect to Master ma m1 ();

(40) p hm.receive (con request); // successful request
p co.send (con request);
p hm.send (con accept);
p hm.receive (con confirm Type:{”M3”});
p co.send (con confirm Type:{”M3”});

(45) p co.receive (roamingList Type:{”M1”,”M2”,”M4”});
p hm.send (roamingList Type:{”M1”,”M2”,”M4”});

}
deactivate (master def);

}

Fig. 17.16. Bluetooth Test Module (ctnd.): TTCN-3 Functions

17 UML 2.0 Testing Profile 519

creating and updating the roaming list of the slave and embodies the whole intel-
ligence of the test system. In TTCN-3, the MTC is responsible for the settlement
of the test configuration. Thus, function BluetoothSuite Configuration (lines 1-25)
which is implemented to create test components, including the mapping between
the SUT and the test components and connection within the test components,
runs on the TestCoordintor CType.

Function NoWarning master (lines 26-49) specifies the behavior of the mas-
ter instances for test case TestRomaing noWarning (Figure 17.17). Depending on
which master (M1, M2 or M3) calls the function, the appropriate behavior is
executed. The sequence derive from the message exchanges of the three master
instances in the test scenario in Figure 17.10.

In Figure 17.17, test case Test Roaming noWarning is specified. This test case
runs on the MTC type, which is the TestCoorodinator CType in the given test
configuration. The system under test (SUT) is the Slave Roaming layer. After
the declaration of some variables and timers, the test configuration is set up by
means of the BluetoothSuite Configuration function. Afterwards, the component-
specific default Coord Default is activated and test component are started with
their appropriate functions. A timer T1 is started which assures that the test
case terminates properly within a predefined time period of 6 time units. Now
the real test behavior can be executed. First of all, Test Coordinator connects
itself to master M1. The connection of the other test components to master M1

is defined in their individual functions which already started in lines 13-17.
After the connection with M1, two con request messages are received by the

Test Coordinator. The first message comes from M2 indicating that master M2

has been asked to connect to the slave. The second connection request comes
from M3 to inform that master M2 somehow failed to connect to the slave. Thus
master M3 has been asked to. A timer T2 has been started in between to assure
that the connection requests are performed periodically, so that the slave will
not loose its connection to the current master without having connected to a
new master.

Afterwards, the event-specific default Conf Default is activated. If master M3

accepts the connection request and answers with an connection confirmation
(con confirm) message, the default will be deactivated again. In this case, a new
roaming list will be calculated for the slave. The list will be sent to master
M3 and the connections will be released. Timer T1 is stopped afterwards and
Coord Default deactivated. Finally, the test verdict is set to pass.

In lines 35-41, the control part is implemented which defines the sequence of
test case execution. In this example, the described test case TestRoaming noWarning

will be executed at first. Only if its test verdict is pass, another test case called
TestRoaming withWarning will be executed.

17.5 Summary

In this chapter, the U2TP has been introduced. U2TP is a new UML profile
which provides means to specify tests based on UML 2.0. By doing so, a UML

520 Zhen Ru Dai

(1) /* test case */
testcase TestRoaming noWarning ()
runs on TestCoordinator CType system SUT CType {

// TestCoordinator is assigned to MTC
(5) var SlaveApplication CType sa;

var Hardware CType hw;
var Master CType m1, m2, m3, m4;
var TestCoordinator CType co;
timer T1, T2;

(10) BluetoothSuite Configuration (system, mtc, sa, hw, m1, m2, m3, m4);
var default coord def := activate (Coord Default ());

// component-specific default
hw.start (NoWarning hw);
sa.start (NoWarning sa);

(15) m1.start (NoWarning master (”M1”));
m2.start (NoWarning master (”M2”));
m3.start (NoWarning master (”M3”));
T1.start (6.0);
Connect To Master co m1 ();

(20) p co.receive (con request) from m2; // first request to m2
T2.start (2.0);
p co.receive (con request) from m3; // second request to m3
T2.stop;
var default conf def := activate (Conf Default ());

(25) // event-specific default
p co.receive (con confirm Type: {”M3”}) from m3;
deactivate (conf def);
var roamingList Type RList := makeList ();
p co.send (roamingList Type: RList) to m3;

(30) Disconnect co ();
T1.stop;
deactivate (coord def);
setverdict (pass);
}

(35) /* module control part */
control {

if (execute (TestRoaming noWarning ()) == pass) {
execute (TestRoaming withWarning ())
}

(40) }
}

/* end of Bluetooth Roaming Test module */

Fig. 17.17. Bluetooth Test Module (ctnd.): TTCN-3 Test Cases and Control Part

system model may be re-used for testing purposes. This enhances the coopera-
tion between system designers and test designers. Furthermore, existing system

17 UML 2.0 Testing Profile 521

models can be provided to the tester for a proper and more detailed test speci-
fication. This saves time and reduces cost for test specification.

Besides the test concepts, the U2TP also introduces rules to map U2TP to
JUnit and TTCN-3, respectively. By doing so, the test model can be executed
based on the mappings and the existing JUnit and TTCN-3 compilers. In the
chapter, the usage of the U2TP has been shown by means of a case study. Also,
the mappings between the languages are demonstrated on the case study.

Part VI

Beyond Testing

This last part of the book introduces two extensions of the typical testing ap-
proach. It describes methods for the continuous testing effort, also at a later
run-time of the system. Furthermore, it recalls essentials of model checking, a
different powerful technique to get “better” systems, on the one hand to separate
model checking and testing, on the other hand, to show possible combinations
leading to approaches like black box checking or adaptive model checking. The
latter glue learning of automata and model checking to study an underlying
system.

18 Run-Time Verification

Séverine Colin1 and Leonardo Mariani2

1 Laboratoire d’Informatique de l’Université de Franche-Comté (LIFC)
Université de Franche-Comté - CNRS - INRIA
colin@lifc.univ-fcomte.fr

2 Dipartimento di Informatica, Sistemistica e Comunicazione
Università di Milano Bicocca
mariani@disco.unimib.it

18.1 Introduction

We are going into a ubiquitous computing world, where computation is in every
object around us. When that finally happens, when computers finally “disap-
pear into the woodwork” [Dav02], more people will be using computers without
realizing they are interacting with computers. This is beginning to happen now.
Once people are surrounded by computational artifacts, and when these artifacts
are linked together by all forms of networking, both wired and wireless, then the
current incipient computer utility will become the predominant aspect.

Implicit in the term utility are such attributes as reliability, flexibility, avail-
ability, reserve capacity, and economy. In the long run, the effect of a computer
utility system on transforming our basic institutions and social practices may
be its most important result. But before that happens, we need to ask the right
questions. Are we designing access and data security in our systems? Are relia-
bility and dependability core properties built into these systems?

The question now is how do we build more reliable and dependable com-
putational infrastructures? Dependability has been defined as the property a
computer system has so that reliance can justifiably be placed on the service it
delivers. The threats to building dependable computing systems include factors
such as faults, errors and failures. The means for removing or avoiding such
threats include mechanisms that can prevent the faults, remove the errors, and
can be used to forecast where the failures are and probably when they occur.
Effectiveness of many of these mechanisms can be increased by using data rep-
resenting the run-time behavior of the target system; in fact these run-time data
contain execution samples representing single behaviors of an implemented sys-
tem. Run-time data is mainly used to check if the system respects requirements,
e.g, monitored data can be used to verify temporal constraints. Verification is
often performed at run-time, while data is continuously gathered, and therefore
called run-time verification. In particular, run-time verification can be exploited
both during beta testing and during normal use of the software. In the case
of beta testing, verification is performed by oracles checking correctness of ex-
ecutions, while during the normal use of software, verification is performed by
monitors checking correctness of executions in the deployment environment.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 525-555, 2005.
 Springer-Verlag Berlin Heidelberg 2005

526 Séverine Colin and Leonardo Mariani

Complete specifications are rarely available, thus it is not realistic to sup-
pose that every behavior can be always classified as positive or negative. How-
ever, it is possible to formally specify aspects that are critical for the target
application. For instance, temporal constraints can be very important for a car
embedded system, but can be of minor importance for a desktop application.
On the other hand, in order to ascertain security on desktop applications, un-
safe behaviors and unexpected communication events can be more important
to detected. Properties that must be checked are often specified by logic for-
mulas, such as in MaC [KKL+01, SSD+03] and PathExplorer [HR01b] that use
a three-valued logic and the Linear Temporal Logic (both future and past) re-
spectively [Pnu77]. However, other approaches use mathematical predicates to
specify properties, such as in Raz et al.’s anomaly detection technique [RKS02],
or implement algorithms addressing specific problems, such as for the Eraser
tool that dynamically detects data races [SBN+97].

Recently, run-time verification techniques have been extended with learning
mechanisms based on field-data. In particular, data collected in the field is used
to infer either an abstract behavior or some properties of the implementation that
are then either checked with respect to specification or used during regression
testing to match the behavior of new components replacing the observed ones.

In this chapter, first we introduce to the reader the basic concepts of run-time
verification (Sections 18.2 and 18.3), and then we present the main verification
techniques based on run-time data (Sections 18.4 and 18.5). Furthermore, we
present possible extensions of basic run-time verification techniques that can
be used when there is no model available (Section 18.6). Finally, we conclude
by reporting known case studies (Section 18.7) and by tracing future research
directions (Section 18.8).

18.2 The Run-Time Verification Framework

Run-time verification techniques are used to dynamically verify the behav-
ior observed in the target system with respect to given requirements. Require-
ments are often formally specified and verification is used both to check that
the observed behavior matches specified properties and to explicitly recognize
undesirable behaviors in the target system.

Since verification is performed while the system is executing, traditional
computational intensive verification methods work poorly; therefore, run-time
verification techniques are intended as the lightweight counterpart of “off-line”
verification techniques.

In particular, a run-time verification technique analyzes the behavior ob-
served in the target system to establish correctness of each single execution by
intercepting both important events and observable outputs. Obligations checked
at run-time are quite simple in respect to properties that can be verified off-line
because the amount of resources that can be employed during system execution
is limited and also because conditions checked on single executions, which is the
most frequent case, tend to be quite simple.

18 Run-Time Verification 527

The point is why check for the fulfillment of obligations at run-time if you
can verify the system’s formal specification or the system’s model? There are
several good reasons to use run-time verification:

• if you check the model of your system, you cannot be confident of the imple-
mentation since correctness of the model does not imply correctness of the
implementation.
• some information is available only at run-time or is convenient to be checked

at run-time. For example, it could be not feasible to prove in a reasonable
amount of time that your system never reaches a critical status C, even if
a formal specification exists, but it could be possible to verify at run-time
that your system does not reach status C, at least for observed executions.
• behaviors may depend on the environment where the target system runs;

therefore it is not possible to have some necessary information before the
system is deployed.
• in the case of systems where security is important or in the case of critical

systems, it is useful to verify behaviors that have already been statically
proved or tested.

Run-time verification can be compared to testing. In the case of testing,
the tester defines a “reasonable” set of test cases that once executed provide a
“sufficient level of confidence” on the target system. Test case generation and
selection can be performed on different models with different criteria, each one
focusing on complementary aspects of the system under test, such as a model of
the system’s behavior, a specification of a protocol or the software architecture
(see Chap. 12 of this book for details on test case generation).

Instead, run-time verification is based on the observation of the dynamic
behavior of the target system and on the possibility to establish if the current
behavior is correct or not. Run-time verification also provides the possibility to
continue to check properties even after the software has been deployed in the final
environment, but it requires additional resources in the execution environment
and can be intrusive in respect to the target application. On the contrary, testing
finishes with the delivery of the application (eventually, in regression testing, it
is possible to test a new version of the same application).

Testing and run-time verification are also complementary, in fact one can
verify results of the execution of test cases by combining test and run-time
verification. Moreover, if one considers that test cases can be generated to stress
a property that is verified at run-time, the connection between testing and run-
time verification becomes even stronger.

In general, run-time verification is preferred when there are strong require-
ments on the criticality, dependability and security of the target application,
while testing is preferred when it is not possible or convenient to consume re-
sources for creating, and running instrumented applications. Moreover, run-time
verification is often used to recognize faulty components and integration errors in
hardware systems, such as in the Dynamic Implementation Verification Architec-
ture (DIVA) which exploits run-time verification at intra-processor level [Aus99].

528 Séverine Colin and Leonardo Mariani

In particular, when the core of a DIVA-based microprocessor completes the ex-
ecution of an instruction, the operands and the results are sent to the DIVA
checker which verifies the correctness of the computation. If errors are detected,
the DIVA checker can also fix the errant operation.

Monitor

Monitor

Monitor

P
Stimuli

Execution
Traces

Oracle/
Checker

E

Fig. 18.1. The general scenario in Run-Time Verification

The general scenario that is established when you employ a run-time verifica-
tion technique of a software system P is shown in Fig. 18.1. The software P runs in
the context of an environment E. The environment can be an operating system,
such as Windows or Linux, a middleware, such as EJB [MH99] or JXTA [Gon01],
or any other framework such as ubiquitous environments or network systems.
The software P receives stimuli from either the user of the system or from a test
driver and consequently sends events providing information about the behavior
of P. Event generation is performed by monitors observing P that are placed
inside the environment, inside the target program or outside the target program
(see Sec. 18.3 for a detailed explanation of monitors). Events are stored in exe-
cution traces that are used as input either for a checker or for an oracle which
verifies correctness of the executions. Often, run-time verification techniques do
not use execution traces and send events directly to the checker. The term or-
acle is preferred when verification takes place in the testing environment, while
checker is more generally used in the other cases.

The environment where verification takes place is an important aspect of
a run-time verification technique which is often neglected. It is important to
consume a limited amount of resources when you check properties at run-time,
since it would be unfeasible to perform complex computations with respect to
each single execution and also because the original application will be slowed
down too much.

In the case where the verification takes place in the field, hence it is performed
at the user site after the system has been deployed, intrusiveness and consumed
resources play even a more important role. In fact, it would be annoying for
the user to have the system evidently slowing down while verification is taking
place. Sometimes, verification of the observed behavior is not just immediate
with respect to the execution, but results of the execution are stored in trace
files that are then checked. For example, it is possible to build a trace file that
is checked when the system is not used, or it is possible to transfer the trace file

18 Run-Time Verification 529

from a machine to another one before checking takes place, e.g., transferring the
file from the client machine to the vendor’s site.

To illustrate the runtime verification, a basic example will be used along
with the chapter. It is the railroad gate example. It is composed of a gate and
a light. The light can flash or be off. The gate can be closed, opened, closing
or opening. First the gate is open. Before the door closes, the light flashes to
warn the motorists of the imminent closing of the door. The light continues to
flash while the door closes until the door is again opened. The program that
implements this example is supposed to be instrumented to send information
about the state modifications of both the gate and the light. In particular, we
suppose that the program can generate the following events at run-time:

• closing when the gate begins to close
• closed when the gate is closed
• opening when the gate begins to open
• opened when the gate is open
• off when the light is off
• flashing when the light begins to flash.

During the execution of the program, a sequence of events is generated.
The sequence is an execution trace of the program. For example, three different
executions can generate these traces:

(1) open, off , flashing, closing, closed, opening, open, off .
(2) open, off , flashing, closing, closed, off , opening, open.
(3) open, off , closing, flashing, closed, opening, open, off .

A runtime verification technique checks an execution trace against require-
ments. For example, the requirement that “whenever the gate begins to open,
then the gate has been closing in the past, and since then the light has not
finished flashing”, can be formalized by the past LTL formula [Pnu77]:

↑ is opening⇒ [is closing, ↓ (is f lashing))

Another requirement could be “always in the future whenever the light is
off, then the gate will not be closing until the light will be flashing”, can be
formalized by the future LTL formula:

�(is off ⇒ ¬is closing U is f lashing)

The notations ↑ p (begin p), ↓ p (end p), p ⇒ q (p implies q), [p, q) (q in the
past and not q since p), �p (always p), ¬p (not p) and p U q (p until a) will be
introduced latter in the paper. Propositions is opening, is closing, is f lashing
and is off describe intuitively the state of both the gate and the light, and they
correspond to conditions gate = opening, gate = closing, light = flashing and
light = off , respectively.

By matching the formal requirements with the three execution traces, a run-
time verification technique can detect a violation of the first requirement in the

530 Séverine Colin and Leonardo Mariani

second trace, since at a given moment the gate is opening, but the light is not
flashing; and a violation of the second requirement in the third trace, since at
a given moment the light is off, but then, the gate is closing before the light is
flashing. These examples will be investigated furthermore in the presentation of
the specific techniques.

Before performing verification, it is necessary to obtain traces that must be
checked. In the next section we address the problem of generating traces by
monitoring executions, while we address verification of formal requirements in
Sec. 18.4

18.3 Monitoring Executions

Installation of monitors can be a complex activity since monitors must be less
intrusive as possible, but must also generate the necessary events for enabling the
verification technique that will be performed. Moreover, monitors must often be
installed in many different points of a given system; in fact a specific aspect can
be localized in many different parts of the target application. Manual installation
of monitors is an error-prone and time consuming activity, hence the installation
procedure is often automatic.

Referring to Fig. 18.1, monitors can be installed inside the target program,
inside the environment and outside the target program.

In the case of monitors placed inside the target program, the most used ap-
proach consists of automatic instrumentation of either the source code or the
binary code. In these cases, additional code is placed in strategic points, such as
entry points of the procedures or before the execution of specific operations, to
generate events [GH03, KKLS01]. There are many programs performing auto-
matic instrumentation of the source code [LLC03], of the binary code [RVL+97]
or any intermediate language, e.g., Java bytecode [Fou03, GH03].

Even the oracle can be placed inside the program. This is the case of de-
velopers writing assertions in the code while developing the program [BY01].
Assertions are boolean expressions that a programmer believes to be true at
the time the statement is executed (a false assertion indicates an error). Asser-
tions are checked at run-time and if one assertion is false the event signaling the
violation is generated. By using assertions, the software developer places condi-
tions verifying the behavior of the program directly in the program itself, thus
facilitating discovering of faulty behaviors. Using assertions instead of defensive
programming or “if” statements gives the possibility to choose between compi-
lation processes that either remove assertions or keep assertions. The program
with assertions is generated for testing purposes, while the program without as-
sertions is generated for the deployment in the final environment. There are many
languages for assertion specification providing a different expression power. The
Java assertion mechanism enables the specification of boolean logic expressions
that can be easily checked, while Temporal Rover enables the specification of as-
sertions by using temporal logic [DS03], see Fig. 18.2 for an example. If it is nec-
essary to specify real-time requirements, the Java Run-time Timing Constraint

18 Run-Time Verification 531

Monitor [ML97] enables the specification of Real-time Logic [JG90] assertions.
Assertion mechanisms have been defined also for other languages such as Eif-
fel [Mey92] (the language where assertions were originally introduced), C [TJ98]
and Ada [SM93].

class MyClass {
static void foo(int x) {

/*TRBegin
TRAssert{ Always{x < 0} } =>

{System.out.println("Violated the assertion x<0 in foo(int x), x=" + x);}
TREnd*/
}

}

Fig. 18.2. An example of an assertion written by Temporal Rover

In the case where the source code is not available, it is possible to use a
modified version of the underlying environment to monitor executions, e.g., a
modified JVM [Wol99]. Dynascope is the example of an environment exploiting
fine grain monitoring and steering at the cost of expensive executions [Sos92].
These techniques have the advantage that any application running on the tar-
get environment is automatically monitored. The drawback is that a modified
environment is not always reliable as the original one and monitoring can nega-
tively affect applications that do not need to be monitored. Moreover, the mod-
ified environment can be incompatible with the standard environment. Finally,
a monitoring environment is not configurable to monitor very specific parts of
specific programs, rather it exploits the monitoring capability as a whole. On
the contrary, instrumented code and assertions can be enabled or removed in
respect to current needs.

Finally, the binding mechanism can be altered to enable monitors to observe
communication between components and systems. For example, monitors can ob-
serve network communication [DJC94] or inter-component interactions [BS01a].
These
approaches have the advantage to be lowly intrusive, but only events and actions
implying a communication can be observed. Moreover, installation of these kinds
of monitors is often complex [BS01a].

18.4 Concurrency Error Checking

Run-time verification techniques were first used to check classical error patterns,
in particular they were used to check concurrent programs. Then, run-time verifi-
cation techniques were extended to check execution traces against user provided
formal requirements written in high-level logics. In this section, we present ap-
proaches for checking concurrency errors, while run-time verification of formal
requirements will be presented in Sec. 18.5.

Error pattern analysis is conceptually based on analyzing an execution trace
by algorithms that are able to detect errors even if those errors do not explicitly

532 Séverine Colin and Leonardo Mariani

occur in the examined execution trace. The goal is to extract as much information
as possible from a single execution trace to be able to forecast problems that can
occur in executions that have not been explored. In the case of multi-threaded
software, debugging is complex since execution of threads is not deterministic
and many combinations are possible, thus verification requires specific tools. In
this section, we present the application of run-time verification techniques for
detecting data races and deadlocks.

18.4.1 Data Races

The Eraser algorithm [SBN+97] is one of the first algorithms that dynamically
detects data races in multi-threaded programs. A date race occurs when two
concurrent threads access a shared variable with at least one write access and
threads use no explicit mechanism to prevent accesses from being simultaneous.

The Eraser algorithm takes an unmodified program binary as input and
adds instrumentation to produce a new binary that is functionally identical, but
includes calls to the Eraser run-time which implements the Lockset algorithm.

The Lockset algorithm enforces the locking discipline requiring that every
variable shared between threads is protected by a mutual exclusion lock. As a
consequence, the lock must be held by threads accessing the variable. Basically,
Eraser instruments standard C, C++ and Unix memory allocation routines and
monitors all read and write operations to check whether the program respects
or not the locking policy. Eraser does not know which locks are intended to pro-
tect which variables, so it must infer the protection relation from the execution
history.

In particular, for each shared variable v , Eraser maintains the set C (v) of
candidate locks for v . This set contains those locks that have protected v for
the computation so far, that is, a lock l is in C (v) if in the current computation
every thread that has accessed v was holding l at the moment of the access.
When a new variable v is initialized, its candidate set C (v) is considered to hold
all possible locks. When the variable is accessed, Eraser updates C (v) with the
intersection of C (v) and the set of locks held by the current thread. This process,
called lockset refinement, ensures that any lock that consistently protects v is
contained in C (v). If C (v) becomes empty, no locks consistently protect v .

A lock is a simple synchronization object used to implement mutual exclusion.
Locks can be either available or owned by a thread. The operations that can be
performed on a lock mu are lock(mu) and unlock(mu). Figure 18.3 shows an
example taken from the paper presenting the Eraser algorithm [SBN+97] that
illustrates how a potential data race is discovered through lockset refinement.
The left column contains the program statements that are executed;the column
in the middle contains the set of locks held by the considered thread; and the
right column contains the set of candidate locks C (v). The example uses two
locks mu and mu, thus C (v) initially contains both of them. Then, the lock
mu is acquired and v is accessed. Thus, C (v) is refined by computing the
intersection of C (v) with the set of acquired locks. Later, v is accessed again,
when only mu is held. The intersection of the singleton {mu} with {mu} is

18 Run-Time Verification 533

the empty set, therefore no locks protects v . A warning is issued since accesses
to variable v are sometimes protected by the lock mu and sometimes by the
lock mu, thus no locks protects all accesses to v for the whole computation.

Time

�

Program Locks held C (v)
{} {mu1,mu2}

lock(mu1)

{mu1} {mu1,mu2}
v := v+1

{mu1} {mu1}
unlock(mu1)

{} {mu1}
lock(mu2)

{mu2} {mu1}
v := v+1

{m2} {}
unlock(mu2)

{} {}

Fig. 18.3. Example of the execution progress for the Eraser algorithm in the case of a
variable v used by a six statements program.

When a race is reported, Eraser indicates both the file and line number at
which the instruction violating the locking discipline is located. The report also
includes the thread ID, memory address, type of memory access, and important
register values such as the program counter and stack pointer.

The Eraser locking discipline is too strong. There are three very common
programming practices that violate the discipline, yet are free from any data
races: initialization, read-shared data and read-write locks. These cases have been
addressed by Savage et al. who extended the Lockset algorithm to accommodate
initialization, read-shared data and read-write locks [SBN+97].

The Eraser algorithm was implemented for Digital Unix and it has been
used to detect data races in several programs. In particular, it tackled some
large multi-threaded servers written by experienced researchers at Digital Equip-
ment Corporation’s System Research Center: the HTTP server and indexing
engine from AltaVista, the Vesta cache server, and the Petal distributed disk
system. Eraser found undesirable race conditions in three of the four server pro-
grams [SBN+97]. A version of the Eraser algorithm which addresses also Java
programs has been implemented in PathExplorer [HR01b]. Finally, Compaq pro-
vides a run-time debugging and analysis tool for multi-threaded applications
called Visual Threads which finds data races by the Eraser algorithm [Har00].

18.4.2 Deadlock Detection

The problem of deadlock is common in parallel programs. Deadlock can occur
whenever shared resources are required to accomplish a task. For instance, if

534 Séverine Colin and Leonardo Mariani

resource access is not managed correctly, two threads may end up each one
holding one resource but waiting for another resource held by the other thread.
If neither the first nor the second thread releases the resource until it completes
its task, both will wait indefinitely. Both PathExplorer and Visual Threads can
detect deadlocks.

The primary unit of data processed by Visual Threads is the event. Events
are sent from the application process to Visual Threads and Visual Threads uses
these events to model the execution of the application via a state machine. Dead-
lock is a circularity in the dependency graph of the threads. Deadlock is detected
via a simple recursive mark-search algorithm directly applied to the model rep-
resentation of the program. While detecting deadlocks is useful, observing their
occurrence can be quite obvious since a deadlocked application never ends. How-
ever, Visual Threads goes beyond this by detecting various conditions that may
lead to deadlock. Visual Threads has the capability to detect situations that may
not typically have any visible symptom, but that at some point in the future may
cause the application to fail. For example, Visual Threads recognizes if locks are
acquired in an inconsistent order to forecast the possibility for the application
to deadlock.

PathExplorer uses the same idea to detect deadlocks [RH01c]. A thread map
keeps track of which locks are owned by which thread at any time point. A
lock graph maintains the information about all locks taken by threads during
execution. Nodes of the lock graph represent locks, while edges of the nodes
graph represent locking orders; in particular an edge from lock v1 to lock v2

is introduced if a thread owning v1 acquires also v2. A cycle in the lock graph
represents a potential deadlock.

18.5 Checking Temporal Logic Requirements

Instead of verifying a program for checking specific properties, such as dead-
locks, it is possible to be more general: verify a program with respect to a for-
mal specification. In this case, user-provided formal requirements are used to
unambiguously describe system properties that are intended to be verified. Ap-
proaches differ according to both the type of the language and the corresponding
verification engine that are used.

18.5.1 PathExplorer and Future LTL

PathExplorer is a run-time verification technique developed by Havelund and
Roşu [RH01c]. In PathExplorer, requirements are specified with future Linear
Temporal Logic (LTL) formulas and a trace is a finite sequence of events emitted
by the observed program. Events indicate when variables are changed. This
is slightly different from the traditional view where the trace is a sequence of
program states.

18 Run-Time Verification 535

Temporal Logic We briefly recall basic notions of finite trace linear tem-
poral logic including a recursive definition of the satisfaction relation on a finite
trace and a LTL formula.

The satisfaction relation |= ⊆ Trace × Formula defines when a trace t sat-
isfies a formula ϕ, written t |= ϕ, and is defined inductively over the struc-
ture of the formula as follows: where p ∈ Prop is any atomic proposition,
head : Trace → Trace and tail : Trace → Trace are two functions taking the
head and the tail of a trace respectively, length is a function returning the length
of a finite trace, ε denotes a empty trace and ϕ and ψ are any formulas:

t |= true is always true,
t |= false is always false,
t |= p iff t �= ε and head(t) is p,
t |= ϕ ∧ (∨,⇒,⇔)ψ iff t |= ϕ and (or, implied, iff) t |= ψ,
t |= ◦ϕ iff t �= ε and tail(t) |= ϕ,
t |= �ϕ iff (∀ 1 ≤ i ≤ length(t))ti |= ϕ,
t |= �ϕ iff (∃ 1 ≤ i ≤ length(t) + 1)ti |= ϕ,
t |= ϕ U ψ iff (∃ 1 ≤ i ≤ length(t) + 1)ti |= ψ and

(∀ 1 ≤ j < i)tj |= ϕ.

The LTL operators have a slightly different interpretation in the context of
finite traces, though similar in spirit to their standard semantics in classical LTL
with infinite traces. The formula ◦ϕ (next ϕ) holds for a finite trace iff the trace
is nonempty and ϕ holds in the suffix trace starting in the next (second) time
point. The formula �ϕ (always ϕ) holds if ϕ holds in all time points, while �ϕ
(eventually ϕ) holds if ϕ holds in present or in some future time point. The
formula ϕ U ψ (ϕ until ψ) holds if ψ holds in present or in some future time
point, and until then ϕ holds. As an example illustrating the semantics, the
formula �(ϕ⇒ �ψ) holds for a finite trace iff for any time point in the trace it
holds that if ϕ is true then eventually ψ is true.

LTL is widely accepted as reasonably good formalism to express requirements
of reactive systems. However, there is a tricky aspect of specification-based mon-
itoring which distinguishes it from other formal methods, such as model checking
and theorem proving: the end of trace. Sooner or later, the monitored program
will be stopped and so does its execution trace. At that moment, the observer
needs to make a decision regarding the validity of checked properties. Let us
consider the formula �(p ⇒ �q). If each p was followed by at least one q during
the monitored execution, then, at some extent one could say that the formula
was satisfied; but one should be aware that this is not a definitive answer because
the formula could have been very well violated in the future if the program had
not been stopped. However, there are LTL properties that give the user absolute
confidence during the monitoring. For example, a violation of a safety property
reflects a clear misbehavior of the monitored program.

In PathExplorer, the fact that the relation |= can be defined recursively in
the context of finite traces is crucial to the development of generic dynamic pro-

536 Séverine Colin and Leonardo Mariani

gramming algorithms, i.e., algorithms solving optimization problems by caching
subproblem solutions rather than recomputing them.

Exercise 18.1 (Specify requirements with future LTL formula on the railway gate
example).

• Always in the future, when the gate is closing, is closed or is opening, the
light flashes
• In the future, the light is off only when the gate is open

Verification in PathExplorer Based on Future LTL The PathExplorer
dynamic programming algorithm takes as input a future time LTL formula and
generates a special Finite State Machine (FSM), called binary transition tree
finite state machine (BTT-FSM), which is used as an efficient monitor. We
present general concepts of BTT-FSM by using an example; readers interested in
details can read the article of Havelund and Roşu [HR04]. A BTT-FSM for the
railway gate example formula �(is off ⇒ ¬is closing U is f lashing) discussed
in Subsec. 18.2 is shown in Figure 18.4.

State BTT for non-terminal events BTT for terminal events

s1

is_flashing

is_off

is_closing

s1

yes

yes no

noyes

no s1

s2false

is_flashing

is_off

yes no

noyes
true

false true

s2

is_flashing
yes no

noyes

false

s1

s2

is_closing
is_flashing

yes no

true false

Fig. 18.4. The BTT-FSM for the formula �(is off ⇒ ¬is closing U is flashing)

Intuitively, a BTT-FSM is used to derive the next state when an event is
recognized; for example, if the BTT-FSM in Figure 18.4 is in state s and a non-
terminal event is received, then it is first evaluate the proposition is f lashing

18 Run-Time Verification 537

(propositions are represented by nodes), if the result is true then the BTT-FSM
stays in state s else is off is evaluated; if is off is false then the BTT-FSM
stays in state s else is closing is evaluated; if is closing is true then the output
is “formula violated” else the BTT-FSM moves to state s. When a terminal
event is received due to termination of monitoring, if the BTT-FSM is in state
s then is f lashing is evaluated; if is f lashing is true then true is returned,
else is off is evaluated; if is off is true, false is returned, otherwise is true
is returned. Since only true/false messages are reported on terminal events, the
BTT-FSM that is executed when a terminal event is recognized is a Binary
Decision Diagram.

gate=open
light = off

open
light = off
gate=open off

light = off
gate=open closing gate=closing

light = off

s2 s2 s2 false

Fig. 18.5. Evaluation of the trace open, off , closing, flashing

In our example, at the initial state the gate is open and the light is off.
Figure 18.5 and 18.6 show the detailed evaluation progress for the traces:

• open, off , closing, flashing. (Formula violated)
• open, off , flashing, closing. (Formula verified)

open off

s2 s2 s2

light = off
gate = open gate = open

light = flashing
closingflashinggate = open

light = off light = off
gate = open

light = flashing
gate = closing

s1 true

Fig. 18.6. Evaluation of the trace open, off , flashing, closing

To simplify evaluation of the propositions in the BTT-FSM’s nodes, the value
assumed from the abstract state variables at each step is reported in the diagram.
The identifier of states traversed during the evaluation process and eventually
the verdict are shown below state variables. A transition from a state to the
following one is performed by evaluating an event of the execution trace. Events
that are successively evaluated are reported as labels of the edges. For example,
in the case of the sequence in Figure 18.5, the initial state of the BTT-FSM
is obtained by applying the initial state of the system to state s. The light is
initially off, therefore the value of is f lashing is false and the value of is off
is true; moreover, the gate is open, thus is closing is false, therefore the BTT-
FSM evolves to state s. Then the event open is considered and the BTT-FSM
is evaluated again. Now, we are in state s and both is f lashing and is closing
are false, hence we remain on state s. The evaluation procedure continues in
this way until the event closing is reached. In this example, the BTT-FSM gets
the non-terminal event closing while it is in state s, with the light set on off

538 Séverine Colin and Leonardo Mariani

and the gate set on closing; is f lashing is evaluated to false, is off is evaluated
true, is closing is evaluated to true and the final result is false, therefore the
formula has been violated.

Exercise 18.2 (Algorithm Application). Apply the BTT-FMS of Fig 18.4 on the
following traces and determine the resulting truth value:

• flashing, closing, closed, opening, open, closing, off
• flashing, off , closing, closed, opening, flashing, open

When a new event is received, a BTT-FSM only need to evaluate at most all
the propositions to compute the next state, so at worst the run-time overhead
is linear with respect to the number of distinct variables. The size of the BTT-
FSMs can become a problem when storage is a scarce resource, hence particular
attention is given to the generation of optimal BTT-FSMs. However, the number
of propositions to be evaluated tends to decrease with the number of states, so
the overall monitoring overhead is also reduced. This algorithm is recommended
in situations where the monitored LTL formulas are relatively small in size.

Future time propositional LTL may not be the most appropriate formalism
for logic based monitoring due to the conceptual contradiction between the finite
past traces and the logic expressiveness referring to infinite future. Past time LTL
can be a more natural logic for run-time monitoring, in fact safety requirements
are usually expressed by means of past events.

18.5.2 PathExplorer and Past Time LTL

Before presenting the algorithm used by PathExplorer to verify requirements
specified by past time LTL [HR02], we briefly remind the reader of the basic
notions of finite trace linear past time temporal logic, and introduce some
operators used by PathExplorer.

Past Time LTL Syntactically, PathExplorer allows the following formulas,
where A is a set of “atomic propositions”:

F ::= true | false | A | ¬F | F op F Propositional operators
�F | �· F | �F | F SS F | F SW F Standard past time operators
↑ F | ↓ F | [F ,F)S | [F ,F)W Monitoring operators

The propositional binary operators op are the standard ones, and the other
operators should be read :

• �F as “previously F”,
• �· F as “eventually in the past F”,
• �F as “always in the past F”,
• F1 SS F2 as “F1 strong since F2”,
• F1 SW F2 as “F1 weak since F2”,
• ↑ F as “start F”,
• ↓ F as “end F”,
• [F1,F2) as “interval F1, F2”.

18 Run-Time Verification 539

A trace is regarded as a finite sequence of abstract states. If s is a state and
a is an atomic proposition then a(s) is true if and only if a holds in the state
s . If t = s1s2 . . . sn is a trace then we let ti denote the trace s1s2 . . . si for each
1 ≤ i ≤ n. Then the semantic of these operators is:

t |= true is always true,
t |= false is always false,
t |= a iff a(sn) holds,
t |= ¬F iff it is not the case that t |= F ,
t |= F1 op F2 iff t |= F1 or/and/implies/iff t |= F2, when op is ∨/∧/⇒/⇔,
t |= �F iff t ′ |= F , where t ′ = tn−1 if n > 1 and t ′ = t if n = 1,
t |= �· F iff ti |= F for some 1 ≤ i ≤ n,
t |= �F iff ti |= F for all 1 ≤ i ≤ n,
t |= F1 SS F2 iff tj |= F2 for some 1 ≤ j ≤ n and ti |= F1 for all j < i ≤ n,
t |= F1 SW F2 iff t |= F1 SS F2 or t |= �F1,
t |=↑ F iff t |= F and it is not the case that t |= �F ,
t |=↓ F iff t |= �F and it is not the case that t |= F ,
t |= [F1,F2)S iff tj |= F1 for some 1 ≤ j ≤ n and ti � F2 for all j ≤ i ≤ n,
t |= [F1,F2)W iff t |= [F1,F2)S or t |= ¬� F ,

The recursive nature of past time temporal logic is very suitable for dynamic
programming; in fact, the satisfaction relation for a formula can be calculated
along the execution trace looking only one step backwards:

t |= �· F iff t |= F or (n > 1 and tn−1 |= �· F),
t |= �F iff t |= F and (n > 1 implies tn−1 |= �F),
t |= F1 SS F2 iff t |= F2 or (n > 1 and t |= F1 and tn−1 |= F1 SS F2),
t |= F1 SW F2 iff t |= F2 or (t |= F1 and (n > 1 implies tn−1 |= F1 SS F2)),
t |= [F1,F2)S iff t � F2 and t |= F1 or (n > 1 and tn−1 |= [F1,F2)S ,
t |= [F1,F2)W iff t � F2 and t |= F1 or (n > 1 implies tn−1 |= [F1,F2)W ,

Verification in PathExplorer Based on Past Time LTL Safety require-
ments can be represented as formulas �F , where F is a past time LTL formula.
These properties are very suitable for logic based monitoring because they only
refer to the past, and hence their values are always either true or false in any
state along the trace, and never to-be-determined as in future time LTL.

The dynamic programming algorithm for past LTL formulas takes as input
a formula and generates a program that traverses the trace of events while val-
idating the formula. We illustrate the algorithm by using the sample formula
↑ is opening ⇒ [is closing, ↓ is f lashing)S that refers to the railway gate
example discussed in Subsec. 18.2.

A formula is first visited top down to assign increasing numbers to subformu-
las in the order they are visited. Let ϕ0, ϕ1, . . . , ϕ6 be the list of all subformulas:

ϕ0 =↑ is opening ⇒ [is closing, ↓ is f lashing)S
ϕ1 =↑ is opening,

540 Séverine Colin and Leonardo Mariani

ϕ2 = is opening,
ϕ3 = [is closing, ↓ is f lashing)S ,
ϕ4 = is closing,
ϕ5 =↓ is f lashing,
ϕ6 = is f lashing.

The formulas have been enumerated in a post-order fashion, but it is possible
to choose a breath-first order, or other enumerations. Because of the recursive
nature of past LTL, this enumeration assures that the truth value of ti |= ϕj can
be completely determined from the truth value of ti |= ϕj ′ for all j < j ′ ≤ m
and the truth values of ti−1 |= ϕj ′ for all j ≤ j ′ ≤ m.

The input of the generated program will be a finite trace t = e1e2 . . . en of n
events; examples of finite traces for the railway example can be:

• open, off , flashing, closing, closed, opening, open, off or
• open, off , flashing, closing, closed, off , opening, open.

The generated program evaluates traces by fixing an initial state that is then
updated according to events. For the railway gate example, the initial state is
defined by the two variables gate and light that are set to:

gate = open
light = off

In particular, the generated program will maintain updated the state via the
function update : State × Event → State that, given both the current state
and an event, generates the next state. For example, when the event flashing
is received, the variable light is assigned to flashing.

Going into depth of implementation aspects of dynamic programming we
can consider how the satisfaction relation is implemented. Generally, a matrix
s [1 . . .n, 0 . . . 6] of boolean values {0, 1}, with the meaning that s [i , j] = 1 iff
ti |= ϕj , is defined. However, it is not necessary to store the whole table, which is
quite large, because values stored in s [i , 0 . . . 6] and s [i − 1, 0 . . . 6] are sufficient
to evaluate the formula at step i . Therefore, we will refer to s [i , 0 . . . 6] and
s [i − 1, 0 . . . 6] with now [0 . . . 6] and pre[0 . . . 6] respectively. At this point is
quite simple to understand the algorithm shown in Figure 18.7 which checks the
above formula on a finite trace.

As expected, the generated program contains two arrays pre and now : pre
contains all subformulas corresponding to the previous state, while now contains
all subformulas corresponding to the current state. The input is given by the trace
of events, which can be read from a file or can be generated on-the-fly without
using any storage device. The latter technique is implemented by PathExplorer.
In fact the observer and the program interact directly.

