
Proceedings of the Second Spring Young Researchers’ Colloquium on Software Engineering. SPb.: SPbSU. 2008.

V. 2, pp. 55–59.

Abstract—Software development process is a complex sequence

of actions having source code of working system as a result. All

project participants should track changes in source code during

work process to know what’s happening. However to make

«manual» code review everyone should have corresponding

technical skills and a lot of time to spend.

This work describes usage of automated source code changes

classification aimed to control source code evolution. The method

bases on statistical clusterization of change metrics. In this work

we show usage of automatic classification of changes to optimize

code review and code change control on final development stages.

Development process report building is also shown.

Index Terms— Programming, Project management, Software

metrics, Code Changes Classification

I. INTRODUCTION

HE most important software development project’s asset is

its source code. Almost all modern software projects keep

all history of source code changes in special repository of

source code versioning system. Unfortunately this information

is available only for that project participants, who has been

trained for source code analysis, i.e. mostly for developers.

While testers, managers and other specialists are also work on

project and are also interested in information, retrieved from

source code in the form of functionality lists for concrete

version, different kinds of reports, etc. Moreover source code

change history analysis is hard because of a lot of incoming

information. For example, source code versioning system

repository of real project contains lots of small, insignificant

changes, making analyzer's task complicate.

Automated classification of changes, as an additional tool,

helps to increase source code history analyzer’s performance.

For example usage of automated source code change

classification helps to filter out unimportant changes for

analyzer. Developer or development team leader can find

changes, lead to new functionality and focus on them.

Using automated change classification team leader can

automate restriction of particular classes of changes on the

Manuscript received April 1, 2008.

E. G. Knyazev is with the Saint-Petersburg State University of Information

Technologies, Mechanics and Optics (phone: +7-911-251-7636; fax: +7-812-

325-3132; e-mail: evgeny.knyazev@gmail.com).

defined development stages. For example he can set up

automated classification tool to notify him when new

functionality was added on the final testing stage, what should

be usually prohibited.

This work also provides several use cases of automated

source code changes classification for that project participants,

who are not directly work with source code. Automated

changes classification gives testers an opportunity to get

information about changes, in which new functionality was

added, bugs fixed in the form of source code or comments,

provided with changes by its developer. Project manager can

build reports with change distribution on classes.

So usage of automated source code changes classification

leads to increase of speed and quality of code review. Also it

provides additional mechanisms to control development

project state.

Method of automated source code changes classification,

described in this work, bases on source code change metrics

clasterization using k-means algorithm by MacQueen [1].

Classification adequacy proved on the experiment, provided in

[1]. Coefficient of agreement Kappa [3] there was equal to

0.79. This value is on the border between significant and

excellent agreement rate of expert and automated classification

methods.

II. AUTOMATED CHANGE CLASSIFICATION USE CASES

Automated source code changes classification can be useful

for all software development project members. Use cases of

automated source code changes classification provided below.

A. Usage of changes classification by developer

Common software developer often faces to the need of

reviewing lots of source code changes. It takes place, for

example, when he’s starting to work on a project with existent

development history or just after vacation. In such cases he has

to read every change comment carefully and if there is not

enough information, than look through change contents. This

process can be very time expensive.

 Automated change classification will relieve him from need

to dive in every change details. It will be enough to choose

change classes interesting to him and look through changes,

belonging to the specified classes. Figure 1 shows scheme of

code changes review with selected change class filter.

Automated Source Code Changes Classification

for Effective

Code Review and Analysis

Evgeny G. Knyazev

T

Proceedings of the Second Spring Young Researchers’ Colloquium on Software Engineering. SPb.: SPbSU. 2008.

V. 2, pp. 55–59.

Fig. 1. Code change review with filtering by class.

Automated classification of code changes can help

developer to localize errors, inserted in source code in some

time period. In this case developer should extract classes of

changes, potentially affecting chosen module and find the

change, which break it capacity for work.

B. Usage of changes classification by development team

leader

Good development team leader performs regular code

reviews and control all changes at the current development

stage. Code review is a very useful practice. It is source code

look-through trying to find errors and style, design and other

problems. This practice can help to discover and fix a lot of

problems on early development stages, while these fixes don’t

become very time expensive. Change control on current

development stage is to reject changes, potentially able to

destabilize system on important development stages. That’s

why, for example, new feature implementation on the final

development phases is inadmissible.

