
ISSN 1064�2307, Journal of Computer and Systems Sciences International, 2010, Vol. 49, No. 2, pp. 265–282. © Pleiades Publishing, Ltd., 2010.
Original Russian Text © N.I. Polikarpova, V.N. Tochilin, A.A. Shalyto, 2010, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2010, No. 2, pp. 100–117.

265

INTRODUCTION

A number of methods for construction of finite
automata using genetic algorithms [1, 2], genetic pro�
gramming [3, 4], and other evolutionary approaches
have been considered in literature. Most papers in this
field are devoted to the generation of parser automata
describing the grammar of a language. The task of such
an automaton is to verify whether a given string
belongs to the language. The recognizer does not per�
form output actions—the result is determined by the
state of the automaton after processing the input
sequence. The example of the parser is a syntactic ana�
lyzer establishing the program code fits the grammar
of the programming language. Papers [5–12] should
be mentioned as the most important ones in this field.
A more complex form of the finite automaton, the
transducer, maps the set of input strings into the set of
output strings, possibly over another alphabet. An
example of the transducer is a compiler. The evolution�
ary construction of transducers is considered in [13–15].

For both classes of automata considered above, the
input actions are symbols of a given (most often small)
alphabet. In other words, the comparison of the cur�
rent input symbol with one of a small set of given sym�
bols is used as the condition of transition of the autom�
aton from one state to another.

In the field of genetic programming, the problem of
construction of finite automata is not formulated
explicitly. However, in this field calculation models in
the form of graphs which can be interpreted as transi�
tion graphs of finite automata are conventionally opti�
mized. A large number of papers, for example [16–20],
have been devoted to construction of programs in the
form of graphs. The application of automata in games
was described in [21–23].

A large number of papers have been devoted to the
problems of construction of control automata describ�

ing the logics of complex behavior of an entity or a sys�
tem. For example, in [24–26] the automatic construc�
tion of components of software for logical controllers
in the form of automata was considered, and in [27]
the efficiency of automaton models was estimated, as
applied to different problems.

Practically in all above studies the automaton at
each time instant processes just one input variable.
The exceptions are only [22] (four parallel ternary
inputs) and [27] (comparison of values of two registers
is admitted as the transition condition). Theoretically,
any number of parallel inputs can be reduced to one
input for which the combinations of signals of initial
parallel inputs serve as the actions. However, the size
of the alphabet of thus obtained input exponentially
increases with increasing number of initial parallel
inputs. In these publications parallel inputs do not
result in an admissibly large alphabet, but for real con�
trol systems this problem is extremely topical. In the
papers mentioned above the automaton at each step
can generate not more than one output variable. This
results in the exponential growth of the output alpha�
bet, since in real problems the automaton often has to
implement arbitrary combinations of elementary
actions on each step. Note that [27] allows actions
with arguments and concurrently executing automata,
responsible for different actions, which considerably
weakens the problem.

In this paper the problem of automatic construc�
tion of control automata based on genetic program�
ming is studied. Boolean functions over an arbitrary
number of input variables are used as transition condi�
tions in control automata. Among the sources men�
tioned above, the best results in the field of construc�
tion of control automata were obtained in [25, 26].
However, these publications are not free from the
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above disadvantages connected with the dimensions of
input and output signals.

In this paper, the method of reduced tables is pro�
posed for construction of control automata. The great�
est attention in development of this method was paid
to the possibility of construction of automata with an
arbitrary number of parallel inputs and outputs.
Unlike existing genetic programming methods in
which the program is described at a low level of
abstraction and is subject to optimization as a whole,
in the developed approach the program is represented
in the form of the automated control object [28]: the
logics of complex behavior is expressed by the autom�
aton or the system of automata at a high level of
abstraction and is optimized, while the control object
is implemented manually (in a hardware or software
way), and does not assume optimization. The control
object can be arbitrary (generally speaking, of any
complexity). Thus, the proposed method solves the
problem of application of complex data structures in the
framework of the genetic programming formulated by
the founder of genetic programming J. Koza in [29].