The generated program initializes the state variable to the value of the first
event of the execution trace and then initializes all elements of the pre array to
the truth value of the corresponding formula. The initial status is supposed to be
stationary until monitoring starts, therefore the formulas checking for changes of

18 Run-Time Verification 541

State state ← {};
bool pre[0 . . . 6];
bool now [0 . . . 6];
Input: trace t = e1e2 . . . en ;
/* Initialization of state and pre */
state ← update(state, e1);
pre[6]← is flashing(state);
pre[5]← false
pre[4]← is closing(state)
pre[3]← pre[4] and not pre[5]
pre[2]← is opening(state)
pre[1]← false
pre[0]← not pre[1] or pre[3];
/* Event interpretation loop */
for i = 2 to n do {

state ← update(state, ei)
now [6]← is flashing(state);
now [5]← not now [6] and pre[6]
now [4]← is closing(state)
now [3]← (pre[3] or now [4]) and not now [5]
now [2]← is opening(state)
now [1]← now [2] and not pre[2]
now [0]← not now [1] or now [3];
if now [0] = false then output(“property violated”);
pre ← now ;

};

Fig. 18.7. The algorithm generated by PathExplorer for the formula ↑ is opening ⇒
[is closing, ↓ is flashing)S

the state are false at initialization. In the example, both formulas ↑ is opening
and ↓ is f lashing, that correspond to indexes 5 and 1, are false.

The loop sequentially considers all events, and for each event the current state
is first updated, then the now array is computed (meaning that the formula is
evaluated), and finally the now array is copied into the pre array (since at next
step the current array will be the previous array). If at any step now [0] is false,
the formula has been violated. Note that for the way enumeration has been
performed now [0] represents the truth value of the whole formula.

Figure 18.8 shows the evaluation progress for the formula ↑ is opening ⇒
[is closing, ↓ is f lashing)S on the trace flashing, closing, closed, opening,
open, off . The content of the pre array at the end of the loop is reported below
each abstract state with the exception of the array of boolean values reported
on the first abstract state that denotes the content of pre after initialization.
We can immediately observe that the trace satisfies the formula ↑ is opening ⇒
[is closing, ↓ is f lashing)S because pre[0] is true at all steps.

Exercise 18.3 (Algorithm Application). Verify that the execution trace open,
off ,

542 Séverine Colin and Leonardo Mariani

gate=open
light=off

flashing
light=flashing
gate=open closing gate=closing

light=flashing

gate=closed
light=flashing

gate=opening
light=flashing
[1111001]

gate=open
light=flashing
[1001001]

gate=open
light=off

[1000010]

[1000000] [1000001] [1001101]

[1001001]

closed

opening

off open

Fig. 18.8. Progress of the algorithm in Figure 18.7 for the trace flashing, closing,
closed, opening, open, off . The content of the pre array is reported below each abstract
state. Note that 0 is used for false and 1 for true.

flashing, closing, closed, off , opening, open violates the formula
↑ is opening ⇒ [is closing, ↓ is f lashing)S by simulating the execution
of the program shown in Figure 18.7.

Analyzing a fixed past time LTL formula by the PathExplorer dynamically
generated algorithm is straightforward, its time complexity isΘ(n) where n is the
length of the input trace, and the required memory is constant since the length
of the two arrays is equal to the size of the past time LTL formula. However,
if you include the size m of the formula in the analysis, the time complexity
is Θ(n · m), while the required memory is 2 · (m + 1) bits. The procedure for
enumerating a given formula is linear, thus the algorithm which synthesizes a
dynamic programming algorithm from a past LTL formula is linear with the size
of the formula.

PathExplorer Architecture PathExplorer can be regarded as consisting of
three main modules: an instrumentation module, an observer module, and an
interaction module. The instrumentation module performs a script-driven auto-
mated instrumentation of the program that must be observed by using the Jtrek
Java byte-code engineering tool [Coh]. The instrumented program emits events
to the interaction module, which forwards them further to the observation mod-
ule. If the observer runs on a different computer, events are transmitted over
sockets.

18.5.3 Monitoring and Checking (MaC) Method

The Monitoring and Checking (MaC) method [LKK+99, KKL+01] that has been
developed at the University of Pennsylvania ensures that a system is behaving

18 Run-Time Verification 543

correctly with respect to formal requirements. MaC uses two different logics
for specifying monitoring scripts and safety requirements. Main phases of the
framework are:

(1) system requirements are formalized and a monitoring script is written; the
monitoring script is used to instrument the code for establishing a mapping
from low-level information to high-level events

(2) at run-time, events generated by the instrumented system are checked with
respect to requirements

MaC Architecture The run-time monitoring and checking architecture con-
sists of three components: the filter, the event recognizer, and the run-time
checker. The filter extracts low-level information from the system, such as both
value of program variables and time when those variables change their values,
and sends them to the event recognizer. The event recognizer converts received
events into both high-level events and conditions that are sent to the run-time
checker.

Events delivered to the checker have a timestamp which reflects the actual
time of the occurrence of the event. The timestamp enables monitoring of real-
time properties of the system. The run-time checker checks correctness of the
executions according to the requirement specification, events provided from the
event recognizer, and past history. The current prototype of the MaC framework
supports instrumentation and monitoring of Java bytecode.

Events and Conditions Monitoring scripts defined by the Primitive Event
Definition Language (PEDL) are used to specify both the information that is sent
from the filter to the event recognizer, and how this information is transformed
into requirement-level events by the event recognizer. In particular, when an
“interesting” event occurs in the running system, the filter sends a notification
to the event recognizer. Two possible kinds of notification exist: events which
occur instantaneously during the system execution, and conditions which are
information holding for a duration of time. Since events are associated with the
time of their occurrence and conditions are associated to their duration, it is
possible to reason about timing properties of monitored systems.

Sometimes, variables can become undefined because they are out of scope.
To support reasoning even on such variables, a three-valued logic is used for
PEDL: in addition to true and false, formulas can be evaluated to undefined
(the symbol used in such case is ⊥).

MaC Logic The logic has two sorts: conditions and events. The syntax of con-
ditions (C) and events (E) is as follows, where c is a primitive condition and e
is a primitive event:

C ::= c | defined(C) | [E ,E) | ¬C | C ∨ C | C ∧C | C ⇒ C
E ::= e | ↑ C | ↓ C | E ∨ E | E ∧ E | E when C

544 Séverine Colin and Leonardo Mariani

The operators ¬, ∨ , ∧ and ⇒ are standard operators (respectively not, or,
and, and implies), but they are defined on the domain {true, false, ⊥}; define(c)
allows to know if c is defined, [c1, c2) is true if and only if c2 was never true
since the last time c1 was observed to be true, including the state when c1 was
true; ↑ c occurs when condition c changes from false to true; ↓ c occurs when
condition c changes from true to false; and “e when c” allows to know if event
e occurs when condition c is true.

A model for this logic is a tuple (S , τ,LC ,LE), where S = {s0,s1,. . .} is a set
of states, τ is a mapping from S to the time domain (which could be integer,
rationale, or real), LC is a total function from S ×C to {true, false, ⊥} where C
is a countable set of primitive conditions, and LE is a partial function from S×E
to De where E is a countable set of primitive events and De is the domain of the
event. Intuitively, LC assigns to each state the truth value of all the primitive
conditions; since conditions are interpreted over a 3-valued logic, the truth value
of primitive conditions can be true, false or ⊥ (undefined). Similarly, in each
state s , LE (s , e) is defined for each event e that occurs at s and gives the value
of the primitive event e. The mapping τ defines the time associated to each
state, and it satisfies the requirement that τ(si) < τ(sj) for all i < j , i.e., states
are sorted with respect to time.

ck primitive Dt
M (ck) = LC (si , ck), where τ (si) ≤ t and ∀ sj .j > i ⇒ τ (sj) > t

defined Dt
M (defined(c)) = true if Dt

M (c) �= ⊥
false otherwise

pair Dt
M ([e1, e2)) = true if ∃ t0.t0 ≤ t : M , t0 |= e1 and

∀ t ′.t0 ≤ t ′ ≤ t ⇒ M , t ′ � e2

= false otherwise

negation Dt
M (¬c) = true if Dt

M (c) = false
= ⊥ if Dt

M (c) = ⊥
= false if Dt

M (c) = true

disjunction Dt
M (c1 ∧ c2) = true if Dt

M (c1) or Dt
M (c2) is true

= false if Dt
M (c1) = Dt

M (c2) = false
= ⊥ otherwise

conjunction Dt
M (c1 ∨ c2) = Dt

M (¬(¬c1 ∧ ¬c2))

implication Dt
M (c1 ⇒ c2) = Dt

M (¬c1 ∧ c2)

Table 18.1. Denotation of conditions

Before defining the semantics of a condition c holding in a given model M
at time t , i.e. M ,t |= c, we define the semantics of the denotation Dt

M (c) that
associates to each condition c its truth value for model M and time t . Dt

M (c) is
defined in a recursive way in the Table 18.1.

The value of Dt
M for a primitive condition ck is given by the truth value of

the condition ck evaluated on state si that is the last discrete state recognized
before time t ; in the case of defined, the result of Dt

M is true if the condition c
is defined at state t , otherwise the result is false; in the case of pair, the value of

18 Run-Time Verification 545

Dt
M is true if event e1 was true before time t and from that time up to now e2 has

not been ever true; and finally, definitions of negation, disjunction, conjunction
and implication are straightforward; note that ¬undefined is undefined .

Table 18.5.3 defines the semantics for conditions and events with respect to
model M at time t , the table is self-explanatory.

M , t |= c iff Dt
M (c) = true

M , t |= ek (ek prim.) iff ∃ state si such that τ (si) = t and LE (si , ek) is defined
M , t |= ↑ c iff ∃ si .τ (si) = t ∧M , τ (si) |= c ∧M , τ (si−1) � c

i.e, ↑ c occurs when condition c changes from false to true.
M , t |= ↓ c iff ∃ si .τ (si) = t ∧M , τ (si) � c ∧M , τ (si−1) |= c

i.e, ↓ c occurs when condition c changes from true to false.
M , t |= e1 ∨ e2 iff M , t |= e1 or M , t |= e2

M , t |= e1 ∧ e2 iff M , t |= e1 and M , t |= e2

M , t |= e when c iff M , t |= e and M , t |= c
i.e, event e occurs when condition c is true.

Table 18.2. Semantics of events and conditions

Monitoring Script A PEDL script can monitor any object in the target sys-
tem, therefore declaration of monitored entities is performed in a language spe-
cific manner. In the case of the Railway Gate example, a possible implementation
of the system is sketched in Figure 18.9; the PEDL script will monitor the vari-
ables gatePosition and lightState and the methods open, close, on, off . For
simplicity, we assume that there is only one instance of GateController and
LightController classes.

class GateController{
public static final int UP = 0;
public static final int DOWN = 1;
public static final int UPDOWN = 2;
public static final int DOWNUP = 3;
int gatePosition;
public void open(){. . . }
public void close(){. . . }
. . .

};

class LightController{
public static final int OFF = 0;
public static final int FLASHING =

1;
int lightState;
public void on(){. . . }
public void off(){. . . }
. . .

};

Fig. 18.9. The implementation of the railway example

Primitive conditions are computed from boolean expressions over monitored
variables. An example of primitive condition is:

Cond is opening = (GateController.gatePosition == GateController.DOWNUP);

546 Séverine Colin and Leonardo Mariani

PEDL defines also the special primitive condition InM (f) that is true while
the method f is executing. Complex conditions are built from primitive condi-
tions using boolean connectives.

Events correspond to updates of monitored variables, calls and returns of
monitored methods (several primitive events have been defined in the original
paper [LKK+99]). Each event has an associated timestamp and may have a tuple
of values containing additional information such as values of the parameters of
a call. Events that are defined in the logic are used to construct more complex
events from primitive ones.

For the purpose of the railway gate example, we are going to use only the
event StartM(f) that is triggered when the flow of control enters method f . The
value associated with StartM is a tuple containing the values of all arguments. In
particular, we need to monitor closure of the gate (the closing event) and condi-
tions corresponding to overture of the gate and flashing of light. Opening of the
gate corresponds to condition gatePosition = DOWNUP and flashing of the
light corresponds to condition lightState = FLASHING. Figure 18.10 shows
definition of event closing and both conditions is opening and is f lashing.

export event closing;
export condition is opening, is flashing;
Monitored Entities:

void GateController.close();
void GateController.gatePosition;
void LightController.lightState;

EvenDef:
Event closing = StartM(GateController.close());

CondDef:
Cond is opening = (GateController.gatePosition == GateController.DOWNUP);
Cond is flashing = (LightController.lightState == LightController.FLASHING);

Fig. 18.10. PEDL script for the railway gate example

Safety Requirements The safety requirements (invariants) that need to be
monitored are specified by the Meta Event Definition Language (MEDL). MEDL
is based on the same logic of PEDL. Primitive events and conditions are imported
from PEDL monitoring scripts to MEDL monitoring scripts. For increasing the
expressive power of MEDL, the user can define auxiliary variables whose values
can be used to define new events and conditions. The MEDL specification is then
used by the MEDL compiler to generate the Run-Time checker. The Run-time
checker evaluates MEDL expressions on events and conditions received from the
event recognizers by using an abstract syntax tree. If a violation is detected, a
signal is generated. The Run-time checker evaluates expressions in linear time
with respect to the size of the expression.

18 Run-Time Verification 547

In the case of the railway gate example, the corresponding MEDL script con-
tains the formula:

↑ is opening ⇒ [closing, ↓ is f lashing).

If we consider the trace open, off , flashing, closing, closed, opening, open,
off , the run-time checker will observe the following states:

• s0: ¬is opening, ¬is f lashing
• s1: ¬is opening, is f lashing
• s2: ¬is opening, is f lashing, closing
• s3: is opening, is f lashing
• s4: ¬is opening, is f lashing
• s5: ¬is opening, ¬is f lashing

State s0 is defined by the pair of events open and off ; then s1 is obtained
from s0 when event flashing takes place. Further states are obtained by consid-
ering remaining events. For this trace, the formula ↑ is opening ⇒ [closing, ↓
is f lashing) is true on all states. The value of this formula is computed for each
state using Table 18.1 and 18.5.3:

• s0: true because ¬is opening
• s1: true because ¬is opening
• s2: true because ¬is opening
• s3: true because in s2 the event closing has been triggered and since it,
is f lashing was holding
• s4: true because ¬is opening
• s5: true because ¬is opening

Note that it is necessary to store all traces to evaluate MaC formulas.

Exercise 18.4 (Algorithm Application). Consider the trace open, off , flashing,
closing, closed, off , opening, open, derive information sent to the run-time
checker, and evaluate the formula ↑ is opening ⇒ [closing, ↓ is f lashing) for
each state (the formula does not hold in all states) using Table 18.1 and 18.5.3.

Last Work on MaC MaC can detect violation of properties, but cannot pro-
vide any feedback to the running system. To overcome this limit, the MaC sys-
tem has been extended with a feedback capability. The resulting system is called
MaCS (Monitoring and Checking with Steering) [KLS+02]. The feedback com-
ponent uses the information collected during monitoring and checking to steer
the application back to a safe state after an error occurs.

Computational issues of monitoring by MaC have been investigated by Kim
et al [KKL+02]. Moreover, Sammapun et al. [SSD+03] have defined a formal
model of Java MaC safety properties in terms of an operational semantics for
Middleweight, which is a considerable subset of the Java language.

548 Séverine Colin and Leonardo Mariani

18.6 Run-Time Verification of Learned Properties

Often, requirements are not formalized or even are not available, therefore it
would be impossible to verify the correctness of observed executions. This sce-
nario would invalidate any run-time verification techniques.

The problem of the lack of formal specifications can be solved by using pro-
gram synthesis techniques. A program synthesis technique learns specific as-
pects1 of a running system by observing its behavior. In particular, executions
are first observed to produce the synthesized properties (learning phase) and then
executions are checked with respect to learned properties (verification phase).
In some cases, learning continues even during the verification phase.

When a formal specification is not available, program synthesis can automat-
ically produce a specification that can be checked. Program synthesis exploits
its potentials when it is used to verify the correctness of an evolving system. In
fact, components of a system are often replaced with new components to either
extend, modify, remove or correct functionalities of an existing system, but the
updated version of the system can contain more faults than the original one,
i.e., due to faults contained in the new components (but missing in the existing
ones), or due to incompatibilities between new components and the system. The
properties inferred from the replaced component can be used at run-time to dis-
cover possible faults within the new component. In some cases, new behaviors
can be desired, e.g., bug fixes, and thus violations of invariants are ignored.

Furthermore, program synthesis is very effective when applied to a program
that is developed with a limited knowledge of the final environment that will
host the program itself. In fact, inference can be performed directly in the field
so that the learned behavior depends on the context where the system is used.
Therefore, the technique automatically takes advantage of information gathered
from the field that was not available neither during development nor beta testing.
Examples of systems that are developed without “complete” knowledge on the
final environment are component-based systems (software components are usu-
ally developed in isolation, then are assembled with third-party components, and
finally are deployed in unknown environments), mobile systems, agent-based sys-
tems, ubiquitous systems, wireless networks and self-adaptable systems. Learned
properties can be used also to build test suites [HME03] and to check compliance
of the observed behavior with respect to known properties [ECGN01].

A program synthesis technique can be effectively applied at run-time only
if it is lightweight, and it is also able to infer meaningful properties that can
be further checked. In this chapter, we focus on learning techniques based on
invariant detection; they consist of techniques that monitor single executions
to infer invariants, i.e., properties and relations over measured parameters that
hold on all or most of the executions.

1 The learned aspect is dependent on the learning technique that is used, e.g., it could
be a behavioral pattern, an interaction protocol, or a relation among stimuli and
results.

18 Run-Time Verification 549

In the following, we survey over techniques for: detecting pre-conditions,
post-conditions and invariants corresponding to specific program points; detect-
ing invariants in component-based systems; and debugging software. The reader
interested in learning further techniques can read Chapter 19 which addresses
learning state machines.

Invariant Detection over Variables Automatic detection of mathematical
properties over monitored variables has been proposed by Ernst et al. [ECGN01]
and has been implemented in a tool named Daikon.

The technique requires the instrumentation of the source code of the tar-
get program to trace values of interesting variables in specific points, such as
the beginning of a procedure, the begin of cycle instructions, and the end of a
procedure.

Properties are then inferred by initially assuming that a given set of invariants
hold for traced variables. Each execution can respect or violate hypothesized
invariants. Violated invariants are deleted, while respected invariants are kept.
Once several executions have been monitored, a restricted set of invariants will
still exist. These invariants represent the learned properties of the program. Some
of these invariants could be casually detected, for example the value of a given
variable could be recognized as always positive simply because the user always
digits a positive number, but the invariant does not state a property of the
program. To reduce number of false invariants, only learned invariants stating
relations that have a probability to casually hold below a given threshold are
considered.

The initial set of invariants that is supposed to hold for variables in the scope
of a point P of the source code is given by applying all relations of the following
list for any possible combination of target variables [ECGN01] (x, y and z are
used for variables and a,b and c for constant values):

• Invariants over any variable: x = a, x = uninit , x ∈ {a, b, c}
• Invariants over a single numeric variable: a ≤ x ≤ b, x �= 0, x ≡ a(mod b),

x �≡ a(mod b)
• Invariants over two numeric variables: y = ax + b, x < y, x ≤ y, x > y,

x ≥ y, x = y, x �= y, x = fn(y) or y = fn(x) (where fn is a language specific
unary function), any invariant over x + y, any invariant over x − y
• Invariants over three numeric variables: z = ax + by + c, y = ax + bz + c,

x = ay+bz +c, z = fn(x , y) (where fn is a language specific binary function)
• Invariants over a single sequence variable: minimum and maximum sequence

value, nondecreasing, nonincreasing or equal, invariant over all elements of
the collection
• Invariants over two sequence variables: y = ax + b element wise, x < y,

x ≤ y, x > y, x ≥ y, x = y, x �= y, x subsequence of y, or vice versa, x is
the reverse of y
• Invariants over a sequence and a numeric variable: i ∈ s

The technique provides a small extension for derived variables, thus the set
of relations that are checked contain also the following additional list:

550 Séverine Colin and Leonardo Mariani

• Derived from any sequence: size(s), s [0], s [1], s [size(s)− 1], s [size(s) − 2]
• derived from any numeric sequence s : sum(s), min(s), max (s)
• derived from any numeric sequence s and any numeric variable i : s [i], s [i−1],

s [0..i], s [0..i − 1]
• derived from function invocations: number of calls

Since an invariant is checked only if it holds, the cost of computing in-
variants tends to be proportional to number of invariants effectively discov-
ered [ECGN01].

Despite the wide applicability of the technique, Ernst et al.’s approach has
the disadvantage of being applicable only to a restricted set of data types: scalars
and collections. Moreover, object-oriented software has been tailored by printing
object’s attributes into an array [EGKN99], but this approach limits effectiveness
of the technique because data can be extracted from objects only if source code
is available or object’s attributes are declared as public fields.

Invariant Detection in Component-Based Systems In general, invariants
are useful to show bugs, e.g., an invariant that should hold is not true, but in
the case of component-based systems they can provide further information. For
instance, invariants can show limited usage of components, i.e., the invariant
describes a particular usage of some features, and can validate program changes,
e.g., comparing invariants computed for different versions of the same compo-
nent.

A technique for checking compatibility of upgrades in component-based sys-
tems has been proposed by McCamant and Ernst [ME03]. In this case, invariant
detection based on Daikon has been used to discover pre- and post- conditions
of services implemented in components. In particular, when a component A used
in system S is replaced by a component T, the compatibility of the update is
established by (off-line) checking compatibility among pre- and post-conditions.
The verified implication is:

Apre ⇒ Tpre and (Apre ∧Tpost)⇒ Apost

Pre- and post-conditions of A are computed while the component is used in S,
while pre- and post-conditions of T are computed during testing of T.

In several cases, e.g., a weak theorem prover or insufficient testing of T, the
technique could classify an update from A to T as unsafe even if it is safe. To
detect these cases, whenever there is an unsafe upgrade, the technique checks
the possibility to upgrade A with A. We know that this is always a safe upgrade
since the behavior is necessarily preserved. If the technique classifies as unsafe
the self-upgrade, we know that the response to the upgrade from A to T can be
inaccurate.

Raz et al. use invariants to synthesize the behavior of data feed systems
[RKS02]. A data feed system provides services based on online data sources;
invariants are inferred by observing results gathered from the client-side. In
particular, they use techniques from the information extraction field [FK00] to

18 Run-Time Verification 551

gather data from online services. Then, they compute invariants over multiple
numeric fields by Daikon and compute invariants over single numeric fields by
statistic estimations [RKS02]. Invariants can be used to monitor the evolution of
data feed systems with respect to both updates to implemented functionalities
and sensible modifications on data sources. Verification is performed at the client-
side and can be used to check multiple data feed systems providing similar
services.

The Behavior Capture and Test (BCT) [MP05] technique verifies at run-time
learned invariants in the case of component-based and object-oriented software
even without requiring source code. BCT uses the Object Flattening technique
to automatically extract state data from objects. Object Flattening recognizes
non-intrusive methods, named inspectors, of a given object by a heuristic. Se-
lected inspectors are then invoked to get the internal state of the object. In
case the internal state is an object, the approach is recursively applied until a
given depth or until a primitive data type is obtained. Heuristical selection of
inspectors is based on both language introspection, to automatically gather the
signature of the methods, and conventions on writing code, to select inspectors
by syntactic information. The behavior of the Object Flattening technique is
highly configurable and can be adapted to arbitrary enterprise notations. Once
state data has been extracted, BCT uses the invariant inference engine imple-
mented in Daikon to derive invariants.

BCT infers also interaction invariants representing the interaction protocol
used by components to interact. This protocol is synthesized in a regular ex-
pression summarizing all observed behaviors. Letters of the alphabet used to
define regular expressions correspond to methods implemented by components
of the system, and the language generated by a given regular expression of a
component C corresponds to all acceptable behaviors that the component C can
perform. In particular, the regular expression is derived by merging the observed
interaction patterns and by generating new behaviors as natural generalization
of the observed one [MP05].

BCT checks at run-time both interaction and object-oriented invariants by
automatically generated monitors which capture both requests and results of
performed computations.

Debugging by Invariants The DIDUCE tool [HL02a] instruments the source
code to derive invariants that are continuously verified and updated at run-
time. The technique seriously takes into consideration the amount of consumed
resources, thus lightweight computations of invariants is obtained at the cost of
limited expressiveness power of the inferred invariants. In fact, the instrumen-
tation consists of checking equality of object references, static variables, input
parameters and return values, with respect to a fixed value. Invariants are re-
laxed upon violation, in particular a mask defines the bits that must be checked
for equality. Each time the equality between the expected value and the observed
value is falsified for a bit, the mask is modified and the corresponding bit is not
checked anymore. The inference technique consumes little time and memory, but

552 Séverine Colin and Leonardo Mariani

it can specify only invariants stating if a given variable is constant, positive, neg-
ative, odd, even or approximatively bounded. This approach has been shown to
be particularly effective for debugging [HL02a]; in fact an anomalous behavior
often violates several invariants before generating the failure. Thus, the sequence
of violated invariants can be used to reach the point storing the fault from the
point that has generated the failure.

Other Techniques In the past, other inference techniques have been proposed
in the Machine Learning field [RW88], but they are quite complex and rarely
can learn programs more complex than a binary function. For instance, Lau et
al. [LDW03] proposed a learning technique able to learn program statements
from executions, but it learns only procedural programs, requires a heavy in-
strumentation, and is not suitable to learn programs of non-trivial complexity
(the average program length is six statements).

18.7 Case Studies

Theoretical aspects such as language expressiveness, complexity of specifying
requirements and intrusiveness of the approach are very important, but the
concrete applicability of a run-time verification technique must be demonstrated
with industrial case studies.

The Java implementation of PathExplorer, named JPaX, has been essen-
tially developed and used in the NASA Research Center, therefore it has been
applied to many programs produced for rovers, spacecrafts and similar devices.
In particular, JPaX has been used to verify the planetary rover controller K9’s
executive subsystem [ADG+03], a space craft fault protection system [ADG+03]
and a space craft attitude control system [HR04].

The K9’s executive subsystem is a multi-threaded system of about 8.000 lines
of Java code that executes hierarchical plans. JPaX has been used to discover
faults related to concurrency, and produced encouraging results; in fact, the tool
discovered all but two concurrency faults, all data races and all deadlocks. The
two missed faults are subtle errors involving Java’s wait and notify constructs.
More advanced techniques, e.g., model checking, are required to detect such kind
of errors.

The space craft fault protection system monitors both critical hardware and
software components to detect faults and to execute corrective responses. JPaX
has been used to check LTL formulas against execution traces and it discovered
some bugs and inaccuracies in the documentation. One of the found bugs was
even present in the program version that flew on the space craft.

The attitude control system is 1850 lines length Java program that was ana-
lyzed by the JPaX’s concurrency algorithms. Also in this case JPaX found un-
known data races and found all artificially generated deadlocks and data races.

Moreover, JPaX has been executed also for verifying several small size pro-
grams, such as a discrete-event elevator simulator (about 500 lines of code) and
two task-parallel applications (about 250 and 700 lines of code) [AHB03]. JPaX

18 Run-Time Verification 553

detected some faults, but also false positives2 demonstrating unsoundness of the
technique.

Experimental results show the suitability of the technology for critical ap-
plications. The approach is effective in detecting large class of errors, but can
produce false warnings [AHB03] and can be ineffective in the case of subtle
faults [ADG+03]. Moreover, the computational overhead due to the instrumen-
tation is limited, but applications using large data sets suffer great scalability
problems limiting the applicability of JPaX [AHB03]. JPaX is very effective
when combined with techniques for the automatic generation of test cases, such
as when combined with model-checking, since it is possible to automatically run
and verify huge set of test cases.

The MaC approach has been used to implement a fault-tolerant layer for an
inverted pendulum controller [KLS+02]. The system uses sensors and controllers
to monitor the current status of the pendulum and eventually to correct it. The
goal is to maintain the pendulum upright. Experimental results demonstrate
achievement of the goal, in fact the pendulum is always stabilized after a per-
turbation is performed. Empirical data show also that the overhead induced in
the target system by the instrumentation is very high, however in the case of
the pendulum, the instrumented system behaves quickly enough in respect to
pendulum cycles.

A simple application of the MaC technique has been used also for monitoring
values produced by a program generating prime numbers [KKL+02]. The goal of
the monitor is to detect prime numbers between 99990 and 100000. This simple
program has been essentially used to estimate overhead induced by the MaC
technique, results show that MaC slows down the target program from 1.5 to
3.1 times.

More serious experimental work on the MaC technique has been performed
for analyzing network protocols [BGK+02] and for monitoring agent forma-
tions [GSSL99].

In the first case, MaC has been used together with the NS simulator (a dis-
crete event simulator) for checking properties of a routing protocol. Experimental
results show the high effectiveness of the approach in detecting faults; on the
other hand, experimental results highlight the high overhead induced by run-
time verification too. Performance can be sensibly improved by abstracting from
some characteristics, for instance by both focusing only on a small set of nodes
(population abstraction) and pruning traces including events that do not directly
affect the property under verification (packet-type abstraction), it is possible to
reduce the computation time from 4 days to 51 seconds.

In the second case, the Mac framework has been used to monitor the for-
mation of a set of agents (nanobots, micro-air vehicles, micro-electromechanical
systems, . . .). Agents are supposed to be monitored from an observer possess-
ing the global knowledge of the formation, e.g., a plane, in contrast with single
agents possessing only local knowledge and limited interaction possibility. The
formation must keep a fixed geometric shape despite events that can alter the

2 a false positive is an observed inconsistency that does not correspond to a fault

554 Séverine Colin and Leonardo Mariani

existing structure. The observer recognizes alerts due to wrong positions of some
agents and infers the current situation with respect to the number and trend of
alerts.

The experimental work focused on the simulation of the effects induced by a
blast. Results show that self-repairing mechanisms succeeded in repairing local
flaws, but concavities on the overall shape persist. In this case, the observer
broadcasts commands for settling up the multi-agent system. Experimental data
demonstrate the effectiveness of MaC in checking the current shape of the agent
pool.

Experimental results obtained by JPaX and MaC are convincing and benefits
are clear, in fact they have been successfully applied for detecting errors, but
also for implementing fault tolerant and self-repairing systems.

Time consumed by running the instrumented system instead of the original
one is still considerable. Many scenarios justify employment of run-time verifica-
tion techniques, e.g., critical systems and military systems, but the development
of cheaper techniques is still an open issue.

Moreover, techniques based on invariant detection have been employed on
systems of different sizes and complexity, e.g., simple routines [ECGN01], data-
feed systems [RKS02], commercial systems [MP05] and Perl libraries [ME03].
They are suitable to respond to the lack of formal specifications, but they are
expensive to be executed at run-time, especially if it is considered the case where
the instrumented application is deployed in the user environment.

Diduce [HL02a] can be considered a nice exception, in fact it both automat-
ically infers invariants and performs checking at cheap cost, but expressiveness
of inferred invariants is very limited.

18.8 Summary

For our present computational infrastructures to become computer utility (see
[Gru68]), the system elements must be reliable. The move towards open sys-
tems, such as ubiquitous computing, peer-to-peer computing, and autonomic
computing, means there will be many systems producing interactions that are
not predictable at design-time. This trend also means the incipient rise of spe-
cialization and standardization of algorithms, of software, and capabilities, and
the decline in the historical concentration of general purpose computing. How
to build reliability into systems of that kind will involve a lot of intellectual and
practical effort. Shipping out systems and waiting for user feedback to correct
bugs is simply not plausible any longer.

In run-time verification, one expects that, given the specification, and while
running an already tested and/or debugged program, a program execution is
verified to concur with the specification, and if it does not, the program should
automatically be corrected while running. From industrial and exemplar sys-
tems, we need to develop theories and use these theories to develop tools that
system builders can use to specify, design, build, test, audit, monitor and verify
programs.

18 Run-Time Verification 555

Although these are very early days, some of the projects already carried out
in run-time verification produce tools that, when looked at properly, are simply
debuggers with fancy features and/or provide good tracing mechanisms. Exam-
ples include, inter alia, Jass [BFMW01], Opium [Duc90], Morphine [DJ01], Coca
[Duc99], DynaMICs [GRMD01], Daikon [ECGN01], and ESC/Java [RLNS00].
Some approaches in run-time verification include collecting statistics during run-
time to perform some form of debugging later on. However, what is encouraging
amongst the majority of these projects and tools is the use of linear time logic
(or extensions of it) to describe the monitor that monitors the program behav-
ior [Gei01] or as the basis of a specification language to specify the properties to
monitor [DGJV01]. In particular, Hakansson et al. [HJL03] proposed the genera-
tion of on-line test oracles with a rich logic which contains past operators, metric
time, and can handle data values by means of the quantification construct.

What is needed is a tool (or set of) that software professionals can use to
specify requirements, to design the system, to code, to test, to deploy, and to
monitor the software while running, something like an integrated development
environment (IDE) that combines those attributes. JPAX [HR01a] is going in
the right direction. This is an IDE that tries to combine the positive attributes
of testing, i.e. in terms of scaling up, and that of formal methods, i.e. by pro-
viding temporal formulas for specification. It falls shy to be called a run-time
verification tool as it only monitors a program and emits its results, it does
not automatically correct the monitored program. MaCS [KLS+02] is going in
the right direction towards being called a run-time verification tool. It combines
monitoring a program with steering that program if, while running, fails to con-
cur with its specification. There are some obvious problems to tackle in this area,
such as how far forward in a running program should a tool look to correct, and
the computational complexity that is inherent in tackling such a problem.

19 Model Checking

Therese Berg1 and Harald Raffelt2

1 Computer Science Department
Uppsala University
thereseb@it.uu.se

2 Chair of Programming Systems and Compiler Construction
University of Dortmund
harald.raffelt@cs.uni-dortmund.de

19.1 Introduction

When developing hard- or software systems one starts with a collection of re-
quirements. Most requirements arise due to the needs of the customer, others
originate from design decisions and further constraints. Of course, the final sys-
tem should fulfill these requirements. Besides general requirements like scala-
bility and performance, there is often a large number of formal requirements
which concern the functionality of the system. Typical requirements of this kind
are lifeness requirements (e.g. bad things never happen), fairness requirements
(e.g. the system continues doing meaningful things), and in general requirements
which prescribe the chronological order of events (e.g. event A may only occur
after event B).

A typical approach to meet this goal is to construct a model, to check that
the model fulfills the requirements and then to show that the system conforms
to the model. For the checking models against formal requirements automatical
means have been developed in the past 20 years under the term model checking.

Previous chapters have presented various ways of testing. The first and the
second part of book introduced some methods for testing finite state machines
and labeled transition system. The third part was about model-based test gener-
ation. The general assumption of all approaches so far was, that the specification
is completely given in form of a model. Then, testing becomes the task of check-
ing whether a system conforms to a given specification or not. But in real life
there is unfortunately in most cases no formal model of the system. To make
use of, for example, conformance testing presented in Chapter 4 or methods for
testing I/O-automata presented in Chapter 7, it is often necessary to build the
formal model by hand. This procedure is very error-prone, since in many cases
one can only use the informal customer requirement specifications and some
expert knowledge of the systems developer to build the model.

One solution to this problem comes from the area of automata learning, which
provides some methods to generate a formal model out of a black box system.
This approach allows at least to compare one version of the system with another
one.

However, one can think of a more direct way to the requirements on the final
system. After all, the main goal is usually to show that the system fulfills the

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 557-603, 2005.
 Springer-Verlag Berlin Heidelberg 2005

558 Therese Berg and Harald Raffelt

requirements and conformance to a hand-made model is just an instrument to
achieve.

In this chapter we explain one possible way to check requirements on black
boxes. It combines model checking with model learning. It is known under the
terms adaptive model checking or black box checking. The idea is that a (part)
of the model of the black box is learned by a machine learning algorithm. This
model is then used for model checking the requirements. However, if a counter
example is found, it might be because the system does not fulfill the requirement
but, it can also be that the model is not adequate. In other words, the bug might
be in the model not in the system. Then, the model has to be improved.

To make the chapter self-contained, we recall model checking techniques in
the first part of the chapter (Section 19.3) and present learning algorithms in
the second part (Section 19.4).

In the last part of the chapter (Section 19.5) the two techniques are combined.

19.2 Preliminaries

Definition 19.1. A deterministic finite-state automaton (DFA) is a 5-
tuple M = (Σ,Q , δ, q0,F), where

• Σ is a finite set of letters called alphabet
• Q is a non-empty finite set of states
• δ : Q ×Σ → Q is the transition function
• q0 ∈ Q is the initial state
• F ⊆ Q is a set of accepting states

The machine starts in the initial state q0 and reads a string or word of
letters of its alphabet. It uses the transition function δ to determine the next
state using the current state and the letter just read. Formally a word w is
a sequence of letters w = a1a2 . . . an ∈ Σ∗. The empty word, which has no
letters, is usually denoted by ε. A prefix u of a word w is such that w = uv ,
where w , u, v ∈ Σ∗. The set of all finite words w with exactly n letters which can
be build over an alphabet Σ is defined by Σn = ε iff n = 0, and Σn = Σ ·Σn−1.
The set of all finite words is denoted by Σ∗, which is defined by Σ∗ = ∪n∈NΣ

n .
We denote the number of states Q , the size of the alphabet Σ, and the size of

the transition function δ by respectively |Q |, |Σ|, and |δ|. The latter is defined to
be the number of elements of the domain of δ, i.e. |Q ×Σ|. Furthermore qi

a→ qj
is a denotation of δ (qi , a) = qj .

Definition 19.2. Let [n] = {0, . . . ,n}. A finite run π of a DFAM on a finite
word w = a0a1 . . . an ∈ Σ∗ is a sequence of states π = π0 . . . πn+1, such that

• π0 = q0

• ∀ i ∈ [n] : πi
ai→ πi+1

19 Model Checking 559

The first state π0 of the run is the initial state q0 of M and each next
state πi+1 is reached by reading one letter ai . A run is called accepting, if
πn+1 ∈ F .The letters ai read by a run form a w = a1 . . . an . If the run is acceting,
then the word read by the run is also said to be accepting. The language a DFA
M recognizes is denoted by L (M). It is defined as the set of accepting words.
We call a language L regular if there is a DFA accepting L.

A different kind of automaton which operates on infinite words was intro-
duced by Büchi [Büc62] for obtaining a decision procedure for the monadic
second-order theory of structures with one successor. Later these automata were
called Büchi automata. The main idea of Büchi automata is to operate on infi-
nite input words w = a0a1 . . . ∈ Σω, whereas Σω denotes the set of all infinite
words over the alphabet Σ.

Definition 19.3. A Büchi automaton is a 5-tuple A = (Σ,Q , δ, q0,F), where

• Σ is a finite set of actions or letters,
• Q is a finite set of states,
• δ : Q ×Σ → 2Q is a transition function,
• q0 ∈ Q is a initial state and,
• F ⊆ Q is a set of accepting states.

Starting from its initial state the automaton chooses nondeterministically a
possible successor state in δ (q, a) of the current state q.

Definition 19.4. An infinite run π of a Büchi automaton A on a word w =
a0a1 . . . ∈ Σω is a sequence π = π0π1 . . . ∈ Qω, such that

• π0 = q0

• πi+1 ∈ δ (πi , ai).

The first state π0 of the run is the initial state q0 of A and each next state
πi+1 is one of the states reachable by reading one letter ai . The states that
occur infinitely many times in a run are inf(π) = {q | q ∈ Q and q = πi for
infinitely many i ≥ 0}. An infinite run of a Büchi automaton is accepted if it
visits accepting states infinitely often. Formally an infinite run π = π0π1π2 . . .
is a accepted iff inf(π) ∩ F �= ∅. An infinite word w = a0a1 . . . ∈ Σω is accepted
by the automaton, if and only if there is an infinite run of the automaton which
accepts the word. The language L (A) accepted by a Büchi automaton A is the set
of all accepted words. The complement of a language L (A) accepted by a Büchi
automaton is the set of all not accepted words, it is defined as L (A) = Σω\L (A).

The length of a finite run π = π0π1 . . . πn is the number of its elements
denoted by |π| = n + 1. The length of an infinite run is denoted by |π| = ∞.
For 0 ≤ i < |π| the suffix of a run π = π0π1 . . . πn starting with element πi is
denoted by πi = πiπi+1

560 Therese Berg and Harald Raffelt

19.3 Model Checking

In the last few years model checking has become a powerful and promising ap-
proach to automatic verification of systems. In general a model checker is a
tool which checks whether a given structure M (called model) satisfies a cer-
tain logical constraint φ (called property). Typically models are represented by
finite automata-like structures and properties are described in temporal logic.
In contrast to conventional logics in temporal logics it is possible to describe
temporal dependencies like one action must take place before another one. The
model checker either confirms that the properties hold or reports that they are
not satisfied by the model. Some model checkers can produce a path in the
model which does not satisfy the property, a so called counterexample. Coun-
terexamples can be understood as a reason for the unsatisfied property. Besides
from providing models and properties no further user interaction is necessary for
the entire model checking process. Because of its push-button approach model
checking is a powerful verification tool even in large environments like hardware
verification.

In Section 19.3.1 we give a brief introduction to models used to describe
systems for model checking purposes and in Section 19.3.2 some common for-
malisms to describe properties of systems are provided. In Section 19.3.3 a com-
mon automata-theoretic model-checking algorithm is presented in detail.

19.3.1 Models

Model-checking typically depends on a discrete model of a system which de-
scribes the system behavior. Usually these models are graph structures where
nodes represent the states of the system and edges represent transitions between
the states. For model checking purposes these structures are typically finite, but
model checking infinite structures is also possible [BCMS01]. These graphs with-
out any further annotation are not expressive enough to provide an interesting
description of the system. Two approaches are in common use: Kripke struc-
tures, where the nodes are annotated with so called atomic propositions, and
labeled transition systems where the edges are annotated with so called actions.
These two descriptions can be combined into so called Kripke transition systems
[MOSS99].

In the following we present an introduction into Kripke structures. An intro-
duction into labeled transition systems can be found in Section 22.