Let’s examine code review task. One of common actions to

keep code quality high is permanently review changes, made

by developers. Average developers team generates a lot of

code changes, which can lead to physical inability of team

leader to review all changes. Table 1 provides data about

number of changes in different projects for the same period of

time. In some projects number of changes can be extremely

high.

In table 1 you can see change count for period about one

month for three projects: GUI for Subversion

TortoiseSVN [4], client-server application for fleet monitoring

Navi-Manager [5], developed by author of this work in

Transas Technologies company and window system for Linux

and Unix KDE [6].

During review of big number of changes reviewer choose

only the most important changes for review basing on the text

of change comments. However, choosing changes only by

comments, provided by change author, may lead to misses of

some important changes with non-clear or inadequate

comments. This is the way to miss control of product quality.

Solution of this problem is in usage of automated source

code changes classification. Code changes review with usage

of additional information about change class gives ability to

filter out changes that are not interesting for team leader for

more precise study of important changes.

Let’s examine task of changes control on current

development stage. During its implementation software

product has several stages. For example release preparation

stage called stop code allows any bug fixes. This stage is

needed to stabilize product before its release.

When all found bugs were fixed, stage freeze code is

declared, when only critical bug fixes can occur. For stability

control it needs to review each change by at least one team

member except change author. This state lasts for installed

product version while it is being supported.

 Every development stage limits development process with

some restrictions. For example during stop code and freeze

code stages developers should fix bugs with no new features

implementation.

Automated code changes classification can be used to

automate process of control change classes on current

development stage. To do this it is enough to provide

information about available on current stage change classes

and automated classifier will do the rest. Fig. 2 shows scheme

of module, controlling change classes on current development

stage.

Fig. 2. Restricted changes search with automated change classifier.

C. Usage of changes classification by white-box testing

team

In this section we will discuss only white-box testing (for

example, unit testing). Usage automated source code changes

classification for black-box testing (for example, acceptance

testing) is not yet appropriate.

During their work testers communicate to developers to

understand project state more clearly. Testers often have not

enough information about new functionality and bugs fixed in

concrete product version. Sometimes they have only one way

to get precise list of new features and bug fixes in concrete

Developer

Source Code

Repository

K-Means

Automated

Change

Classifier

Restricted

Classes List

Team

Leader

Notification

of Restricted

Change

Code Change

Source Code

Repository

Code Review

Request
K-Means

Automated

Change

Classifier

Change Set Developer

TABLE I

SOURCE CODE CHANGE NUMBER BY PROJECT DURING ONE MONTH OF

DEVELOPMENT

Project Tortoise SVN Navi-Manager KDE

Time period

(~ 1 month)

Sept 22, 2007 –

Oct 22, 2007

Sept 22, 2007 –

Oct 22, 2007

Sept 17, 2007 –

Oct 14, 2007

Number of

changes

215 72 11841(!)

Proceedings of the Second Spring Young Researchers’ Colloquium on Software Engineering. SPb.: SPbSU. 2008.

V. 2, pp. 55–59.

version. This way is to ask developer to look through all code

changes starting from time when previous version was shipped

to the time of version of interest. Usage of automated source

code change classification dramatically decreases time of such

request execution by filtering out all change classes except

new functionality and bug fix.

D. Usage of changes classification by project manager

Project manager is interested in hi-level development

process parameters. Information about what part of changes

was made for new functionality implementation, comparing to

refactoring and bug fixes will help to measure work

effectiveness. Fig. 3 shows change distribution by classes for

Navi-Manager project during one month of new functionality

implementation stage. Looking on fig. 3 one can conclude that

Navi-Manager project has not enough progress in new features

implementation because of main developer forces where

focused on bug fixes, not on new features implementation.

Fig. 3. Code changes distribution by classes.

III. CODE CHANGES CLASSIFICATION

In this work it is suggested to use source code changes

classification method, allows to automate separation of

semantically different changes basing on values of metrics of

source code. For example source code change can belong to

one of the following classes: new functionality

implementation, refactoring, bug fix, cosmetic change. There

are several methods of source code change classification. They

can be divided into following groups [7]:

– informal methods – such methods as automatic change

classification by comment analysis [8][9], refactoring

detection method [10];

– syntax methods – such methods as heuristic comparison of

syntax trees of code versions [11] and version difference

analysis with code tags [12].