1. STATEMENT OF THE PROBLEM

Let us formulate the problem of construction of the
control automaton. We determine the following control
object: , where  is the set of computa�
tional states;  is the initial computational state;

 is the set of predicates; and

 is the set of signals. The criterion
function (fitness function) on the set of numerical

states  and the natural number  are also
known.

The object  can be controlled by the automaton
of the form , where  is the finite num�
ber of control states;  is the initial state,

 is the control function match�
ing the control state and the input signal the new state
and the output signal. The control function can be
decomposed into two components: the output func�

tion ζ : S ×  and the transition function δ :

S × . Separate components of the input sig�
nal corresponding to predicates of the control object
are called input variables. Separate components of the
output signal corresponding to signals of the control
object are called output variables.

Let before the beginning of operation the control
object be situated in the computational state , and
let the automaton be in the control state . The fol�
lowing sequence of operations makes the step of oper�
ation of the automated object:
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(1) the control object calls all predicates from the

set  and forms the vector of input signal 
from their values.

(2) the automaton calculates the value of the vector
of output signal , where s is the current
state of the automaton, and passes into the new con�
trol state ;

(3) the control object implements the actions
, changing the current computational state [28].

The problem of design of the control automaton
consists in finding the automaton of the given form,
such that for  steps the object , controlled by this
automaton, passes to the numerical state with the
maximal fitness (ϕ(v) → max).

In relation with the application of genetic pro�
gramming, the following subproblems occur for this
problem: the choice of representation of the finite
automaton in the form of the set of chromosomes;
adaptation of genetic operators (mutation and cross�
over) for this representation; and adjustment of the
parameters of genetic optimization. For solution of
the first subproblem, it is convenient to interpret the
automaton as the set of control states each of which is
determined by the projection of the control function

, . Thus, the problem is
reduced to the description of each separate control
state in the form of a chromosome.

2. STATE REPRESENTATION 
IN THE FORM OF A CHROMOSOME

The natural way of representing the control func�
tion in a state is the table of inputs and outputs in which
each possible combination of the values of input vari�
ables corresponds to the set of values of the output
variables and the new state. The main problem arising
in this case is the exponential growth of the chromo�
some size with increasing number of predicates of the
control object, since the number of rows in the table

is , where  is the number of predicates.
Experience has shown that in real problems the

number of transitions in manually formed control
automata does not increase exponentially with
increasing number of predicates of the control object.
The reason is probably that in most problems predi�
cates have a “local nature” with respect to control
states. In each state, just a certain small subset of pred�
icates is significant, the other do not affect the value of
the control function. This property makes it possible
to considerably reduce the size of state description.
Moreover, the application of this property in the
course of optimization provides the result which
resembles a manually constructed automaton, and
consequently, is clearer to a person.

The locality property of predicates can be used for
reducing the size of description of the control state
using different methods. We chose one of the
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approaches for which the number of significant state
predicates is limited by a constant . In this case, the
automaton state is represented in the form of a reduced
table of transitions and outputs in which each combi�
nation of the values of significant input variables corre�
sponds to the set of values of output variables and the
new state. This representation also contains the bit vector
describing the set of significant predicates (Fig. 1).

The number of rows of the reduced table is . In
manually constructed automata, the number of signif�
icant state predicates usually varies from 1 to 5. This
provides the assumption that good optimization
results can be achieved even for small values of the
constant . Thus, the memory volume necessary for
the optimization process for the method of reduced
tables can be estimated as , where  is
the number of specimens in the generation. Note that
unlike the required memory volume the performance
of the algorithm of genetic optimization is difficult to
estimate theoretically, since it is probabilistic. There�
fore, the performance was estimated experimentally
(Section 4).

3. GENETIC OPERATORS

Let us describe genetic operators acting on chro�
mosomes of states represented in the form of reduced
tables.

Algorithm 1. Mutation of reduced tables. In the case
of the state mutation the value in each row of the
reduced table and the set of significant predicates can
change with some probability. In this case, each of the
significant predicates is replaced with a given probabil�
ity by another one which does not belong to the set
(Fig. 2). Thus, the number of significant state predi�
cates remains constant. The description of the muta�
tion algorithm is given in the listing in Fig. 3.