Definition 19.5. A Kripke structure (KS) over a set AP of atomic propo-
sitions is a triple (S ,R, I), where

• S is a set of states,
• R ⊆ S × S is a transitions relation and,
• I : S → 2AP is a labeling function

Each proposition describes a basic local property of the systems states. To
each state of the system a set of atomic propositions is assigned by the labeling

19 Model Checking 561

function I : S → 2AP , describing which propositions are valid for that state.
The labeling function is sometimes called interpretation.

A Kripke structure is called total if R is a total relation, otherwise it is called
partial. A Kripke structure is called rooted, if one state s0 ∈ S is declared as
initial state. For model checking purposes S and AP are usually finite.

Example. In Figure 19.1 a coffee percolator is modeled by a rooted Kripke struc-
ture. The set of atomic propositions is defined by AP = {coffee, coin}.

{coin}

{}

{coffee, coin}{coffee}

Fig. 19.1. Example Kripke structure

The atomic proposition coffee represents the fact that there is coffee-powder
in the machine. In a state which is labeled by the atomic proposition coffee, the
coffee-percolator is able to brew coffee and to spend it afterwards. The atomic
proposition coin represents that there is a coin inside the coin slot and a user has
paid for a coffee. Using this extra information one may imagine which actions lead
from one state to another. To give a better understanding of the coffee percolator
it is also represented as labeled transition system in the next example.

Example. In contrast to Kripke structures were the nodes are labeled with sets
of atomic propositions labeled transition systems (compare Section 22) label
the transitions with atomic actions. In Figure 19.2 the coffee percolator of the
previous example is modeled as labeled transition system. Now one can see that,
as long as there is no coffee-powder inserted, every inserted coin will be refused.
Once coffee-powder is inserted every insert coin action will be answered by a
spend coffee action until the automaton decides internally that one has to insert
coffee-powder again.

19.3.2 Temporal Logics

Models describe systems, including their transitional behavior and local prop-
erties of the states. In order to model-check these systems, desired global char-
acteristics of the system have to be formalized. For example, one might be in-
terested in reachability properties like: “Is it possible to reach a state where

562 Therese Berg and Harald Raffelt

insert coin refuse coin

insert coin

spend coffee

insert coffee spend coffee

Fig. 19.2. Example Labeled Transition System

a certain atomic proposition holds, starting from the initial state?”. Temporal
logics are logical formalisms designed for expressing such properties. There are
two kinds of temporal logics, linear-time and branching-time. Linear-time logics
are concerned with paths and treat each possible execution-path independently,
branching-time logics, on the other hand, describe properties that depend on the
branching structure of the model. The pros and cons of both logics are compared
by Moshe Y. Vardi [Var01]. Both temporal logics have different expressiveness
and therefore the kind of properties a model checker can prove depends on the
choice of the underlying temporal logic. As an example, consider the two rooted
labeled transitions systems in Figure 19.3, showing two different vending ma-
chines offering coffee and tea. Both machines serve coffee or tea after a coin
has been inserted, but the right machine decides internally whether to serve
coffee or tea, in contrast to the left machine which leaves the decision to the
customer. Both machines have the same set of computations (maximal paths):
{(coin, coffee) , (coin, tea)}. Unfortunately they can not be distinguished in
linear-time logics, since in linear-time logics each path is examined separately.
Branching-time logic, in contrast, can distinguish these two machines, since it
is possible to express properties like “a coffee action is possible after any coin
action”.

The choice of using linear-time or branching-time logic depends on the prop-
erties to be analyzed. Linear-time logics are preferred when only path prop-
erties are of interest, as when analyzing data-flow properties, like dead-locks.
Branching-time logics are often better for analyzing reactive systems, due to
their greater selectivity.

Linear Temporal Logic (LTL)[Pnu77] can be seen as the “standard” linear-
time logic. It is often presented in a form to be interpreted over Kripke structures.
Its formulas are constructed as follows:

φ ::= true | p | ¬φ | φ ∧ φ | X (φ) | φUφ

19 Model Checking 563

coin

coffee
tea

coin coin

coffee tea

Fig. 19.3. Two vending machines

where p ranges over a set of atomic propositions AP . Note that sometimes
true is defined to be a special atomic proposition, which is valid for every state.

The semantics [[φ]] of a formula φ is the set of all runs π for which the property
holds: [[φ]] = {π | π |= φ}. The semantics is inductively defined on the structure
of the formula.

π |= true
π |= p ⇔ p ∈ I (π0)
π |= ¬φ ⇔ π �|= φ
π |= φ1 ∧ φ2 ⇔ π |= φ1 ∧ π |= φ2

π |= X (φ) ⇔ |π| > 1 ∧ π1 |= φ
π |= φ1Uφ2 ⇔ ∃ k ∈ [|π| − 1] :

(
πk |= φ2 ∧ ∀ i ∈ [k − 1] : πi |= φ1

)

Every run π satisfies true and every run π satisfies an atomic proposition, iff
the first state π0 of the run does. The negation and conjunction is interpreted
as usual; further Boolean connectives may be introduced as abbreviations. E.g.
φ1 ∨φ2, can be introduced as ¬ (¬φ1 ∧ ¬φ2). The modality X (φ) is called “next
time φ” and requires the property φ to hold for the next situation in the run.
The modality φ1Uφ2 is also denoted as U (φ1, φ2). It is called “φ1 until φ2” and
requires the property φ1 to hold for all situations on the run until finally the
property φ2 holds for some situation.

Besides abbreviations of further Boolean connectivities, the following abbre-
viations are common:

F (φ) := U (true, φ)
G (φ) := ¬F (¬φ)

The modality F (φ) , called “finally φ”, requires φ to hold for some later situation.
The modality G (φ) , called “globally φ”, requires φ to hold for all situations. The
until modality φ1Uφ2 is sometimes called strong until because it requires φ2

to become true finally. In contrast to this modality, there is a different variant,
called weak until, which holds, even if φ2 never holds while φ1 holds forever.
(φ1WUφ2 := φ1Uφ2 ∨ G (φ1)).

Since in system verification one is typically interested whether a specific state
satisfies a certain property, there is the following convention: a state s ∈ S of a
transition system satisfies a formula if every run starting at s satisfies it.

564 Therese Berg and Harald Raffelt

Example. To illustrate the meaning of the modalities, here are some examples,
that are satisfied by every run of the KS presented in Fig. 19.1:

• X (coffee ∨ coin) states that in the second step of execution there will be
coffee or a coin inside the automaton.
• G (coin→ X (¬coin)) states that whenever there is a coin inside the automa-

ton it will be removed in the next step.
• G (coffee→ (coffeeWU ((coffee ∧ coin)→ X¬ (coffee ∨ coin))))

states that once there is coffee inside the automaton it will last forever, or
it will be removed in a later situation together with a coin in a single step.

Computational Tree Logic Computational Tree Logic (CTL) is one of the
earliest proposed branching time logics. It can be considered as the branching
time counterpart of LTL since it introduces universal and an existential path
quantifiers. The syntax of CTL formulas is defined with respect to a KS (S ,R, I)
over a set AP of atomic propositions.

φ ::= true | p | ¬φ | φ1 ∧ φ2 | EX (φ) | EφUφ | AφUφ

As mentioned before p is an element of the atomic propositions AP . The seman-
tics of a formula denote the subset of states s ∈ S for which the formula holds:
[[φ]]T = {s ∈ S | s |= φ}.

Let Π∗
s denotes the set of all runs starting with state s . The semantics of a

formula φ is inductively defined on the structure of φ as follows:

s |= true
s |= p ⇔ p ∈ I (s)
s |= ¬φ ⇔ s �|= φ
s |= φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2

s |= EX (φ) ⇔ ∃ s ′ ∈ S : (s , s ′) ∈ R ∧ s ′ |= φ
s |= Eφ1Uφ2 ⇔ ∃π ∈ Π∗

s : ∃ k ∈ [|π|] :
(
πk |= φ2 ∧ ∀ i ∈ [k − 1] : πi |= φ1

)

s |= Aφ1Uφ2 ⇔ ∀π ∈ Π∗
s : ∃ k ∈ [|π|] :

(
πk |= φ2 ∧ ∀ i ∈ [k − 1] : πi |= φ1

)

Every state s satisfies true and every state s satisfies an atomic proposition, iff
the proposition is assigned to the state. The negation and conjunction is inter-
preted as usual, further Boolean connectives may be introduced as abbreviations.
The modality EX is called “exists next φ”. It intuitive means that there is an
immediate successor state s ′ reachable by executing one transition which satis-
fies φ. The modality Eφ1Uφ2, called “exists φ1 until φ2”, requires the existence
of a run π starting with state s which has a prefix such that φ2 holds for the last
state of the prefix and φ1 holds for all other states along the prefix. The modality
Aφ1Uφ2 is called “forall φ1 until φ2”. It requires that for every computation run
π starting with state s , there is a prefix such that φ2 holds for the last state
of the prefix and φ1 holds for all other states along the prefix. The following
abbreviations are common:

19 Model Checking 565

AX (φ) := ¬EX (¬φ)
AF (φ) := AtrueUφ
EF (φ) := EtrueUφ
AG (φ) := ¬EF (¬φ)
EG (φ) := ¬AF (¬φ)

The modality AX (φ) , called “forall next φ”, requires that the property φ
holds in every reachable successor state of s . The modality AF (φ) , called “forall
finally φ”, requires that the property φ holds on every run (starting from the
current state s) for some later state. The modality EF (φ) requires that there is
a run starting from state s which satisfies the property φ for some later state.
It is called “exists finally φ”. The modality AG (φ) , called “forall globally φ”,
requires that the property φ holds on every run for every state. The modality
EG (φ) is called “exists globally φ”. It requires that there is a run starting from
state s which satisfies the property φ in every state.

Example. To illustrate the meaning of the modalities, here are some examples,
which are satisfied by the KS presented in Figure 19.1:

• AX (coffee ∨ coin) states that the automaton can make a step and then
there will be coffee or a coin inside the automaton.
• AG (coin→ EX(¬coin)) states that whenever there is a coin inside the au-

tomaton there is a next step which removes the coin.
• AG (AF (coin)) states that on every run a coin is infinite often inside the

automaton.
• AG (coffee→ (EcoffeeU ((coffee ∧ coin)→ EX¬ (coffee ∨ coin))))

states that on every run once there is coffee inside the automaton it will last
until it is finally removed in a later situation together with a coin in a single
step.
• EG ((coin→ EX(¬coin)) ∧ (¬coin→ EX(coin))) states that there is a run

of the coffee percolator where the condition coin and ¬coin is alternating.

Other Temporal Logic Besides LTL and CTL there are a number of other
temporal logics. Some of them extend the presented basic version of LTL and
CTL to deal with special issues. Fair computational tree logic (FCTL) [EL85]
for example extends CTL to deal with fairness constraints. Another well known
extension to CTL is CTL∗, which allows a more general combination of the
universal and existential path quantifiers (A, E), and the until and next operator
(X (φ),φUφ). In the following we shortly introduce two other temporal logics
which are related to labeled transition systems.

• Hennessy-Milner Logic (HML)
is a simple modal logic introduced by Hennessy and Milner [HM85, Mil89].
In contrast to LTL and CTL it is defined over a set of actions (Act) since it
is related to labeled transition systems (see Section 22). HML is build out of
the constant true, negation, conjunction, and the parameterized existential
next operator 〈a〉 (a ∈ Act). This modality is called “diamond a φ” and

566 Therese Berg and Harald Raffelt

holds if there is an a-transitions to a state of the labeled transition system
which satisfies φ. The important point about HML is that HML-properties
can characterize finite automata up to bisimulation.
• Modal µ-calculus

was introduced by Kozen [Koz83] and extends Hennessy-Milner logic by a
least fixpoint operator (µ) . In general a fixpoint of a function f is a value
x such that f (x) = x . Intuitively, the µ-calculus makes it possible to use
modalities inside of recursively defined patterns. For example consider the
CTL formula EF (φ). Another way of expressing this is to say that there is
a property X such that either φ is satisfied in the current state or there is
some successor state in which X is true. X = φ∨�X . This property can be
expressed in µ-calculus as µX .φ ∨�X .
Due to the extreme power of fixpoint operators the µ-calculus allows to
express very complex properties within a sparse formalism. The µ-calculus
covers LTL and CTL, and it is even possible to express fairness constraints
which is not possible with the basic version of LTL and CTL.

19.3.3 Model Checking Algorithms

Model checking can be realized by several different approaches; prominent exam-
ples are the semantic approach, the automata theoretic approach, and the tableau
approach.

The idea behind the semantic approach is to inductively compute the seman-
tics of the formula in question to a given finite model, directly. This generates
a set of states which satisfy the formula. The semantic approach is typically
used for model checking branching time logics. There are efficient algorithms
using this approach which operate linear in the size of the model even for the
alternation free µ-calculus [CS92].

The automata theoretic approach is used for model checking linear-time log-
ics and branching-time logics as well. This approach reduces the model check-
ing problem to an inclusion problem between automata. An automaton Aφ is
constructed from the property φ which accepts all runs satisfying φ. Another
automaton AM is constructed from model M which accepts the executions runs
of the model. M satisfies φ if the language of the model-automaton AM is a
subset of language accepted by the properties automaton Aφ. This problem can
be reduced to the problem of deciding non-emptiness of a product automaton
which is possible by reachability analysis. As an example, an efficient algorithm
for model checking LTL [Var96] is presented later.

The tableau method is used to determine if a certain state s of a given model
M satisfies a property φ. This approach tries to construct a proof tree that
witnesses that a given state satisfies a certain property. If no proof tree can
be found, it provides a disproof (counterexample) of the property for the given
state. Since the tableau method inspects only a small fraction of the state space
[SW91], it combines well with incremental construction of the state space, which
is a prominent approach to deal with the state explosion problem.

19 Model Checking 567

Another approach of fighting state explosion is to represent the transition re-
lation of the models implicitly with an ordered binary decision diagram (OBDD)
[BCMD90], since the size of the transition relation is the main limiting factor. By
using common model checking algorithms with OBDDs and some refinements,
very large examples with up to 10120 states have been verified [BCL92].

Model Checking LTL To model check Kripke structures with LTL-properties
the following approach is proposed. In the first step the model M and the prop-
erty φ are translated into automata models AM and Aφ which represent the
structures in a common way. The automaton AM accepts all computations which
are possible in the model and Aφ accepts all computations which are allowed
with respect to the property. The model checking problem now reduces to the
automata theoretic problem of checking that all computations accepted by an
automaton AM are also accepted by the automaton Aφ, that is L(AM) ⊆ L(Aφ).
Equivalently, one can check that the language L(AM)∩L(Aφ) is empty. Instead
of building the complement of the language accepted by Aφ it is possible to use
the language of the complement automaton Aφ, which is defined such that it
accepts the words of the complement language L

(
Aφ

)
= L (Aφ). Complement

automata where first studied by Büchi [Büc62], a definition and construction in
the context of temporal logics is given by Sistla, Vardi, and Wolper [SVW87].

Since Aφ exactly accepts the computations satisfying φ the negation L(Aφ)
of the automaton can be expressed by negation of the property. Aφ = A¬φ

There is a number of approaches how to transform an LTL property into an
automaton. One basic approach presented in the following model checking algo-
rithm was purposed by Wolper, Vardi and Sistla in 1983 [WVS83], but there are
some improved versions. Gastin and Oddoux for example present in “Fast LTL
to Büchi Automata Translation” [GO01] a different method which use a varia-
tion of Büchi automata (very weak alternating automata) as intermediate step.
Etessami and Holzmann suppose a method for “Optimizing Büchi Automata”
[EH00] to reduce the size of the automata.

The following basic LTL model checking algorithm presented by Moshe Y.
Vardi in 1996 [Var96] is structured in 5 steps:

(1) The Kripke structure M , which represents the model, is translated into a
Büchi automaton.

(2) The LTL-property φ is translated into an alternating Büchi automaton A¬φ

which exactly accepts the computations satisfying ¬φ. (Alternating Büchi
automaton are introduced in the later Definition 19.6)

(3) The alternating Büchi automaton A¬φ is translated into a nondeterministic
Büchi automation A¬φ which exactly accepts the same set of computations.

(4) The language intersection of AM and A¬φ is build, such that L(AM ∩A¬φ) =
L(AM) ∩ L(A¬φ)

(5) The language L(AM ∩ A¬φ) is checked for emptiness.

If L(AM ∩A¬φ) is empty then M |= φ. On the other hand, if L(AM ∩A¬φ) is not
empty there is at least one run of AM ∩A¬φ which is accepted by the model M

568 Therese Berg and Harald Raffelt

but not by the property φ. This run can be used as a counterexample, giving a
reason why the model does not satisfy the property. In the following we explain
each step of the algorithm in detail.

Step 1: The Kripke structure M , which represents the model, is translated into
a Büchi automaton.

A rooted Kripke structures M = (S , s0,R, I) over a set of atomic propositions
AP can be viewed as a Büchi automaton AM = (Σ,Q , δ, q0,F) where the set
of states are equal Q = S , the initial states are equal q0 = s0, every state of
the Büchi automation is accepting F = Q , each action is a subset of atomic
propositions Σ = 2AP and the transition function is defined as follows:

δ : (q, a) ∈ Q ×Σ �→ {q ′ | (q, q ′) ∈ R ∧ a = I (q)}

Example. In Figure 19.4 the Büchi automaton constructed from the KS in Figure
19.1 is shown.

{}{coin}

{coffee}

{coffee, coin}

{}
{coffee, coin}

Fig. 19.4. Büchi automaton example

Step 2: The LTL-Property φ is translated into an alternating Büchi automaton
A¬φ which exactly accepts the computations satisfying ¬φ.

Nondeterminism of (Büchi automata) can be understood as a kind of existen-
tial choice; a successor state s ′ of a state s is one of the states s ′ in δ (s). The dual
of existential choice is universal choice, and therefore it is natural to consider
automata that have the power of existential choice and universal choice. Such
automata are called alternating. An alternating Büchi automaton is defined with
respect to a set of positive Boolean formulas B+ (D). Positive Boolean formulas
φB over a set D of variables are constructed as follows where d ∈ D :

φB := d | φB ∨̇φB | φB ∧̇φB | true | false

Note that the subscript point of the conjunction ∧̇ and disjunction ∨̇ of positive
Boolean formulas is used to differentiate them from conjunction ∧ and disjunc-
tion ∨ of LTL formulas. Consider a nondeterministic Büchi automaton which

19 Model Checking 569

has a transition function including δ (q0, a) = {q1, q2, q3}. This mapping can be
written as δ (q0, a) = q1∨̇q2∨̇q3 using positive Boolean formulas. In an alternat-
ing Büchi automaton one can have mappings like δ (q0, a) = (q1∧̇q2)∨̇(q3∧̇q4),
meaning that the automaton starts from its initial state q0 with an a-transition
and can continue in both states q1, q2 or in both states q3, q4. Note that an
alternating Büchi automaton can continue in more than one state at the same
time.

Definition 19.6. An alternating Büchi automaton (Σ,Q , δ, q0,F) is a Büchi
automaton where the transition function is defined as follows:

δ : Q ×Σ → B+ (Q)

¬trueU (coin ∧ X (coin))

∧̇ ∧̇{coffee, coin}

{}

{coin} {coffee}

∨̇ ∨̇ ∨̇ ∨̇

false true

¬coin

2AP

{coffee, coin}

{}

{coin}
{coffee}

Fig. 19.5. Example Alternating Büchi Automaton

In Figure 19.5 a graphical representation of an alternating Büchi automaton
is presented, visualizing the transition function of an automaton in an abstract
way. The dotted lines are used to identify edges which belong to positive Boolean
combination of states.

Because of the universal choice in alternating transitions, a run of an alter-
nating automaton is a tree rather than a sequence. A tree R = (r , p) is an infinite
directed acyclic graph where r is a set of nodes and p is a parent function. One

570 Therese Berg and Harald Raffelt

node designated as the root, denoted by ε ∈ r . The root ε has no parent and
every other node n �= ε has a unique parent. The children of a node c(n) are
the nodes n ′ which have n as parent. c(n) := {n ′ | n = p(n ′)}. The level |n| of
a node n is the distance from the root ε to the node: the root’s level is |ε| = 0
and |n| = 1 + |p(n)|. A branch β = n0n1 . . . of a tree is a infinite sequence of
nodes such that n0 is the root ε and for all other nodes ni (i > 0) of the branch
the predecessor of a node in the branch is its parent:ni−1 = p(ni).

Definition 19.7. A run of an alternating Büchi automaton on a word w =
a1a2 . . . Σ

ω is a state-labeled tree (R,L), where R is a tree and L is a mapping
from the nodes of the tree r to the states, such that r(ε) = q0 and the following
holds:

• Each node n with level |n| = i |π| of the tree r has k children n1, . . . ,nk such
that {L(n1), . . . ,L(nk)} satisfies¡ δ (L(n), ai)

Note that the maximal level of a node in R is at most |π|. Not all branches
need to reach such depth, since if δ (L(n), a) = true, then n does not need to
have any children. On the other hand we can not have δ (L(n), a) = false , since
false is not satisfiable.

For an alternating Büchi automaton a run (r ,L) is accepting, iff every infinite
branch visits accepting states infinitely often. Note that true and false are special
states. For any action both states have only a single transition to itself. The
state true is accepting and the state false is not accepting. Therefore a run with a
branch visiting a false-state can not be accepting and a run with a branch visiting
a true-state is accepting if all other branches visit accepting states infinitely often.
The language L (A) of an alternating Büchi automaton A is determined by all
words for which an accepting run exists. Note that for a word w there may be
more than one accepting run.

Example. Figure 19.6 outlines a run of the Büchi automation of Figure 19.5 on
the infinite word w = ({coin}{})ω.

¬U (true, coin ∧ X (coin))

{coin} {coin}

¬U (true, coin ∧ X (coin))

{} {}
¬coin

{}

¬U (true, coin ∧ X (coin))
{coin} {coin}

true true

.

Fig. 19.6. Example run of an alternating Büchi automaton

19 Model Checking 571

The alternating Büchi automaton we are going to construct from a property
φ uses the set of all sub-formulas and their negations as the set of states.

Definition 19.8. The set of sub-formulas Sub (φ) of a property φ is inductively
defined on the structure of φ by:

Sub (true) = {true}
Sub (¬φ) = {¬φ} ∪ Sub (φ)

Sub (X (φ)) = {X (φ)} ∪ Sub (φ)
Sub (φ1 ∨ φ2) = {φ1 ∨ φ2} ∪ Sub (φ1) ∪ Sub (φ2)

Sub (U (φ1, φ2)) = {U (φ1, φ2)} ∪ Sub (φ1) ∪ Sub (φ2)

The transition function of an alternating Büchi automaton maps states to
positive Boolean combinations of states. Since properties in LTL may use the
negation modality ¬φ and negation is not allowed in positive Boolean functions,
negation of properties is expressed by negation of states. For this reason the
negatives of the sub-formulas are included into the set of states of the alternat-
ing Büchi automaton. To connect the negation of properties to the negation of
positive Boolean combinations of states the following construction is used:

Definition 19.9. The dual φ of a positive Boolean formula is defined induc-
tively on the structure of a formula φ as follows:

true = false
false = true
¬φ = φ

φ1 ∨ φ2 = φ1∧̇φ2

φ1 ∧ φ2 = φ1∨̇φ2

X (φ) = ¬X (φ)
U (φ1, φ2) = ¬U (φ1, φ2)

Given an LTL formula φ, one can directly build an alternating Büchi automa-
ton Aφ = (Σ,Q , δ, q0,F), such that L(Aφ) is exactly the set of computations
satisfying the property φ. The set of states Q is defined as the set of sub-formulas
of φ and their negations. The set of actions is defined as Σ = 2AP . The set of
accepting states F consists of all formulas φ which have got the form ¬U (φ1, φ2).
The transition function δ is inductively defined on the structure of φ as follows:

δ (p,A) =
{

true if p ∈ A
false if p �∈ A

δ (φ1 ∨ φ2,A) = δ (φ1,A) ∨̇δ (φ2,A)
δ (φ1 ∧ φ2,A) = δ (φ1,A) ∧̇δ (φ2,A)

δ (¬φ,A) = δ (φ,A)
δ (X (φ) ,A) = φ

δ (U (φ1, φ2) ,A) = δ (φ2,A) ∨̇ (δ (φ1,A) ∧̇U (φ1, φ2) ,A)

The idea behind this recursive definition is: whenever a composed formula is
to check it is transformed into a Boolean combination of new formulas. In this

572 Therese Berg and Harald Raffelt

way a goal is reduced to several subgoals like in an tableau construction. Since
any formula except the one of type U (φ1, φ2) is turned into smaller sub-formulas,
every finite branch of a potential run reaches either true or false. Every infinite
branch has to hit states of the type U (φ1, φ2) or ¬U (φ1, φ2) infinitely often.
If U (φ1, φ2) is hit infinitely often it means, that the automaton fails to show
that U (φ1, φ2) holds and φ2 is not satisfied on this branch. Therefore the state
U (φ1, φ2) is not included into the set of accepting states. On the other hand, if
¬U (φ1, φ2) is hit infinitely often on a branch the automaton is not able to show
φ1 or φ2 and ¬U (φ1, φ2) holds. That is the reason for putting the state of type
¬U (φ1, φ2) into the set of accepting states.

Example. Consider the property φ = G (coin→ X (¬coin)). In the following the
construction of the alternating Büchi automatonAφ is presented. The underlying
Kripke structure has got AP = {coin, coffee} as the set of atomic propositions
and therefore the set of actions is:

Σ = {{}, {coin}, {coffee}, {coin, coffee}} .

Since it is obvious how to get the set of states Q , it remains to calculate the
transition function δ. It is easy to see that φ = G (coin→ X (¬coin)) is equivalent
to ¬U (true, coin ∨ X (coin)). Using the definition of the duality and the recursive
definition of δ we get:

δ (¬U (true, coin ∧ X (coin)) , {coin})
= δ (U (true, coin ∧ X (coin)) , {coin})
= δ (coin ∧ X (coin) , {coin}) ∨ (δ (true, {coin}) ∧ U (true, coin ∧ X (coin)))

= δ (coin ∧ X (coin) , {coin})∧̇(δ (true, {coin}) ∧ U (true, coin ∧ X (coin)))

= δ (coin, {coin}) ∧ δ (X (coin) , {coin})∧̇
(
δ (true, {coin})∨̇U (true, coin ∧ X (coin))

)

=
(
δ (coin, {coin})∨̇δ (X (coin) , {coin})

)
∧̇ (true∨̇¬U (true, coin ∧ X (coin)))

=
(
true∨̇coin

)
∧̇ (false∨̇¬U (true, coin ∧ X (coin)))

= (false∨̇¬coin) ∧̇ (false∨̇¬U (true, coin ∧ X (coin)))

If one calculates the transition function for each (reachable) state and each
set of atomic propositions, one gets the alternating Büchi automaton shown in
Figure 19.5. Note that some edges have been joined in the graph because of the
symmetry of {} and {coffee} respectively {coin} and {coin, coffee}.

Step 3: The alternating Büchi automaton A¬φ is translated into a nondetermin-
istic Büchi automaton A¬φ which exactly accepts the same set of computations.

Two problems arise during the transformation of alternating Büchi automa-
ton A = (Σ,Q , δ q0,F) into nondeterministic Büchi automaton A′ = (Σ,Q ′, δ′,
q ′
0,F

′): How to deal with the universal choice and which states should be ac-
cepting?

To differentiate states of the alternating Büchi automaton and states of the
nondeterministic Büchi automaton we call them alternating states and nonde-
terministic states.

19 Model Checking 573

Obviously the conjunction of states in alternating Büchi automata A is not
directly transferable to nondeterministic Büchi automata A. The solution to this
problem is similar to the power-set construction mapping nondeterminism to
determinism. If each state of the nondeterministic automaton A consist of a set
of states of A one can translate transitions with conjunction as follows. Consider
a transition δ (q, a) = q1∧̇q2∨̇q3∧̇q4. Using a power-set construction we can map
this transition to a nondeterministic transition δ′ ({q} , a) = {{q1, q2} , {q3, q4}}.
The idea of this construction is to map the states {q} to sets of minimal sets
satisfying the transitions positive Boolean condition. If the starting state of a
transitions consists of more than one state the transition maps to minimal sets of
states which satisfy the conjunction of all transition conditions. Let U ,X ∈ Q ′

subsets of alternating states. Formally we map δ′ (U , a) to a new state X such
that X |=

∧
q∈U δ (q, a).

This construction is not sufficient to define the accepting states correctly.
Surely a set of alternating states has to be accepting if all its states are accept-
ing, but accepting states of alternating Büchi automata do not have to occur in
positive Boolean combinations at the same time. A run of an alternating Büchi
automaton is accepted if each infinite branch of the run hits accepting states in-
finitely often, but the accepting states can occur on different levels of each branch
of the run. In other words; the (alternating) accepting states of an accepting run
can occur one after another on a run of the nondeterministic automaton. The
nondeterministic Büchi automaton has to collect the accepting states it has vis-
ited. Therefore we define the states for the nondeterministic Büchi automaton as
follows: Q ′ = 2Q × 2Q . The first component of this tuple contains non accepting
states for which no accepting state was seen recently. The second component is
used to collect accepting states and states for which accepting states have been
visited. The idea is that successor states of accepting states are shifted from
the first component to the second. Thus, the empty set in the first component
identifies that for all alternating states of the current (nondeterministic) state
accepting states have been visited and therefore we define the set of accepting
states as F ′ = 2∅ × 2Q .

If the initial state q0 is not accepting and we have not seen any accepting
state initially we define the initial state q ′

0 = (q0, ∅). If q0 is an accepting state
we define q ′

0 = (∅, q0).
For a pair (U ,V) ∈ Q ′ and an action a let δ′ yield the pairs (U ′,V ′) ∈ Q ′

defined as follows:

• case U �= ∅ : Let X ,Y ⊆ Q be minimal sets satisfying the transitions re-
quested by the states of respectively U and V reading the input symbol
then X |=

∧
q∈U δ (q, a) and Y |=

∧
q∈V δ (q, a). We put non-accepting

states in the first component and the accepting states in the second com-
ponent. Furthermore, we add all members of Y to the second component
except the ones which are also in the first component: U ′ = Y − F and
V ′ = (X ∩ F) ∪ (Y −U ′).
• case U = ∅: Let Y ⊆ Q a minimal set such that Y |=

∧
q∈V δ (q, a). Since

for all states in U we have seen an accepting state we are going to restart

574 Therese Berg and Harald Raffelt

collecting accepting states. Therefore we put all states into U ′ except the
ones which are accepting states. U ′ = Y − F and V ′ = Y ∩ F .

Note that if the minimal set satisfying a transition is empty, the transition
is always satisfied and therefore it is identified with the state true.

Step 4: The intersection of AM and A¬φ is build, such that L(AM ∩ A¬φ) =
L(AM) ∩ L(A¬φ)

Let A′ = (Σ,Q ′, δ′, q ′
0,F ′) and A′′ = (Σ,Q ′′, δ′′, q ′′

0 ,F ′′) be two nondeter-
ministic Büchi automata. We can build an automaton A = A′ ∩A′′ that accepts
L(A′) ∩ L(A′′) as: A = (Σ,Q ′ ×Q ′′ × {0, 1, 2} , δ, (q ′

0, q
′′
0 , 0) ,Q ′ ×Q ′′ × {2}).

The transition function δ is defined as δ ((q ′, q ′′, x) , a) = {(r ′, r ′′, y)} such
that both automata read each input symbol simultaneously δ′ (q ′, a) = r ′ and
δ′′ (q ′′, a) = r ′′ and the third element of the state tuple, counting which automata
has visited an accepting state is set as follows:

y =

0 x = 2
1 x = 0 ∧ r ′ ∈ F ′

2 x = 1 ∧ r ′′ ∈ F ′′

x else

Since accepting states of both automata may not appear together even if
they appear individually infinitely often the setting F = F ′×F ′′ does not work.
Therefore the third component is used to ensure that there is an accepting
state if and only if both automata have visited an accepting state. The third
component is initially 0 meaning that no automaton has visited an accepting
state. It changes from 0 to 1 if the first automaton has seen an accepting state
and it changes from 1 to 2 if the second automaton has also visited an accepting
state. If both states have visited accepting states then there is an accepting state
in A′ ∪A′′ and the search for accepting states is restarted with setting the third
component back to 0

Step 5: Decide if the intersection of AM and A¬φ is empty.
Since the number of accepting states of a Büchi automaton is finite infinite

accepting runs have to visit single accepting states infinitely often. Therefore
if an accepting run of a Büchi automaton exists there has to be a cycle in the
graph of the automaton which is reachable from the initial state. It is a well
known fact that using a depth-first-search algorithm one can search the graph
of a Büchi automaton for a reachable cycle in linear time with respect to the
number of nodes plus the number of edges. If the states of these cycles intersect
with the set of accepting states the language of the automaton is not empty.

19.3.4 Model Checking Tools

In the last few years model checking has become a powerful and promising ap-
proach to automatic verification of systems. In order to be suitable for different

19 Model Checking 575

purposes there are a number of model checking algorithms which work on differ-
ent types of models and temporal logics. Model checking has become a common
technique since in the last two decades a number of model checking tools have
been developed.

The first one was COSPAN [HK87, HHK96] which has been in use (and con-
tinuous development) since 1986. It has been applied to a number of commercial
projects, as well as having been licensed to numerous universities for educational
use.

Another model checking tool is Murphi (Murϕ). It focuses on protocol ver-
ification and its specification facilities are limited, since it is not possible to
define properties of sequential behavior. It is only possible to detect deadlocks,
predefined error-states and states that violate a kind of Boolean invariant.

There are two more well-known tools which deal with process specifications
written in the verification languages like Promela (a Process Meta Language) and
LOTOS. The model checker SPIN [Hol97] is a generic verification system that
supported design and verification of asynchronous process systems. It focuses on
providing the correctness of process interactions. SPIN accepts models that are
described in Promela and properties specified in the syntax of linear time logic.
SPIN uses an automata-theoretic approach with on-the-fly construction of the
automata. Another model checking tool is OPEN/CAESAR [FGM+92]. It was
the first model checking tool that supports the standardized process specification
language LOTOS, but OPEN/CAESAR has a generic API to support other
process descriptions as well. OPEN/CAESAR supports the modal µ-calculus
and uses an automata theoretic approach with on-the-fly construction as well to
fight the state explosion problem.

In contrast to Murϕ and SPIN the Fixpoint-Analysis Machine [SCK+95] and
the Concurrency Workbench [CPS93] are designed to support a wide range of
applications. The Fixpoint-Analysis Machine can deal with the modal µ-calculus.
The tool works not only on labeled transition systems but also on context-free
processes (i.e. processes that are given in terms of a context-free grammar). The
Concurrency Workbench is designed to incorporate several different verification
methods in a modular fashion. As well as the Fixpoint-Analysis Machine it
supports the modal µ-calculus.

The model checker SMV (Symbolic Model Verifier) was designed to deal with
the state explosion problem. It uses an OBDD-based (Ordered Binary Decision
Diagram) algorithm and supports properties specified in CTL. It has some ex-
tensions to verify fairness constraints. A new variant of SMV is the NuSMV
[CCG+02] project which aims at the development of a state-of-the-art symbolic
model checker, designed to be applicable in technology transfer. It is based on
SMV and uses essentially the same input language as SMV. The main novelty
in this open source project is the integration of model checking techniques based
on propositional satisfiability.

576 Therese Berg and Harald Raffelt

19.4 Learning Finite State Machines

Techniques such as model checking and model-based test-generation are a conve-
nient way to automatically improve a system’s reliability as a system conforming
to its specification. The problem is that in many cases a model of the system
does not exist or if it does, it is outdated. If the model is to be constructed by
hand this may be time-consuming and it is very much dependent on how famil-
iar the test engineer is with the system under test (SUT). A way to facilitate
the test engineer’s work and derive a more reliable model, is to automate the
generation of a model of the SUT. A proposed procedure to attain this is to
apply a technique called model learning, sometimes also called model inference.

This section will explain how a so called learning algorithm builds a model
of a system under test. The SUT considered is a black box, i.e., we have no
information about its internal structure. We do make the assumption that the
SUT can be modeled as a deterministic finite state automaton (DFA). We also
assume that we know which actions the SUT is able to perform, here called the
alphabet Σ. The minimal model of the SUT is the DFA denotedM. The regular
language accepted by the finite state automaton is denoted L (M), also referred
to as U.

The basic set-up for all of the variants of the learning algorithm explained
in this section is presented in Figure 19.7. The Learner represents the algo-
rithm which is trying to estimate U. The Learner estimates U iteratively through
gathering enough pieces of information about U until it is able to construct a
hypothesis, also called conjecture or approximation of U. The hypothesis is a
DFA A with the language L (A). If the conjecture is incorrect the learner will
continue to collect information until it can construct a “better” conjecture. The
Learner iterates in this fashion until the hypothesis is correct.

Teacher

Oracle

LearnerMachine M +/-

mq

correct/
c.ex.

eq

Fig. 19.7. Learning an Automaton.

More specifically, the Learner is able to query the Teacher whether a string
is accepted by M or not and the answers will be yes (+) or no (−), seen in
Figure 19.7. A query to the Teacher is called membership query (mq). The
name refers to the question whether a string is a member of L (M) or not.
Furthermore the Learner can ask an equivalence query (eq) to an Oracle
whether the approximation A is correct or not. If the Oracle deems that the
conjecture is equivalent to M it confirms the correctness of the hypothesis,

19 Model Checking 577

otherwise it returns a counterexample to A. The counterexample is in the
format of a string which is accepted byM but not by A or vice versa.

In the following sections we will describe different algorithms for the Learner,
all using the setting described above. The first algorithm, Observation Packs, ab-
stracts away the data structure in which a Learner stores the gathered informa-
tion, using sets instead. In the subsequent section, Section 19.4.2, we present An-
gluin’s algorithm, in which the observed information is stored in an Observation
Table. The Reduced Observation Table algorithm, presented in Section 19.4.3,
is similar to the Observation Table algorithm except it stores less information.
Finally, Section 19.4.4 describes the Discrimination Tree algorithm which stores
information in a binary tree.

19.4.1 Observation Packs

Balcázar et al. abstract from different data structures and present a unified
view on the learning problem studied here, storing information in several, called
observation packs sets [BDGW97]. An observation pack can be seen as a way of
storing pieces of information the Learner has about an unknown regular set.

One piece of information is a so called observation. An observation is a pair
of the form (s ,+) or (s ,−) for a word s . The label +/− signifies the answer to
a membership query on string s . The observations in a set must be consistent,
i.e., the same word does not appear with different +/− labels.

The observations are organized in finite sets called components, which are
not necessarily disjoint. A component is denoted Ck , where k ∈ N is the com-
ponent’s index. An observation pack O, or pack for short, is a finite sequence
of components, O = (C0, . . . ,Cn−1) for some n ∈ N, for which two conditions
must hold:

OP1 Let sk ∈ Ck be the shortest word in Ck ; then sk is a prefix of all other words
in Ck .

OP2 For each two components Ck and Cl with l �= k , there exists wkl such that
both skwkl ∈ Ck and slwkl ∈ Cl but (Ck ,+) ⇐⇒ (Cl ,−), i.e., they have
different labels.

The string sk is a word that identifies Ck . The set of suffixes for each sk is
defined as Ek = {w | skw ∈ Ck}. So the word wkl mentioned above is in Ek ∩El .
Furthermore sk = skε implies ε ∈ Ek by the definition of Ek .

We collect in the set S all the shortest words, sk , from each component
and call them access strings. The access strings are then used to index both
components and sets of suffixes, so the component Ck is Cs and Ek is Es where
s = sk for some s ∈ S . An observation pack can be identified with the finite set
S of access strings and a mapping from S associating to each s the finite set Es .
The set Cs is the set of words sw , for an access string s ∈ S and suffix w ∈ Es .

Definition 19.10. A language U agrees with an observation pack O if all +
labels mark words in U, while all − labels mark words not in U.

578 Therese Berg and Harald Raffelt

Assuming that U is a language accepted by a DFA, the suffixes in sets Es must
include evidence (see the second item on the list of conditions on an observation
pack) that the access strings belong each to a different equivalence class in the
right congruence associated with any regular set U agreeing with the pack. These
classes correspond to states of the minimal deterministic finite automaton (DFA)
for U: access strings are used to reach the states, hence the name. There can not
be any more access strings than states in such an automaton.

Lemma 19.11. Let O be a pack, S its set of access strings, U a regular language
which agrees with O, and M the minimal DFA that recognizes U. Then |S | ≤
|M|.

Proof. Let δU and qU
0 be the transition function and the initial state of M,

respectively. Let the mapping f map S into the states ofM in the natural way:
from s to δU(qU

0 , s). We prove that this mapping is injective.
Let s and s ′ be two access strings in the pack and s �= s ′. Assume that they

both are mapped by f to the same state via the the transition function δU, i.e.
f is not injective. So δU(qU

0 , s) = qi and δU(qU
0 , s

′) = qi . Let FU be the set of
accepting states forM.

According to the properties of the observation pack, there exists a word
w ∈ Es ∩ Es′ such that sw ∈ U ⇐⇒ s ′w �∈ U. Either, δU(qi ,w) ∈ FU or
δU(qi ,w) �∈ FU. This means

(1) δU(qi ,w) ∈ FU =⇒ sw ∈ U and s ′w ∈ U, or
(2) δU(qi ,w) �∈ FU =⇒ sw �∈ U and s ′w �∈ U

But this is a contradiction to sw ∈ U⇐⇒ s ′w �∈ U, so f is injective. ��

Definition 19.12. Let O be a pack, with access strings S , and U a set agreeing
with O. We say that a word z is like s ∈ S for U if and only if ∀w ∈ Es

sw ∈ U⇐⇒ zw ∈ U.