Automated method of source code change classification [2],

described in this work, bases on clasterizaion of metrics values

of source code using method k-means MacQueen [1]. Result

of this method work is set of source code changes divided on

predefined number of clusters. Each cluster corresponds to

particular class of changes.

A. Change classification task formalization

We define here source code change as mapping δr,
transforming state of source code Sr-1 to state Sr. Let C={ci} is

a set of source code change classes, defined by an expert.

Expert manually classifies any set of changes, providing for

each change δr appropriate class ci. Although this process is

hard and time expensive, we’ll try to automate it, using

expert’s knowledge only once at method study stage.

Here we suggest an algorithm of automated changes

classification (expert – a human expert, tool – an automatic

tool for changes classification):

1. An expert chooses learning set of changes – some subset

of full set of changes.

2. A tool performs change metrics sets calculation, and

clustering of change metrics sets of learning set of

changes.

3. An expert builds cluster interpretation – assigns expert

class for every cluster built on learning set of changes.

4. After these steps a tool can automatically classify any set

of changes (within the same project, from witch learning

set was extracted) by performing step (2) of this

algorithm and than using cluster interpretation, built on

step (3) to automatically assign every changes from each

cluster appropriate class.

Automated classification function IA, transforms set of

source code changes {δr} to the set of their classes {ci}:

}.,...,,{}{:
21r n

I

A
cccI A→δ

Here we treat function IA as composition of clasterization

function IQ and cluster interpretation function IIQ:

,
IQQA
III o= },,...,,{}{:

21r m

I

Q
qqqI Q

→δ

 },,...,,{},...,,{:
2121 n

I

mIQ
cccqqqI IQ

→

where Q={qj} is a set of clusters qj.

 Clustering function IQ transforms set of changes {δr} to the

set of clusters {qj}. Cluster interpretation function IIQ
transforms set of clusters {qj} to the set of change classes {ci}.

This is two-step process: first split changes by clusters, than

interpret all changes from each cluster as a change class.

 Clustering function can be built using MacQueen k-means

algorithm [1]. Clustering algorithm groups code changes in

similarity clusters. Similarity here is proximity between change

metric sets. Clustering algorithm treats each change metrics

vector <M`δr>n = <M1`δr, M2`δr… Mn`δr> as point in n-

dimensional space and splits these points on predefined

number of clusters basing on proximity between points.

Code changes class statistics for 1 month

of Navi-Manager development

70%

22%

6% 2%

Bug fixes +cosmetic
changes: 70%

Small functions +
refactoring: 22%

Big new
functions: 6%

Code deletion: 2%

TABLE 2

SOURCE CODE CHANGE METRICS USED FOR CHANGE CLUSTERING

Metric

Symbol Metric Name Change Metric Effect and Description

eLOC Effective

Lines of Code

Number of lines of code without

empty lines and comments

CC

Cyclomatic

Complexity

Number of linearly independent

execution paths [13]

CS Classes /

Structures

Number of classes or structures

Proceedings of the Second Spring Young Researchers’ Colloquium on Software Engineering. SPb.: SPbSU. 2008.

V. 2, pp. 55–59.

 Metric M` of the change δr may be defined as difference

between source code metric M values of changed code Sr+1

and original code Sr:

M`δr = MSr+1 - MSr.

 In this work we used set of change metrics, based on three

source code metrics defined in table 2.

B. Clusters interpretation

Choosing learning set of changes, k–means clusterization

method parameter number of clusters and building cluster

interpretation function IIQ are expert tasks in current research.

Interpretation function can be built by choosing several

changes from each cluster and expert classification of these

changes to make a conclusion about what class of changes

represents this cluster. This task is significantly less time-

expensive than original classification task because there are

not so many classes on practice to be extracted.

 During interpretation function building expert analyses

some source code changes of each cluster and changes

comments. As a result expert defines class ci, which is

appropriate for analyzed cluster qj. When there’s no way to

classify one cluster unambiguously than it needs to choose

other set of metrics and/or set of classes.

After function IIQ has been built for some set of changes,

classification of other changes of the same project can be

performed in automatic mode without an expert.

IV. CONCLUSION

Described method can be used by participants of almost any

software development project. A tool was developed to

support automation of code changes classification. On the

moment of the publication it supports only one version control

system Subversion and programming languages C++, C#. This

tool allows calculating changes metrics based on cyclomatic

complexity [13], effective lines of code, and common number

of classes or structures.