Algorithm 2. Crossover of reduced tables. The main
steps of the crossover algorithm are shown in the listing
in Fig. 4. Since parent chromosomes represented by
reduced tables can have different sets of significant
predicates, first it is necessary to choose which of these

r

2 r

r

( )( )O g S Z X+ g

predicates will be present in child chromosomes. The
function ChoosePreds making this choice is shown in
the listing in Fig. 5. As a result of operation of the
function ChoosePreds the predicates which are signifi�
cant for both parents are inherited by both children,
and each of the predicates present in just one parent
specimen goes to any of the children with equal prob�
ability. The example of operation of the function for
parent chromosomes shown in Fig. 6 is illustrated in
Fig. 7. After choosing significant predicates tables for
both children are formed. The filling algorithm is
shown in the listing in Fig. 8. The illustration of the
example of filling the first row of the table of one of the
children is shown in Fig. 9. In this implementation of
the crossover operator, the values of each row of the
child table are influenced by the values of several rows
of the parent tables. In this case, the particular quan�
tity placed in the cell of the child table is determined
by “voting” of all cells of parent tables which influence
this cell.

In the above variant of the algorithm, all automaton
states have the equal number of significant predicates
(  is the constant for the whole optimization process).
However, the proposed crossover algorithm can easily
be extended to the case of the different number of sig�
nificant predicates for the pair of parents.
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Fig. 1. State chromosome: reduced table (n = 6, r = 2).
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4. EXPERIMENTAL ESTIMATE 
OF THE METHOD OF REDUCED TABLES

For estimating the characteristics of the method of
reduced tables a number of experiments were per�
formed in which this method was compared with the
representation of control automata in the form of
complete tables of transitions and outputs [30]. The
comparison was performed according to the following
criteria: occupied memory volume, time spent for pro�
cessing each generation, growth rate of the fitness
function (of the generation number and time).

It was already mentioned above that the method of
reduced tables solves the problem of exponential
growth of the size of automaton description with
increasing number of input variables (predicates of the
control object). This property of the method was
proved in the course of experimental verification. Dur�
ing the experiment the automata descriptions were
stored in the computer memory; therefore, the occu�
pied memory volume in this case is proportional to the

size of the automaton description. The results of
experiment are shown in Fig. 10a. It follows from the
plot that the occupied memory volume in the case of
application of the complete tables exponentially
grows, while for the method of reduced tables this vol�
ume practically does not change with increasing num�
ber of predicates. In reality it linearly depends on the
number of predicates, however, the proportionality
coefficient is so small that it is not observed in experi�
ments. The dependence of time required for process�
ing each generation on the number of predicates has
the same character (Fig. 10b).

Now let us estimate the growth rate of the fitness
function. Figure 10c shows the dependences of the
value of the estimator on the generation number for
the methods of complete and reduced tables (the mea�
surements were performed for a small number of pred�
icates). It follows from this plot that the optimization
using the method of complete tables requires the cal�
culation of a smaller number of generations. This
means that in the case of a small number of predicates

State Mutate(State state)

State mutant = state;

if (with the probability p) {

int from, to;

randomly choose from and to in such a way that

(mutant.predicates[from] == 1) && (mutant.predicates[to] == 0)

mutant.predicates[from] = 0;

mutant.predicates[to] = 1;

}

if (with the probability p1) {

mutant.table[i].targetState = random from 0 to nStates - 1;

}

if (with the probability p2) {

int nActsPresent = number of units in mutant[i].table.output;

if ((nActsPresent == 0) || (nActsPresent == nActions)) {

Index j = random number from 0 to nActions - 1;

mutant[i].table.output[j] = !mutant[i].table.output[j];

} else {

for (for all j: action numbers) {

mutant[i].table.output[j] = 1 with the probability

nActsPresent/nActions and 0 otherwise;

}

}

return mutant;