To find out whether z is like s we first use the information that sw is labeled
+ in the pack if sw ∈ U, otherwise −. Secondly, for zw we can conduct a
membership query and see if zw ∈ U or not.

Lemma 19.13. For every word z there is at most one word s ∈ S such that z
is like s for U.

Proof. Let s �= s ′, both in S , and assume z is like s , i.e., ∀w ∈ Es sw ∈ U⇐⇒
zw ∈ U. The pack provides a word w ∈ Es ∩Es′ such that sw ∈ U⇐⇒ s ′w �∈ U.
Thus, zw ∈ U⇐⇒ s ′w �∈ U, so that z is not like s ′ for U. ��

Let γO,U : Σ∗ → S be the partial function that maps each z to the single
access string it is like for U, if there is one; it remains undefined if z is not like
any access string for U. From now on, we will use this function in a context in
which both O and U are fixed, so we omit the superscripts and use only γ.

19 Model Checking 579

Expanding a Pack Let us now discuss how to extend a pack, evolving to the
automaton to learn. We will see the importance of the fact that the function γ
can be partial. Let us start by stating that for a given pack we say that a word
z is escaping when γ(z) is undefined.

We can use the knowledge of some escaping string z to adjust the observation
pack and get closer to U. In this case we can collect the appropriate observations
and expand the pack by adding a new component to it.

The fact that z escapes implies that, for each access string s in the pack,
there is a word sw ∈ Cs providing the suffix w that distinguishes z from s , in the
sense that sw ∈ U⇐⇒ zw �∈ U. A set formed by all such words zw , additionally
including z itself, and each labeled by the corresponding +/− label, forms a
component that can be added to the pack preserving two mentioned necessary
properties OP1 and OP2. Each expansion by one component brings the pack
one state closer to the minimal automaton representing U.

Now we want to have a so called closed pack, which means that for an access
string s and letter a there is no such word sa that escapes. The transition on a
from the state represented by s would be undefined if sa escaped. If we discover
an escaping word we expand the pack and when there are no more escaping
words of this kind we say that the pack is closed.

Definition 19.14. A pack O agreeing with U is closed for U if:

• γ(ε) is defined;
• ∀ s ∈ S , ∀ a ∈ Σ, γ(sa) is defined.

Note that the definition depends on U since γ = γO,U depends on U. Defi-
nition 19.14 actually gives rise to a deterministic finite automaton, whose states
are the access strings of the pack, the initial state is γ(ε) and the accepting are
states those access strings labeled +. We define the transition function to be
δ(s , a) = γ(sa) and we extend the transition function δ in a rather common way
by, δ(s , ε) = s , and δ(s ,wa) = δ(δ(s ,w), a), for s ∈ S , w ∈ Σ∗, and a ∈ Σ.

Theorem 19.15. If O is a pack, U is regular and agrees with O, and O has as
many components as M (the minimal DFA that recognizes U) has states, then
O is closed for U so that an automaton can be obtained from O in the manner
above, and furthermore this automaton is isomorphic to M.

Proof. By Lemma 19.11, no pack agreeing with U can have more than |M|
components. Therefore, it is not possible to expand O preserving the agreement
with U, and thus it must be closed. Besides, by the cardinality condition, the
function f defined and used in Lemma 19.11 becomes bijective. It is routine to
show that this function is an isomorphism, that is: 1) it maps γ(ε) to the initial
state of M; 2) it maps exactly those s ∈ S with s ∈ U to the final states; and
3) it commutes with M’s transition function. ��

Once we are able to form an automaton from our pack, we can make an
equivalence query to the Oracle to find out if it is equivalent toM. If we receive
the answer ’yes’, we are finished and the automaton is the minimal automaton

580 Therese Berg and Harald Raffelt

that exactly accepts U, otherwise we receive a word that behaves different then
the constructed automaton but agrees withM; a so called counterexample. Let
us study how to process a counterexample.

Counterexample A counterexample is used to correct the hypothesis A we
have about the machine. From the counterexample we will get a word that,
when added to the pack, will escape.

Let t be the counterexample of length m, t = a0 . . . am−1. For 0 ≤ i ≤ m let
ui be the prefix of length i of t and vi the corresponding suffix, i.e. t = uivi .

Let si = δ(γ(ε), ui) be the state of the automaton based on the pack that is
reached by computing on ui , the initial state be s0 = γ(ε) and si+1 = δ(si , ai).
The acceptance of t by this automaton is given by whether the final state sm is
accepting, which corresponds to whether sm ∈ U.

Since the set of strings that are accepted from a state distinguishes a state
from another we look upon suffix vi as an experiment on corresponding state
si and through membership queries we find out whether sivi ∈ U. The fact
that t is a counterexample means that t ∈ U ⇐⇒ sm �∈ U, where t = s0v0 and
sm = smvm . So consequently there must exist one or more breakpoint positions
i such that sivi ∈ U ⇐⇒ si+1vi+1 �∈ U. Since sivi = siaivi+1, the suffix vi+1

is an experiment that distinguishes siai from si+1 = δ(si , ai) = γ(siai). Now
add si+1vi+1 with the appropriate label to the component Csi+1 . Consequently
γ(siai) is not anymore si+1, hence siai escapes and we can go on with the pack
expansion process.

Example of Observation Pack Let us study the observation pack algorithm
applied to the example of the DFA Mex with the alphabet {a, b}, shown in
Figure 19.8. Initially we conduct an experiment for the empty string. The result
of a membership query for ε is + and the first component is initialized with
this observation, C0 = {(ε,+)}. The component’s corresponding suffix-set is
E0 = {ε}. The evolution of O for this example can be viewed in Table 19.1. The
sign − in the table means that the component is unchanged.

In the next step we want to close the pack, therefore we ask membership
queries for εa and εb. The results are the observations (a,+) and (b,+), whose
strings are like ε, the access string for component C0. The pack is now closed
and we can construct a corresponding automaton A0, which can be seen in
Figure 19.9.

b

a

a
a, b

b
a, b

Fig. 19.8. The machine Mex

19 Model Checking 581

We conduct an equivalence query for A0 in order to see if the conjecture is
correct. As answer we get a counterexample t = ab, we see that ab �∈ L(Mex)
but ab ∈ L(A0). The counterexample can be divided into prefix and suffix,
u0 = ε and v0 = ab in order to find the breakpoint where Mex and A0 behave
differently. A state in a hypothesis is called si , for this counterexample 0 ≤ i ≤ 2.
We see that a breakpoint can be found for i = 0 since s0ab �∈ L(Mex) but s1b ∈
L(Mex) (Recall that s1 = δ(s0, a)). Thus b is the experiment that distinguishes
s0a = γ(ε)a = a from s1 = γ(εa) = ε.

Step 0 Step 1
C0,E0 C0 = {(ε, +)}, E0 = {ε} C0 = {(ε, +), (b, +)}, E0 = {ε, b}
C1,E1 C1 = {(a, +), (ab, −)}, E1 = {ε, b}
C2,E2
C3,E3

Step 2 Step 3
C0,E0 − −
C1,E1 − C1 = {(a, +), (ab, −), (aa, −)},

E1 = {ε, b, a}
C2,E2 C2 = {(aa, −)}, E2 = {ε} −
C3,E3

C3 = {(b, +), (ba, +), (bb, −)},
E3 = {ε, a, b}

Table 19.1. The observation pack

It is now enough to add (b,+) to the component Cε, so C0 = {(ε,+), (b,+)}
and E0 = {ε, b}. Now γ(a) is no longer s0 since a escapes and therefore we
expand the pack with a new component C1, where C1 = {(a,+), (ab,−)} and
E1 = {ε, b}, see Step 1. The mapping of b to an access string is now changed to
γ(b) = a.

The next step is to make the pack closed, the missing words are aa and
ab. Using membership queries we try to discover an existing access string aa
behaves like, but we cannot find one, so it escapes. From the observation (aa,−)
we create a new component, C2 = {(aa,−)}, whose corresponding suffix set is
E2 = {ε}, see Step 2. (The suffix ε differentiates s2 from all other access strings,
so no further suffixes need to be added to C2.) The next word to map into an
access string is ab and we see that γ(ab) = aa.

Since we now created a new component C2 we must make sure that the pack
is closed, hence we have to check to what access strings the strings aaa and
aab are be mapped. Checking these yields γ(aaa) = aa and γ(aab) = aa. The
observation pack is now closed and it is possible to form a hypothesis, A1, about
the machine, see Figure 19.9.

Now we conduct an equivalence query for the hypothesis A1. The Oracle
returns a counterexample t = ba. Again we perform the search for a breakpoint
in t , we initialize the prefix and suffix of t to be u0 = ε and v0 = ba, respectively.
The breakpoint is found for i = 0 where s0ba ∈ L(Mex) but s1a �∈ L(Mex).

In order to adjust A1, we add (aa,−) to component (Cs1 = Ca =)C1, trans-
forming it into C1 = {(a,+), (ab,−), (aa,−)}. Now γ(b) is not anymore a (it
does not behave as a on suffix a) but is instead undefined. This implies that we

582 Therese Berg and Harald Raffelt

A0 A1 A2

s0 a, b
s0 s1

s2

a, b

a, b

a, b

s0

s3

s1

s2

b

a

a
a, b

b
a, b

Fig. 19.9. The machine’s approximations

have to create a new component, C3, based on the escaping string b, and add it
to O. In order to distinguish the access strings s0 and s1, we add to E3, the suffix
a to distinguish b from s1, and the suffix b to distinguish b from s0. (The string
ε distinguishes b from s2.) The new component is C3 = {(b,+), (ba,+), (bb,−)}
with corresponding suffix set E3 = {ε, a, b}, see Step 3.

We are now able to create our next hypothesis A2 and conduct an equivalence
query for it. The answer to this query is ’yes’ and the algorithm terminates and
outputs the correct automaton A2, seen in Figure 19.9.

19.4.2 Angluin’s Algorithm

The learning algorithm by Balcázar et al is rather abstract, putting the selected
information in sets. In this section we discuss a learning algorithm that still
puts information into sets but uses a more concrete data structure: a table. The
observation pack algorithm does not tell us how to store exactly all information
we query for. In the algorithm we will introduce next, we see how it is possible
to store all information in an easy manner. We will now present the Angluin Al-
gorithm, which we will also refer to as the Observation Table Algorithm [Ang87].

The algorithm, or Learner, makes use of the same environment and plays the
same roll as described in Section 19.4. Initially the algorithm has no knowledge
of the SUT’s regular language, but the information it accumulates about the
behavior of the machine, is entered into a so called observation table. Due to the
table the algorithm has at any point in time information about a finite collection
of strings over a known finite alphabet Σ, classifying them as members or non-
members of some unknown regular set U.

Angluin’s algorithm will make sure that the observation table fulfills some
criteria before it constructs a deterministic finite-state machine A from informa-
tion in the observation table. This hypothesis of what the language of the SUT
is, is the Learner’s conjecture which will be sent to the Oracle.

The Observation Table The information accumulated by the algorithm is a
finite collection of observations, which is organized into an observation table.
The table is defined as follows:

Definition 19.16. An Observation Table over a given alphabet Σ is a tuple
OT = (SA,EA,TA)1, where
1 The index A signifies that the sets belong to Angluin’s algorithm.

19 Model Checking 583

• SA ⊆ Σ∗ is a nonempty finite prefix-closed set,
• EA ⊆ Σ∗ is a nonempty finite suffix-closed set, and
• TA : ((SA ∪ SA ·Σ)× EA)→ {+,−} is a (finite) function

satisfying the property that se = s ′e ′ implies TA(s , e) = TA(s ′, e ′) for s , s ′ ∈
SA ∪ SA ·Σ and for all e, e ′ ∈ EA.

The words in SA∪SA ·Σ are called row labels and the words in EA are called
column labels. The entries consists of signs (+/−) representing whether a word
is accepting or not.

The observation table is divided into an upper part and a lower part. The
upper part of the observation table is indexed by row labels in SA. They play a
role similar to access strings in the observation pack algorithm, see Section 19.4.1.
The lower part’s row labels are indexed by all strings of the form sa, a ∈ Σ and
s ∈ SA, unless they already appear in the upper part. Moreover the table is
indexed column wise by a suffix-closed set EA of strings. The suffixes are used
in the same fashion as in Section 19.4.1, to distinguish a access string/row from
another. The function TA maps a row label s and a column label e, i.e. TA(s , e),
to the set {+/−}, it is defined to be + if se ∈ U and − otherwise. (Note that
TA is total.)

A function row(s) for every s ∈ (SA ∪ SA · Σ) denotes the finite function
f : EA → {+,−} defined by f (e) = TA(s , e). In other words, row(s) is the row
of entries in the observation table for index s .

It is possible that there exists an entry on a string in several places in the
table due to the fact that a string can be divided into different suffixes and
prefixes, i.e. row and column labels. Of course, these labels have to agree. This
is required by Definition 19.16.

A distinct row in OT characterizes a state in the automaton which can be
constructed from OT . All the row labels to unique rows must be kept in SA.
The rows labeled by elements of SA ·Σ are used to create the transition function
for the automaton.

To construct a DFA from the observation table it must fulfill two criteria. It
has to be closed and consistent.

Definition 19.17. An observation table OT is closed if for each s ∈ SA · Σ
there exists an s ′ ∈ SA such that row(s) = row(s ′).

Definition 19.18. An observation table is consistent if whenever row(s) =
row(s ′) for s , s ′ ∈ SA then row(sa) = row(s ′a) for all a ∈ Σ.

When the observation table (SA,EA,TA) is closed and consistent it is possible
to construct the corresponding DFA A = (Σ,Q , δ, q0,F) as follows:

• Q = {row(s) | s ∈ SA},
• q0 = row(ε),
• F = {row(s) | s ∈ SA and TA(s , ε) = +},
• δ(row(s), a) = row(sa).

584 Therese Berg and Harald Raffelt

The corresponding DFA constructed in this manner from table (SA,EA,TA)
is denoted A(SA,EA,TA). The first property, closed, holds if a row representing
a successor state of some state in Q , the successor state is also in Q . The second
property, consistent, ensures that if two rows represent the same state, then they
must also have the same successor state on all input symbols.

The Learning Algorithm The learning algorithm, Algorithm 15, maintains
the observation table OT . The sets SA and EA are both initialized to {ε}. Next
the the algorithm performs membership queries for ε and for each a ∈ Σ, the
result is a label for each queried string. The observation table OT is initialized
to (SA,EA,TA).

Algorithm 15 Angluin’s Learning Algorithm.

1 Function Angluin()
2 begin
3 Initialize SA and EA to {ε}.
4 Ask membership queries for ε and each a ∈ Σ.
5 Construct the initial observation table (SA, EA, TA).
6

7 repeat:
8 while (SA, EA, TA) is not closed or not consistent:
9 if (SA, EA, TA) is not consistent,

10 then find s and s′ in SA, a ∈ Σ, and e ∈ EA such that

11 row(s) = row(s′) and TA(sa, e) �= TA(s′a, e),
12 add ae to EA,
13 and extend TA to (SA ∪ SA · Σ) · EA using membership queries.
14

15 if (SA, EA, TA) is not closed,
16 then find s ∈ SA and a ∈ Σ such that

17 row(sa) is different from row(s′) for all s′ ∈ SA,
18 add sa to SA,
19 and extend TA to (SA ∪ SA · Σ) · EA using membership queries.
20

21 Once (SA, EA, TA) is closed and consistent, let A = A(SA, EA, TA).
22 Make an equivalence query to the Oracle with the hypothesis A.
23 if the Oracle replies with a counterexample t,
24 then add t and all its prefixes to SA

25 and extend TA to (SA ∪ SA · Σ) · EA using membership queries.
26 until the Oracle replies ’ yes ’ to the hypothesis A.
27 return A.
28 end

Next the algorithm makes sure that OT is closed and consistent. If OT is not
consistent, one inconsistency is resolved through finding two strings s , s ′ ∈ SA,
a ∈ Σ and e ∈ EA such that row(s) = row(s ′) and TA(s , ae) �= TA(s ′, ae) and
adding this new suffix ae to EA. The observation table is consistent when no
more strings as these can be found. The algorithm fills the missing entries in the
new column by asking membership queries.

IfOT is not closed the algorithm finds s ∈ SA and a ∈ Σ such that row(sa) �=
row(s ′) for all s ′ ∈ SA. The algorithm makes the table closed by adding sa to
SA. When no more such strings can be found the table is closed. The missing
entries in OT are inserted through membership queries.

19 Model Checking 585

When OT is closed and consistent the hypothesis A = A(SA,EA,TA) can be
formed and its correctness checked through an equivalence query to the Oracle.
The Oracle can either reply with a counterexample t , such that t ∈ L(M)⇐⇒
t �∈ L(A), or ’yes’. If the answer is ’yes’ the algorithm halts and outputs the
correct conjecture A. Otherwise t is a counterexample. In contrast to finding a
breakpoint as in the observation pack algorithm, Angluin’s approach is to add t
and all its prefixes to the table. Then all missing entries are filled. In this way,
also the prefix that would be identified by finding the breakpoint is processed.

Example of Observation Table The machine Mex we want to learn using
Algorithm 15, is shown in Figure 19.8. The algorithm initializes OT (lines 3–
5) to A0 in Table 19.2. Table A0 is closed and consistent (line 8). Therefore
the algorithm can form an automaton based on it (line 21), resulting in A0,
Figure 19.10.

A0 A2 A4

ε a, b

ε a

aab

a

a, b

a, b

ε

b

a

aa

b

a

a
a, b

b
a, b

Fig. 19.10. The machine’s approximations

The next step is to do an equivalence query for A0 (line 22). The answer from
the Oracle is the counterexample aa since aa �∈ L(Mex) but aa ∈ L(A0). The
counterexample and its prefixes are added to SA, in the table representation the
upper part of the table, and the lower part of the table is extended. The strings
in SA are a and aa and in SA ·Σ; are b, ab, aaa and aab, see A1 in Table 19.2.
The membership queries for the new entries are made and the answers inserted.

Step 0 Step 1 Step 2 Step 3 Step 4

A0 ε

ε +
a +
b +

A1 ε

ε +
a +

aa −
b +

ab −
aaa −
aab −

A2 ε a

ε + +
a + −

aa − −
b + +

ab − −
aaa − −
aab − −

A3 ε a

ε + +
a + −
b + +

aa − −
bb − −
ab − −
ba + −

aaa − −
aab − −
bba − −
bbb − −

A4 ε a b

ε + + +
a + − −
b + + −

aa − − −
bb − − −
ab − − −
ba + − −

aaa − − −
aab − − −
bba − − −
bbb − − −

Table 19.2. The observation tables

586 Therese Berg and Harald Raffelt

The algorithm returns (line 8) to check again that the observation table is
closed and consistent. This time it will discover an inconsistency in A1 due to
row(εa) �= row(aa), the lefthand side being + and the right hand side being −.
A new suffix a, which distinguishes the two inconsistent rows a and ε, are added
to EA (line 12). The empty entries in the new columns are filled and the result
is A2 in Table 19.2.

Table A2 is next checked that it is closed (line 15). Since no row label in the
lower part of the table does not already exist in the upper part it is closed. It is
now possible to form the automaton A2, showed in Figure 19.10.

Next the algorithm performs an equivalence query to the Oracle with the
hypothesis A2 (line 22). The response given is again a counterexample, this time
t = bb, since bb �∈ L(Mex) but bb ∈ L(A2). The string bb and its prefixes are
added to SA. The lower part of the table is extended by adding the new row
labels ba, bba and bbb. The algorithm fills all the empty entries by executing
membership queries. This yields table A3 in Table 19.2.

In the last step the algorithm finds one more inconsistency, due to row(εb) �=
row(bb). Solving the inconsistency yields the new column label b, which is added
to EA. The resulting table A4, see Table 19.2, is closed and consistent and
the corresponding hypothesis, A4 in Figure 19.10, returns a ’yes’ in the final
equivalence check. The algorithm returns A4 and halts.

19.4.3 Reduced Observation Tables

We have so far seen two proposals of learning algorithms, the observation pack
and the observation table (or Angluin’s) algorithms. The next algorithm we will
present is a Learner closely related to Angluin’s algorithm.

In the setting of the observation table algorithm, see Section 19.4.2, the
observation table is likely to contain several rows representing one state. The
algorithm presented here is based on the observation table algorithm but contains
a smaller version of the table. We will refer to this algorithm by the name Reduced
Observation Table Algorithm, introduced by Rivest and Schapire [RS93].

Many notions of Angluin’s algorithm can directly be transfered to the reduced
observation table algorithm. In view of how a table is constructed the sets SA,
EA, and the table function TA correspond directly to SR, ER, and TR, respec-
tively. The entries, row labels, column labels and rows are also to be interpreted
as in Angluin’s algorithm. As in the case of the observation table algorithm, the
information the Learner accumulates is a finite collection of observations, which
is organized into a reduced observation table, denoted ROT . The table is defined
as follows:

Definition 19.19. A tuple ROT = (SR,ER,TR) over a given alphabet Σ is a
Reduced Observation Table, where

• SR,ER ⊆ Σ∗ are nonempty finite sets,
• TR : ((SR ∪ SR ·Σ)× ER)→ {+,−} is a (finite) function,

19 Model Checking 587

• se = s ′e ′ implies TR(s , e) = TR(s ′, e ′) for s , s ′ ∈ SR ∪ SR · Σ and for all
e, e ′ ∈ ER, and
• row(s) = row(s ′) implies s = s ′ for all s , s ′ ∈ SR.

Thus, a reduced observation table differs from an observation table in two
ways. First, SR does not need to be prefix-closed. Second, every row appears
only once in the upper part of the table.

Since there cannot be two row labels in SR that map to the same row, there
is no need to check a reduced observation table for consistency. In other words,
there cannot be any inconsistency.

The reduced observation table algorithm contains only the access strings,
recall Section 19.4.1, which results in a smaller table than Angluin’s. This in
turn is the cause for using less membership queries. The definition of a closed
ROT is as for the observation table. From a closed ROT we can can construct
an automaton in the same manner as in Angluin’s algorithm. Besides containing
a smaller observation table, a second source of efficiency, compared to Angluin’s
algorithm, is the faster processing of counterexamples.

Processing a counterexample t = uivi of length m, recall Section 19.4.1,
means finding a breakpoint i such that sivi ∈ U ⇐⇒ si+1vi+1 �∈ U, where
the si = δ(row(ε), ui) are the states visited by t along the automaton and
vi are the corresponding suffixes of t . Some such breakpoint must exist since
s0v0 ∈ U⇐⇒ smvm �∈ U, so that a sequential search will find, say, the first one
with m membership queries. Rivest and Schapire show how a binary search finds
a breakpoint with logm queries.

The reduced table is kept small by not adding all prefixes of the counterexam-
ple as rows. This means that the new automaton may still classify the previous
counterexample incorrectly, so the same counterexample can potentially be used
to answer several equivalence queries. Two equal counterexamples can also oc-
cur in an algorithm which uses so called discrimination trees, to be discussed in
Section 19.4.4.

The Learning Algorithm The reduced observation table algorithm is basi-
cally constructed in the same manner as the observation table algorithm. The
difference is that since only unique rows are contained in the upper part of the
table of the reduced observation table algorithm there is no need to check for con-
sistency. The handling of a counterexample is different to Angluin’s algorithm.
In this algorithm we search for a breakpoint in the counterexample and add only
one row to the upper part of the table, not every prefix of the counterexample
as in the case of the other algorithm. The Reduced Observation Table algorithm
is given in Algorithm 16.

Example of Reduced Observation Table We will here present an example
how the reduced observation table evolves when learning the same example as in
Section 19.4.2 shown in Figure 19.8. The table is initialized in the same manner
as in Angluin’s algorithm so SR and ER is set to ε (line 3). For all actions in

588 Therese Berg and Harald Raffelt

Algorithm 16 Reduced Observation Table Learning Algorithm.

1 Function Reduced − Observation − Table()
2 begin
3 Initialize SR and ER to {ε}.
4 Ask membership queries for ε and each a ∈ Σ.
5 Construct the initial reduced observation table (SR, ER, TR).
6

7 repeat:
8 while (SR, ER, TR) is not closed:
9 then find s ∈ SR and a ∈ Σ such that

10 row(sa) is different from row(s′) for all s′ ∈ SR ,
11 add sa to SR ,
12 and extend TR to (SR ∪ SR · Σ) · ER using membership queries.
13

14 Once (SR, ER, TR) is closed, let A = A(SR, ER, TR).
15 Make an equivalence query to the Oracle with the hypothesis A.
16 if the Oracle replies with a counterexample t
17 then let the counterexample t be uivi , where u0 = vm = ε and v0 = um = t
18 and t = uiaivi+1 for i < m, and m is the length of t.
19 Find a breakpoint position i for which siaivi+1 ∈ U ⇐⇒ si+1vi+1 �∈ U holds,
20 where si are the states visited by t along A.
21 Add vi+1 to ER

22 and extend TR to (SR ∪ SR · Σ) · ER using membership queries.
23 until the Oracle replies ’ yes ’ to the hypothesis A.
24 return A.
25 end

Σ and ε we perform membership queries and add them to the lower part of
the table (lines 4–5), see result in A0 in Table 19.3. Since the table always is
consistent we only have to check that the reduced observation table is closed
(line 8). There is no row in the lower part of the table which is not already
contained in the upper part, hence the table is closed. It is now possible to form
an automaton from the information in the table (line 14), the result is shown in
A0, Figure 19.11.

Step 0 Step 1 Step 2 Step 3 Step 4

A0 ε

ε +
a +
b +

A1 ε b

ε + +
a + −
b + −

A2 ε b

ε + +
a + −
b + −

aa − −
ab − −

A3 ε b

ε + +
a + −

aa − −
b + −

ab − −
aaa − −
aab − −

A4 ε b a

ε + + +
a + − −
b + − +

aa − − −
ab − − −
ba + − −
bb − − −

aaa − − −
aab − − −

Table 19.3. The reduced observation tables

The Learner will thereafter make an equivalence query to the Oracle, which
returns a counterexample t = ab, which we divide into prefix u0 = ε and suffix
v0 = ab (lines 17–18). We search for the breakpoint in the counterexample and
find it for i = 0 since s0ab �∈ L(Mex) ⇐⇒ s1b ∈ L(Mex). Now we can add

19 Model Checking 589

the new column label b (line 21). The result of this operation is shown as A1 in
Table 19.3, now row(ε) �= row(a).

Next we check whether table A1 is closed. The Learner discovers that there is
one row in the lower part of the table which is not in the upper part (lines 9–10).
In order to rectify this we add the row of a to the upper part and in the lower
part we add its successor states, shown in Table 19.3, Table A2. The extension
to the table gives rise to a non-closed table again. So for this reason we move
row of aa in the same manner to the upper part, see the result in Table A3. Now
the table is closed and automaton A3 can be formed, shown in Figure 19.11. The
Learner queries the Oracle with this hypothesis, but the Oracle answers with a
counterexample.

A0 A3 A4

ε a, b ε a

aa

a, b

a, b

a, b

ε

b

a

aa

b

a

a
a, b

b
a, b

Fig. 19.11. The machine’s approximations

The counterexample is t = ba, where ba ∈ L(Mex) but ba �∈ L(A3). Finding
the breakpoint is the process of following A3 along t and discovering where the
mistake of not accepting t is made. The breakpoint in this case is found for
i = 0 since s0ba ∈ L(Mex) but s1a �∈ L(Mex) where the states s0 and s1 are
represented by ε and a, respectively. We add the new column label a to ROT
and extend the lower part of the table.

In the loop of checking if ROT is closed, the Learner will discover that the
row of b does not exist in the upper part of the table. This row is moved to
the upper part of the table and the lower part is extended. The result shown in
A4, Table 19.3. This table is closed and with a final equivalence check with the
corresponding automaton A4 in Figure 19.11 as hypothesis the answer from the
Oracle is a ’yes’ and the algorithm terminates.

19.4.4 Discrimination Trees

In this section we will discuss a fourth approach to implementing the Learner
in the setting described earlier. Instead of using sets for storing the Learner’s
observations, as in the observation pack algorithm, we will show how it is possible
to use a tree.

The Learner’s data structure is in this case a binary tree with labeled nodes.

Definition 19.20. Given an alphabet Σ, a discrimination tree is tuple DT =
(SD ,ED , t) where

590 Therese Berg and Harald Raffelt

• SD ,ED ⊆ Σ∗ are nonempty finite sets of access strings and suffixes, respec-
tively,
• t is an SD ∪ ED -labeled binary tree where,

– non-leaf nodes are labeled with suffixes in ED , and
– leaves are labeled with access strings in SD .

The information about whether a string is accepted or not is contained in
the structure of a discrimination tree. The computation of the function γ(w)
for a string w - recall that γ(w) maps w to the only access string w is like -
becomes simple with the use of discrimination trees; traverse the tree on w in
the following manner. Query wv for membership in each node labeled v and enter
the right child node on a positive answer and left otherwise. The calculation of
γ(w) stops in a leaf which is labeled with an access string. The function γ is
total since the computation can be done for any input string w . Let Sift be the
function that traverses a given discrimination tree for input string w in the just
described manner, starting at the root.

A discrimination tree is initialized with the root labeled by ε and two leaves,
one labeled by ε and the other one with a string which answers the opposite to
ε on a membership query.

The discrimination tree is always closed and consistent, therefore escap-
ing strings can only be obtained through counterexamples. Given a discrim-
ination tree DT , the escaping string is taken via the shortest prefix ui for
which siaivi+1 ∈ U ⇐⇒ si+1vi+1 �∈ U holds, where si = Sift(ui ,DT), see
Section 19.4.1 on how to handle counterexamples. The leaf si+1 is replaced by
an internal node labeled vi+1 which will separate the old leaf representing state
si+1from the new one siai . The algorithm can now start its next iteration with
another equivalence query. Altogether, note that equivalence queries are used to
modify the tree in order to derive a hypothesis of the automaton to learn, while
membership queries are used in the translation from the tree to an automaton
and for processing a counterexample.

The Learning Algorithm The discrimination tree algorithm consists of the
main function Discrimination-Tree and auxiliary helper functions; Sift, Hypothe-
sis, and Update-Tree. The complete algorithm is shown in Algorithm 17, [KV94,
BDGW97].

The main function Discrimination-Tree (line 1) first initializes the discrimi-
nation tree. It performs a membership query for ε and if the answer to this query
is positive, meaning ε ∈ U, then the first hypothesis A has one accepting state,
otherwise one non-accepting. This state is the initial state. All the actions from
this state will loop back to this state.

The next step for the Learner is to execute an equivalence query with this
conjecture. With the information about the counterexample, which the Learner
receives, the discrimination tree will be initialized, the root labeled with ε and
the leaves labeled with ε and the counterexample, t , from the Oracle.

19 Model Checking 591

Henceforth the main function will enter a loop; construct a hypothesis from
the discrimination tree and conduct an equivalence query on it. The function
processes a counterexample or stops if the Oracle accepts the hypothesis.

The helper function Sift (line 31) returns an access string for a given string
w by simply sifting down the given tree DT on w , as described earlier.

The helper function Hypothesis (line 44) constructs the hypothesis given a
discrimination tree. The hypothesis A has for each leaf a state, the states are
labeled with the access strings, and ε is the initial state. The transitions are
constructed in the following manner. For each state s and each a ∈ Σ sift down
the discrimination tree on sa, direct the outgoing edge labeled a to the result of
the sift action.

The last helper function Update-Tree (line 56), updates the discrimination
tree given a counterexample t and a discrimination tree DT . The function finds
the breakpoint in the counterexample and replaces the erroring leaf by a new
node. The replaced leaf becomes one leaf to the new node and the other leaf is
a suffix of t .

Example of Discrimination Trees We will here present an example of how
the discrimination tree algorithm works. The example machine we will learn
is shown in Figure 19.8. The alphabet for the machine is as mentioned earlier
{a, b}.

The first step in the algorithm is to do a membership query for ε to determine
whether it is accepting or not, see function Discrimination-Tree in Algorithm 17
(line 3). In the succeeding step we construct the automaton A0, shown in Fig-
ure 19.12, with one state where the transitions of a and b loop back to the initial
state (line 4). The state is accepting since ε is accepting. Now we can conduct
an equivalence query for the first hypothesis A0.

A0 A1 A2

ε a, b
ε a

aab

a

a, b

a, b

ε

b

a

aa

b

a

a
a, b

b
a, b

Fig. 19.12. The machine’s approximations

An equivalence check for A0 yields a counterexample t = aa. We now have
the information we need in order to initialize the discrimination tree (line 8).
The root is set to be labeled with the distinguishing string ε and two leaves
with ε and the counterexample aa, see tree A0 in Figure 19.13. After we update
the tree with the counterexample we get the discrimination tree A1 shown in
Figure 19.13.

We now construct the automaton corresponding to A1. It is created by letting
every leaf in the tree be a state in the automaton. Given a discrimination tree

592 Therese Berg and Harald Raffelt

Algorithm 17 Discrimination Tree Learning Algorithm.

1 Function Discrimination − Tree()
2 begin
3 Ask a membership query for ε.
4 Construct hypothesis A with one state and self−loops for all a ∈ Σ.
5 If ε is accepted the state is accepting, otherwise not.
6 Make an equivalence query with A; If unsuccessful let the counterexample be t .
7

8 Initialize the tree DT to have the root labeled with ε and the leaves labeled with ε and t .
9 Update − Tree(t, DT).

10 repeat:
11 Let DT be the current discrimination tree and,
12 let A = Hypothesis(DT).
13 Make the equivalence query with A.
14 if yes,
15 then halt and output A.
16 else
17 let t be the counterexample.
18 Update − Tree(t,DT).
19 end

31 Function Sift(w,DT)
32 begin
33 Set the current node to be the root node of DT .
34 repeat:
35 Let v be the distinguishing string at the current node in the tree .
36 Make a membership query for wv .
37 if wv is accepted,
38 then update current node to be the right child of the current node.
39 else
40 update current node to be the left child of the current node.
41 if current node is a leaf node,
42 then return the access string stored at this leaf .
43 end

44 Function Hypothesis(DT)
45 begin
46 for each leaf (access string) of DT ,
47 create a state in A that is labeled by that leaf (access string).
48 Let the initial state be ε.
49

50 for each access string s of A and each a ∈ Σ,
51 compute the a−transition from state s as follows:

52 Let s′ = Sift(sa,DT) and,

53 let δ(s, a) = s′.
54 return A.
55 end

56 Function Update − Tree(t, DT)
57 begin
58 Let the counterexample t be uivi , and t = uiaivi+1 for i < m, where m is the length of t .
59 Find the shortest prefix ui for which siaivi+1 ∈ U ⇐⇒ si+1vi+1 �∈ U holds,
60 where si = Sift(ui ,DT) and si+1 = Sift(ui+1,DT).
61

62 Replace the leaf si+1 by an internal node labeled vi+1,
63 let one of the leaves be the replaced leaf ’s label and let the other be siai .
64 end

19 Model Checking 593

DT , the transition for an action a in state s is δ(s , a) = (γ(sa) =)Sift(sa,DT).
The tree A0 has the corresponding automaton A1 in Figure 19.12.

In the next step we make an equivalence query for A1 to investigate if the
hypothesis is correct. We receive a counter example t = bb since bb �∈ L(Mex)
but bb ∈ L(A1). The example is divided into prefix and suffix where u0 = ε
and v0 = bb. The breakpoint is found for i = 0, where s0bb �∈ L(Mex) but
s1b ∈ L(Mex). Now we will update the tree in order for it to act correct in
relation to the counterexample.

As described in function Update-Tree we sift down the tree on b and stop in
the leaf ε. We replace this leaf by a node labeled b and let the leaves of b be the
replaced leaf ε and b, see resulting tree A2 in Figure 19.13. The corresponding
automaton for the updated tree is A2 in Figure 19.12.

A0 A1 A2

ε

εaa

ε

aaa

a ε

ε

aaa

a b

b ε

Fig. 19.13. The discrimination trees

Finally, we conduct a equivalence query for hypothesis A2. We receive the
answer ’yes’ from the Oracle and the algorithm terminates.

19.4.5 Equivalence Check

The Oracle resolves an equivalence check in the learning setting that we discuss.
To learn automata in practice, a realization of such an oracle has to be provided.

The VC-algorithm Vasilevskii and Chow presented independently a method
for comparing the language of two automata where one is given as a black-box,
provided an upper bound on the number of states is given [Vas73, Cho78].

Of course, two languages L1 and L2 are equal, iff they contain the same
strings. Comparing an infinite number of strings, however, yields no effective
algorithm.

For a regular language, we know that if the length of a string exceeds the
number of states of the automaton defining the language, at least one state must
be visited twice. In other words, the language of a finite state machine can be
described by a finite set of strings together with some “pumping” information.

594 Therese Berg and Harald Raffelt

Using this observation, one can show that it suffices to compare L1 and L2 for
all strings up to some length linearly bounded by the sizes of the two automata.
Vasilevskii and Chow further show that if one automaton is given explicitly, the
number of comparisons can be slightly improved.

Details can be found in Chapter 4.7.

A Probabilistic Approach Angluin [Ang87] proposes an equivalence check
that yields a correct answer up to some given failure probability.

An Oracle can be realized as a function picking strings randomly and com-
paring the machine and the hypothesis for those. If a mismatch is found, the
corresponding string is a counterexample. If no mismatch is found, the two sys-
tems are classified as identical. This conclusion might be wrong with a certain
probability. However, if we know the probability distribution of strings being
accepted, one can compute the number of comparisons needed to guarantee that
this failure probability is below a given limit. See [Ang87] for details.

19.4.6 Query Complexity of the Algorithms

We discuss only the query complexity of the algorithms, i.e., the number of
queries needed to construct a correct model of the SUT’s regular language. Their
time complexity can be estimated with similar arguments.

In this subsection, let n, m, and k be the number of states ofM, the length
of the longest counterexample returned in a counterexample, and the size of Σ,
respectively.

For all algorithms discussed, the number of equivalence queries is at most n:
each counterexample processed immediately adds at least one new state to the
current hypothesis. Note however, that this number is an upper bound and can
be expected to vary in practice for the different algorithms. For example, in the
discrimination tree algorithm one needs exactly n equivalence queries, since a
new state can only be found with such a query. In Angluin’s algorithm, on the
other hand, the consistency check that is based on membership queries might
give rise to new states as well.

The algorithms differ in the number of membership queries. We first discuss
the complexity of the algorithm based on observation packs.

In the observation pack algorithm membership queries are performed for two
different purposes: to check for closedness and to process a counterexample.

Consider the first type of membership queries. The observation pack is closed
when, for every access string si and letter a, sia is like some other access string.
This is easily determined with membership queries. If the check fails, it provides
a witness of non-closedness. If it succeeds, a DFA can be built from the answers
of the queries.

Each component contains an access string plus at most n − 1 strings used to
separate it from the other at most n−1 components. Therefore, in the worst case,
checking for closedness means asking at most n queries for each of (n) strings
si and (n) queries for each of (kn) strings sia, giving a total of O((k + 1)n2)

19 Model Checking 595

queries. At this point we can implement the observation pack algorithm in two
different ways:

(1) Check for closedness (and rebuild the automaton) from scratch every time.
This means n(k + 1)n2 queries.

(2) Use the fact that access strings are never removed from the pack. This means
that the set of queries asked in one closedness check is a subset of the queries
to be asked in the next one. So, the total number of different queries over
all checks is at most (k + 1)n2. We can avoid repeating queries by recording
all answers to membership queries, at the expense of using more memory.

Now consider the queries used to process the counterexample. If we do not
insist on obtaining the shortest distinguishing experiment, we can use Rivest
and Shapire’s binary search. This means using O(log m) queries for each coun-
terexample, hence O(n log m) for the at most n counterexamples.

In total, the algorithm that records all answers uses at most O(kn2+n log m)
membership queries.

This is also the cost of the reduced observation table algorithm, if precisely
the data structure recording all answers to membership queries is employed.

The discrimination tree algorithm, as described in [KV94], rebuilds the au-
tomaton from scratch every time and processes the counterexample sequentially,
so it uses O(kn3 +nm) membership queries. It is not difficult, however, to make
it record previous queries and use binary search to process the counterexample.
This modified version will have cost of O(kn2 + n log m).

In the observation table algorithm, the number of columns in the table is at
most n, but the number of rows can be as large as O(knm) because all prefixes
of counterexamples are added as rows. Consequently, the number of queries can
be up to O(kn2m).

It can be shown that for any algorithm, making only O(n) equivalence
queries, at leastΩ(kn log n) membership queries have to be made. Further results
on lower bounds can be found in [BDGW97].

Note however, that the results are worst-case estimations. One might might
in practice trade membership queries for equivalence queries. Experiences with
learning algorithms are given in Section 19.4.8.

19.4.7 Domain-Specific Optimizations

The number of queries can be expected to be a limiting factor in practice. Let
us study optimizations for learning that are possible when certain further infor-
mation about the system to learn is provided. The rationale of the presented ap-
proach is that in practice, one is often concerned with learning a certain reactive
system that can be understood as a special deterministic finite state automaton
[HNS03].

The general concept of the optimizations presented here is that instead of
the Teacher, an Assistant is queried that might either answer a query by con-
sulting the Teacher, or, when possible, deduces the answer to the query using

596 Therese Berg and Harald Raffelt

the currently observed information plus the domain specific knowledge about
the system to learn.

We present the concept of Assistants using Angluin’s algorithm. It might be
transferred to the other learning algorithms in a similar manner. However, since
not every algorithm stores the result of all membership queries, the effect might
be limited.

The Assistants We present different types of assistants, which differ by the
provided context information.

Assistant 1. The first property of reactive systems that we consider is prefix-
closedness. If the system enters an error state, it will never recover on further
input. So if the system enters a non-accepting state, a sink in the corresponding
automaton, it will never leave it. Hence, the automaton’s language is prefix-
closed. In other words, prefixes of accepted strings are also accepted and exten-
sions of rejected strings are rejected.