Code changes classification experiment was set up in [2],

and Kohen’s agreement rate [3] between human expert and

automated classifier was measured: κ=0.79. This value shows

agreement strength of changes classification method based on

metrics clustering and human expert between significant and

excellent.

Described method faces with mixed changes problem,

consisting of several changes with different nature. Change

classification method not always can correctly classify such

changes. But probably complex non-clear changes should be

avoided in good development process. When exist, these

changes make code review and other work with history harder.

Problem of mixed changes separation during clustering is to be

solved in future research. Other problem left for future

research is clustering stability problem in long-term analysis.

 Changes classification method, based on change metrics

have several advantages, comparing to other change

classification methods:

- Objectiveness: Analysis is performed on source code

itself, not on change comments, as, for example in

automatic change classification by comment analysis [8],

[9].

- Ability of tuning: Different sets of metrics can be chosen

for classification automation, depending on target

classification [2]. Other methods allow change

classification only by given set of classes, although in

some of their [8],[9],[11] not very big amount of

additional work can be performed to add new classes of

changes.

- Adaptivity: Resulting number of clusters and expert

classification of learning changes set passed to clustering

method. With this data project specific classes of changes

can be extracted thanks to data-mining techniques

(McQueen clustering) used in suggested in this article

method. Other methods of changes classification,

described here, possibly except [8],[9], cannot be simply

adapted to specific project.

- Formality: Change classification bases on formal statistic

methods, while some informal methods, bases on

heuristics of special words usage (as “bug”, “fix”,

“refactor”, etc) in comments [8],[9] or metrics values

changes by specific rules [10].

REFERENCES

[1] J. B. MacQueen: "Some Methods for classification and Analysis of

Multivariate Observations", Proceedings of 5-th Berkeley Symposium

on Mathematical Statistics and Probability, Berkeley, University of

California Press, 1967, vol.1 pp. 281-297

[2] E. G. Knyazev, D. G. Shopyrin, “Automated classification of source

code changes by means of multidimensional statistical analysis”,

Information Technologies, to be published in Russian.

[3] J. Cohen, “A Coefficient of Agreement for Nominal Scales”,
Educational and Psychological Measurement, 1960, pp. 37–46.

[4] TortoiseSVN, A Subversion client, implemented as a windows shell

extension. Available: http://tortoisesvn.tigris.org

[5] Navi-Manager Vessel Monitoring System. Available:

http://www.transas.com/products/shorebased/manager/

http://www.transas.ru/products/shorebased/fleet/navi-manager/

[6] KDE. A powerful Free Software graphical desktop environment for

Linux and Unix workstations. Available: http://www.kde.org

[7] H. Kagdi, M. Collard, J. Maletic, “Towards a Taxonomy of Approaches

for Mining of Source Code Repositories“, ACM SIGSOFT Software

Engineering Notes. Proceedings of the 2005 International Workshop

on Mining Software Repositories MSR '05, St. Louis, Missouri. 2005,

pp. 1–5.

[8] A. E. Hassan, R. C. Holt, “Source Control Change Messages: How Are

They Used And What Do They Mean?”, 2004. Available:

 http://www.ece.uvic.ca/~ahmed/home/pubs/CVSSurvey.pdf

[9] A. Mockus, L. G. Votta, “Identifying reasons for software change using

historic databases”, Proceedings of the International Conference on

Software Maintenance (ICSM), San Jose, California. 2000, pp. 120–

130.

[10] S. Demeyer, S. Ducasse, O. Nierstrasz, “Finding refactorings via

change metrics”, Proceedings of the ACM Conference on Object-

Oriented Programming, Systems, Languages, and Applications

(OOPSLA ’00), 2000, pp. 166–178.

[11] S. Raghavan, R. Rohana, A. Podgurski, V. Augustine, “Dex: A

Semantic-Graph Differencing Tool for Studying Changes in Large

Code Bases“, Proceedings of 20th IEEE International Conference on

Software Maintenance (ICSM'04), Chicago, Illinois. 2004, pp. 188–

197.

[12] J. I. Maletic, M. L. Collard, “Supporting Source Code Difference

Analysis”, Proceedings of IEEE International Conference on Software

Maintenance (ICSM'04). Chicago, Illinois. 2004, pp. 210–219.

[13] T. J. McCabe, “A Complexity Measure”, IEEE Trans SE-2. 1976. №4.