{

for (for all i: rows of table) {

}
}

}

Fig. 3. Mutation of reduced tables (listing).
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the method of complete tables possesses higher perfor�
mance. However, with increasing number of predi�
cates the time of processing one generation using this
method sharply increases. Moreover, due to the expo�
nential growth of the required memory volume the
application of the method of complete tables, begin�
ning from some number of predicates, becomes not
only inefficient, but practically impossible. In experi�
ments we could not obtain the automaton with more
than 14 input variables using the method of complete
tables. Note also that it is practically impossible to
depict and understand automata constructed using the
method of complete tables, since they contain a large
number of excessive transitions, and conditions for
these transitions are cumbersome. On the contrary,

automata based on the method of reduced tables can
be relatively easily understood.

In order to adequately estimate the performance of
both methods, it is necessary to establish the depen�
dence of the value of the estimator achieved using each
of them during a particular time on the number of
predicates. This dependence for the time interval
equal to 5 min is shown in Fig. 10d. As expected, these
dependences demonstrate that in the case of a small
number of predicates the method of complete tables
has higher performance; however, with increasing
number of predicates its performance sharply drops.
At the same time, the performance of the method of
reduced tables insignificantly decreases with increas�
ing number of predicates.

pair<State, State> Cross(State statel, State state2) 

{

State child1 = statel;
State child2 = childl;

ChoosePreds(statel.predicates, state2.predicates, 
childl.predicates, child2.predicates);

int crossPoint = random number from 0 to tableSize;
FillChildTable(statel, state2, childl, crossPoint); 
FillChildTable(statel, state2, child2, crossPoint);
return make_pair(childl, child2);

Fig. 4. Crossover of reduced tables (listing).

void ChoosePreds(Predicates p1, Predicates p2,
Predicates chl, Predicates ch2)

for (for all i: predicate numbers) {
if (p1[i] && p2[i]) { // Predicate from both parents

chl[i] = ch2[i] = true; // goes to both children
//remembering that the sets of child predicates

}
}
for (for all i: predicate numbers) {

if (pl[i] != p2[i]) {
Predicates* pCh;

pCh = any child with equal probability;
} else {

pCh = the child who still has space;
}

(*pCh)[i] = true;
remembering who has less space;

}
}

{

// have one space less;

if (both children have space) {

}

Fig. 5. Choice of significant predicates of children upon crossover reduced tables (listing).

}
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The following conclusions can be made from the
investigation of the characteristics of the methods of
complete and reduced tables:

(i) in the case of a small number of predicates the
optimization using the method of complete tables
requires less time; however, thus constructed automata
are incomprehensible;

(ii) beginning with a certain number of predicates,
the application of the method of complete tables is
practically impossible, while the method of reduced
tables yields rather good results with respect to the
required time and memory.

A tool based on the method described above was
developed by us for automata generation [30, 31].

5. APPLICATION OF THE METHOD 
OF REDUCED TABLES FOR AUTOMATIC 

CONTROL OF AN AIRCRAFT

The proposed method was applied to designing the
automatic control system for an aircraft model on a
high level of abstraction. It is known that at present
autopilot systems are widely used in aircraft control;
however, they do not provide a completely automatic
flight. In particular, the switching between autopilot
regimes and the adjustment of navigation devices is
performed manually. In this study the following task
was formulated: to construct an aircraft controlling
finite automaton which completely automates the
flight. In this case, the automaton can use the standard
autopilot as the control object. The developed system
should not produce nonstandard requirements to the
ground equipment.

5.1. Method of Generation 
of Aircraft Controlling Automaton

For solving the problem formulated above using
genetic programming based on the method of reduced
tables the following steps were made:

(i) choice of a spacecraft simulator;
(ii) implementation of control object interface;
(iii) determination of fitness function;
(iv) construction of control automaton;
(v) analysis of results of experiment.