This is used by the first Assistant which states that if a string is a prefix
of a string already in OT with the entry + then the prefix-string will also be
entered as +, without consulting the Teacher. Similarly, a query for a string that
is an extension of a string already classified as rejecting is answered negatively
without consulting the Teacher.

Assistant 2. Sometimes, one deals with systems that provide a sequence of
output symbols to a given sequence of input symbols. These systems may be
modeled as deterministic finite state machines (see also Chapter 21 or Part I of
this book) where the input alphabet comprises sequences of input symbols and
the output alphabet contains sequences of output symbols. These systems can
be understood as DFAs over an alphabet comprising actions that are pairs of
sequences of input and output symbols. However, such an alphabet is large and
the learning algorithm will be expensive. To eliminate the problem we can split
an edge labeled by a sequence of input and output symbols into a sequence of
edges where each edge is labeled with a single symbol, first the input symbols
and then the output symbols. In this way, the number of states increases but
the alphabet is kept small.

Often, these systems are deterministic for a given input. The system under
test always produces the same output on any given sequence of inputs. So replac-
ing just one output symbol in a string of an input-deterministic language cannot
yield another string of this language. An Assistant can use this knowledge to
determine that a membership query should be answered with a − for a certain
string if in OT the same string with the modification of one output symbol has
the entry +.

Assistant 3. The next Assistant uses the fact that the number of output
events in a given situation is determined, and that we wait with feeding new
input until the system has produced all its responses. Assume that we have in
OT a string labeled + that ends with an input symbol. Then every string that
emerges by changing this input-symbol to any output symbol, will always be
rated as −. This can be checked by a further Assistant.

19 Model Checking 597

Assistant 4. Often, systems are built-up by independent components, exe-
cuting actions independently. If a and b are such independent actions, an Assis-
tant can deduce that a query uabv to the Teacher will produce the same result
as the query ubav .

Assistant 5. Furthermore, the system might be built-up by many identi-
cal components. Consider there are two identical components A and B of the
system. Component A processes the letters a1, a2, . . . an whereas component B
processes the letters b1, b2, . . . bn in a symmetrical way. An Assistant which uses
this symmetry information can deduce that a query a1b1b2a1 to the Teacher will
produce the same result as the query b1a1a2b1.

The concept of Assistants is also used in extensions of these learning algo-
rithms to timed systems [GJL04].

19.4.8 Practical Experiences

The presented results on the worst-case complexity of the algorithms introduced
gives only limited understanding of their practical performance.

In [BJLS03], Angluin’s algorithm has been implemented in a straightforward
way in order to gain further insights to practical applicability. Furthermore, its
performance on randomly generated automata has been analyzed. The experi-
ments focused on the impact of the alphabet size and the number of states on
the needed number of membership queries. Additionally, the optimization for
prefix-closed systems mentioned in the previous section (Assistant 1) has been
implemented and analyzed.

In general, it turned out that learning is a challenging problem. One obstacle
is memory consumption. For example, the observation table for a system of 100
states over 25 letters needed about 160 MB of memory. An arbitrary random
system of this size took about 40000 membership queries. A prefix-closed system
of the same size required even 110000 queries. In general, it turned out that
prefix-closed languages are relatively hard to learn compared to arbitrary regular
languages. The optimization, however, showed positive results. Figure 19.14 gives
an impression of the number of membership queries needed for learning systems
of different sizes.

Further experiences are reported in [HNS03] gained in the process of testing
a telecommunication system.

Their experiments have been performed on four finite installations, each con-
sisting of the telephone switch connected to a number of telephones. The systems
learned varied in the kind of actions the telephones were able to perform, ranging
from simple on-hook and off-hook actions of the receiver to actually perform-
ing calls. The output events indicate which actions the telephone switch has
performed on the particular input. The assistants mentioned in Section 19.4.7
(called filters in [HNS03]) have been employed as well.

In this setup, the automatic execution of a single test needs only a few sec-
onds, but in some exceptional cases it took up to 1.5 minutes to execute the
test and to collect the output generated by the system. This is due to the large

598 Therese Berg and Harald Raffelt

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

m
em

be
rs

hi
p

qu
er

ie
s

transitions

Angluin, random
Angluin, prefix-closed

Optimization, prefix-closed

Fig. 19.14. Learning random examples with Angluin’s algorithm

timeout values that are specified for telecommunication systems. Thus, reducing
the number of membership queries has a huge impact.

For the measurements, the assistants are used in a cumulative way: First
Assistant 1 is used, then Assistant 2 and 3 are added. In the last set of measure-
ments, all assistants have been employed.

The result of adding the assistants are measured in terms of a factor of the
number of membership queries saved in comparison to learning the example
without any assistants. The factor of reduction varies between 8 to 460 in total
when all the assistants are added, depending on the example.

Assistant 1 has a similar impact in all considered scenarios, while Assistant
2, 3, and 4 vary much more in their effectiveness, the saving factor increases with
the number of states. The number of outputs and the lengths of output sequences
between inputs have a particular high impact on the effects of Assistant 2 and
3. More outputs and longer sequences give a better saving factor.

The impact of Assistant 4 and 5, which covers the partial-order and symmetry
aspects, increases, as expected, with the number of independent devices. The
number of states does not seem to have any noticeable impact on the effectiveness
of these assistants.

19.4.9 Further Learning Algorithms

Let us assume that we want to create a model of a system that cannot be reset
to a start state. Of course, this setting is not meaningful for systems that contain
states from which they can never escape once they are entered, since it would
not be able to explore the rest of the automaton. Rivest and Schapire [RS93]

19 Model Checking 599

have created a learning algorithm for systems without reset that are strongly
connected.

Moreover Berman and Roos [BR87] present a learning algorithm for a sub-
class of context-free languages accepted by counter machines and Freund et
al. [FKR+93] give algorithms for learning finite automata on the basis of a sin-
gle long walk in an average-case setting. Maler and Pnueli [MP95] study the
problem of learning sets of infinite strings. In [DH03a, DH03b], learning of regu-
lar tree languages is studied. Learning of timed systems is addressed in [GJL04].

Looking at Angluin’s algorithm, it becomes obvious that there is a trade-off
between membership and equivalence queries. Instead of performing an equiva-
lence query for a closed and consistent table, one could compare the row labels
of equal rows on further suffixes by membership queries. This might reveal an
inconsistency, yielding a separation of the previously equal rows, and thus more
states. For every such case, an equivalence query could be saved. This idea is
worked out in [BDGW94] and [BGHM96].

19.5 Adaptive Model Checking

In the first section of this chapter, we have studied automatic means for verifying
SUTs based on model checking. However, model checking requires a model. If the
system under test is a black box, one can use the learning techniques explained
in the previous section to learn a model of the box. Then model checking can be
applied.

In [GPY02] a method that integrates learning a model of the black box and
verifying it is presented. It is termed Adaptive Model Checking (AMC). It
is similar to the method previously studied in [PVY99] under the term black
box checking.

Adaptive model checking is a method that deals with the problem of having
an inaccurate model of a SUT. Given a property that the system must satisfy,
model checking is performed on a preliminary model and if a counterexample is
found it is compared with the system under test. The result of the comparison
is either that the SUT does not satisfy the property or an automatic refinement
of the model.

First, we present an overview of the algorithm in Figure 19.15. The algorithm
used for learning is Angluin’s algorithm [Ang87] and the algorithm for performing
the equivalence check between the model and the SUT is the Vasilevskii-Chow
(VC) algorithm [Vas73, Cho78]. Note that there are two sorts of counterexamples
in this setting, videlicet counterexamples produced by the model checker, called
mc-counterexamples, and counterexamples produced by the VC algorithm, called
vc-counterexamples.

In the black box checking scenario no initial model is assumed to exist and
Angluin’s algorithm starts from scratch. The AMC algorithm starts with the
model learned so far. This model might be inaccurate. The AMC algorithm
applies model checking to this model. There are two possible outcomes of this
check:

600 Therese Berg and Harald Raffelt

Incremental
Learning
(Angluin)

Model Checking
wrt. current model

Check equivalence
(VC algorithm)

Compare
counterexample

with system

Report
no error found

Report
counterexample

No counterexample Counterexample found

Conformance established Counterexample confirmed

VC-counterexample
Counterexample

Fig. 19.15. Overview of the Adaptive Model Checking Algorithm.

(1) If the model checker finds a mc-counterexample for the checked property,
the SUT runs the counterexample in order to see if it is indeed a sequence
of actions that can be performed by the SUT.
• If the SUT accepts the mc-counterexample we have an input sequence

that shows that the SUT does not satisfy the property. Then the mc-
counterexample is reported and the AMC algorithm terminates.
• In the second scenario where the sequence can not be performed by the

SUT, the mc-counterexample will be given to the learning algorithm and
the model will be refined.

(2) In the second case, if the model checker does not produce a mc-counter-
example, one has to investigate whether the model corresponds to the SUT.
Applying the VC algorithm resolves this question. As before, if a vc-counter-
example is found, the counterexample is given to Angluin’s algorithm and
the model is refined. If no vc-counterexample is found the AMC algorithm
concludes that the SUT satisfies the property and the AMC algorithm ter-
minates.

We will now present the AMC algorithm in more detail.

Model The model of the SUT is constructed by Angluin’s algorithm in the AMC
method. The AMC method assumes that the SUT gives information whether an
input can be currently executed by the SUT. Therefore the language of the SUT
is assumed to be prefix-closed and hence the model as well. The model is a finite
automaton and its runs represent only the successful experiments (strings) in
the SUT. The learning algorithm used in AMC to learn this model is Angluin’s
algorithm. We assume that we know an upper bound on the number of states,
n, of the SUT.

Property The property is given as an LTL formula, and this can be translated
into a Büchi automaton. So the property can be expressed in Linear Temporal

19 Model Checking 601

Logic (see Section 19.3.2 on Linear Temporal Logic) and transformed into a
finite automaton A¬φ on infinite words not accepting the property, usually a
Büchi automaton. The algorithm for model checking LTL is presented in detail
in Section 19.3.3. LTL is used since it delivers counterexamples in the format of
a sequence of actions. Since Computational Tree Logic is not suitable to describe
properties of regular languages and counterexamples in CTL are not just words
of a language, CTL cannot be used in the AMC algorithm.

Initialization LetM be the SUT and Ainit an initial model ofM in the follow-
ing section. The AMC algorithm is initialized by providing Angluin’s algorithm
with the information of the initial model so that fewer calls to the (time expen-
sive) VC algorithm are needed. In [GPY02], three ways to use the initial model
are proposed.

(1) A false negative mc-counterexample t found (i.e., a sequence t that was
considered to be a counterexample, but has turned out not to be an actual
execution of the SUTM). This corresponds to a counterexample in Angluin’s
algorithm. Following Angluin’s algorithm we perform membership queries for
all prefixes of t .

(2) The runs T of a spanning tree of the model Ainit as the initial set of row
labels SA (access strings). We initialize Angluin’s algorithm by adding each
s ∈ SA to OT and perform membership queries for the missing entries.

(3) A set of separating sequences DS (Ainit), see Section 4.4, calculated for the
states of Ainit as the initial set of column labels EA. Thus, we initialize
Angluin’s algorithm by setting OT to be empty, and EA = DS (Ainit).

So this three ways of initializing the sets SA and EA account for the attempt
to speed up learning, but with the entries in OT queried for on the SUT at hand
now.

Note that when using all three initializations and if Ainit models M accu-
rately with these choices of SA and EA then this will allow Angluin’s algorithm
to learn Ainit correctly, without the assistance of the expensive equivalence check
(VC algorithm).

Handling Model-Checking Counterexamples The model checker can con-
struct two types of mc-counterexamples to a LTL formula, finite and infinite.
In the first case there is no extra work in handling it: The counterexample is
given directly to Angluin’s algorithm. In the second case we must make the
counterexample finite in order for Angluin’s algorithm to use it.

An infinite counterexample is an ultimately periodic word of the form w1wω
2

where w1,wω
2 ∈ Σ∗. Assuming that the automaton being checked has n number

of states, the counterexample given to Angluin’s algorithm is w1wn+1
2 . Running

w1 in A¬φ it needs to terminate in an accepting state s . Starting from s the
second part w2 needs to terminate in s as well. For each such pair, we apply
the second part n more times. That is, we try to run the string w1wn+1

2 . If we
succeed, this means that there is a cycle in A¬φ ∩ M through a state with s

602 Therese Berg and Harald Raffelt

as the A¬φ component. This is the case since there are at most n ways to pair
up s with a state of M. In this case, there is an infinite accepting path in the
intersection.

Experiments and Discussion In [GPY02], an experimental implementation
of the algorithm is analyzed. Two CCS models [Mil89] are learned and two
properties are checked. The two selected properties do not hold, and the correct
models are tampered with in order to experiment with finding a (false negative)
mc-counterexample. This counterexample is in all experiments, using the AMC
method, utilized to initialize the observation table in Angluin’s algorithm. This is
the initialization mentioned in Section Initialization, case 1. The model checker
checks the properties sequentially. The experiments have been performed on
SUTs with approximately 500 and 100 states, respectively.

The experiments aim to compare the black box checking method (in which
Angluin’s observation table is not initialized) and the AMC method. Experi-
ments are performed in the AMC method with different combinations to initial-
ize Angluin’s observation table, choices (1) and (2) (then EA = {ε}), (1) and (3)
(then SA = {ε}) and (1), (2), and (3) are used.

The results can be summarized as follows. Comparing the different ways of
initializing OT we see that learning from scratch are in these experiments slower
then using initialized tables. The results also indicate that AMC method give rise
to more states in the model than the black box checking method. Furthermore,
the counterexamples are shorter when learning from scratch than those when
initialized tables are used, if the number of states of the initialized tables are
large.

The adaptive model checking methods is applicable for models that are in-
accurate but not completely irrelevant. When comparing an algorithm learning
from scratch, and using an initial model to guide the learning of the modified
SUT (AMC) the different benefits over each other are unveiled. The learning
from scratch method can be useful when there is a short error trace that identi-
fies why the checked property does not hold. In this case, it is possible that the
learning from scratch method will discover the error after learning only a small
model. The AMC method is useful when the modification of the SUT is simple
or when it may have a very limited affect on the correctness of the property
checked.

However, it has to be said that adaptive model checking is still a mainly
unexplored area that further theory as well as practical insights are needed.

19.6 Summary

In this chapter an introduction to model checking and model learning was given.
Furthermore, it was shown how to combine both techniques to an approach in
which properties of a SUT are verified directly.

First of all we have presented Kripke transition systems which build a simple
basis for temporal logics used in model checking. The essential difference between

19 Model Checking 603

linear time logics and branching time logics was made plain on the basis of an
example. Subsequently we presented linear time logic (LTL) and computational
tree logic (CTL) which are widely used for model checking purposes. Since the
combination of model checking and model learning for testing purposes is only
meaningful with linear time logics we presented a basic model checking algorithm
for linear time logic.

In the second part of the chapter we first gave an introduction to the general
ideas of model learning algorithms. Continuing in the same subject, we presented
a number of learning algorithms; the observation pack algorithm, Angluin’s al-
gorithm, the reduced observation table algorithm and, the discrimination tree
algorithm. Subsequently we discussed the algorithms’ query complexity and pre-
sented some domain specific optimizations to reduce the number of queries. We
rounded the model learning part off with some experimental results.

The final part in this chapter presented the adaptive model checking algo-
rithm, which combines model checking and model learning into one approach.
The approach try to make use of information in an existing model of the SUT in
order to save effort in the learning procedure. If no model exist or the existing
model is irrelevant compared to the current SUT, the approach is still applicable.

Although model checking and model learning are both established research
areas, a lot of work remains to be done when considering testing. The combina-
tion of model checking and testing techniques should be clarified. Models to be
used for testing might ask for different characteristics of the learning procedures
than they currently have. For example, the construction of an abstract model of
a SUT using learning algorithms might ask for a new approach. Issues in this
area need to be examined from a theoretical as well as practical point of view.

Part VII

Appendices

20 Model-Based Testing – A Glossary

Alexander Pretschner and Martin Leucker

Overview The idea of model-based testing is to compare the I/O behavior of a
valid behavior model to that of a system one wants to test (the system under
test, SUT). In order to do so, a few I/O traces of the model are fixed. Picking
“interesting” traces is a demanding task, and it is reflected in test purposes and
test case specifications. The input part of a test case is applied to the SUT, and
the output of the SUT is compared to the output of the model (this expected
output is part of the the test case).

Since models are abstractions, or simplifications, it may be necessary to
bridge the different levels of abstraction between the model and the SUT. Be-
fore being applied to the SUT, the input part of the test case may have to be
concretized to its level of abstraction. Output of the SUT may well have to be
abstracted before being compared to the output of the test case (that is, output
of the model). Sometimes it is the case that the levels of abstraction are identical.

When considering real-time or continuous systems, then often it is not possi-
ble to predict the exact values. Instead, small deviations (so-called jitter) may be
acceptable in both the time and the value domains. A test case then represents
a whole family of runs of the SUT.

Terminology

• Test case A test case is a structure of input and expected output behavior.
– The structure is a finite sequence in case of (quasi-)deterministic systems.

A test case then corresponds to one or many intended runs of the SUT,
which is a consequence of acceptable jitter in the time and value domains
(this is why we call these systems quasi-deterministic, or deterministic,
for short).

– It is tree-like (of possibly infinite branching but finite length) in case of
nondeterministic systems. As in the case of deterministic systems, each
path in the tree corresponds to one or many runs of the SUT because of
jitter.

• Test data Test data is the input part of a test case.
• Test suite A test suite is a set of test cases. The notion of a test suite may

comprise a set of execution conditions: assumptions on the environment, con-
figuration of the SUT, etc. Test suites may be infinite or even uncountable.
However, when tests are actually performed, only a finite amount of input
can obviously be applied.
• Test purpose A test purpose is a property one wants to test. Examples in-

clude “conformance”, “statement coverage”, “invariant ψ”. These properties
can be expressed informally or formally. In general, they cannot directly be
used for testing a system because

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 607-609, 2005.
 Springer-Verlag Berlin Heidelberg 2005

608 Alexander Pretschner and Martin Leucker

– they specify possibly infinitely many runs of a system, or
– it is not clear how to derive a test suite.

• Test case specification A test case specification formally represents a test
suite. The notion of a test case specification is bound to that of a test case
generator. While it is not necessarily clear how to derive a test suite from a
test purpose, it must be well-defined how to derive a test suite from a test
case specification. A test case specification gives an operational flavor to a
test purpose, and it is a demanding task to find good test case specifications:
since it describes possibly infinitely many traces of possibly infinite length,
how should an invariance property be tested? Many test case specifications
can correspond to the same test purpose. Many test cases can correspond to
the same test case specification.
Obviously, a test case specification requires knowledge of the intended behav-
ior (or specification, or behavior model) of a SUT. If an explicit behavior
model exists, then the test case specification can be understood as a selection
criterion on the set of model traces. Since this seminar is on model-based
testing, we always tacitly assume the existence of such a model, and we
hence define test case specifications as selection criteria on this model. In
particular, this is implies that a model of the SUT is not part of the test
case specification. However, environment models that are tailored to a given
test purpose may well be included in the test case specification.
Test case specifications can be functional (concerned with a given require-
ment), structural (concerned with the structure of of a model or the SUT’s
code), stochastic, or combinations thereof. They can be defined on the
model of a SUT or on the model of the SUT’s environment, or both.
• Test case generator A test case generator takes a test case specification

and a model of the SUT as input and yields a test suite as output.
• Testing Testing comprises the activities of defining test purposes and test

case specifications as well as that of generating test suites and test execution.
In the context of model-based testing, test cases are generated from a model.
• Test execution Test execution comprises the following activities. Test data

is applied to a SUT, the behavior of the SUT is monitored, and expected
and actual behaviors are compared in order to yield a verdict. Bridging the
different levels of abstraction of the model and the SUT can be done before or
during test execution. “Running a test” and “executing a test” are synonyms
for test execution.
• Test system The real system which includes the test engine, executable

tests, adaptors, and the test equipment.
• Verification Verification is the process of checking up to which point formal

documents describe the same behavior: “Are we building the system right?”
With this definition, testing is an activity of verification. There is no general
agreement on this point.
• Validation Validation is the process of checking whether or not a system

does what it is supposed to do: “Are we building the right system?” Valida-
tion connects informal and vague requirements with a system.

20 Model-Based Testing – A Glossary 609

• Conformance Conformance is a relation between the observable behavior
of a SUT and that of its specification, or model. The idea is that model
and implementation exhibit the “same” behavior. However, the granularity
of this relation may vary.
• Monitor A monitor observes those parts of the behavior of a SUT that

should be compared to the intended behavior as provided by a test case.
• Verdict The verdict is the result of the comparison of intended and actual

behaviors of a SUT (parts of the intended behavior are provided as test
cases). Generally, verdicts can be either of pass (behaviors conform), fail
(they don’t), and inconclusive (don’t know).
• Black-Box Testing Black-Box Testing denotes testing activities that do

not take into account knowledge of the inner structure (the code) of the
SUT.
• White-Box Testing White-Box Testing denotes testing activities that do

take into account knowledge of the inner structure (the code) of the SUT.
• IUT, Implementation under Test A IUT is the implementation one

wants to test. In many cases, it is not possible to access the IUT directly,
but only via a test context.
• SUT, System under Test An SUT is the implementation that one wants

to test (IUT) together with those things that one does not want to test, but
needs to access the IUT (test context).
• Model A model is an abstraction, i. e., a simplification, of a SUT or of its

environment, or both. In model-based testing, a model of the SUT is, among
other things, used for determining expected output.
• Test Context A Test Context consists of things that one does not want to

test, but are “in the way” between the tester and the thing that one wants to
test. For example, things like communication channels, or parts of the system
of which the IUT is a part that cannot easily be removed from the system. A
test context may “blurr” the view that one can have of an implementation,
and therefore (parts of) the test context may have to be part of the model.
Usually, one assumes that the test context is correctly implemented.

Acknowledgment Axel Belinfante provided valuable comments.

21 Finite State Machines

Bengt Jonsson

In this appendix, we review basic definitions and the Mealy machine model. The
definitions and most of the notation follow [LY94, LY96].

21.1 Basic Definitions

Definition 21.1. A Mealy machine is a quintuple M = 〈I ,O ,S , δ, λ〉 where

• I and O are finite nonempty sets of input symbols and output symbols, re-
spectively,
• S is a finite nonempty set of states,
• δ : S × I → S is the state transition function,
• λ : S × I → O is the output function.

An intuitive interpretation of a Mealy machine is as follows. At any point in time,
the machine is in one state s ∈ S . It is possible to give inputs to the machine,
by applying an input symbol a. The machine responds by producing an output
symbol λ(s , a) and transforming itself to the new state δ(s , a). We can depict
Mealy machines as directed labeled graphs, where S is the set of vertices. For
each state s ∈ S and input symbol a ∈ I , there is an edge from s to δ(s , a) labeled
by “a/b”, where b is the output symbol λ(s , a). See Figure 21.1 for an example
of a Mealy machine (due to Sven Sandberg). Note that the letters a and b are
used in two ways. In the text they are metasymbols denoting arbitrary input
and output symbols, whereas in examples they denote specific input or output
symbols.

Applying an input sequence x = a1a2 · · · ak ∈ I ∗ starting in a state s1
takes the machine successively to a sequence of states s2, s3, . . . , sk+1, where
si+1 = δ(si , ai) for i = 1, · · · , k , and produces a sequence of output symbols
b1b2 · · · bk ∈ O∗, where bi = λ(si , ai) for i = 1, · · · , k . We extend the transi-
tion and output functions from input symbols to sequences of input symbols,
by defining δ(s1, x) = sk+1 and λ(s1, x) = b1b2 · · · bk . A more precise recursive
definition is as follows:

δ(s , ε) = s
δ(s , xa) = δ(δ(s , x), a)
λ(s , ε) = ε
λ(s , xa) = λ(s , x)λ(δ(s , x), a)

We further extend the transition and output functions from states to sets of
states, by defining δ(Q , x) def= {δ(s , x) : s ∈ Q} and λ(Q , x) def= {λ(s , x) : s ∈ Q}
where Q ⊆ S is a set of states.

The number |S | of states is usually denoted n.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 611-614, 2005.
 Springer-Verlag Berlin Heidelberg 2005

612 Bengt Jonsson

s1s2

s3s4

a/0 b/0

b/1 a/0

a/0

b/1

a/1

b/0

Fig. 21.1. A Mealy machine M = 〈I ,O ,S , δ, λ〉 with states S = {s1, s2, s3, s4}, input
symbols I = {a, b}, and output symbols O = {0, 1}. For instance, applying a starting
in s1 produces output λ(s1, a) = 0 and moves to next state δ(s1, a) = s2.

The Mealy machines that we consider are completely specified, meaning
that at every state the machine has a defined reaction to every input symbol in
I , i.e., δ and λ are total. They are also deterministic, since for each state s
and input a exactly one next state δ(s , a) and output symbol λ(s , a) is possible.

21.2 Equivalence and Minimization

Let s and t be two states of the same Mealy machine, or two states in different
machines. The states s and t are equivalent if λ(s , x) = λ(t , x) for each input
sequence x ∈ I ∗. That is, for each input sequence the machine starting in s will
produce the same output sequence as the machine starting in t . Two machines
M and M′ are equivalent if each state in M has a corresponding equivalent
state in M′ and vice versa.

If in machine M, two states s and t are equivalent, then the machine M′

obtained fromM by merging s and t is clearly equivalent toM. More generally,
for each machine there is an equivalent machine with a minimal number of states,
called a reduced or minimized machine. In Chapters 1 – 4 and this appendix, we
consider only minimized Mealy machines.

Given a machineM, the minimized machine which is equivalent toM can be
constructed by a partition refinement procedure (see, e.g., [Hop71] and [AHU74,
Sec. 4.13]). A partition of S is a set {B1,B2, . . . ,Br} of subsets of S (sometimes
called blocks) such that ∪r

i=1Bi = S and Bi ∩Bj = ∅ for i 	= j , i.e., each element
of S is in exactly one of the blocks B1,B2, . . . ,Br . Given a Mealy machine
M = 〈I ,O ,S , δ, λ〉, the states of its equivalent minimized machine will be the
coarsest partition (i.e., having fewest blocks) {B1,B2, . . . ,Br} of S such that
whenever s and t are in the same block, then

21 Finite State Machines 613

• λ(s , a) = λ(t , a) for each input symbol a ∈ I , and
• δ(s , a) and δ(t , a) are in the same block.

It is straight-forward to check that s and t are in the same block if and only if
they are equivalent.

The straight-forward solution to finding this coarsest partition is to start
with an initial partition of S , where two states s and t are in the same block if
and only if λ(s , a) = λ(t , a) for each input symbol a ∈ I . Thereafter, this initial
partition is repeatedly refined by the following method. Take a block Bi of the
current partition. Examine δ(s , a) for each s ∈ Bi and a ∈ I . Partition Bi so
that s and t are in the same block if and only if δ(s , a) and δ(t , a) are in the
same block of the current partition. The process is is iterated until no further
refinements are possible. This process yields a quadratic algorithm, since each
refinement requires linear time, and there can be at most |S | refinements. A
more efficient algorithm has been developed by Hopcroft ([Hop71] and [AHU74,
Sec. 4.13]).

21.3 Initial and Current State Uncertainty

Chapters 1 – 4 use some basic definitions of the conclusions that can be made
from observations of a machine’s response to input strings.

The initial state uncertainty describes what we know about the initial state
after applying an input string and observing the resulting output string.

Definition 21.2. The initial state uncertainty after applying input sequence
x ∈ I ∗ is a partition π(x) def= {B1,B2, . . . ,Br} of S , such that two states s , t are
in the same block Bi if and only if λ(s , x) = λ(t , x).

In other words, each block in the initial state uncertainty π(x) is the set of states
from which a particular output sequence is produced in response to the input
sequence x .

The current state uncertainty describes what we know about the current
(final) state after having applied an input string and observed the resulting
output string.

Definition 21.3. The current state uncertainty after applying input se-
quence x ∈ I ∗ is the set of subsets σ(x) def= {δ(Bi , x) : Bi ∈ π(x)} of S .

In other words, each block in the current state uncertainty σ(x) is the set of states
that the machine can end up in after generating a particular output sequence
in response to the input sequence x . While the initial state uncertainty is a
partition, the current state uncertainty does not need to be a partition, but just
a set of nonempty blocks

21.4 Distinguishing Experiments

Chapters 1 – 4 present algorithms that investigate the structure and current
state of a Mealy machine by performing experiments, i.e., applying a sequence

614 Bengt Jonsson

of input symbols and observing the resulting output. An experiment can be
either preset or adaptive. A preset experiment (or preset sequence) is a fixed
input sequence x ∈ I ∗, and we are interested in observing the output sequence
produced by the machine in response to x . In an adaptive experiment (or
adaptive sequence), each symbol in the input sequence depends on the output
produced in response to the previous input symbols. An adaptive experiment
can be formalized as a decision tree, in which the internal nodes are labeled
with input symbols, and the edges are labeled with output symbols, such that
edges emanating from a common node have distinct output symbols. Each leaf
of an adaptive experiment can be labeled with a suitable defined outcome of the
experiment for the particular case that the experiment ends up in this leaf.

22 Labelled Transition Systems

Joost-Pieter Katoen

Let Act be a countable set of actions ranged over by a, b, c, Action τ denotes
the distinguished invisible (or, unobservable) action, i.e., τ �∈ Act.

Definition 22.1. Labelled transition system A labelled transition system
(LTS) M is a tuple (Q ,L,→) with Q a countable set of states, L ⊆ Act a
set of observable actions called the alphabet of M , and transition relation →⊆
Q × (L ∪ { τ })×Q .

We denote by q a−−→ q ′ that (q, a, q ′) ∈ →. The main differences between a
labelled transition system and a finite-state automaton are that the set of states
Q and the alphabet L (and consequently→) may be infinite. A state q may thus
have infinitely many successors for some action a, i.e., the set { q ′ | q a−−→ q ′ }
may be infinite.

Definition 22.2. A rooted LTS M is a tuple (Q ,L,→, q0) with (Q ,L,→) an
LTS with non-empty set Q of states, and an initial state q0 ∈ Q .

Definition 22.3. LTS M = (Q ,L,→) is non-deterministic if and only if for
some q ∈ Q we have q τ−−→ q ′ for some q ′ ∈ Q or for some a ∈ L it holds: q a−−→ q ′ ∧
q a−−→ q ′′ for q ′ �= q ′′. An LTS that is not non-deterministic is deterministic.

Let LTS M = (Q ,L,→). The following abbreviations are useful:

q a−−→ iff ∃ q ′ ∈ Q . q a−−→ q ′

q a−−→/ iff ¬ (q a−−→)

q a−−→ expresses that state q has an outgoing a-transition. q a−−→/ expresses that
this is not the case. For σ a string of actions a1 . . . an we have:

q σ−−→ q ′ iff ∃ q1, . . . , qn−1. q a1−−→ q1
a2−−→ . . .

an−1−−−−→ qn−1
an−−→ q ′

q
ε⇒ q ′ iff ∃n ≥ 0. q τn−−→ q ′

q
a⇒ q ′ iff q τ∗aτ∗−−−−−→ q ′

q
σ⇒ q ′ iff ∃ q1, . . . , qn−1. q

a1⇒ q1
a2⇒ . . .

an−1⇒ qn−1
an⇒ q ′

The ⇒ -notation is used for a generalized version of the transition relation that
concentrates on observable behavior. Note that q

ε⇒ q ′ notes that q can evolve
into q ′ unobservedly, i.e., by executing zero or more τ -transitions. This includes
the special case that no transitions are executed at all, and therefore q = q ′.
q

a⇒ q ′ expresses that q may evolve into q ′ when executing the observable action
a, possible preceded or followed by any finite number of invisible τ -transitions.

σ−−→ and
σ⇒ are the generalizations for strings of a−−→ and

a⇒ respectively.

M. Broy et al. (Eds.): Model-Based Testing of Reactive Systems, LNCS 3472, pp. 615-616, 2005.
 Springer-Verlag Berlin Heidelberg 2005

616 Joost-Pieter Katoen

The following sets are often used:

traces(q) = { σ ∈ L∗ | q σ−−→ }
init(q) = { a ∈ L ∪ { τ } | q a−−→ }

reach(q) = { q ′ | ∃σ. q σ−−→ q ′ }

Note that traces(q) contains sequences of actions that do not include unob-
servable actions. init(q) is the set of actions that are possible in state q, and
reach(q) is the set of states that are reachable when starting from q via executing
a sequence of actions (including invisible τ -actions).

For rooted LTS M = (Q ,L,→, q0) let traces(M) = traces(q0) and init(M) =
init(q0) the set of observable actions that are enabled in the initial state.

Definition 22.4. State q is stable if and only if q τ−−→/ . State q is unstable if
and only if q is not stable.

Definition 22.5. Trace equivalence Rooted LTSs M and M ′ are trace-equi-
valent, denoted M =tr M ′, if and only if traces(M) = traces(M ′).

Definition 22.6. Bisimulation A relation R ⊆ Q ×Q is a (strong) bisimula-
tion if and only if for all (q1, q2) ∈ R and a ∈ Act ∪ { τ } it is the case that:

(1) ∃ q ′
1. q1

a−−→ q ′
1 implies ∃ q ′

2. q2
a−−→ q ′

2 and (q ′
1, q

′
2) ∈ R

(2) ∃ q ′
2. q2

a−−→ q ′
2 implies ∃ q ′

1. q1
a−−→ q ′

1 and (q ′
1, q ′

2) ∈ R.

Rooted LTSs M = (Q ,L,→, q0) and M ′ = (Q ′,L,→′, q ′
0) are bisimilar, de-

noted M =bis M ′ if and only if there is some bisimulation relation R such that
(q0, q ′

0) ∈ R.

Literature

[AB99] Paul Ammann and Paul E. Black. A specification-based coverage met-
ric to evaluate test sets. In Proceedings of the 4th IEEE International
Symposium on High-Assurance Systems Engineering (HASE 1999), pages
239–248. IEEE Computer Society Press, 1999. [352]

[ABM98] Paul Ammann, Paul E. Black, and William Majurski. Using model check-
ing to generate tests from specifications. In Proceedings of the 2nd IEEE
International Conference on Formal Engineering Methods (ICFEM 1998),
pages 46–54. IEEE Computer Society Press, 1998. [352]

[Abr87] Samson Abramsky. Observation equivalence as a testing equivalence. The-
oretical Computer Science, 53:225–241, 1987. [120, 123, 124, 126, 129, 131,
132]

[Abr96] J-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996. [343]

[ACH+95] R. Alur, C. Courcoubetis, T. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theo-
retical Computer Science, 138:3–34, 1995. A preliminary version appeared in
Guy Cohen, editor, Proceedings of 11th International Conference on Anal-
ysis and Optimization of Systems (ICAOS 1994): Discrete Event Systems,
volume 199 of Lecture Notes in Control and Information Science, pages
331–351. Springer-Verlag, 1994. [375]

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994. [201, 203, 204, 205, 212, 216, 360,
367, 371]

[ADE+01] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivančić, V. Kumar,
I. Lee, P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical hybrid mod-
eling of embedded systems. In T.A. Henzinger and C. M. Kirsch, editors,
Proceedings of the 1st International Workshop on Embedded Software (EM-
SOFT 2001), volume 2211, pages 14–31. Springer-Verlag, 2001. [375, 376]

[ADE+03] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, V. Kumar, I. Lee,
P. Mishra, G. Pappas, and O. Sokolsky. Hierarchical hybrid modeling and
analysis of embedded systems. Proceedings of the IEEE, 91(1):11–28, Jan-
uary 2003. [375, 376]

[ADG+03] C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasare-
anu, G. Roşu, and W. Visser. Experiments with test case generation and
run-time analysis. In E. Börger, A. Gargantini, and E. Riccobene, editors,
Proceedings of the 10th International Workshop on Abstract State Machines
(ASM 2003), volume 2589 of Lecture Notes in Computer Science, pages 87–
107, Taormina, Italy, 2003. Springer-Verlag. Invited paper. [552, 553]

[ADLU91] A. Aho, A. Dahbura, D. Lee, and Ü. Uyar. An optimization technique for
protocol conformance test generation based on uio sequences and rural chi-
nese postman tours. IEEE Transactions on Communications, 39(11):1604–
1615, November 1991. [70, 72, 101, 104]

618 Literature

[AFH94] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata:
A determinizable class of timed automata. In Proceedings of the 16th Inter-
national Conference on Computer-aided Verification (CAV 1994), volume
818 of Lecture Notes in Computer Science, pages 1–13. Springer-Verlag,
1994. [205, 206, 371]

[AGE] AGEDIS homepage. http://www.agedis.de. [427]

[AGLS01] Rajeev Alur, Radu Grosu, Insup Lee, and Oleg Sokolsky. Compositional re-
finement for hierarchical hybrid systems. In Maria Domenica Di Benedetto
and Alberto L. Sangiovanni-Vincentelli, editors, Proceedings of the 4th In-
ternational Workshop on Hybrid Systems: Computation and Control (HSCC
2001), volume 2034 of Lecture Notes in Computer Science, pages 33–48.
Springer-Verlag, 2001. [375, 376]

[AGW77] Roy Adler, L. Wayne Goodwyn, and Benjamin Weiss. Equivalence of topo-
logical Markov shifts. Israel Journal of Mathemtics, 27(1):49–63, 1977. [32]

[AH97] Rajeev Alur and Thomas A. Henzinger. Real-time system = discrete system
+ clock variables. International Journal on Software Tools for Technology
Transfer, 1(1–2):86–109, 1997. [201]

[AHB03] C. Artho, K. Havelund, and A. Biere. High-level data races. Software
Testing, Verification and Reliability, 03(4):207–227, December 2003. Ex-
tended version of a paper in P.T. Isáıas, F. Sedes, J. C. Augusto, and U.
Ultes-Nitsche, editors, New Technologies for Information Systems: Proceed-
ings of the 3rd International Workshop on New Developments in Digital
Libraries (NDDL 2003) and the 1st International Workshop on Validation
and Verification of Software for Enterprise Information Systems (VVEIS
2003); in conjunction with the 5th International Conference on Enterprise
Information Systems, pages 82–93. ICEIS Press, 2003. [552, 553]

[AHP99] Pavel Atanassov, Stefan Haberl, and Peter Puschner. Heuristic worst-case
execution time analysis. In Proceedings of the 10th European Workshop on
Dependable Computing, pages 109–114. Austrian Computer Society (OCG),
May 1999. [383]

[AHU74] A.V. Aho, J. E. Hopcroft, and J.D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974. [612, 613]

[Ald90] Rudie Alderden. COOPER – the compositional construction of a canonical
tester. In Son T. Vuong, editor, Proceedings of the IFIP TC/WG6.1 2nd
International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE 1989), pages 13–17, Van-
couver, BC, Canada, 1990. North-Holland. [414, 417]

[Alu99] Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron Peled,
editors, Proceedings of the 11th Internation Conference on Computer Aided
Verification (CAV 1999), volume 1633 of Lecture Notes in Computer Sci-
ence, pages 8–22. Springer-Verlag, 1999. [202, 204, 206]

[ÁMHS01] Erika Ábrahám-Mumm, Ulrich Hannemann, and Martin Steffen. Verifica-
tion of hybrid systems: Formalization and proof rules in PVS. In Proceedings
of the 7th International Conference on Engineering of Complex Computer
Systems (ICECCS 2001), pages 48–57. IEEE Computer Society Press, 2001.
[375]

[Amt00] Peter Amthor. Structural Decomposition of Hybrid Systems. Number 13 in
Monographs of the Bremen Institute of Safe Systems. University of Bremen,
2000. [375]

Literature 619

[Ang87] D. Angluin. Learning regular sets from queries and counterexamples. In-
formation and Computation, 75:87–106, 1987. [582, 594, 599]

[ASMa] ASM homepage. http://www.eecs.umich.edu/gasm/. [412]
[ASMb] AsmL download. http://research.microsoft.com/fse/asml/. [412]
[Aus99] T.M. Austin. DIVA: A reliable substrate for deep submicron microarchitec-

ture design. In Proceedings of the 32nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 1999), pages 196–207, November
1999. [527]

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification
language LOTOS. Computer Networks, 14:25–29, 1987. [120, 163, 417, 423]

[BBHP03] Kirsten Berkenkötter, Stefan Bisanz, Ulrich Hannemann, and Jan Peleska.
HybridUML profile for UML 2.0. In Proceedings of the Workshop on Spec-
ification and Validation of UML models for Real Time and Embedded Sys-
tems (SVERTS) in conjunction with the 〈〈UML〉〉 2003 Conference, October
2003. Available at http://www-verimag.imag.fr/EVENTS/2003/SVERTS.
[375, 376]

[BC85] Gérard Berry and Laurent Cosserat. The ESTEREL synchronous program-
ming language. In Stephen D. Brookes, A.W. Roscoe, and Glynn Winskel,
editors, Proceedings of the Seminar on Concurrency, 1984, volume 197 of
Lecture Notes in Computer Science, pages 389–448. Springer-Verlag, 1985.
[395]

[BC00] M. Bernardo and R. Cleaveland. A theory of testing for Markovian pro-
cesses. In C. Palamidessi, editor, Proceedings of the 11th International Con-
ference on Concurrency Theory (CONCUR 2000), number 1877 in Lecture
Notes in Computer Science, pages 305–319. Springer-Verlag, 2000. [234,
244, 256, 257, 263, 264, 265, 267, 268]

[BCG+00] Dahananjay S. Brahme, Steven Cox, Jim Gallo, Mark Glasser, William
Grundmann, C. Norris Ip, William Paulsen, John L. Pierce, John Rose,
Dean Shea, and Karl Whiting. The transaction-based verification method-
ology. Technical report, Cadence Design Systems, Inc., August 2000. [455]

[BCGM00] Simon Burton, John A. Clark, Andy J. Galloway, and John A. McDer-
mid. Automated V&V for high integrity systems, a target formal methods
approach. In C. Michael Holloway, editor, Proceedings of the 5th NASA
Langley Formal Methods Workshop (Lfm 2000), number NASA/CP-2000-
210100 in NASA Conference Publications, pages 129–140, 2000. [333]

[BCL92] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with
partitioned transition relations. In A. Halaas and P.B. Denyer, editors,
Proceedings of the International Conference on Very Large Scale Integration
(VLSI 1991), volume A-1 of IFIP Transactions, pages 49–58, Edinburgh,
Scotland, 1992. North-Holland. [567]

[BCM00] Simon Burton, John A. Clark, and John A. McDermid. Testing, proof and
automation. An integrated approach. In Proceedings of the 1st International
Workshop of Automated Program Analysis, Testing and Verification (WAP-
ATV 2000), pages 57–63, 2000. In Conjunction with the 22nd International
Conference on Software Engineering (ICSE 2000). [331]

[BCM01] Simon Burton, John A. Clark, and John A. McDermid. Automatic genera-
tion of tests from Statechart specifications. In Ed Brinksma and Jan Tret-
mans, editors, Proceedings of the 1st International Workshop on Formal
Approaches to Testing of Software (FATES 2001), number BRICS NS-01-4
in Basic Research in Computer Science (BRICS) Notes Series, pages 31–46,
2001. [333]

620 Literature

[BCMD90] J.R. Burch, E. M. Clarke, K. L. McMillan, and David L. Dill. Sequential
circuit verification using symbolic model checking. In Proceedings of the 27th
ACM/IEEE Conference on Design Automation Conference (DAC 1990),
pages 46–51. ACM Press, 1990. [567]

[BCMS01] O. Burkart, D. Caucal, F. Moller, and Bernhard Steffen. Verification on
infinite structures. In S. Smolka J. Bergstra, A. Pons, editor, Handbook on
Process Algebra. North-Holland, 2001. [560]

[BDGW94] J. L. Balcázar, J. Dı́az, R. Gavaldà, and O. Watanabe. The query com-
plexity of learning DFA. New Generation Computing, 12:337–358, 1994.
[599]

[BDGW97] J. L. Balcázar, J. Dı́az, R. Gavaldà, and O. Watanabe. Algorithms for
learning finite automata from queries: A unified view. In Ding-Zhu Du,
Ker-I Ko, and Dingzhu Du, editors, Advances in Algorithms, Languages,
and Complexity. Kluwer Academic, February 1997. In Honor of Ronald V.
Book. [577, 590, 595]

[Bei95] B. Beizer. Black-Box Testing. John Wiley & Sons, 1995. [498]

[Bel57] R. Bellman. Dynamic programming. Princeton University Press, 1957. [206]

[BFdV+99] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs,
S. Mauw, and L. Heerink. Formal test automation: A simple experiment.
In G. Csopaki, S. Dibuz, and K. Tarnay, editors, Proceedings of the 12th
International Workshop on Testing of Communicating Systems (IWTCS
1999), volume 147 of IFIP Conference Proceedings, pages 179–196. Kluwer
Academic, 1999. [420, 424, 435, 438, 439, 443, 444, 446, 447, 448, 449, 456,
459]

[BFG+99] Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Susanne Graf, Jean-
Pierre Krimm, and Laurent Mounier. IF: An intermediate representation
and validation environment for timed asynchronous systems. In Jean-
nette M. Wing, Jim Woodcock, and Jim Davies, editors, Proceedings of
the World Congress on Formal Methods in the Development of Computing
Systems, Volume I (FM 1999), volume 1708 of Lecture Notes in Computer
Science, pages 307–327, Toulouse, France, 1999. Springer-Verlag. [419, 420]

[BFMW01] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass – Java with
assertions. In Klaus Havelund and Grigore Rosu, editors, Runtime Verifica-
tion (RV 2001), volume 55(2) of Electronic Notes in Theoretical Computer
Science. Elsevier Science Publishers, 2001. [555]

[BG96] M. Bernardo and R. Gorrieri. Extended markovian process algebra. In
U. Montanari and V. Sassone, editors, Proceedings of the 7th International
Conference on Concurrency Theory (CONCUR 1996), volume 1119 of Lec-
ture Notes in Computer Science, pages 315–330. Springer-Verlag, 1996. [242]

[BGHM96] N.H. Bshouty, S.A. Goldman, T. R. Hancock, and S. Matar. Asking queries
to minimize errors. Journal of Computer and Systems Science, 52:268–286,
1996. [599]

[BGK+02] K. Bhargavan, C. A. Gunter, M. Kim, I. Lee, D. Obradovic, O. Sokolsky, and
M. Viswanathan. Verisim: Formal analysis of network simulations. IEEE
Transactions on Software Engineering, 28(2):129–145, February 2002. [553]

[BGM91] Gilles Bernot, Marie-Claude Gaudel, and Bruno Marre. Software testing
based on formal specifications: A theory and a tool. Software Engineering
Journal, 6(6):387–405, 1991. [294, 334, 335]

Literature 621

[BGN+03] Mike Barnett, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte,
Nikolai Tillman, and Margus Veanes. Towards a tool environment for
model-based testing with AsmL. In Proceedings of the 3rd International
Workshop on Formal Approaches to Testing of Software (FATES 2003), vol-
ume 2931 of Lecture Notes in Computer Science, pages 252–266. Springer-
Verlag, 2003. [414]

[BH89] Ferenc Belina and Dieter Hogrefe. The CCITT Specification and Descrip-
tion Language SDL. Computer Networks and ISDN Systems, 16(4):311–341,
March 1989. [1]

[BHKW03] Christel Baier, Holger Hermanns, Joost-Pieter Katoen, and Verena Wolf.
Comparative branching time semantics for Markov chains. In Proceedings
of the 14th International Conference on Concurrency Theory (CONCUR
2003), volume 2761 of Lecture Notes in Computer Science, pages 492–507.
Springer-Verlag, 2003. [243, 271]

[BIĆP99] Stojan Bogdanović, Balázs Imreh, Miroslav Ćirić, and Tatjana Petković.
Directable automata and their generalizations. Novi Sad Journal of Math-
ematics, 29(2):29–69, 1999. [6, 31]

[Bin99] R. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison Wesley, 1999. [281]

[BJLS03] Therese Berg, Bengt Jonsson, Martin Leucker, and Mayank Saksena. In-
sights to Angluin’s learning. In Proceedings of the International Workshop
on Software Verification and Validation (SVV 2003), Electronic Notes in
Theoretical Computer Science, December 2003. To appear. [597]

[BLL+95] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. Uppaal – A tool suite for automatic verification of real-time
systems. In Proceedings of the 3rd DIMACS/SYCON Workshop on Hybrid
Systems: Verification and Control, volume 1066 of Lecture Notes in Com-
puter Science, pages 232–243. Springer-Verlag, October 1995. [222, 224]

[Blua] Bluetooth Project, http://www.iti.uni-luebeck.de/Research/MUC/EKG/.
[506]

[Blub] Bluetooth Special Interest Group. Specification of the Bluetooth System
(version 1.1). http://www.bluetooth.com. [506]

[BPDG98] Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Charac-
terization of the expressive power of silent transitions in timed automata.
Fundamenta Informaticae, 36(2–3):142–182, November 1998. [204]

[BPR93] L. Boullier, M. Phalippou, and A. Rouger. Experimenting test selection
strategies. In Proceedings of the 6th SDL Forum, 1993, pages 267–278.
Elsevier Science Publishers, 1993. [200]

[BR87] P. Berman and R. Roos. Learning one-counter languages in polynomial
time. In Proceedings of the 28th IEEE Symposium on the Foundations of
Computer Science (FOCS 1987), pages 61–67, Los Alamitos, CA, 1987.
IEEE Computer Society Press. [599]

[Bri89] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and
K. Sabnani, editors, Proceedings of the 8th IFIP Symposium on Protocol
Specification, Testing and Verification (PSTV 1988). North-Holland, 1989.
[153, 154, 163, 199, 414, 415, 417]

[BRRdS96] Amar Bouali, Anni Ressouche, Valérie Roy, and Robert de Simone. The
fctools user manual. Technical report, INRIA Sophia Antipolis, April
1996. [211]

622 Literature

[BRV95] Ed Brinksma, Arend Rensink, and Walter Vogler. Fair testing. In Insup
Lee and Scott A. Smolka, editors, Proceedings of the 6th International Con-
ference on Concurrency Theory (CONCUR 1995), volume 962 of Lecture
Notes in Computer Science, pages 313–327. Springer-Verlag, 1995. [143,
144, 145]

[Bry85] R.E. Bryant. Symbolic manipulation of boolean functions using a graphical
representation. In Proceedings of the 22nd ACM/IEEE Design Automation
Conference (DAC 1985), pages 688–694. IEEE Computer Society Press,
June 1985. [398]

[BS01a] Mike Barnett and Wolfram Schulte. Spying on components: A runtime
verification technique. In Proceedings of the OOPSLA 2001 Workshop on
Specification and Verification of Component-Based Systems (SAVBS 2001),
2001. Published as Technical Report ISU TR #01-09a, Iowa State Univer-
sity. [531]

[BS01b] M. Broy and K. Stølen. Specification and Development of Interactive Sys-
tems – Focus on Streams, Interfaces, and Refinement. Springer-Verlag,
2001. [286]

[Büc62] J. R. Büchi. On a decision method in restricted second-order arithmetic. In
E. Nagel, P. Suppes, and A. Tarski, editors, Proceedings of the 1st Interna-
tional Congress for Logic, Methodology, and Philosophy of Science (LMPS
1960), pages 1–12. Stanford University Press, 1962. [559, 567]

[Bur00] Simon Burton. Automated testing from Z specifications. Technical Report
YCS-2000-329, University of York, 2000. [331, 333]

[Bur02] Simon Burton. Automated Generation of High Integrity Test Suites from
Graphical Specifications. PhD thesis, University of York, March 2002. [331,
333]

[BvdLV95] Tommaso Bolognesi, Jeroen van de Lagemaat, and Chris Vissers, editors.
LOTOSphere: Software Development with LOTOS. Kluwer Academic, 1995.
[414]

[BY01] Luciano Baresi and Michal Young. Test oracles. Technical Report CIS-TR-
01-02, University of Oregon, Deptartment of Computer and Information
Science, Eugene, Oregon, U.S.A., August 2001. [530]

[CC91] Linda Christoff and Ivan Christoff. Efficient algorithms for verification of
equivalences for probabilistic processes. In Kim Guldstrand Larsen and
Arne Skou, editors, Proceedings of the 3rd International Conference on
Computer Aided Verification (CAV 1991), volume 575 of Lecture Notes in
Computer Science, pages 310–321. Springer-Verlag, 1991. [274]

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV Version 2: An opensource tool for
symbolic model checking. In E. Brinksma and K. Guldstrand Larsen, edi-
tors, Proceedings of the 14th International Conference on Computer-Aided
Verification (CAV 2002), volume 2404 of Lecture Notes in Computer Sci-
ence, pages 359–364, Copenhagen, Denmark, July 2002. Springer-Verlag.
[575]

[CCG+03] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut
Veith. Modular verification of software components in C. In Proceedings of
the 25th International Conference on Software Engineering (ICSE 2003),
pages 385–395. IEEE Computer Society Press, 2003. [325]

[CEP95] CEPSCO. GSM 11.11, Digital cellular telecommunications systems
(phase2+); Specifications of the subscriber identity module – mobile equip-
ment (SIM-ME) interface (GSM 11.11), 1995. [444]

Literature 623

[CEP00] CEPSCO. Common electronic purse specification: Technical specification,
2000. http://www.cepsco.org. [444]

[Čer64] Ján Černý. Poznámka k. homogénnym experimentom s konecnými au-
tomatmi. Matematicko-fysikalny Casopis SAV, 14:208–215, 1964. [19, 31]

[CGPT96] M. Clatin, R. Groz, M. Phalippou, and R. Thummel. Two approaches link-
ing test generation with verification techniques. In A. Cavalli and S. Bud-
kowski, editors, Proceedings of the 8th International Workshop on Protocol
Test Systems (IWPTS 1996). Chapman & Hall, 1996. [200, 410, 411, 412]

[Che02] Albert M. K. Cheng. Real-Time Systems; Scheduling, Analysis, and Verifi-
cation. John Wiley & Sons, 2002. [360]

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state machines.
IEEE Transactions on Software Engineering, 4(3):178–187, May 1978. Spe-
cial collection based on the 2nd International Computer Software and Ap-
plications Conference (COMPSAC 1978). [94, 96, 108, 110, 111, 159, 220,
370, 593, 599]

[Chr90] Ivan Christoff. Testing equivalences and fully abstract models for proba-
bilistic processes. In Proceedings of the 1st International Conference on
Concurrency Theory (CONCUR 1990), volume 458 of Lecture Notes in
Computer Science, pages 126–140. Springer-Verlag, 1990. [233, 244, 246,
249, 264, 265, 267, 268]

[CJR96] Zhou Chaochen, Wang Ji, and Anders P. Ravn. A formal description of
hybrid systems. In Rajeev Alur and Thomas A. Henzinger, editors, Pro-
ceedings of the DIMACS/SYCON 1995 Workshop on Hybrid Systems III:
Verification and Control, volume 1066 of Lecture Notes in Computer Sci-
ence, pages 511–530. Springer-Verlag, 1996. [375]

[CJRZ01] Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. Automated
test and oracle generation for Smart-Card applications. In Smart Card
Programming and Security. Proceedings of the International Conference on
Research in Smart Cards (E-smard 2001), volume 2140 of Lecture Notes in
Computer Science, pages 58–70. Springer-Verlag, 2001. [424, 427, 439, 444,
446, 447, 448, 449, 450, 456, 458, 459]

[CJRZ02] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: A symbolic test gen-
eration tool. In Proceedings of the 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS
2002), volume 2280 of Lecture Notes in Computer Science, pages 470–475.
Springer-Verlag, 2002. [424, 426, 427]

[CJSP93] H. Cho, S.-W. Jeong, F. Somenzi, and C. Pixley. Multiple observation
time single reference test generation using synchronizing sequences. In Pro-
ceedings of the European Conference on Design Automation (EDAC 1993)
with the European Event in ASIC Design, pages 494–498. IEEE Computer
Society Press, February 1993. [7, 32]

[CKK02] Karel Culik, Juhani Karhumäki, and Jarkko Kari. A note on synchronized
automata and road coloring problem. In Werner Kuich, Grzegorz Rozen-
berg, and Arto Salomaa, editors, Proceedings of the 5th International Con-
ference on Developments in Language Theory (DLT 2001), volume 2295 of
Lecture Notes in Computer Science, pages 175–185. Springer-Verlag, 2002.
[6, 32]

[CL95] Duncan Clarke and Insup Lee. Testing real-time constraints in a process
algebraic setting. In Proceedings of the 17th International Conference on
Software Engineering (ICSE 1995), pages 51–60. ACM Press, 1995. [364]

624 Literature

[CL97a] Duncan Clarke and Insup Lee. Automatic generation of tests for timing con-
straints from requirements. In Proceedings of the 3rd International Work-
shop on Object-Oriented Real-Time Dependable Systems (WORDS 1997),
pages 199–206. IEEE Computer Society Press, 1997. [364]

[CL97b] Duncan Clarke and Insup Lee. Automatic test generation for the analysis
of a real-time system: Case study. In Proceedings of the 3rd IEEE Real-
Time Technology and Applications Symposium (RTAS 1997), pages 112–
124. IEEE Computer Society Press, 1997. [364, 366]

[Cla76] Lori A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Transactions on Software Engineering, SE-2(3):215–222,
September 1976. [339, 343]

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press and McGraw-Hill Book Com-
pany, Cambridge, MA, 2 edition, 2001. [16]

[CO00] Rachel Cardell-Oliver. Conformance tests for real-time systems with timed
automata specifications. Formal Aspects of Computing, 12(5):350–371,
2000. [221, 224, 228, 229, 230, 367]

[COG98] Rachel Cardell-Oliver and Tim Glover. A practical and complete algo-
rithm for testing real-time systems. In A.P. Ravn and H. Rischel, editors,
Proceedings of the 5th International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT 1998), volume 1486 of
Lecture Notes in Computer Science, pages 251–261. Springer-Verlag, 1998.
[221, 228]

[Coh] S. Cohen. JTrek. Compaq, http://www.compaq.com/java/download/jtrek.
[542]

[CPB98] S. Barbey C. Peraire and D. Buchs. Test selection for object-oriented soft-
ware based on formal specifications. In D. Gries and W.P. de Roever,
editors, Proceedings of the International Conference on Programming Con-
cepts and Methods (PROCOMET 1998), volume 125 of IFIP Conference
Proceedings, pages 385–403. Chapman and Hall, 1998. [348]

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declara-
tive language for programming synchronous systems. In Conference Record
of the 14th Annual ACM Symposium on Principles of Programming Lan-
guages (POPL 1987), pages 178–188, Munich, Germany, January 21–23,
1987. ACM SIGACT-SIGPLAN, ACM Press. [395]

[ČPR71] Ján Černý, Alica Pirická, and Blanka Rosenauerová. On directable au-
tomata. Kybernetika, 7(4):289–298, 1971. [6, 31]

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A
semantics-based verification tool for finite state systems. ACM Transactions
on Programming Languages and Systems (TOPLAS), 15(1):36–72, January
1993. [575]

[CS92] Rance Cleaveland and Bernhard Steffen. A linear-time model-checking al-
gorithm for the alternation-free modal mu-calculus. In Kim G. Larsen and
Arne Skou, editors, Proceedings of the 3rd Conference on Computer Aided
Verification (CAV 1991), volume 575, pages 48–58, Berlin, Germany, 1992.
Springer-Verlag. [566]

[CSE96] J. Callahan, F. Schneider, and S. Easterbrook. Specification-based testing
using model checking. In Proceedings of the 2nd SPIN Workshop 1996,
pages 193–207, 1996. [352]

Literature 625

[CSZ92] R. Cleaveland, S. Smolka, and A. Zwarico. Testing preorders for probabilis-
tic processes. In W. Kuich, editor, Proceedings of the 19th International Col-
loquium on Automata, Languages and Programming (ICALP 1992), volume
623 of Lecture Notes in Computer Science, pages 708–719. Springer-Verlag,
1992. [233, 244, 246, 251, 262, 265, 267]

[DAV93] K. Drira, P. Azéma, and F. Vernadat. Refusal graphs for conformance tester
generation and simplification: A computational framework. In A. Danthine,
G. Leduc, and P. Wolper, editors, Proceedings of the 8th International Sym-
posium on Protocol Specification, Testing and Verification (PSTV 1993),
volume C-16 of IFIP Transactions, pages 257–272. North-Holland, 1993.
[168, 170, 171]

[Dav02] Gordon B. Davis. Anytime/anyplace computing and the future of knowl-
edge work. Communications of the ACM, 45(12):67–73, December 2002.
[525]

[DBG01] Julia Dushina, Mike Benjamin, and Daniel Geist. Semi-formal test genera-
tion with Genevieve. In Proceedings of the Design Automation Conference
(DAC 2001), pages 617–622. ACM Press, 2001. [439, 443, 445, 447, 448,
449, 450, 454, 455, 456, 457, 459]

[dBORZ99] Lydie du Bousquet, Farid Ouabdesselam, Jean-Luc Richier, and
N. Zuanon. Lutess: A specification-driven testing environment for syn-
chronous software. In Proceedings of the 21st International Conference on
Software Engineering (ICSE 1999), pages 267–276. ACM Press, 1999. [394,
395, 396, 398]

[dBRS+00] L. du Bousquet, S. Ramangalahy, S. Simon, C. Viho, A. Belinfante, and
R.G. de Vries. Formal test automation: The conference protocol with
TGV/Torx. In H. Ural, R.L. Probert, and G. von Bochmann, editors,
Proceedings of the IFIP 13th International Conference on Testing of Com-
municating Systems (TestCom 2000), volume 176 of IFIP Conference Pro-
ceedings, pages 221–228. Kluwer Academic, 2000. [420, 421, 424, 435, 438,
444]

[dBZ99] L. du Bousquet and N. Zuanon. An overview of Lutess, a specification-
based tool for testing synchronous software. In Proceedings of the 14th
IEEE International Conference on Automated Software Engineering (ASE
1999), pages 208–215. IEEE Computer Society Press, October 1999. [435]

[Den91] Richard Denney. Test-case generation from Prolog-based specifications.
IEEE Software, 8(2):49–57, 1991. [334, 336]

[DF93] Jeremy Dick and Alain Faivre. Automating the generation and sequencing
of test cases from model-based specifications. In Jim C.P. Woodcock and
Peter G. Larsen, editors, Proceedings of the 1st International Symposium of
Formal Methods Europe: Industrial-Strength Formal Methods (FME 1993),
volume 670 of Lecture Notes in Computer Science, pages 268–284. Springer-
Verlag, 1993. [328]

[DGJV01] S. Dudani, J. Geada, G. Jakacki, and D. Vainer. Dynamic assertions using
TXP. In K. Havelund and G. Roşu, editors, Proceedings of the 1st Workshop
on Run-time Verification (RV 2001), volume 55(2) of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, 2001. [555]

[DGN02] Z.R. Dai, J. Grabowski, and H. Neukirchen. Timed TTCN-3 – A Real-
Time Extension for TTCN-3. In I. Schieferdecker, H. König, and A. Wolisz,
editors, Testing of Communicating Systems, volume 14, Berlin, March 2002.
Kluwer Academic. [505]

626 Literature

[DGNP04] Z.R. Dai, J. Grabowski, H. Neukirchen, and H. Pals. From design to test
with UML. In R. Groz and R. Hierons, editors, Proceedings of the 16th IFIP
International Conference on Testing of Communication Systems (TestCom
2004), Lecture Notes in Computer Science, pages 33–49. Springer-Verlag,
March 2004. [497]

[DH03a] F. Drewes and J. Högberg. Learning a regular tree language from a teacher.
In Z. Ésik and Z. Fülöp, editors, Proceedings of the 7th International Con-
ference on Developments in Language Theory (DLT 2003), volume 2710 of
Lecture Notes in Computer Science, pages 279–291. Springer-Verlag, 2003.
[599]

[DH03b] F. Drewes and J. Högberg. Learning a regular tree language from a teacher
even more efficiently. Technical Report 03.11, Ume̊a University, 2003. [599]

[DJ01] M. Ducasse and E. Jahier. Efficient automated trace analysis: Examples
with morphine. In K. Havelund and G. Rosu, editors, Proceedings of the 1st
Workshop on Runtime Verification (RV 2001), volume 55(2) of Electronic
Notes in Theoretical Computer Science. Elsevier Science Publishers, 2001.
[555]

[DJC94] Michel Diaz, Guy Juanole, and Jean-Pierre Courtiat. Observer – a concept
for formal on-line validation of distributed systems. IEEE Transactions on
Software Engineering, 20(12):900–913, 1994. [531]

[DN84] J. Duran and S.C. Ntafos. An Evaluation of Random Testing. IEEE Trans-
actions on Software Engineering, SE-10(4):438–444, July 1984. [302, 303,
306, 307, 308]

[dN87] Rocco de Nicola. Extensional equivalences for transition systems. Acta
Informatica, 24:211–237, 1987. [127, 147]

[dNH84] Rocco de Nicola and Matthew Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83–133, 1984. [123, 133, 134, 233, 258,
265]

[DS95] Jim Davies and Steve Schneider. A brief history of timed CSP. Theoretical
Computer Science, 138(2):243–271, 1995. [360]

[DS03] D. Drusinsky and M. T. Shing. Monitoring temporal logic specifications
combined with time series constraints. Journal of Universal Computer Sci-
ence, 9(11):1261–1276, November 2003. [530]

[Duc90] M. Ducasse. Opium: An extendable trace analyser for Prolog. The Journal
of Logic Programming, 39:177–223, 1990. [555]

[Duc99] M. Ducasse. Coca: An automated debugger for C. In Proceedings of the
21st International Conference on Software Engineering (ICSE 1999), pages
504–513. ACM Press, 1999. [555]

[dVBF02] René G. de Vries, Axel Belinfante, and Jan Feenstra. Automated testing in
practice: The highway tolling system. In Ina Schieferdecker, Harmut König,
and Adam Wolisz, editors, Proceedings of the IFIP 14th International Con-
ference on Testing Communicating Systems (TestCom 2002), volume 210
of IFIP Conference Proceedings, pages 219–234. Kluwer Academic, 2002.
[420, 424]

[dVT98] R.G. de Vries and J. Tretmans. On-the-fly conformance testing using
Spin. In G. Holzmann, E. Najm, and A. Serhrouchni, editors, Proceed-
ings of the 4th Workshop on Automata Theoretic Verification with the Spin

Model Checker (SPIN 1998), number 98 S 002 in ENST Technical Report,
pages 115–128, Paris, France, November 1998. Ecole Nationale Supérieure
des Télécommunications. [200, 423, 424]

Literature 627

[ECGN01] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program evo-
lution. IEEE Transactions on Software Engineering, 27(2):99–123, February
2001. [548, 549, 550, 554, 555]

[ECla] EClipse. http://www.eclipse.org/. [502]

[ECLb] Eclipse constraint logic programming system.
http://www.icparc.ic.ac.uk/eclipse. [405]

[Eer94] E.H. Eertink. Simulation Techniques for the Validation of LOTOS Specifi-
cations. PhD thesis, University of Twente, Enschede, Netherlands, March
1994. [423, 424]

[EFM97] A. Engels, L. Feijs, and S. Mauw. Test generation for intelligent networks
using model checking. In Ed Brinksma, editor, Proceeedings of the 3rd Inter-
national Workshop on Tools and Algorithms for Construction and Analysis
of Systems (TACAS 1997), volume 1217 of Lecture Notes in Computer Sci-
ence, pages 384–398. Springer-Verlag, 1997. [352]

[EGKN99] Michael D. Ernst, William G. Griswold, Yoshio Kataoka, and David Notkin.
Dynamically discovering pointer-based program invariants. Technical Re-
port UW-CSE-99-11-02, University of Washington, Seattle, WA, November
1999. [550]

[EH00] K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In
C. Palamidessi, editor, Proceedings of 11th International Conference on
Concurrency Theory (CONCUR 2000), volume 1877 of Lecture Notes in
Computer Science, pages 153–167. Springer-Verlag, 2000. [567]

[EJ73] J. Edmonds and E. L. Johnson. Matching, Euler tours and the chinese
postman. Mathematical Programming, 5:88–124, 1973. [92]

[EL85] E. Allen Emerson and Chin-Laung Lei. Modalities for model checking (ex-
tended abstract): Branching time strikes back. In Conference Record of the
12th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL 1985), pages 84–96. ACM Press, 1985. [565]

[Epp90] David Eppstein. Reset sequences for monotonic automata. SIAM Journal
on Computing, 19(3):500–510, June 1990. [6, 7, 16, 25, 31, 32]

[EW92] E.H. Eertink and D. Wolz. Symbolic Execution of LOTOS Specifications.
In M. Diaz and R. Groz, editors, Proceedings of the 5th International Con-
ference on Formal Description Techniques (FORTE 1992), pages 295–310.
North-Holland, 1992. [423, 424]

[Fel68] W. Feller. An Introduction to Probability Theory and Its Applications. John
Wiley and Sons, 1968. [236]

[FGK+96] J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. CADP: A protocol validation and verification toolbox. In
Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the 8th Inter-
national Conference on Computer Aided Verification (CAV 1996), volume
1102 of Lecture Notes in Computer Science, pages 437–440. Springer-Verlag,
1996. [417, 419, 420, 423, 424]

[FGM+92] J.-C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and
J. Sifakis. A toolbox for the verification of LOTOS programs. In Proceedings
of the 14th International Conference on Software Engineering (ICSE 1992),
pages 246–259. ACM Press, 1992. [575]

628 Literature

[FHP02] Eitan Farchi, Alan Hartman, and Shlomit Pinter. Using a model-based
test generator to test for standard conformance. IBM Systems Journal,
41(1):89–110, 2002. [439, 444, 446, 447, 448, 449, 450, 454, 456, 457, 458,
459]

[FHS96] A. Schmidt F. Huber, B. Schätz and K. Spies. Autofocus – A tool for
distributed systems specification. In Proceedings of the 4th International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT 1996), volume 1135 of Lecture Notes in Computer Science, pages
467–470. Springer-Verlag, 1996. [343]

[FJJV96] J.-C. Fernandez, C. Jard, T. Jéron, and G. Viho. Using on-the-fly veri-
fication techniques for the generation of test suites. In Rajeev Alur and
Thomas A. Henzinger, editors, Proceedings of the 8th International Confer-
ence on Computer Aided Verification (CAV 1996), volume 1102 of Lecture
Notes in Computer Science, pages 348–359, New Brunswick, NJ, USA, 1996.
Springer-Verlag. [294, 417]

[FK00] D. Freitag and N. Kushmerick. Boosted wrapper induction. In Proceedings
of the 17th National Conference on Artificial Intelligence (AAAI 2000) and
12th Conference on Innovative Applications of Artificial Intelligence (IAAI
2000), Austin, Texas, August 2000. American Association for Artificial In-
telligence, The AAAI Press. Copublished and distributed by The MIT
Press. [550]

[FKL99] Lauret Fournier, Anatoly Koyfman, and Moshe Levinger. Developing an
architecture validation suite – application to the PowerPC architecture. In
Proceedings of the 36th ACM Design Automation Conference (DAC 1999),
pages 189–194. ACM Press, 1999. [439, 443, 446, 447, 448, 449, 451, 456,
457, 460]

[FKR+93] Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie.
Efficient learning of typical finite automata from random walks. In Pro-
ceedings of the 25th ACM Symposium on the Theory of Computing (STOC
1993), pages 315–324, New York, NY, 1993. ACM Press. [599]

[Fou03] Apache Software Foundation. Byte code engineering library (BCEL).
http://jakarta.apache.org/bcel/, 2003. Subproject of Jakarta. [530]

[Fra] France Telecom R&D website. http://www.rd.francetelecom.com/. [410]

[Fri90] Joel Friedman. On the road coloring problem. Proceedings of the American
Mathematical Society, 110(4):1133–1135, December 1990. [6]

[FvBK+91] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi.
Test selection based on finite state models. IEEE Transactions on Software
Engineering, 17(6):591–603, June 1991. [96, 98, 101]

[FW88] P.G. Frankl and E. J. Weyuker. An applicable family of data flow testing
criteria. IEEE Transactions on Software Engineering, SE-14:1483–1498,
October 1988. [297, 300]

[FW93] P.G. Frankl and E. J. Weyuker. A formal analysis of the fault-detecting
ability of testing methods. IEEE Transactions on Software Engineering,
19(3):202–213, 1993. [310]

[Gar98] Hubert Garavel. OPEN/CAESAR: An open software architecture for ver-
ification, simulation, and testing. In B. Steffen, editor, Proceedings of the
4th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 1998), volume 1384 of Lecture Notes in
Computer Science, pages 68–84. Springer-Verlag, 1998. [419, 420, 423, 424]

Literature 629

[Gei01] M. Geilen. On the construction of monitors for temporal logic properties.
In K. Havelund and G. Roşu, editors, Proceedings of the 1st International
Workshop on Run-time Verification (RV 2001), volume 55(2) of Electronic
Notes in Theoretical Computer Science. Elsevier Science Publishers, 2001.
[555]

[GG75] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data
selection. IEEE Transactions on Software Engineering, 1(2):156–173, June
1975. [88]

[GG93] Matthias Grochtmann and Klaus Grimm. Classification trees for partition
testing. Software Testing, Verification and Reliability, 3(2):63–82, 1993.
[330]

[GGSV02] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus Veanes.
Generating finite state machines from abstract state machines. In Pro-
ceedings of the International Symposium on Software Testing and Analysis
(ISSTA 2002), pages 112–122. ACM Press, 2002. [414]

[GH99] A. Gargantini and C. Heitmeyer. Using model checking to generate tests
from requirements specifications. In O. Nierstrasz and M. Lemoine, ed-
itors, Proceedings of the 7th European Software Engineering Conference,
held Jointly with the 7th ACM SIGSOFT Symposium on the Foundations
of Software Enigneegin (ESEC/FSE 1999), volume 1687 of Lecture Notes
in Computer Science, pages 146–163. Springer-Verlag, 1999. [352]

[GH03] A. Goldberg and K. Havelund. Instrumentation of java bytecode for runtime
analysis. In S. Eisenbach, G.T. Leavens, Peter Müller, A. Poetzsch-Heffter,
and E. Poll, editors, Proceedings of the 5th ECOOP Workshop on Formal
Techniques for Java-like Programs (FTfJP 2003), pages 151–159, July 2003.
Technical Report tr 408, ETH Zürich. [530]

[GHHD04] Q. Guo, R.M. Hierons, M. Harman, and K. Derderian. Computing unique
input/output sequences using genetic algorithms. In A. Petrenko and A. Ul-
rich, editors, Proceedings of the 3rd International Workshop on Formal Ap-
proaches to Testing of Software (FATES 2003), volume 2931 of Lecture
Notes in Computer Science, pages 164–177. Springer-Verlag, 2004. [84, 86]

[GHR93] N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed
system design: The integration of functional specification and performance
analysis using stochastic process algebras. In Lorenzo Donatiello and Ran-
dolph D. Nelson, editors, Performance Evaluation of Computer and Com-
munication Systems, Joint Tutorial Papers of Performance 1993 and Sig-
metrics 1993, volume 729 of Lecture Notes in Computer Science, pages
121–146. Springer-Verlag, 1993. [242]

[Gil61] Arthur Gill. State-identification experiments in finite automata. Informa-
tion and Control, 4(2–3):132–154, September 1961. [12, 24, 30, 36]

[Gin58] Seymour Ginsburg. On the length of the smallest uniform experiment
which distinguishes the terminal states of a machine. Journal of the ACM
(JACM), 5(3):266–280, July 1958. [8, 13, 30]

[GJ79] M.R. Garey and D. S. Johnson. Computers and Intractability. A Guide to
the Theory of NP-completeness. W.H. Freeman and Company, New York,
1979. [25, 28]

[GJL04] O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording
automata. Technical report, Uppsala University, 2004. [597, 599]

[GJS97] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. The
Sunsoft Press Java Series. Addison-Wesley, New York, 1997. [444]

630 Literature

[GL02] Hubert Garavel and Frédéric Lang. NTIF: A general symbolic model
for communicating sequential processes with data. In Doron Peled and
Moshe Y. Vardi, editors, Proceedings on the 22nd IFIP/WG6.1 Interna-
tional Conference on Formal Techniques for Networked and Distributed Sys-
tems (FORTE 2002), volume 2529 of Lecture Notes in Computer Science,
pages 276–291, Houston, Texas, USA, November 2002. Springer-Verlag. Full
version available as INRIA Research Report RR-4666. [426, 427]

[GO01] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In
G. Berry, H. Comon, and A. Finkel, editors, Proceedings of the 13th Confer-
ence on Computer Aided Verification (CAV 2001), volume 2102 of Lecture
Notes in Computer Science, pages 53–65. Springer-Verlag, 2001. [567]

[Gog01] Nicolae Goga. Comparing TorX, Autolink, TGV and UIO test algorithms.
In Rick Reed and Jeanne Reed, editors, Meeting UML – Proceedings of
the 10th International SDL Forum, 2001, volume 2078 of Lecture Notes in
Computer Science, pages 379–402. Springer-Verlag, 2001. [433, 434]

[Göh98] Wolf Göhring. Minimal initializing word: a contribution to Černý’s conjec-
ture. Journal of Automata, Languages and Combinatorics, 2(4):209–226,
1998. [6, 31]

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, 1989. [383]

[Gon01] L. Gong. JXTA: A network programming environment. IEEE Internet
Computing, 5(3):88–95, May/June 2001. [528]

[GPY02] A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In J.-P.
Katoen and P. Stevens, editors, Proceedings of the International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2002), volume 2280 of Lecture Notes in Computer Science, pages
357–370. Springer-Verlag, 2002. [599, 601, 602]

[GRMD01] A.Q. Gates, S. Roach, O. Mondragon, and N. Delgado. DynaMICs: Com-
prehensive support for run-time monitoring. In K. Havelund and G. Rosu,
editors, Proceedings of the 1st International Workshop on Runtime Verifica-
tion (RV 2001), volume 55(2) of Electronic Notes in Theoretical Computer
Science. Elsevier Science Publishers, 2001. [555]

[GRR03] A. Gargantini, E. Riccobene, and S. Rinzivillo. Using Spin to generate tests
from ASM specifications. In E. Börger, A. Gargantini, and E. Riccobene,
editors, Proceedings of the 10th International Workshop on Abstract State
Machines (ASM 2003), volume 2589 of Lecture Notes in Computer Science,
pages 263–277. Springer-Verlag, 2003. [352]

[Gru68] F. Gruenberger. Computers and communication: Toward a computer utility.
Prentice-Hall, 1968. [554]

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
O. Grumberg, editor, Proceedings of the 9th International Conference on
Computer Aided Verification (CAV 1997), volume 1254 of Lecture Notes in
Computer Science, pages 72–83, Haifa, Israel, 1997. Springer-Verlag. [287]

[GSDH97] Jens Grabowski, Rudolf Scheuer, Zhen Ru Dai, and Dieter Hogrefe. Ap-
plying SAMSTAG to the B-ISDN protocol SSCOP. In M. Kim, S. Kang,
and K. Hong, editors, Proceedings of the 10th International Workshop on
Testing of Communication Systems (IWTCS 1997). Chapman & Hall, 1997.
[431, 433]

Literature 631

[GSSL99] D.F. Gordon, W.M. Spears, O. Sokolsky, and Insup Lee. Distributed spa-
tial control, global monitoring and steering of mobile physical agents. In
Proceedings of the IEEE International Conference on Information, Intelli-
gence, and Systems (ICIIS 1999), pages 681–688. IEEE Computer Society
Press, November 1999. [553]

[Gur94] Yuri Gurevich. Evolving algebras 1993: Lipari Guide. In Egon Börger,
editor, Specification and Validation Methods, pages 9–37. Oxford University
Press, 1994. [1, 412, 414]

[Gut99] W. Gutjahr. Partition testing versus random testing: The influence of uncer-
tainty. IEEE Transactions on Software Engineering, 25(5):661–674, 1999.
[302, 308]

[GW98] Mathias Grochtmann and Joachim Wegener. Evolutionary testing of tem-
poral correctness. In Proceedings of the 2nd Software Quality Week Europe
(QWE 1998), Brussel, Belgium, 1998. [383]

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, June 1987. [1]

[Har00] Jerry J. Harrow, Jr. Runtime checking of multithreaded applications with
visual threads. In K. Havelund, J. Penix, and W. Visser, editors, SPIN
Model Checking and Software Verification: Proceedings of the 7th Interna-
tional SPIN Workshop, 2000, volume 1885 of Lecture Notes in Computer
Science, pages 331–342. Springer-Verlag, 2000. [533]

[HCL+03] Hyoung Seok Hong, Sung Deok Cha, Insup Lee, Oleg Sokolsky, and Hasan
Ural. Data flow testing as model checking. In Proceedings of the 25th
International Conference on Software Engineering (ICSE 2003), pages 232–
242. IEEE Computer Society Press, 2003. [352]

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-
flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–
1320, September 1991. [394, 395]

[Hen64] F.C. Hennie. Fault detecting experiments for sequential circuits. In Proceed-
ings of the 5th Annual Symposium on Switching Circuit Theory and Logical
Design, pages 95–110, Princeton, New Jersey, 11–13 November 1964. IEEE
Computer Society Press. [24, 101, 104]

[Hen88] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, 1988.
[183]

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of
the 11th Annual Symposium on Logic in Computer Science (LICS 1996),
pages 278–292. IEEE Computer Society Press, 1996. [375]

[HFT00] L. Heerink, J. Feenstra, and J. Tretmans. Formal Test Automation: The
Conference Protocol with Phact. In H. Ural, R. L. Probert, and G. von
Bochmann, editors, Proceedings of the 13th IFIP International Conference
on Testing of Communicating Systems (TestCom 2000), pages 211–220.
Kluwer Academic, 2000. [410, 435, 437, 444]

[HHK96] R.H. Hardin, Zvi Har’El, and Robert P. Kurshan. COSPAN. In Rajeev
Alur and Thomas A. Henzinger, editors, Proceedings of the 8th International
Conference on Computer Aided Verification (CAV 1996), volume 1102 of
Lecture Notes in Computer Science, pages 423–427. Springer-Verlag, 1996.
[575]

[HHWT97] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for
hybrid systems. Sotftware Tools for Technology Transfer, 1(1–2):110–122,
1997. [426, 427]

632 Literature

[Hib61] Thomas N. Hibbard. Least upper bounds on minimal terminal state experi-
ments for two classes of sequential machines. Journal of the ACM (JACM),
8(4):601–612, October 1961. [8, 14, 21, 30]

[Hil96] Jane Hillston. A compositional approach to performance modelling. Cam-
bridge University Press, 1996. [242]

[HJGP99] Wai-Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, and François Pen-
naneac’h. UMLAUT: An extendible UML transformation framework. In
Proceedings of the 14th IEEE International Conference on Automated Soft-
ware Engineering (ASE 1999), pages 275–278, Florida, 1999. IEEE Com-
puter Society Press. [419, 420]