5.2. Choice of a Spacecraft Simulator

In the considered problem, the control object is an
aircraft which is situated in some medium, including
air (possibly, moving), runways, landscape, flight con�
trol service, radio beacons, and so on. It is necessary to
emulate aerodynamics, mechanics, and operation of
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Table 1.  Input actions of automaton

Identifier Value description

x1 Aircraft is moving

x2 Aircraft velocity is sufficient for flying with extended flaps

x3 Aircraft velocity is sufficient for flying with retracted flaps

x4 Aircraft is flying

x5 Aircraft is near the ground

x6 Flight altitude corresponds to the recommended altitude level

x7 Aircraft is near the reference point of GPS receiver

void FillChildTable(State s1, State s2, States child, int crossPoint) { 
for (for all i: rows of table child) {

vector<int> linesl = choose rows of table s1 in which predicates
significant for child have the same values as in row i,
and if the predicate is significant for both parents and i >=
crossPoint, its value is not taken into account;

vector<int> lines2 = choose rows of table s2 in which predicates
significant for child have the same values as in row i,
and if the predicate is significant for both parents and i <
crossPoint, its value is not taken into account;

vector<Probability> p1(nStates);
vector<Probability> р2(nStates);
for (for all j from linesl) {

p1[target state for s1 in row j] += 1.0;
}
for (for all j from lines2) {

р2[target state for s2 in row j] += 1.0;

Divide values of p1 by the number of rows from linesl; 
Divide values of р2 by the number of rows from lines2; 
vector<Probability> р = p1 + р2;
child[i].targetState = random with probability distribution р;
for (for all k: action numbers) {

Probability ql, q2;
for (for all j from linesl) {

ql += s1[j].output[k];

for (for all j from lines2) {

Divide ql by the number of rows from linesl;
Divide q2 by the number of rows from lines2;
child[i].output[k] = 1 with the probability (ql + q2)/2 

}

}

}

q2 += s2[j].output[k];
}

}
}

Fig. 8. Filling tables of children for crossover of reduced tables (listing).

the aircraft equipment. Since it is rather cumbersome
to develop the necessary emulator, it is natural to use a
ready emulator. For this purpose the aviation simula�
tor X�Plane [32] was chosen; the specific features of

this simulator are the precision of physical simulation
and documented interface of interaction with other
programs (API), which made it possible to use this
simulator in the experiment.

and 0 otherwise;
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5.3. Choice of Control Object Interface

The simulator X�Plane provides getting from the
aircraft and transmitting to the aircraft of a large num�
ber of data. In this experiment, it was impossible to use
all these data in the control automaton, since in this
case the optimization process would be too long. It was
already mentioned above that the realistic character of
the proposed method of generation of control autom�
ata is provided by the high level of abstraction of the
logics. In this case, predicates and actions of the con�
trol object are manually chosen and implemented.

In the studied problem 7 input (Table 1) and
24 output variables (Table 2) were used; we assumed
that this amount was sufficient for the aircraft control
on a high level of abstraction. For each of the chosen
variables the subprogram corresponding to the predi�
cate or action of the control object was developed.

These subprograms interact with the spacecraft simu�
lator, reading the device indications and acting on the
control organs of the aircraft. The composition of
devices and control organs is shown in Fig. 11.

5.4. Fitness Function

Let us reformulate the problem in the form of the
fitness function. The autopilot should guide the air�
craft along the route and not crash it. Therefore, two
important factors can be separated: deviation from the
route and the aircraft safety. It is also important that
after passing along the route the aircraft should stop
(or decelerate to a safe velocity) on the runway. The
combined deviation from the route both with respect
to position and velocity is calculated in the form of the
time integrals of the absolute values of corresponding
deviations,
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,

where  is the combined deviation from the route with
respect to position, , is the time of beginning of the
emulation,  is the time of the end of emulation, and

 is the position deviation at the time instant ;

,
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where  is the combined deviation from the optimal
velocity and  is the deviation from the optimal

velocity at the time instant . Let us denote by , ,
and  the weighting coefficients of a crash, position,
and velocity deviations. The coefficients determine
the relative importance of the corresponding defects of
the autopilot behavior. The following values were
taken for these coefficients: , P