[HJL96] C. Heitmeyer, R. Jeffords, and B. Labaw. Automated Consistency Checking
of Requirements Specifications. ACM Transactions on Software Engineering
and Methodology, 5(3):231–261, July 1996. [1]

[HJL03] John Hakansson, Bengt Jonsson, and Ola Lundqvist. Generating on-line
test oracles from temporal logic specifications. International Journal on
Software Tools for Technology Transfer, 4(4):456–471, 2003. [555]

[HK87] Z. Har’El and R.P. Kurshan. COSPAN User Guide. AT&T Bell Labora-
tories, October 1987. [575]

[HKWT95] Thomas A. Henzinger, Peter W. Kopke, and Howard Wong-Toi. The ex-
pressive power of clocks. In Automata, Languages and Programming, volume
944 of Lecture Notes in Computer Science, pages 417–428. Springer-Verlag,
1995. [203]

[HL02a] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs
using automatic anomaly detection. In Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002), pages 291–301. ACM
Press, 2002. [551, 552, 554]

[HL02b] R. Hightower and N. Lesiecki. Java Tools for eXtreme Programming. Wiley
Computer Publishing. John Wiley & Sons, 2002. [501]

[HLSU02] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory
of test coverage and generation. In J.-P. Katoen and P. Stevens, editors,
Proceedings of the 8th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2002), volume 2280 of
Lecture Notes in Computer Science, pages 327–341. Springer-Verlag, 2002.
[352]

[HM80] M. Henessy and R. Milner. Observing nondeterminism and concurrency.
In J. de Bakker and M. van Leeuwen, editors, Proceedings of the 7th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP
1980), volume 85 of Lecture Notes in Computer Science, pages 299–309.
Springer-Verlag, 1980. [129]

[HM85] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism
and concurrency. Journal of the ACM, 32(1):137–161, 1985. [271, 565]

[HME03] Michael Harder, Jeff Mellen, and Michael D. Ernst. Improving test suites via
operational abstraction. In Proceedings of the 25th International Conference
on Software Engineering (ICSE 2003), pages 60–71, Portland, Oregon, 2003.
IEEE Computer Society Press. [548]

[HMP92] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are
digital clocks? In Proceedings of the 19th International Colloquium on Au-
tomata, Languages, and Programming (ICALP 1992), volume 632 of Lecture
Notes in Computer Science, pages 545–558. Springer-Verlag, 1992. [201]

Literature 633

[HN83] M. Hennessy and R. De Nicola. Testing equivalences for processes. In
Proceedings of the 10th Interantional Colloquium on Automata, Languages
and Programming (ICALP 1983), 1983. [114, 208, 210]

[HN99] A. Hartman and K. Nagin. TCBeans, software test toolkit. In Proceedings
of the 12th International Software Quality Week (QW 1999), 1999. [445,
450]

[HNS97] Steffen Helke, Thomas Neustupny, and Thomas Santen. Automating test
case generation from Z specifications with Isabelle. In Jonathan P. Bowen,
Michael G. Hinchey, and David Till, editors, Proceedings of the 10th In-
ternational Conference of Z Users: The Z Formal Specification Notation
(ZUM 1997), volume 1212 of Lecture Notes in Computer Science, pages
52–71. Springer-Verlag, 1997. [327, 328, 329, 330, 331]

[HNS03] H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in au-
tomata learning. In W.A. Hunt Jr. and F. Somenzi, editors, Proceedings
of the 15th International Conference on Computer Aided Verification (CAV
2003), Lecture Notes in Computer Science, pages 315–327. Springer-Verlag,
2003. [595, 597]

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. In Proceedings of the 7th
Symposium of Logics in Computer Science (LICS 1992), pages 394–406,
Santa Cruz, California, 1992. IEEE Computer Scienty Press. [203]

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. International Series
in Computer Science. Prentice-Hall, 1985. [360]

[Hol91] Gerard J. Holzmann. Design and Validation of Protocols. Prentice-Hall
Software Series, 990157918X. Prentice-Hall, Englewood Cliffs, N. J., 1991.
[3, 91, 92, 423]

[Hol97] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997. [575]

[Hol01] G. Holzmann. From code to models. In Proceedings of the 2nd Interna-
tional Conference on Applications of Concurrency to System Design (ACSD
2001), pages 3–10. IEEE Computer Society Press, 2001. [287]

[Hop71] J. E. Hopcroft. An n log n algorithm for minimizing states in a finite au-
tomaton. In Z. Kohavi and A. Paz, editors, Proceedings of the Interna-
tional Symposium on Theory of Machines and Computations, 1971, pages
189–196, New York, 1971. Academic Press. [65, 66, 612, 613]

[How77] W. Howden. Symbolic testing and the dissect symbolic evaluation system.
IEEE Trans. on Software Engineering, SE-3(4):266–278, July 1977. [343]

[HPPS03a] G. Hahn, J. Philipps, A. Pretschner, and T. Stauner. Prototype-based tests
for hybrid reactive systems. In Proceedings of the 14th IEEE International
Workshop on Rapid System Prototyping (RSP 2003), pages 78–86. IEEE
Computer Society Press, 2003. [378, 379, 380]

[HPPS03b] G. Hahn, J. Phillips, A. Pretschner, and T. Stauner. Tests for mixed
discrete-continuous reactive systems. Technical Report TUM-I0301, Insti-
tut für Informatik, TU München, 2003. [378]

[HR01a] K. Havelund and G. Roşu. Monitoring Java programs with Java PathEx-
plorer. In K. Havelund and G. Roşu, editors, Proceedings of the 1st Work-
shop on Runtime Verificaton (RV 2001), volume 55(2) of Electronic Notes
in Theoretical Computer Science. Elsevier Science Publishers, 2001. [555]

634 Literature

[HR01b] Klaus Havelund and Grigore Roşu. Java PathExplorer – a runtime verifica-
tion tool. In Proceedings of the 6th International Symposium on Artificial
Intelligence, Robotics and Automation in Space (i-SAIRAS 2001): A New
Space Odyssey. 2001. Montreal, Canada. [526, 533]

[HR02] K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In
J.-P. Katoen and P. Stevens, editors, Proceedings of the 8th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2002), volume 2280 of Lecture Notes in Computer Science,
pages 324–356. Springer-Verlag, 2002. [538]

[HR04] K. Havelund and G. Roşu. An overview of the runtime verification tool
Java PathExplorer. Formal Methods in System Design, 24(2):189–215, 2004.
[536, 552]

[HSE97] F. Huber, B. Schätz, and G. Einert. Consistent graphical specification of
distributed systems. In Proceedings of the 4th International Symposium
of Formal Methods Europe (FME 1997), volume 1313 of Lecture Notes in
Computer Science, pages 122–141. Springer-Verlag, 1997. [406]

[Hsi71] E. P. Hsieh. Checking experiments for sequential machines. IEEE Transac-
tions on Computers, C-20:1152–1166, October 1971. [69, 72]

[HT90] D. Hamlet and R. Taylor. Partition test does not inspire confidence. IEEE
Transactions on Software Engineering, 16(12):1402–1411, December 1990.
[302, 305]

[HT92] Dung T. Huynh and Lu Tian. On some equivalence relations for probabilis-
tic processes. Fundamenta Informaticae, 17:211–234, 1992. [274]

[HU79] J. Hopcroft and J. Ullman. Introduction to automata theory, languages and
computation. Addison-Wesley, 1979. [197]

[IBM] IBM. Gotcha users guide – release 4.0.0. [445]
[ID84] M. Ito and Jürgen Duske. On cofinal and definite automata. Acta Cyber-

netica, 6(2):181–189, 1984. [6]
[Ins03] ETSI (European Telecommunication Standards Institute). The testing and

test control notation version 3. In Methods for Testing and Specification
(MTC). ETSI, 2003. [467, 468, 480, 486, 497, 501]

[IS95] Balázs Imreh and Magnus Steinby. Some remarks on directable automata.
Acta Cybernetica, 12(1):23–35, 1995. [19, 31]

[IS99] Balázs Imreh and Magnus Steinby. Directable nondeterministic automata.
Acta Cybernetica, 14(1):105–115, 1999. [32]

[ISO88] ISO/IEC. LOTOS – a formal description technique based on the temporal
ordering of observational behaviour. International Standard 8807, Interna-
tional Organization for Standardization – Information Processing Systems
– Open Systems Interconnection, Genève, September 1988. [163, 417, 423]

[ISO94] ISO/IEC. Information technology – open systems interconnection – confor-
mance testing methodology and framework, 1994. International ISO/IEC
multi-part standard No. 9646. [500]

[ISO02] ISO/IEC. Information technology – Z formal specification notation – syn-
tax, type system, and semantics. International Organization for Standard-
ization ISO/IEC 13568, 2002. [325, 327]

[ITU99] ITU. ITU-T recommendation Z.120: Message sequence charts (MSC). ITU
Telecommunication Standard Sector, Geneva (Switzerland), 1999. [468]

[ITU02] ITU. The evolution of TTCN.
http://www.itu.int/ITU-T/studygroups/com07/ttcn.html, 2002. [465]

[JBu] JBuilder. http://www.borland.com/jbuilder/personal/index.html. [502]

Literature 635

[JG90] F. Jahanian and A. Goyal. A formalism for monitoring real-time constraints
at run-time. In Proceedings of the 20th International Symposium on Fault-
Tolerant Computing Systems (FTCS 1990), pages 148–155, 1990. [531]

[JGL91] Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement
of probabilistic processes. In Proceedings of the 6th IEEE International
Symposium on Logic in Computer Science (LICS 1991), pages 266–277.
IEEE Computer Society Press, 1991. [234, 269]

[JJ02] Claude Jard and Thierry Jéron. TGV: Theory, principles and algorithms. In
Proceedings of the 6th World Conference on Integrated Design and Process
Technology (IDPT 2002). Society for Design and Process Science, June
2002. [417, 420]

[Jon91] Bengt Jonsson. Simulations between specifications of distributed systems.
In Proceedings of the 2nd International Conference on Concurrency Theory
(CONCUR 1991), volume 527 of Lecture Notes in Computer Science, pages
346–360. Springer-Verlag, 1991. [256, 269]

[JUn] JUnit. http://www.junit.org/. [501]
[JY95] Bengt Jonsson and Wang Yi. Compositional testing preorders for proba-

bilistic processes. In Proceedings of the 10th IEEE International Symposium
on Logic in Computer Science (LICS 1995), pages 431–441. IEEE Computer
Society Press, 1995. [234, 252, 255, 265]

[JY02] Bengt Jonsson and Wang Yi. Testing preorders for probabilistic pro-
cesses can be characterized by simulations. Theoretical Computer Science,
282(1):33–51, 2002. [234, 244, 245, 252, 255, 256, 265, 269]

[Kar03] Jarkko Kari. Synchronizing finite automata on eulerian digraphs. Theoret-
ical Computer Science, 295(1–3):223–232, 2003. [31, 32]

[KCS98] K. Narayan Kumar, Rance Cleaveland, and Scott Smolka. Infinite proba-
bilistic and non-probabilistic testing. In Proceedings of the 18th Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 1998), volume 1530 of Lecture Notes in Computer Science, pages
209–220. Springer-Verlag, 1998. [234, 244]

[Kel76] Robert M. Keller. Formal verification of parallel programs. Commun. ACM,
19(7):371–384, 1976. [113]

[Kfo70] Denis J. Kfoury. Synchronizing sequences for probabilistic automata. Stud-
ies in Applied Mathematics, 49(1):101–103, March 1970. [32]

[KGHS98] B. Koch, J. Grabowski, D. Hogrefe, and M. Schmitt. AutoLink – a tool for
automatic test generation from SDL specifications. In Proceedings of the
IEEE International Workshop on Industrial Strength Formal Specification
Techniques (WIFT 1998), October 1998. [431, 432, 433]

[KHMP94] Arjun Kapun, Thomas A. Henzinger, Zohar Manna, and Amir Pnueli.
Proving safety properties of hybrid systems. In Hans Langmaack, Willem P.
de Roever, and Jan Vytopil, editors, Proceedings of the 3rd International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems (FTRTFT 1994), volume 863 of Lecture Notes in Computer Science,
pages 431–454. Springer-Verlag, 1994. [375]

[Kin76] James C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, July 1976. [338, 342]

[KJG99] A. Kerbrat, T. Jéron, and R. Groz. Automated test generation from SDL
specifications. In R. Dssouli, G. von Bochmann, and Y. Lahav, editors,
The Next Millennium – Proceedings of the 9th SDL Forum, 1999), pages
135–152. Elsevier Science Publishers, 1999. [419, 420]

636 Literature

[KKL+01] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC:
A run-time assurance tool for Java programs. In Proccedings of the 1st In-
ternational Workshop on Run-Time Verification (RV 2001), volume 55(2)
of Electronic Notes in Theoretical Computer Science. Elsevier Science Pub-
lishers, July 2001. [526, 542]

[KKL+02] M. Kim, S. Kannan, I. Lee, M. Viswanathan, and O. Sokolsky. Compu-
tational analysis of run-time monitoring. In K. Havelund and G. Roşu,
editors, Proccedings of the 2nd Workshop on Run-Time Verification (RV
2002), volume 70(4). Elsevier Science Publishers, 2002. [547, 553]

[KKLS01] Moonjoo Kim, Sampath Kannan, Insup Lee, and Oleg Sokolsky. Java-MaC:
a run-time assurance tool for Java. In Prodeedings of the 1st International
Workshop on Run-time Verification (RV 2001), volume 55 of Electronic
Notes in Theoretical Computer Science, Paris, France, July 2001. Elsevier
Science Publishers. [530]

[KLS+02] M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky. Monitoring,
checking, and steering of real-time systems. In K. Havelund and G. Roşu,
editors, Proceedings of the 2nd Workshop on Run-time Verification (RV
2002), volume 70(4) of Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers, 2002. [547, 553, 555]

[KMP+95] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpiesman, and
D. Wonnacott. The Omega library interface guide. Technical Re-
port UMIACS-TR-95-41, University of Maryland at College Park, 1995.
http://www.cs.umd.edu/projects/omega/. [426, 427]

[Koh78] Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill, New
York, NY, second edition, 1978. [30, 31, 39, 40, 46, 67, 69, 70, 72, 160]

[Kop97] Hermann Kopetz. Real-Time Systems – Design Principles for Distributed
Embedded Applications. Kluwer Academic, 1997. ISBN: 0-7923-9894-7. [384]

[Koz77] Dexter Kozen. Lower bounds for natural proof systems. In Proceedings of
the 18th Annual Symposium on Foundations of Computer Science (FOCS
1977), pages 254–266, Providence, Rhode Island, October 1977. IEEE Com-
puter Society Press. [28, 48]

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, December 1983. [566]

[KPN] KPN website. http://www.kpn.com/. [408]
[KPV03] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized

symbolic execution for model checking and testing. In Proceedings of the
9th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, 2003. [342, 349, 351]

[KRS87] A.A. Klyachko, I.K. Rystsov, and M.A. Spivak. An extremal combinatorial
problem associated with the bound on the length of a synchronizing word in
an automaton. Kibernetika, 25(2):165–171, March–April 1987. Translation
from Russian. [6, 19, 31]

[KS76] J.G. Kemeny and J. L. Snell. Finite Markov Chains. Springer-Verlag, 1976.
[237]

[KSW96] Kolyang, Thomas Santen, and Burkhart Wolff. A structure preserving en-
coding of Z in Isabelle/HOL. In Joakim von Wright, Jim Grundy, and
John Harrison, editors, Proceedings of the 9th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs 1996), volume 1125 of
Lecture Notes in Computer Science, pages 283–298. Springer-Verlag, 1996.
[328]

Literature 637

[KV94] M. J. Kearns and U.V. Vazirani. An Introduction to Computational Learn-
ing Theory. The MIT Press, Cambridge, Massachusetts and London, Eng-
land, 1994. [590, 595]

[KVZ98] Hakim Kahlouche, Cesar Viho, and Massimo Zendri. An industrial experi-
ment in automatic generation of executable test suites for a cache coherency
protocol. In A. Petrenko and N. Yevtushenko, editors, Proceedings of the
11th IFIP/TC6 International Workshop on Testing of Communicating Sys-
tems (TestCom 1998). Chapman & Hall, September 1998. [439, 443, 445,
447, 448, 449, 450, 455, 456, 458, 460]

[Kwa62] Mei-Ko Kwan. Graphic programming using odd or even points. Chinese
Math, 1:273–277, 1962. [92]

[Lai02] Richard Lai. A survey of communication protocol testing. Journal of Sys-
tems and Software, 62(1):21–46, May 2002. [3]

[Lal85] P. Lala. Fault Tolerant and Fault Testable Hardware Design. Prentice-Hall
International, 1985. [70]

[Lan90] Rom Langerak. A testing theory for lotos using deadlock detection. In
Ed Brinksma, Giuseppe Scollo, and Chris A. Vissers, editors, Proceedings
of the IFIP/WG6.1 9th International Symposium on Protocol Specification,
Testing and Verification (PSTV 1989), pages 87–98. North-Holland, 1990.
[141, 142]

[LBGG94] I. Lee, P. Brémond-Grégoire, and R. Gerber. A process algebraic approach
to the specification and analysis of resource-bound real-time systems. Pro-
ceedings of the IEEE, 82(1):158–171, January 1994. [360]

[LDW03] Tessa Lau, Pedro Domingos, and Daniel S. Weld. Learning programs from
traces using version space algebra. In Proceedings of the International Con-
ference on Knowledge Capture (K-CAP 2003), Sanibel Island, FL, USA,
2003. ACM Press. [552]

[Lit] Lite ftp and web sites. ftp://ftp.cs.utwente.nl/pub/src/lotos-tools/ and
http://fmt.cs.utwente.nl/tools/lite/. [414, 417]

[LKK+99] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime
assurance based on formal specifications. In Hamid R. Arabnia, editor,
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 1999), Volume 1, pages
279–287. CSREA Press, 1999. [542, 546]

[LLC03] Glen McCluskey & Associates LLC. Javatm test coverage and instrumen-
tation toolkits. http://www.glenmccl.com/, 2003. [530]

[LP81] H.R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computa-
tion. Prentice-Hall, Englewood Cliffs, 1981. [92]

[LP01] B. Legeard and F. Peureux. Génération de séquences de tests à partir d’une
spécification B en PLC ensembliste. In Actes des Approches Formelles dans
l’Assistance au Développement de Logiciels (AFADL 2001), pages 113–130,
June 2001. [339, 344, 349]

[LPU02] B. Legeard, F. Peureux, and M. Utting. Automated Boundary Testing from
Z and B. In Proceedings of the International Conference on Formal Methods
Europe (FME 2002), volume 2391 of Lecture Notes in Computer Science,
pages 21–40, Copenhagen, Denmark, July 2002. Springer-Verlag. [339, 344]

[LPU04] B. Legeard, F. Peureux, and M. Utting. Controlling test case explosion in
test generation from B formal models. Software Testing, Verification and
Reliability (STVR), 14(2):81–103, 2004. [344]

638 Literature

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a
nutshell. International Journal on Software Tools for Technology Transfer,
1(1–2):134–152, 1997. [221, 367]

[LS91] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing.
Information and Computation, 94:1–28, 1991. [244, 252, 270, 271, 272, 273]

[LSV01] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Hybrid I/O
automata revisited. In Maria Domenica Di Benedetto and Alberto L.
Sangiovanni-Vincentelli, editors, Proceedings of the 4th International Work-
shop on Hybrid Systems: Computation and Control (HSCC 2001), volume
2034 of Lecture Notes in Computer Science, pages 403–417. Springer-Verlag,
2001. [375]

[LSW97] K.G. Larsen, B. Steffen, and C. Weise. Continuous modelling of real time
and hybrid systems: From concepts to tools. International Journal on Soft-
ware Tools for Technology Transfer, 1(1–2):64–85, 1997. [375]

[LT87] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed al-
gorithms. In Proceedings of the 6th ACM Symposium on Principles of Dis-
tributed Computing (PODC 1987), pages 137–151. ACM Press, 1987. Also:
Technical Report MIT/LCS/TM-387, Massachusetts Institute of Technol-
ogy, Cambridge, U.S.A., 1987. [173, 175]

[LT89] N.A. Lynch and M. R. Tuttle. An introduction to Input/Output Automata.
CWI Quarterly, 2(3):219–246, 1989. Also: Technical Report MIT/LCS/TM-
373 (TM-351 revised), Massachusetts Institute of Technology, Cambridge,
U.S.A., 1988. [175, 176]

[LvBP94] G. Luo, G. von Bochmann, and A. Petrenko. Selecting test sequences for
partially-specified non deterministic finite state machines. In Proceedings of
the 7th International Workshop on Protocol Test Systems (IWPTS 1994),
pages 91–106, Japan, February 1994. [191]

[LY94] David Lee and Mihalis Yannakakis. Testing finite-state machines:
State identification and verification. IEEE Transactions on Computers,
43(3):306–320, March 1994. [3, 29, 39, 40, 46, 48, 49, 50, 55, 59, 62, 63, 64,
65, 66, 67, 69, 72, 75, 79, 86, 611]

[LY96] David Lee and Mihalis Yannakakis. Principles and methods of testing finite
state machines – a survey. Proceedings of the IEEE, 84(8):1090–1126, 1996.
[3, 12, 31, 40, 67, 80, 87, 88, 89, 93, 107, 611]

[MA00] B. Marre and A. Arnould. Test sequence generation from lustre descrip-
tions: GATEL. In Proceedings of the 15th IEEE International Conference
on Automated Software Engineering (ASE 2000), Grenoble, 2000. IEEE
Computer Society Press. [402]

[Mah99] Savi Maharaj. Towards a method of test case extraction from correctness
proofs. Presented at the 14th International Workshop on Algebraic Devel-
opment Techniques (WADT 1999), 1999. [336, 337, 338]

[Mah00] Savi Maharaj. Test case extraction from correctness proofs. University of
Stirling, 2000. Case for Support. [336]

[ME03] Stephen McCamant and Michael D. Ernst. Predicting problems caused by
component upgrades. In Proceedings of the 9th European Software Engi-
neering Conference (ESEC 2003). Held jointly with the 11th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(FSE 2003), pages 287–296. ACM Press, 2003. [550, 554]

Literature 639

[Mel88] Thomas Melham. Abstraction mechanisms for hardware verification. In
G. Birtwistle and P.A. Subrahmanyam, editors, VLSI Specification, Verifi-
cation, and Synthesis, volume 35 of The Kluwer International Series in En-
gineering and Computer Science, pages 129–157. Kluwer Academic, Boston,
1988. [455]

[Mey79] G. Meyer. The Art of Software Testing. John Wiley & Sons, Inc., 1979.
[297]

[Mey92] Bertrand Meyer. Design by contract. IEEE Computer, 25(10):40–52, Oc-
tober 1992. [531]

[Mey01] Oliver Meyer. Structural Decomposition of Timed-CSP and its Application
in Real-Time Testing. Dissertation, University of Bremen, 2001. Number
16 in Monographs of the Bremen Institute of Safe Systems. [360]

[MH99] V. Matena and M. Hapner. Enterprise javabeansTM specification. Public
Draft version 1.1, Sun Microsystems, 1999. [528]

[Mil80] R. Milner. A Calculus for Communicating Processes, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980. [119, 129, 145]

[Mil89] Robin Milner. Communication and concurrency. Prentice-Hall, 1989. [362,
565, 602]

[MK99] Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Programs.
John Wiley & Sons, 1999. [423, 424]

[ML97] Aloysius K. Mok and Guangtian Liu. Efficient run-time monitoring of tim-
ing constraints. In IEEE Real-Time Technology and Applications Sympo-
sium, June 1997. [531]

[Moo56] Edward F. Moore. Gedanken-experiments on sequential machines. In C.E.
Shannon and J. McCarthy, editors, Automata Studies, number 34 in An-
nals of Mathematics Studies, pages 129–153. Princeton University Press,
Princeton, NJ, 1956. [12, 13, 22, 30, 36, 39, 89]

[MOSS99] M. Müller-Olm, D. Schmidt, and B. Steffen. Model checking: A tutorial
introduction. In G. File A. Cortesi, editor, Proceedings of the 6th Static
Analysis Symposium (SAS’99), volume 1694 of Lecture Notes in Computer
Science, pages 330–354, Heidelberg, Germany, September 1999. Springer-
Verlag. [560]

[MP93] R. Miller and S. Paul. On the generation of minimal-length conformance
tests for communication protocols. IEEE/ACM Transactions on Network-
ing, 1(1):116–129, February 1993. [72, 76]

[MP95] O. Maler and A. Pnueli. On the learnability of infinitary regular sets.
Information and Computation, 118(2):316–326, 1 May 1995. [599]

[MP05] Leonardo Mariani and Mauro Pezzè. Behavior capture and test: Auto-
mated analysis of component integration. In Proceedings of the 10th IEEE
International Conference on the Engineering of Complex Computer Systems
(ICECCS 2005), Shanghai, China, June 2005. [551, 554]

[MRS+97] J. R. Moonen, J. M.T. Romijn, O. Sies, J.G. Springintveld, L.G.M. Feijs,
and R.L. C. Koymans. A two-level approach to automated conformance
testing of VHDL designs. Technical Report SEN-R9707, CWI – Centrum
voor Wiskunde en Informatica, Amsterdam, 1997. [410]

[MS99] Alexandru Mateescu and Arto Salomaa. Many-valued truth functions,
černý’s conjecture and road coloring. Bulletin of the EATCS, 68:134–150,
June 1999. [32]

[MSF] Microsoft Research – Foundations of Software Engineering.
http://research.microsoft.com/fse/. [412]

640 Literature

[Müh97] H. Mühlenbein. Genetic algorithms. In E. Aarts and J.K. Lenstra, editors,
Local Search in Combinatorial Optimization, pages 137–171. John Wiley &
Sons, 1997. [84]

[Mus93] J.D. Musa. Operational profiles in software-reliability engineering. IEEE
Software, 10(2):14–32, March 1993. [394]

[Nai97] K. Naik. Efficient computation of unique input/output sequences in finite-
state machines. IEEE/ACM Transactions on Networking, 5(4):585–599,
August 1997. [69, 72, 76, 77, 78, 79, 83, 84, 86]

[Nat86] B.K. Natarajan. An algorithmic approach to the automated design of parts
orienters. In Proceedings of the 27th Annual Symposium on Foundations of
Computer Science (FOCS 1986), pages 132–142, Toronto, Ontario, Canada,
October 1986. IEEE. [7, 32]

[NdFL95] Manuel Nuthez, David de Frutos, and Luis Llana. Acceptance trees for
probabilistic processes. In Insup Lee and Scott A. Smolka, editors, Proceed-
ings of the 6th International Conference on Concurrency Theory (CONCUR
1995), volume 962 of Lecture Notes in Computer Science, pages 249–263.
Springer-Verlag, 1995. [234]

[NH84] R. De Nicola and M.C. B. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83–133, 1984. [179]

[Nie00] B. Nielsen. Speification and Test of Real-Time Systems. PhD thesis, De-
partment of Computer Science, Aalborg University, 2000. [371, 372]

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002. [328, 331]

[NS03] Brian Nielsen and Arne Skou. Automated test generation from timed au-
tomata. International Journal on Software Tools for Technology Transfer,
5:59–77, 2003. [205, 206, 212, 230]

[NT81] S. Naito and M. Tsunoyama. Fault detection for sequential machines by
transition tours. In Proceedings of the 11th IEEE Fault Tolerant Computing
Conference (FTCS 1981), pages 238–243. IEEE Computer Society Press,
1981. [93]

[Nta88] S.C. Ntafos. A comparison of some structural testing strategies. IEEE
Transactions on Software Engineering, SE-11:367–375, April 1988. [301]

[Nta98] Simeon Ntafos. On random and partition testing. In Proceedings of the
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 1998), pages 42–48. ACM Press, 1998. [302, 307, 441]

[OBG01] D. Buchs O. Biberstein and N. Guelfi. Object-oriented nets with algebraic
specifications: The CO-OPN/2 formalism. In Gul Agha, Fiorella de Cindio,
and Grzegorz Rozenberg, editors, Concurrent Object-Oriented Programming
and Petri Nets, Advances in Petri Nets, volume 2001 of Lecture Notes in
Computer Science, pages 73–130. Springer-Verlag, 2001. [343]

[OMG02] Object Management Group (OMG). UML Testing Profile – Request For
Proposal, April 2002. OMG Document (ad/01-07-08). [497]

[OP95] F. Ouabdesselam and I. Parissis. Constructing operational profiles for syn-
chronous crtitical software. In Proceedings of the 6th International Sym-
posium on Software Reliability Engineering (ISSRE 1995), pages 286–293.
IEEE Computer Society Press, 1995. [398]

Literature 641

[ORR+96] Sam Owre, Sreeranga Rajan, John M. Rushby, Natarajan Shankar, and
Mandayam K. Srivas. PVS: Combining specification, proof checking, and
model checking. In Rajeev Alur and Thomas A. Henzinger, editors, Pro-
ceedings of the 8th International Conference on Computer Aided Verifica-
tion (CAV 1996), volume 1102 of Lecture Notes in Computer Science, pages
411–414. Springer-Verlag, 1996. [325]

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype
verification system. In Deepak Kapur, editor, Proceedings of the 11th In-
ternational Conference on Automated Deduction (CADE 1992), volume 607
of Lecture Notes in Artificial Intelligence, pages 748–752. Springer-Verlag,
1992. [337]

[ORSvH95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification
of fault-tolerant architerctures: Prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21(2):107–125, 1995. [426, 427]

[PAD+98] Jan Peleska, Peter Amthor, Sabine Dick, Oliver Meyer, Michael Siegel, and
Cornelia Zahlten. Testing reactive real-time systems. Tutorial, held at
the 5th International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT 1998), Denmark Technical University,
Lyngby, 1998. Updated revision. Available as http://www.informatik.uni-
bremen.de/agbs/jp/papers/ftrtft98.ps. [356, 357, 360, 375]

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
New York, 1994. [28]

[Pat70] Michael S. Paterson. Unsolvability in 3 × 3 matrices. Studies in Applied
Mathematics, 49(1):105–107, March 1970. [32]

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer-Verlag, 1994. [328, 331]

[PBD93] A. Petrenko, G. Bochmann, and R. Dussouli. Conformance relations and
test derivation. In O. Rafiq, editor, Proceedings of the 6th International
Workshop on Protocol Test Systems (IWPTS 1993), volume C-19 of IFIP
Transactions, pages 157–178, Pau, France, September 1993. North-Holland.
[190]

[PDGN03] H. Pals, Z. R. Dai, J. Grabowski, and H. Neukirchen. UML-based modeling
of roaming with bluetooth devices. In Chun Chen, Walter Dosch, Yuntao
Qian, and Huaizhong Lin, editors, First Hangzhou-Lübeck Conference on
Software Engineering (HL-SE’03), 2003. [506]

[Pel02] Jan Peleska. Formal methods for test automation – hard real-time testing of
controllers for the airbus aircraft family. In Proceedings of the 6th Biennial
World Conference on Integrated Design & Process Technology (IDPT 2002).
Society for Design and Process Science, June 2002. [360]

[Per98] Cecile Peraire. Formal testing of object-oriented software: From the method
to the tool. PhD thesis, École Polytechnique Fédéral de Lausanne (EPFL),
Switzerland, 1998. [349]

[PF90] David H. Pitt and David Freestone. The derivation of conformance tests
from LOTOS specifications. IEEE Transactions on Software Engineering,
16(12):1337–1343, December 1990. [163, 164, 165, 166]

[Pha91] M. Phalippou. Tveda: An experiment in computer-aided test case
generation from formal specification of protocols. Technical Note
NT/LAA/SLC/347, France Telecom – CNET, 1991. [200]

642 Literature

[Pha93] M. Phalippou. The limited power of testing. In Gregor von Bochmann,
Rachida Dssouli, and Anindya Das, editors, Proceedings of the 5th Interna-
tional Workshop on Protocol Test Systems (IWPTS 1992), volume C-11 of
IFIP Transactions, pages 43–54, Montréal, September 1993. North-Holland.
[190, 196]

[Pha94a] M. Phalippou. Executable testers. In Omar Rafiq, editor, Proceedings of
the 6th International Workshop on Protocol Test Systems (IWPTS 1993),
volume C-19 of IFIP Transactions, pages 35–50, Pau, France, September
1994. North-Holland. [200]

[Pha94b] M. Phalippou. Relations d’Implantation et Hypothèses de Test sur des Auto-
mates à Entrées et Sorties. PhD thesis, L’Université de Bordeaux I, France,
1994. [173, 175, 177, 188, 412]

[Pha95] M. Phalippou. Abstract testing and concrete testers. In S.T. Vuong
and S.T. Chanson, editors, Proceedings of the 14th IFIP/WG6.1 Inter-
national Symposium on Protocol Specification, Testing and Verification
(PSTV 1994), volume 1 of IFIP Conference Proceedings, pages 221–236,
Vancouver, June 1995. Chapman & Hall. [200]

[Phi] Philips website. http://www.philips.com/. [409]
[Phi87] Iain Phillips. Refusal testing. Theoretical Computer Science, 50:241–284,

1987. [126, 138, 139, 140, 141]
[Pin78a] Jean-Eric Pin. Sur les mots synchronisants dans un automate fini. Elektro-

nische Informationsverarbeitung und Kybernetik (EIK), 14:297–303, 1978.
[31]

[Pin78b] Jean-Eric Pin. Sur un cas particulier de la conjecture de černý. In Giorgio
Ausiello and Corrado Böhm, editors, Proceedings of the 5th Colloquium
on Automata, Languages and Programming, volume 62 of Lecture Notes in
Computer Science, pages 345–352, Udine, Italy, July 1978. Springer-Verlag.
[31, 32]

[Pir95] L. Ferreira Pires. Protocol Implementation: Manual for Practical Exercises
1995–1996. University of Twente, the Netherlands, 1995. Lecture notes.
[443]

[PJH92] Carl Pixley, Seh-Woong Jeong, and Gary D. Hachtel. Exact calculation of
synchronization sequences based on binary decision diagrams. In Proceed-
ings of the 29th Design Automation Conference (DAC 1992), pages 620–623.
IEEE Computer Society Press, June 1992. [6, 32]

[PLP03] A. Pretschner, H. Lötzbeyer, and J. Philipps. Model based testing in incre-
mental system development. Journal of Systems and Software, 70(3):315–
329, 2003. [289]

[PN98] Peter Puschner and Roman Nossal. Testing the results of static worst-
case execution-time analysis. In Proceedings of the 19th IEEE Real-Time
Systems Symposium (RTSS 1998), pages 134–143. IEEE Computer Society
Press, December 1998. [383, 384]

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium Foundations of Computer Science (FOCS 1977), pages 46–57.
IEEE Computer Society Press, 1977. [526, 529, 562]

[PO96] I. Parissis and F. Ouabdesselam. Specification-based testing of synchronous
software. In D. Garlan, editor, Proceedings of the 4th ACM SIGSOFT
Symposium on Foundations of Software Engineering (FSE 1996), volume
21(6) of ACM SIGSOFT Software Engineering Notes, pages 127–134. ACM
Press, 1996. [398]

Literature 643

[PP04] Wolfgang Prenninger and Alexander Pretschner. Abstractions for model-
based testing. In Proceedings of the International Workshop on Test and
Analysis of Component Based Systems (TACoS 2004), Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, 2004. [284, 288,
452]

[PPS+03] J. Philipps, A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel, and
K. Scholl. Model-based test case generation for smart cards. In In Proceed-
ings of the 8th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS 2003), Electronic Notes in Theoretical Computer
Science. Elsivier, 2003. to appear. [286, 339, 343, 347, 406, 439, 444, 446,
447, 448, 449, 451, 453, 454, 455, 456, 457, 458, 459]

[PPW+05] Alexander Pretschner, Wolfgang Prenninger, Stefan Wagner, Christian
Kühnel, Martin Baumgartner, Bernd Sostawa, Rüdiger Zölch, and Thomas
Stauner. One Evaluation of Model-Based Testing and its Automation. In
Proc. ICSE’05, 2005. To appear. [291]

[PR94] Irith Pomeranz and Sudhakar M. Reddy. Application of homing sequences
to synchronous sequential circuit testing. IEEE Transactions on Computers,
43(5):569–580, May 1994. [22, 32]

[Pre01] A. Pretschner. Classical search strategies for test case generation with
constraint logic programming. In E. Brinksma and J. Tretmans, editors,
Proceedings of the 3rd International Workshop on Formal Approaches to
Testing of Software (FATES 2001), number NS/01/4 in BRICS Notes Se-
ries, pages 47–60, 2001. Satellite Workshop on CONCUR 2001. [407]

[Pre03] A. Pretschner. Compositional generation for MC/DC test suites. In Pro-
ceedings of the International Workshop on Test and Analysis of Component
Based Systems (TACoS 2003), volume 82(6) of Electronic Notes in The-
oretical Computer Science, pages 1–11. Elsevier Science Publishers, 2003.
[289, 407]

[PS01] Tatjana Petković and Magnus Steinby. On directable automata. Journal of
Automata, Languages and Combinatorics, 6(2):205–220, 2001. [6]

[PST96] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Spec-
ification and Z. Prentice Hall, second edition, 1996. [325, 327]

[PTLP99] S. Prowell, C. Trammell, R. Linger, and J. Poore. Cleanroom Software
Engineering. Addison Wesley, 1999. [283]

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley and Sons, Inc, 1994. [239, 241]

[PVY99] D. Peled, M. Vardi, and M. Yannakakis. Black box checking. In Proceedings
of the Joint International Conference on Formal Description Techniques
for Distributed Systems and Communication Protocols (FORTE 1999) and
Protocol Specification, Testing and Verification (PSTV 1999), volume 156
of IFIP Conference Proceedings, pages 225–240. Kluwer Academic, 1999.
[599]

[Rav96] Bala Ravikumar. A deterministic parallel algorithm for the homing se-
quence problem. In Proceedings of the 8th IEEE Symposium on Parallel
and Distributed Processing (SPDP 1996), pages 512–520, New Orleans, LA,
October 1996. IEEE Computer Society Press. [31]

[Rav98] Bala Ravikumar. Parallel algorithms for finite automata problems. In
José D. P. Rolim, editor, Proceedings of the 10 Workshops of the 12th In-
ternational Parallel Processing Symposium (IPPS 1998) and 9th Sympo-
sium on Parallel and Distributed Processing (SPDS 1998), volume 1388 of
Lecture Notes in Computer Science, page 373. Springer-Verlag, 1998. [31]

644 Literature

[RdBJ00] V. Rusu, L. du Bousquet, and T. Jéron. An approach to symbolic test gen-
eration. In W. Grieskamp, T. Santen, and B. Stoddart, editors, Proceedings
of the 2nd International Conference on Integrated Formal Methods (IFM
2000), volume 1945 of Lecture Notes in Computer Science, pages 338–357.
Springer-Verlag, 2000. [174, 418, 424, 425, 426, 427]

[RG95] Anil S. Rao and Kenneth Y. Goldberg. Manipulating algebraic parts in
the plane. IEEE Transactions on Robotics and Automation (IEEETROB),
11(4):598–602, August 1995. [7, 32]

[RH01a] S. Rayadurgam and M.P. Heimdahl. Coverage based test case generation
using model checkers. In Proceedings of the 8th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems
(ECBS 2001), pages 83–91. IEEE Computer Society Press, 2001. [352]

[RH01b] S. Rayadurgam and M.P. Heimdahl. Test-sequence generation from formal
requirements models. In Proceedings of the 6th IEEE International Sympo-
sium on High-Assurance Systems Engineering (HASE 2001), pages 23–31.
IEEE Computer Society Press, 2001. [352]

[RH01c] G. Roşu and K. Havelund. Synthesizing dynamic programming algorithms
from linear temporal logic formulae. Technical report, RIACS, 2001. [534]

[RHC76] C.V. Ramamoorthy, S.F. Ho, and W.T. Chen. On the automated gener-
ation of program test data. In Proceedings of the 2nd International Con-
ference on Software Engineering (ICSE 1976), page 636. IEEE Computer
Society Press, 1976. Abstract only. [343]

[Ris93] N. Risser. TVEDA V2 user guide. Technical Document
DT/LAA/SLC/EVP/5, France Telecom – CNET, March 1993. [200]

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Model-
ing Language Reference Manual. Addison-Wesley, Reading, Massachusetts,
USA, first edition, 1999. [1, 497]

[RKS02] Orna Raz, Philip Koopman, and Mary Shaw. Semantic anomaly detection
in online data sources. In Proceedings of the 24th International Conference
on Software Engineering (ICSE 2002), pages 302–312. ACM Press, 2002.
[526, 550, 551, 554]

[RLNS00] K. Rustan, M. Leino, G. Nelson, and J. B. Saxe. ESC/Java user’s manual.
Technical Report 2000-002, Compaq Systems Research Center, Palo Alto,
2000. [555]

[RNHW98] P. Raymond, X. Nicollin, N. Halbwachs, and D. Weber. Automatic testing
of reactive systems. In Proceedings of the 19th IEEE Real-Time Systems
Symposium (RTSS 1998), pages 200–209. IEEE Computer Society Press,
1998. [399, 400]

[RP92] A. Rouger and M. Phalippou. Test cases generation from formal specifica-
tions. In Proceedings of the 14th International Switching Symposium (ISS
1992), page C10.2, Yokohama, October 1992. [198]

[RS93] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata
using homing sequences. Information and Computation, 103(2):299–347,
April 1993. [8, 12, 27, 586, 598]

[RSP93] June-Kyung Rho, Fabio Somenzi, and Carl Pixley. Minimum length syn-
chronizing sequences of finite state machine. In Proceedings of the 30th
ACM/IEEE Design Automation Conference (DAC 1993), pages 463–468.
ACM Press, June 1993. [25, 32]