α
 = 0.01 1/m,

and V
α
 = 0.01 s/m. As a result, we chose the fitness

function of the form
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Fig. 10. The dependence of the memory amount (a), the processing time of generation (b). The value of estimation function for
the given duration of the method (d) on the number of predicates and the value of estimation function on the number of genera�
tion (c); 1—full tables, 2—reduced tables.
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,

where  is the variable which is equal to zero if the air�

craft is safe, and unity if it is broken;  = 77 s is the time
during which in the case of exact following the route
(which is physically impossible) autopilot would get
the same value of the fitness function as the “ideal”
physically possible autopilot gets during the whole
flight. The function is normalized to the interval (0, 1),
as compared with the “ideal” autopilot. Thus, if the
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function is equal to unity, this means that the goal of
optimization has been achieved.

5.5. Construction of Control Automaton

The algorithm of construction of the control
automaton consists of the following steps:

(1) initial population of automata is generated in a
random way;

(2) each automaton in the population is estimated.
For this purpose, the flight is simulated in the space�
craft simulator controlled by the estimated automa�
ton, and the data on the route and state of the aircraft

Air velocity indicator
x1, x2, x3

Altimeter
x4, x5, x6

ALT�Constant altitude regime
z8

V/S�Constant vertical velocity regime
z9

HFG�Regime of flight along the course
z6

LOC�Regime of flight toward a point
z5

G/S Descent using a beacon
z7

Climb rate
z22

Flight altitude
z22

Autopilot

Navigation
receiver NAV1
z1, z2

GPS receiver

Distance to the target
x7

Reference point
z3

Flap control
handle
z15, z16, z17

Throttle
z12, z13, z14

Flight control
z4

Landing gear extension handle
z18, z19

Wheel brake
z10, z11

Source of signal of indicator of horizontal situation
z20, z11

HSI�Indicator
of horizontal

situation

Fig. 11. Applied devices and control organs of the aircraft.
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are recorded. Then the value of the fitness function is
calculated based on these data;

(3) if there is one automaton with the fitness func�
tion equal to unity in the population it is chosen as the
result, and the process of optimization is completed;

(4) in the opposite case, a new generation is con�
structed using the operators of mutation and cross�
over; after that the process returns to step 2.

The plot of variation of the fitness function with
increasing generation number in the course of opera�
tion of the above algorithm is shown in Fig. 12. The
maximal value of the estimator equal to unity for two
last generations testifies the successful completion of
the process of optimization.

The constraint on the number of significant predi�
cates in each state r = 1 was imposed upon the autom�
aton generation. Even for this constraint the optimiza�
tion lasted about one month. Note that most of the
time was spent for the calculation of the fitness func�
tion: the emulation necessary for estimation of one
automaton required about 5 min. The automaton
obtained as a result of optimization has a small num�
ber of states and transitions. However, it is rather com�
plicated for comprehension due to a large number of
actions at transitions. In order to simplify the automa�
ton, the actions rejecting each other, which do not

influence the aircraft behavior in this state, were man�
ually eliminated. The automaton states were enumer�
ated and named. The final variant of the automaton is
shown in Fig. 13. Since the number of significant
predicates in each state of the control automaton was

1.0

1

0.8

0.6

0.4

0.2

0
7 13 19 25 31 37 55 97103

Generation

Fitness

9185797367614943

1.2

Fig. 12. Variation of fitness in the course of evolution.

Table 2.  Output actions of automaton

Identifier Action description

z1 Adjusting navigation receiver to the frequency of landing beacon of the departure airport
z2 Adjusting navigation receiver to the frequency of landing beacon of the destination airport
z3 Switching the GPS receiver in the following regime to the reference point
z4 Switching the flight control switch into the position “AUTO”
z5 Switching autopilot to the flight regime to the point in the horizontal plane
z6 Switching autopilot to the flight regime along the course in the horizontal plane
z7 Switching autopilot to the descent regime using the beacon
z8 Switching autopilot to the constant altitude regime
z9 Switching autopilot to the constant vertical velocity regime
z10 Switching on wheel brake
z11 Switching off wheel brake
z12 Setting maximal fuel supply
z13 Setting intermediate fuel supply
z14 Setting minimal fuel supply
z15 Retracting flaps
z16 Setting flaps into takeoff position
z17 Setting flaps into descent position
z18 Extending landing gear
z19 Retracting landing gear
z20 Using navigation receiver as the source of signal of indicator of horizontal situation
z21 Using GPS receiver as the source of signal of indicator of horizontal situation
z22 Setting climb rate and flight altitude for autopilot
z23 Controlling rudder according to autopilot signals
z24 Setting rudder into the central position
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0. Start
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8. Landing
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!x1/z15

altitude

GPS navigator

landing approach

Fig. 13. Transition graph of the obtained automaton.

taken equal to unity, not more than two transitions
from each state were possible. Due to the fact that the
predicates and actions of the control object were chosen
on a rather high level of abstraction, the automaton with
such a simple structure was sufficient for control.

The automaton shown in Fig. 13 can be rather eas�
ily heuristically (without the use of genetic program�
ming) constructed. For example, in [33] a very similar
transition graph describing the aircraft flight (Fig. 14a)
was given as the example of the state diagram. In

Fig. 14b the states and transitions of this automaton
are correlated with the states and transitions of the
automaton obtained using genetic optimization in this
paper. The difference between the two transition
graphs is explained by the difference in the problem
formulation. However, often it is not easy to construct
the control automaton manually. This automaton in
most cases is nonoptimal and unjustified complex.
Besides, the optimization approach is characterized
by better scalability.

Fig. 14. (a) State diagram for the aircraft flight [33] and (b) its comparison with automatically constructed automaton.
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Fig. 15. Automaton and aircraft in different states: (a) acceleration; (b) leaving ground; (c) climb to safe altitude; (d) flight using
GPS navigator; (e) adjustment of landing approach; (f) landing approach; (g) descent; (h) landing; (i) deceleration.
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5.6. Analysis of Results of Experiment

When the optimization is completed, the test emu�
lation of the flight controlled by the constructed opti�
mal automaton was performed. Figure 15 shows the
automaton, the aircraft position, and the device indi�
cations at different stages of test emulation. In the
course of test emulation the deviation from the route
and the recommended velocity, the flight altitude
(which makes it possible to determine the time
instants of leaving the ground and touching the
ground), and the acting overloads were recorded. The
recorded data are shown in Fig. 16.

It follows from the plot that the maximal deviation
of the aircraft from the route during the whole flight
time was 314 m. It did not exceed 60 m during the
whole flight except for a 1 min segment in the middle
of the plot when the deviation is the least critical. The
time instants of leaving and touching the ground can
be determined from the plot of the flight altitude:
35 and 271 s, respectively. It follows from the estab�
lished time and the plot of deviation from the route
that the maximal deviation during acceleration was
12 m, and during deceleration 10 m. The deviations
which are significant but do not go beyond the runways
provide the conclusion that the generated automaton
guided the aircraft along the route with sufficient pre�
cision.
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Fig. 16. Results of testing: (a) deviation from the route; (b) deviation from the recommended velocity; (c) flight altitude above the
sea level; (d) overload.
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It follows from the plot of recommended velocity
that the velocity regime was observed, except for
exceeding the velocity by 20.34 m/s at the time instant
of touching the ground, which was compensated in the
course of deceleration and did not result in a consider�
able excess in the stopping distance. The combined
deviation of the aircraft position after stopping includ�
ing the transverse deviation from the center of the run�
way and the excessive stopping distance is 6.5 m. It fol�
lows from the plot of overload that the enhanced
deceleration did not result in a considerable discom�
fort of passengers. This analysis yields the conclusion
on the satisfactory quality of the automatically con�
structed automaton.

CONCLUSIONS

The disadvantages of the existing methods of gen�
eration of finite automata using genetic algorithms
were demonstrated and the method free from these
disadvantages was proposed. The performance of the
proposed method and its memory requirements were
experimentally estimated. The method was success�
fully tested in the problem of automatic generation of
the aircraft control system and proved its applicability
for solution of practical tasks.
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