Literature 645

[Rus02] Vlad Rusu. Verification using test generation techniques. In L.-H. Eriksson
and P. Lindsay, editors, Getting IT Right: Proceedings of the 11th Interna-
tional Symposium of Formal Methods Europe (FME 2002), volume 2381 of
Lecture Notes in Computer Science, pages 252–271. Springer-Verlag, 2002.
[426]

[RVL+97] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank
Levy, Brian Bershad, and Brad Chen. Instrumentation and optimization of
Win32/Intel executables using Etch. In Proceedings of the First USENIX
Windows NT Workshop, Seattle, WA, August 1997. [530]

[RW85] S. Rapps and E. J. Weyuker. Selecting software test data using data flow
information. IEEE Transactions on Software Engineering, SE-11:367–375,
April 1985. [297, 300]

[RW88] C. Rich and R. Waters. The programmer’s apprentice: A research overview.
IEEE Computer, 21(11):10–25, 1988. [552]

[RX96] Bala Ravikumar and Xuefeng Xiong. Randomized parallel algorithms for
the homing sequence problem. In Adam W. Bojanczyk, editor, Proceedings
of the 25th International Conference on Parallel Processing (ICPP 1996),
volume 2: Algorithms & Applications, pages 82–89. IEEE Computer Society
Press, August 1996. [31]

[RX97] Bala Ravikumar and Xuefeng Xiong. Implementing sequential and parallel
programs for the homing sequence problem. In Darrell R. Raymond, Derick
Wood, and Sheng Yu, editors, Proceedings of the 1st Workshop on Imple-
menting Automata (WIA 1996), volume 1260 of Lecture Notes in Computer
Science, pages 120–131. Springer-Verlag, 1997. [31]

[Rys83] Igor K. Rystsov. Polynomial complete problems in automata theory. In-
formation Processing Letters, 16(3):147–151, April 1983. [8, 20, 27, 30, 31,
32]

[Rys92] Igor K. Rystsov. Rank of a finite automaton. CYBERNETICS: Cybernetics
and Systems Analysis, 28(3):323–328, May 1992. Translation of Kibernetika
i Sistemnyi Analiz, pages 3–10 in non-translated version. [6, 30, 31, 32]

[Rys97] Igor K. Rystsov. Reset words for commutative and solvable automata.
Theoretical Computer Science, 172:273–279, February 1997. [6, 31]

[SA99] Jian Shen and Jacob Abraham. An RTL abstraction technique for proces-
sor micorarchitecture validation and test generation. Journal of Electronic
Testing: Theory & Application, 16(1–2):67–81, February 1999. [287, 439,
443, 445, 447, 448, 449, 450, 455, 456, 457, 458]

[Sad98] Sadegh Sadeghipour. Testing Cyclic Software Components of Reactive Sys-
tems on the Basis of Formal Specifications, volume 40 of Forschungsergeb-
nisse zur Informatik. Verlag Dr. Kovač, Hamburg, 1998. [330, 331]

[Sal02] Arto Salomaa. Synchronization of finite automata. Contributions to an
old problem. In I. Hal Sudborough T. Æ. Mogensen, D.A. Schmidt, edi-
tor, The Essence of Computation. Complexity, Analysis, Transformation:
Essays Dedicated to Neil D. Jones, volume 2566 of Lecture Notes in Com-
puter Science, pages 37–59. Springer-Verlag, 2002. [7]

[Sav70] Walter J. Savitch. Relationships between nondeterministic and determinis-
tic tape complexities. Journal of Computer and System Sciences, 4:177–192,
1970. [28]

[SBN+97] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson.
Eraser: A dynamic data race detector for multithreaded programs. ACM
Transactions on Computer Systems, 14(4):391–411, November 1997. [526,
532, 533]

646 Literature

[Sch00] Johann M. Schumann. Automated theorem proving in high-quality software
design. In Steffen Hölldobler, editor, Intellectics and Computational Logic,
volume 19 of Applied Logic Series, pages 295–312. Kluwer Academic, 2000.
[325]

[Sch01] Johann M. Schumann. Automated Theorem Proving in Software Engineer-
ing. Springer-Verlag, 2001. [325]

[SCK+95] B. Steffen, A. Claßen, M. Klein, J. Knoop, and T. Margaria. The fixpoint
analysis machine. In J. Lee and S. Smolka, editors, Proceedings of the
6th International Conference on Concurrency Theory (CONCUR 1995),
volume 962 of Lecture Notes in Computer Science, pages 72–87, Heidelberg,
Germany, 1995. Springer-Verlag. [575]

[SCS97] Harbhajan Singh, Mirko Conrad, and Sadegh Sadeghipour. Test case design
based on Z and the classification-tree method. In Michael G. Hinchey and
Shaoying Liu, editors, Proceedings of the 1st International Conference on
Formal Engineering Methods (ICFEM 1997), pages 81–90. IEEE Computer
Society Press, 1997. [330, 331]

[SD85] K. Sabnani and A. Dahbura. A new technique for generating protocol tests.
In Proceedings of the 9th Data Communication Symposium (SIGCOMM
1985), pages 36–43. IEEE Computer Society Press, 1985. Also appeared in
Computer Communication Review, volume 15(4), September 1985. [72]

[SD88] Krishan Sabnani and Anton Dahbura. A protocol test generation procedure.
Computer Networks and ISDN Systems, 15(4):285–297, September 1988.
[69, 72, 78, 84, 98, 99]

[SDGR03] I. Schieferdecker, Z.R. Dai, J. Grabowski, and A. Rennoch. The UML 2.0
testing profile and its relation to TTCN-3. In D. Hogrefe and A. Wiles,
editors, Proceedings of the 15th IFIP International Conference on Testing
of Communicating Systems (TestCom2003), volume 2644 of Lecture Notes
in Computer Science. Springer-Verlag, May 2003. [497]

[Seg92] R. Segala. A process algebraic view of Input/Output Automata. Technical
Memo MIT/LCS/TR-557, Massachusetts Institute of Technology, Labora-
tory for Computer Science, Cambridge, U.S.A., 1992. [173]

[Seg96] Roberto Segala. Testing probabilistic automata. In Ugo Montanari and
Vladimiro Sassone, editors, Proceedings of the 7th Conference on Concur-
rency Theory (CONCUR 1996), volume 1119 of Lecture Notes in Computer
Science, pages 299–314. Springer-Verlag, 1996. [234, 244, 245, 252, 253, 255,
261, 265, 269]

[Seg97] R. Segala. Quiescence, fairness, testing and the notion of implementation.
Information and Computation, 138(2):194–210, 1997. [181, 182, 183]

[SEG00] M. Schmitt, M. Ebner, and J. Grabowski. Test generation with Autolink
and TestComposer. In E. Sherratt, editor, Proceedings of the 2nd Workshop
on SDL and MSC (SAM 2000). VERIMAG, IRISA, 2000. [430, 431, 432,
433]

[SL88] D. Sidhu and T. Leung. Experience with test generation for real protocols.
In Proceedings of the ACM Symposium on Communications Architectures
and Protocols (SIGCOMM 1988), pages 257–261. ACM Press, 1988. [110]

[SL89] D. Sidhu and T.-K. Leung. Formal methods for protocol testing: A detailed
study. IEEE Transactions on Software Engineering, 15(4):413–426, April
1989. [3, 100]

Literature 647

[SL94] Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic
processes. In Bengt Jonsson and Joachim Parrow, editors, Proceedings of the
5th Conference on Concurrency Theory (CONCUR 1994), volume 836 of
Lecture Notes in Computer Science, pages 481–496. Springer-Verlag, 1994.
[239, 269]

[SM93] Sriram Sankar and Manas Mandal. Concurrent runtime monitoring of for-
mally specified programs. IEEE Computer, 26(3):32–41, March 1993. [531]

[SMIM89] F. Sato, J. Munemori, T. Ideguchi, and T. Mizuno. Test sequence generation
method based on finite automata – single transition checking using W Set.
Transactions of EIC (in Japanese), J72-B-I(3):183–192, 1989. [93]

[Sok71] M.N. Sokolovskii. Diagnostic experiments with automata. Kibernetika,
6:44–49, 1971. [40]

[Sos92] R. Sosič. Dynascope: A tool for program directing. In Proceedings of the
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI 1992), pages 12–21, 1992. Appeared in SIGPLAN Notices,
volume 27(7), July 1992. [531]

[SPHP02] B. Schätz, A. Pretschner, F. Huber, and J. Philipps. Model-based develop-
ment of embedded systems. In J.-M. Bruel and Z. Bellahsene, editors, Pro-
ceedings of the Workshops of the 8th International Conference on Advances
in Object-Oriented Information Systems (OOIS 2002), volume 2426 of Lec-
ture Notes in Computer Science, pages 298–311. Springer-Verlag, 2002. [290]

[Spi92] J. Michael Spivey. The Z Notation. Prentice Hall, second edition, 1992.
[325, 327]

[SSD+03] U. Sammapun, R. Sharykin, M. DeLap, M. Kim, and S. Zdancewic. Formal-
izing Java-MaC. In O. Sokolsky and M. Viswanathan, editors, Proccedings
of the 3rd Workshop on Run-Time Verification (RV 2003), volume 89(2)
of Electronic Notes in Theoretical Computer Science. Elsevier Science Pub-
lishers, 2003. [526, 547]

[Sta] Stateflow. http://www.mathworks.com/products/stateflow/. [1]

[Sta66] Peter H. Starke. Eine Bemerkung über homogene Experimente. Elektron-
ische Informationverarbeitung und Kybernetic, 2:257–259, 1966. [31]

[Sta72] Peter. H. Starke. Abstract Automata. North-Holland, Amsterdam, 1972.
Translation from German. [8, 15]

[Sta73] H. Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, 1973. [283, 288]

[Sto02] M. I. A. Stoelinga. An introduction to probabilistic automata. In G. Rozen-
berg, editor, EATCS bulletin, volume 78, pages 176–198, 2002. [234]

[SV03] M. I. A. Stoelinga and F.W. Vaandrager. A testing scenario for proba-
bilistic automata. In J. C.M. Baeten, J.K. Lenstra, J. Parrow, and G. J.
Woeginger, editors, Proceedings of the 30th International Colloquium on
Automata, Lnaguages, and Programming (ICALP 2003), volume 2719 of
Lecture Notes in Computer Science, pages 464–477. Springer-Verlag, 2003.
Also published as Technical Report of the nijmeegs instituut voor informat-
ica en informatiekunde, number NIII-R0307. [234, 269]

[SVD01] Jan Springintveld, Frits Vaandrager, and Pedro R. D’Argenio. Testing
timed automata. Theoretical Computer Science, 254(1–2):225–257, March
2001. [202, 206, 212, 215, 221, 230]

648 Literature

[SVG02] S. Schulz and T. Vassiliou-Gioles. Implementation of TTCN-3 test sys-
tems using the TRI. In I. Schieferdecker, H. König, and A. Wolisz, edi-
tors, Applications to Internet Technologies and Service – Proceedings of the
14th International Conference on Testing Communication Systems (Test-
Com 2002), volume 210 of IFIP Conference Proceedings, pages 425–442.
Kluwer Academic, 2002. [480]

[SVG03] Ina Schieferdecker and Theofanis Vassiliou-Gioles. Realizing distributed
TTCN-3 test systems with TCI. In Dieter Hogrefe and Anthony Wiles,
editors, Proceedings of the 15th International Conference on Testing of
Communicating Systems (TestCom 2003), volume 2644 of Lecture Notes
in Computer Science, pages 95–109. Springer-Verlag, 2003. [480]

[SVW87] A.P. Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation
problem for Büchi automata with application to temporal logics. Theoretical
Computer Science, 49:217–237, 1987. [567]

[SW91] Colin Stirling and David Walker. Local model checking in the modal mu-
calculus. Theoretical Computer Science, 89(1):161–177, October 1991. [566]

[TB02] J. Tretmans and E. Brinksma. Côte de Resyste – Automated Model Based
Testing. In M. Schweizer, editor, Progress 2002 – 3rd Workshop on Embed-
ded Systems, pages 246–255, Utrecht, The Netherlands, October 24 2002.
STW Technology Foundation. [420, 423]

[Tel] Telelogic website. http://www.telelogic.com/. [410]
[Tho90] Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, ed-

itor, Handbook of Theoretical Computer Science, volume B: Formal Models
and Semantics, chapter 4, pages 133–191. Elsevier Science Publishers, 1990.
[203]

[TJ98] Kevin S. Templer and Clinton L. Jeffrey. A configurable automatic instru-
mentation tool for Ansi C. In Proceedings of the 13th IEEE Conference on
Automated Software Engineering (ASE 1998), pages 249–258. IEEE Com-
puter Society Press, October 1998. [531]

[TM95] Ian Toyn and John A. McDermid. CADiZ: an architecture for Z tools and its
implementation. Software – Practice and Experience, 25(3):305–330, 1995.
[331]

[Tor] Torx website. http://www.purl.org/net/torx/. [420]
[Toy96] Ian Toyn. Formal reasoning in the Z notation using cadiZ. In Nicholas A.

Merriam, editor, Proceedings of the 2nd International Workshop on User
Interface Design for Theorem Proving Systems (UITP 1996), 1996. [331]

[Toy98] Ian Toyn. A tactic language for reasoning about Z specifications. In David
Duke and Andy Evans, editors, Proceedings of the 3rd Northern Formal
Methods Workshop (NFMW 1998), Electronic Workshops in Computing.
British Computer Society, 1998. [331]

[TP98] Q.M. Tan and A. Petrenko. Test generation for specifications modeled by
input/output automata. In A. Petrenko and N. Yevtushenko, editors, Pro-
ceedings of the 11th International Workshop on Testing of Communication
Systems (IWTCS 1998), volume 131 of IFIP Conference Proceedings, pages
83–100. Kluwer Academic, 1998. [174]

[TPvB96] Q.M. Tan, Alexandre Petrenko, and Gregor von Bochmann. Modeling basic
LOTOS by FSMs for conformance testing. In Piotr Dembinski and Marek
Sredniawa, editors, Proceedings of the 15th IFIP/WG6.1 International Sym-
posium on Protocol Specification, Testing and Verification (PSTV 1995),
volume 38 of IFIP Conference Proceedings, pages 137–152. Chapman &
Hall, 1996. [156, 157, 158, 159]

Literature 649

[TPvB97] Q.M. Tan, A. Petrenko, and Gregor v. Bochmann. Checking experiments
with labeled transition systems for trace equivalence. In Proceedings of the
10th International Workshop on Testing Communicating Systems (IWTCS
1997), 1997. [160, 161, 162, 163]

[Tra02] Avraham N. Trakhtman. The existence of synchronizing word and černý
conjecture for some finite automata. In Proceedings of the 2nd Haifa Work-
shop on Graph Theory, Combinatorics and Algorithms (GTCA 2002), June
2002. [31]

[Tre94] Jan Tretmans. A formal approach to conformance testing. In Proceedings of
the 6th IFIP TC6/WG6.1 International Workshop on Protocol Test Systems
(IWPTS 1993), volume C-19 of IFIP Transactions, pages 257–276. North-
Holland, 1994. [119, 145, 146]

[Tre96a] J. Tretmans. Conformance testing with labelled transisition systems: Im-
plementation relations and test generation. Computer Networks and ISDN
Systems, 29:49–79, 1996. [417, 424]

[Tre96b] J. Tretmans. Test generation with inputs, outputs, and quiescence. In
T. Margaria and B. Steffen, editors, Proceedings of the 2nd International
Workshop on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 1996), volume 1055 of Lecture Notes in Computer Science,
pages 127–146. Springer-Verlag, 1996. [173, 179, 184, 185, 187, 194]

[Tre96c] J. Tretmans. Test Generation with Inputs, Outputs and Repetitive Quies-
cence. Software – Concepts and Tools, 17(3):103–120, 1996. [175, 178, 417,
420, 421, 424]

[U2T] U2TP Consortium. http://www.fokus.fraunhofer.de/u2tp/. [497]
[U2T04] U2TP Consortium. UML Testing Profile, March 2004. Final Adopted Spec-

ification at OMG (ptc/2004-04-02). [497, 498]
[UMLa] UML 2.0. http://www.omg.org/uml. [497]
[UMLb] UMLAUT website. http://www.irisa.fr/UMLAUT/. [419, 420]
[UML03a] UML 2.0 Infrastructure Specification, November 2003. OMG Adopted Spec-

ification (ptc/03-09-15). [497]
[UML03b] UML 2.0 Superstructure, September 2003. OMG Adopted Specification

(ptc/03-08-02). [497]
[UWZ97] Hasan Ural, Xiaolin Wu, and Fan Zhang. On minimizing the lengths of

checking sequences. IEEE Transactions on Computers, 46(1):93–99, 1997.
[104]

[Vaa91] F. Vaandrager. On the relationship between process algebra and Input/Out-
put Automata. In Proceeedings on the 6th IEEE Symposium on Logic in
Computer Science (LICS 1991), pages 387–398. IEEE Computer Society
Press, 1991. [181]

[Val84] L.G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984. [307]

[Var96] M.Y. Vardi. An automata-theoretic approach to linear temporal logic.
In F. Moller and G. M. Birtwistle, editors, Logics for Concurrency – Struc-
ture versus Automata. Proceedings of the 8th Banff Higher Order Workshop
(Banff 1995), volume 1043 of Lecture Notes in Computer Science, pages
238–266. Springer-Verlag, 1996. [566, 567]

[Var01] M.Y. Vardi. Branching vs. linear time: Final showdown. In W. Yi T. Mar-
garia, editor, Proceedings of the 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2001),
volume 2031 of Lecture Notes in Computer Science, pages 1–22. Springer-
Verlag, January 2001. [562]

650 Literature

[Vas73] M.P. Vasilevski. Failure diagnosis of automata. Cybernetic, 9(4):653–665,
1973. [101, 108, 593, 599]

[VB01] S.A. Vilkomir and J. P. Bowen. Formalization of software testing criteria
using the Z notation. In Proceedings of the 25th International Computer
Software and Applications Conference (COMPSAC 2001), pages 351–356.
IEEE Computer Society Press, 8–12 October 2001. [297, 298]

[VB02] S.A. Vilkomir and J. P. Bowen. Reinforced condition/decision coverage
(RC/DC): A new criterion for software testing. In D. Bert, J. P. Bowen,
M. Henson, and K. Robinson, editors, Proceedings of the 2nd International
Conference of B and Z Users: Formal Specification and Development in Z
and B (ZB 2002), volume 2272 of Lecture Notes in Computer Science, pages
295–313. Springer-Verlag, 2002. [299]

[VCI90] S.T. Vuong, W.Y.L. Chan, and M. R. Ito. The UIOv-method for protocol
test sequence generation. In Proceedings of the 2nd International Workshop
on Protocol Test Systems (IWPTS 1990), pages 161–176. North-Holland,
1990. [99]

[vG01] Rob J. van Glabbeek. The linear time – branching time spectrum I: The
semantics of concrete, sequential processes. In J.A. Bergstra, A. Ponse, and
S.A. Smolka, editors, Handbook of Process Algebra, pages 3–99. Elsevier
Science Publishers, 2001. [119, 120, 127, 128, 230]

[vGSS95] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive,
generative and stratified models of probabilistic processes. Information and
Computation, 121:59–80, 1995. [240]

[VT01] R.G. de Vries and J. Tretmans. Towards Formal Test Purposes. In
E. Brinksma and J. Tretmans, editors, Proceedings of the 1st International
Workshop on Formal Approaches to Testing of Software (FATES 2001),
number BRICS NS-01-4 in BRICS Notes Series, pages 61–76, 2001. [422,
424]

[WBS02] Joachirn Wegener, André Baresel, and Harrnen Sthamer. Suitability of
evolutionary algorithms for evolutionary testing. In Proceedings of the 26th
IEEE International Computer Software and Applications Conference: Pro-
longing Software Life: Development and Redevelopment (COMPSAC 2002),
pages 287–289, Oxford, England, August 2002. IEEE Computer Society
Press. [384]

[Weg01] J. Wegener. Evolutionärer Test des Zeitverhaltens von Realzeit-Systemen.
Dissertation, Humboldt Universität zu Berlin, 2001. [383, 384]

[Wes89] C.H. West. Protocol validation in complex systems. In Proceedings of
the ACM Symposium on Communications Architectures & Protocols (SIG-
COMM 1989), pages 303–312, Austin, TX, September 1989. ACM Press.
[421, 437]

[Wez90] Clazien D. Wezeman. The CO-OP method for compositional derivation
of canonical testers. In E. Brinksma, G. Scollo, and C. A. Vissers, edi-
tors, Proceedings of the 9th International Symposium on Protocol Specifica-
tion, Testing and Verification (PSTV 1990), pages 145–158. North-Holland,
1990. [166, 167, 168, 415, 417]

[Wez95] Clazien D. Wezeman. Deriving test from LOTOS specifications. In Tom-
maso Bolognesi, Jeroen van de Lagemaat, and Chris Vissers, editors, LO-
TOSphere: Software Development with LOTOS, pages 295–315. Kluwer
Academic, 1995. [415, 417]

Literature 651

[Wil01] A. Wiles. ETSI testing activities and the use of TTCN-3. In Proceedings
of the 10th International SDL Forum, 2001, volume 2078 of Lecture Notes
in Computer Science, pages 123–128. Springer-Verlag, 2001. [466]

[Wol99] Mario Wolczko. Using a tracing javaTM virtual machine to gather data on
the behavior of java programs. Technical report, Sun Microsystems, March
1999. [531]

[WSS94] S.-H. Wu, S.A. Smolka, and E.W. Stark. Composition and behaviors of
probabilistic I/O automata. In B. Jonsson and J. Parrow, editors, Proceed-
ings of the 5th International Conference on Concurrency Theory (CONCUR
1994), volume 836 of Lecture Notes in Computer Science, pages 513–528,
Uppsala, Sweden, August 1994. Springer-Verlag. [234]

[WVS83] P. Wolper, M. Y. Vardi, and A.P. Sistla. Reasoning about infinite computa-
tions paths. In Proceedings of the 24th IEEE Symposium on Foundations of
Computer Science (FOCS 1983), pages 185–194. IEEE Computer Society
Press, 1983. Extended abstract. [567]

[XP] eXtreme Programming website. http://www.extremeprogramming.org/.
[502]

[YL91] M. Yannakakis and D. Lee. Testing finite state machines. In Baruch Awer-
buch, editor, Proceedings of the 23rd Annual ACM Symposium on the The-
ory of Computing (STOC 1991), pages 476–485, New Orleans, LS, May
1991. ACM Press. Extended abstract. An extended version appeared in the
Journal of Computer and System Sciences, 50(2):209–227, April 1995. [98]

[ZC93] Jinsong Zhu and Samuel T. Chanson. Fault coverage evaluation of proto-
col test sequences. Technical Report TR-93-19, Department of Computer
Science, University of British Columbia, June 1993. [110]

[ZHM97] H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy.
ACM Computing Surveys, 29(4):366–427, December 1997. [297, 300, 301]

Index

=⇒ , 175
ioco, 187
ioconf , 185
passes, 194
−→, 174
3SAT, 26

a-valid, 56
abstract state machine, 412
abstract state machine language, 412
abstraction, 452
– communication, 455
– data, 454
– functional, 453
– temporal, 455
accepting, 559
accepting state
– büchi automaton, 559
– deterministic finite-state automaton,

558
ACSR, 360, 364
adaptive distinguishing sequences, 49
adaptive experiment, 614
ADS, 49
after, 175
AGEDIS, 427
algebra of communicating shared

resources, 360
alphabet, 558
alternating büchi automaton, 569
ASM, 412
AsmL, 412
assignment, 213, 340
assistant, 595
ATS, 480
autofocus, 406, 446, 451
autolink, see test tool
automaton
– region, 204
AVS, architecture validation suite, 443,

446

B, 344
b-valid, 56
büchi automaton, 559

back propagation, 373
BCET, 383
behavioral constraints, 360
best-case execution time, 383
bisimulation, 616
– weak bisimulation, 130
black box checking, 599
black-box test, 356
black-box testing, 609
block, 41
block (of uncertainty), 10
boundary states, 345
breakpoint, 580

c-valid, 56
CADP, see tool
CADP, CAESAR/ALDEBARAN

development package, 445
characterizing set, 95
checking sequence, 88
classification-tree, 330, 331
clause, 26
clock
– constraints, 202
clock valuation, 203, 213
closed, 56, 583, 587
closed for, 579
CLPS-B, 345
CNF, 26
cofinal automaton, see synchronizing

sequence
collapsible automaton, see synchronizing

sequence
complete, 194
complete splitting tree, 60
complete trace, 128
complete trace formula, 128
complete trace preorder, see preorder
completely specified, 612
completeness, 332
component, 577
computational tree logic, 564
concurrency
– data race, 532
– deadlock, 533

654 Index

conditional, 340
conformance, 609

conformance kit, 408
conformance testing, 72, 87, 119, 145
conjunctive normal form, 26
consistent, 583
constraint graph, 360
constraint logic programming, 344, 451
continuous-time Markov chain
– action-labeled, 242
control path, 338
Cooper, see test tool

coverage
– all definition uses paths, 301
– all definitions, 300
– all uses, 300
– boundary interior, 296
– branch, 297
– condition, 298
– decision, 297
– decision condition, 298
– full predicate, 299

– modified condition decision, 298
– multiple condition, 298
– path, 296
– required k -tuples, 301
– transition, 296
coverage criteria
– control flow, 297
– data flow, 297, 299
CTL, 564

current state uncertainty, 10, 613
current uncertainty, 43

derived transition system, see labeled
transition system

deterministic, 612
deterministic finite-state automaton, 558
DFA, 558
digital signal processing, 443
directable automaton, see synchronizing

sequence
directing word, see synchronizing

sequence
discrete partition, 44
discrimination tree, 589
disjointness, 332
distinguishing sequence, 70, 100

distinguishing trace, 213

distribution, 236
divergence-free, 235
dom, 213

e-purse, 444
embedding, 243
empty word, 558
equivalent, 612
ERA, 371, 372
ETS, 480
Euler tour, 92
event clock, 205
event recording automaton, 205, 371
evolutionary algorithm, 382
– exit test, 382
– fitness evaluation, 382, 384
– individual, 382
– multimodal function, 382
– population, 382
– stoppage criterion, 384
– unimodal function, 382
evolutionary testing, 381
evolving algebra, 412
exhaustive, 194
external trace inclusion, 179

failure trace preorder, see preorder
fair computational tree logic, 565
fair preorder, 180
fair testing, see preorder
fault detection, 87
fault-based heuristic, 332
finite automata intersection, 28, 48
finite state machine
– binary transition tree, 536
finitely-branching, 235
flogsta, 9
flow graph, 299
FSP, see specification language
functional, 608

GATeL, 402
genesys, 446, 451
genetic algorithms, 84
GOTCHA, 445, 450
– GDL, GOTCHA definition language,

445, 446

hennessy-milner logic, 565
HML, 131, 565

Index 655

homing sequence, 8
– adaptive, 8, 21
– algorithm for adaptive, 21–22
– algorithm for general mealy machines,

19–21
– algorithm for minimized mealy

machines, 12–14
– length of adaptive, 21
– of minimal length, 22–27
homing tree, 24
hybrid automaton, 375
– CHARON, 376
– event, 376
– flow condition, 376
– HybridUML, 376
– initial condition, 376
– invariant, 376
– jump condition, 376
hybrid system, 355, 375
– hybrid automaton, 375

identification set, 97
IF, see specification language
image-finite, 123
implementation relation
– conf, 415
– ioco, 417, 420
– ioconf, 424
implementation under test, see IUT
implication graph, 56
init, 175
initial state
– büchi automaton, 559
– deterministic finite-state automaton,

558
initial state uncertainty, 10, 613
initial uncertainty, 43
initializable automaton, see synchronizing

sequence
initializing word, see synchronizing

sequence
input output automaton, 176
input output refusal preorder, 186
input output state machine, 177
input output symbolic transition system,

see IOSTS
input output testing relation, 184
input output transition system, 178
interaction
– k-dr, 301

intv, 213
invalid, 44
IOLTS, 418
IOLTS, an input output labeled

transition system, 445
IOSTS, 424, 446
IUT, 609

java, 444
– exception handling, 444, 446
– language specification, 444

kripke structure, 560
KS, 560

label, 577
labeled transition system, 120, 174, 615
– derived transition system, 121
– with divergence, 121
language
– timed, 204
learning
– invaraint detection, 548
– learner, 576
– program synthesis, 548
– teacher, 576
letter, 558
linear temporal logic, 562
lite, see tool
literal, 25
loop, 340
LOTOS, see specification language, 445,

446
LTL, 562
LTSA, see tool
lurette, 399
lustre, 395
lutess, 394

MµALT, 443, 445
machine verification, 87
MAY preorder, 183
mealy machine, 611
merging sequence, 15
modal mu-calculus, 566
model, 339, 608, 609
model checking, 325
– adaptive, 599
monitor, 609
MSC, see specification language

656 Index

MUST preorder, 184
mutation testing, 333

natural language, 442, 445, 446
necessary condition, 332
non-probabilistic process, 235
NTIF, see specification language

objectgeode, 429
observable testing preorder, see preorder
observation, 577
– pack, 577
– reduced observation table, 586
– table, 582
observation preorder, see preorder
OMEGA, see tool
operating system, 444
– POSIX, 444, 446
– UNIX, 444
oracle, 576
out, 175

parallel composition, 245, 246, 248, 258
partition graph, 373
partition tour, 408
partitioning heuristic, 332
path
– finite, 235, 238
– infinite, 238
path condition, 338, 340
PDS, 41
performance constraints, 360
PHACT, 409
PIXIT, 409
POSIX, 444
postcondition, 342
precondition, 342
preorder, 117
– complete trace, 128
– failure trace, 142
– fair testing, 143
– observable testing, 127
– observation, 129
– refusal, 138, 139
– should testing, 144
– testing, 133
– trace, 128
preset distinguishing sequences, 41
preset experiment, 614
preset homing sequence, 8

probabilistic bisimulation, 271
probabilistic process, 240
– fully, 237
probability space, 236
process algebra
– ACSR, 360, 364
– action, 362
– behavioral constraints, 364
– event, 362
– performance constraints, 364
– TCSP, 360
process of MBT
– abstract, 439
processor, 442
– ARM-2, 443
– intel 8085, 443
– microprocessor, 443
– multiprocessor, 443, 445
– PowerPC, 443, 446, 451
program correctness, 342
prolog, 344
PROMELA, 446
promela, see specification language
proof procedure, 338
proof tactic, 328
protocol, 443
– cache coherency, 443, 445
– conference protocol, 443
– engineering, 445

query
– equivalence, 576
– membership, 576
quiescent preorder, 181
quiescent state, 174

random sequence, 409
real-time
– hard, 355
– soft, 355
real-time system, 355
recurrent automaton, see synchronizing

sequence
recurrent word, see synchronizing

sequence
refusal, 124
refusal preorder, see preorder
regular, 559
regularity hypothesis, 336

Index 657

reset sequence, see synchronizing
sequence

resettable automaton, see synchronizing
sequence

route, 336
run
– büchi automaton, 559

– deterministic finite-state automaton,
558

satisfaction operator, 128
schema, 326

– declaration part, 326
– name, 326
– predicate part, 326
– signature, 326
SDL, see specification language, 446
separating sequence, 12
should testing, see preorder
silent transition, 204

smart card, 444, 451
smile, see tool
sort-finite, 123
sound, 194
specification, 608
specification language, 338
– FSP, 423

– IF, 419
– LOTOS, 417, 419, 423, 426
– MSC, 432
– NTIF, 426
– promela, 423
– SDL, 419, 432
– UML, 419
SPIN, see tool

splitting tree, 60
stable, 215
stable state, 174
stable transition criterion, 373
state
– büchi automaton, 559
– deterministic finite-state automaton,

558
state cover set, 96
state identification, 70
state verification, 69
STG, see test tool
stochastic, 608

straces, 175

string, 558
– access, 577
– prefix, 558

strong until, 563
strongly responsive, 174
structural, 608
subsume relation, 310
successor tree, 46
sufficient condition, 333
super graph, 47
SUT, 356, 609
symbolic execution, 338, 339
symbolic reachability graph, 373
symbolic state, 373
– strengthened, 373
synchronized automaton, see synchroniz-

ing sequence
synchronizing sequence, 6, 409
– algorithm, 14–19
– of minimal length, 22–27
synchronizing tree, 23
system under test, 356, see SUT

TCSP, 360
temporal logic

– finite state past time LTL, 538
– finite trace LTL, 535
terminal state experiment, see homing

sequence
terms, 213
test
– black-box, 356
– closed loop, 379
– open loop, 379
– white-box, 356

test automation, 356
test case, 192, 356, 607
– evaluation, 459
– execution, 459
– generation, 359, 449
– specification, 356
– structure, 457
– translation, 458
test case derivation, 195
test case generation, 359
– ACSR, 364
– ERA, 372
– evolutionary algorithm, 381

– hybrid system, 375

658 Index

– iterative refinement, 381

– real time system, 360
– TTS, 368

test case generator, 608
test case specification, 608
test context, 609

test data, 607
test driver, 357

– hybrid system, 359
– real-time system, 359
test evaluation

– overview, 442
test execution, 608

– overview, 442
test generation
– overview, 441

test generator, 356
– hybrid system, 359

– real-time system, 358
test instantiation
– overview, 441

test model, 356, 444
– abstract, 441

– hybrid system, 358
– real-time system, 358
test monitor, 356

– hybrid system, 359
– real-time system, 359

test oracle, 357
– hybrid system, 359
– real-time system, 359

test procedure, 356
test process, 244

– fully probabilistic, 245
– Markovian, 247
– non-probabilistic, 245

– probabilistic, 245
test purpose, 607

test run, 194
test sequence, 218
test specification

– case studies, 448
– functional, 447

– overview, 441, 447
– stochastic, 448
– structural, 448

test suite, 356, 607
test system, 465, 481, 608

test system configuration, 471

test tool
– AGEDIS, 417, 427
– AsmL, 412
– autofocus, 406
– autolink, 431
– conformance kit, 408
– cooper, 414
– GATeL, 402
– lurette, 399
– lutess, 394
– PHACT, 409
– STG, 424
– testcomposer, 417, 429
– TGV, 417
– TorX, 420
– TVEDA, 410
test tree, 374
test verdict, 357
– failed, 357
– inconclusive, 357
– passed, 357
test view, 368, 369
testable timed transition system, 225,

368
testcomposer, 429
testing, 356, 528, 608
testing context refinement, 334
testing preorder, see preorder
testing scenario, 118, 124, 127
TGV, see test tool, 445, 450
the current set, 52
the initial set, 52
theorem prover, 324, 325, 328, 331, 337
– automated, 324
– interactive, 325
– semi-automated, 325
theorem proving, 325, 336
time domain
– dense, 358, 371, 375
– discrete, 358, 360
timed automaton, 360, 371
– UPPAAL, 222, 368
– deterministic, 204
– ERA, 372
– safety, 203
– semantics, 203
– syntax, 202
– TTS, 368
timed communicating sequential

processes, 360

Index 659

timed transition system, 223, 360, 367
timing annotation, 213
tool
– CADP, 417, 423
– IF compiler, 419
– lite, 417
– LTSA, 423
– OMEGA, 426
– smile, 423
– SPIN, 423
– trojka, 423
– UMLAUT, 419
TorX, see test tool, 446
trace, 128, 174
– extended, 267
– finite, 236, 238
– infinite, 238
– probabilistic, 265
trace distribution, 239
trace distribution precongruence, 269
trace distribution preorder, 269
trace equivalence, 616
trace preorder, see preorder
transferring sequence, 409
transformative system, 384
transition cover set, 94
transition function
– büchi automaton, 559
– deterministic finite-state automaton,

558
transition tour, 92, 408
trojka, see tool
TTCN-2, 431, 465
TTCN-3, 465
TTS, 223, 360, 367, 368
TTTS, 368
TVEDA, 410

UIO sequence, 69, 409
UIO Testing Method, 98
UIO tree, 79, 80
UML, 376, see specification language
UMLAUT, see tool
unified modeling language, 376
uniformity hypothesis, 325, 336
UNIX, 444
UPPAAL automaton, 368

valid input, 44
valid input sequence, 45
validation, 608
value domain
– dense, 358, 375
– discrete, 358, 360, 371
verdict, 609
verification, 608
– assertion, 530
– run-time, 526
verilog, 442, 445
VHDL, 410, 442, 445

WAP, 444
WCET, 383
weak bisimulation, see bisimulation
weak until, 563
weight function, 236
white-box test, 356
white-box testing, 339, 609
word, 558
– timed, 204
worst-case execution time, 383

Yuri Gurevich, 412

Z, 345

	front-matter
	Preface
	Contents

	fulltext
	fulltext2
	1.1 Introduction
	1.2 Initial and Current State Uncertainty
	1.3 Algorithms for Computing Homing and Synchronizing Sequences
	1.4 Complexity
	1.5 Related Topics and Bibliography
	1.6 Summary

	fulltext3
	2.1 Introduction
	2.2 Brief Recall on Mealy Machines and Used Notation
	2.3 Preset Distinguishing Sequences
	2.4 Adaptive Distinguishing Sequences
	2.5 Summary

	fulltext4
	3.1 Introduction
	3.2 Complexity of Finding UIO Sequences
	3.3 Convergence and Inference Graphs
	3.4 Algorithms
	3.5 Summary

	fulltext5
	4.1 Introduction
	4.2 Assumptions
	4.3 State and Transition Coverage
	4.4 Using Separating Sequences Instead of Status Messages
	4.5 Using Distinguishing Sequences Without Reset
	4.6 Using Identifying Sequences Instead of Distinguishing Sequences
	4.7 Additional States
	4.8 Summary

	fulltext6
	fulltext7
	5.1 Introduction
	5.2 Process Representation and Testing
	5.3 Trace Preorders
	5.4 Observation Preorders and Bisimulation
	5.5 Testing Preorders
	5.6 Refusal Testing
	5.7 Failure Trace Testing
	5.8 Fair Testing
	5.9 Conformance Testing, or Preorders at Work
	5.10 Summary

	fulltext8
	6.1 Introduction
	6.2 Models and Their Relations
	6.3 FSM-like Methods
	6.4 Test Generation for conf
	6.5 Summary

	fulltext9
	7.1 Introduction
	7.2 Formal Preliminaries
	7.3 Input Output Automata
	7.4 Implementation Relations with Inputs and Outputs
	7.5 Testing Transition Systems
	7.6 Conclusion

	fulltext10
	8.1 Introduction
	8.2 Timed Automata
	8.3 Testing Event Recording Automata
	8.4 Testing Deterministic Timed Automaton
	8.5 Testing Networks of UPPAAL Timed Automata
	8.6 Summary

	fulltext11
	9.1 Introduction
	9.2 Preliminaries
	9.3 Fully Probabilistic Processes
	9.4 Probabilistic Processes
	9.5 Action-Labeled Continuous-Time Markov Chains
	9.6 Test Processes
	9.7 Compositional Testing of Fully Probabilistic Processes
	9.8 Compositional Testing of Probabilistic Processes
	9.9 Compositional Testing of Markovian Processes
	9.10 Relationships Between Di.erent Testing Relations
	9.11 Characterizations of Probabilistic Testing Relations
	9.12 Connecting Testing and Probabilistic Bisimulation
	9.13 Summary

	fulltext12
	fulltext13
	10.1 Introduction
	10.2 Abstraction
	10.3 Scenarios of Model-Based Testing
	10.4 Conclusion

	fulltext14
	11.1 Introduction
	11.2 Coverage Criteria
	11.3 Coverage Based Testing
	11.4 Coverage Based Testing and Fault Detection Ability
	11.5 Summary

	fulltext15
	12.1 Introduction
	12.2 Theorem Proving
	12.3 Symbolic Execution
	12.4 Model Checking
	12.5 Summary

	fulltext16
	13.1 Introduction
	13.2 Test Automation
	13.3 Model-Based Test Case Generation
	13.4 Optimizing Test Suites by Evolutionary Testing
	13.5 Summary

	fulltext17
	fulltext18
	14.1 Introduction
	14.2 Tool Overview
	14.3 Comparison
	14.4 Summary

	fulltext19
	15.1 Introduction
	15.2 The Abstract Process
	15.3 Application Domains
	15.4 Building an Abstract Model of the SUT
	15.5 Test Speci.cation
	15.6 Abstract Test Case Generation
	15.7 Test Case Instantiation
	15.8 Test Execution and Test Evaluation
	15.9 Conclusion

	fulltext20
	fulltext21
	16.1 Introduction
	16.2 Web Service Testing Example
	16.3 TTCN-3 Based Test Specification
	16.4 TTCN-3 Compiling
	16.5 TCI and TRI Based Execution Environment
	16.6 Test Deployment and Configuration
	16.7 Summary

	fulltext22
	17.1 Introduction
	17.2 The U2TP
	17.3 Test Execution Via Mappings
	17.4 Test Development with U2TP – A Case Study
	17.5 Summary

	fulltext23
	fulltext24
	18.1 Introduction
	18.2 The Run-Time Verification Framework
	18.3 Monitoring Executions
	18.4 Concurrency Error Checking
	18.5 Checking Temporal Logic Requirements
	18.6 Run-Time Verification of Learned Properties
	18.7 Case Studies
	18.8 Summary

	fulltext25
	19.1 Introduction
	19.2 Preliminaries
	19.3 Model Checking
	19.4 Learning Finite State Machines
	19.5 Adaptive Model Checking
	19.6 Summary

	fulltext26
	fulltext27
	fulltext28
	21.1 Basic Definitions
	21.2 Equivalence and Minimization
	21.3 Initial and Current State Uncertainty
	21.4 Distinguishing Experiments

	fulltext29
	back-matter
	Literature
	Index

