
FSMC+, a Tool for the Generation of
Java Code from Statecharts

Roberto Tiella
IRST

via Sommarive, 18
Trento, Italy

tiella@itc.it

Adolfo Villafiorita
IRST

via Sommarive, 18
Trento, Italy

adolfo@itc.it

Silvia Tomasi
IRST

via Sommarive, 18
Trento, Italy

sitomasi@itc.it

ABSTRACT
ProVotE is a two-phase project aiming at actuating art. 84
of law 2 - 5/3/2003 of the Autonomous Province of Trento
(Italy), which promotes the introduction of e-voting systems
for the next provincial elections in Trentino (Nov. 2008).

During the first phase of the ProVotE project we built jprovote,
a Java/Linux e-voting system. The jprovote system has
been used with experimental value by more than 11000 vot-
ers during local elections held in various municipalities of
Trentino (Italy).

A critical component of jprovote is its core logic, that is re-
sponsible of controlling the overall behavior of the e-voting
machine during an election. In order to simplify its devel-
opment and to allow for formal verification of this critical
component we developed FSMC+.

FSMC+ is a compiler that takes as input a subset of UML
Statecharts and produces the corresponding Java and NuSMV
code (NuSMV is a model checker developed at ITC-irst).
Support for parameters in events, complex expressions in
guards, and support to nested states are some of the distin-
guishing features of FSMC+.

In this paper we present FSMC+ and we show how we used
it for the development and the verification of the ProVotE
e-voting machine. Even though FSMC+ has been specifi-
cally created to ease the development of jprovote, we believe
the approach and the tool we developed to be general enough
to be used in other applications.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming

General Terms
Design, Reliability, Verification

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PPPJ 2007, September 5–7, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-672-1/07/0009...$5.00

Keywords
evoting, statecharts, code generation, model checking

1. INTRODUCTION
The use of new technologies to support elections has been
and is the subject of great debate. Not surprisingly, there
are both advocates of the benefits it can bring — such as
improved speed, impartiality in counting, and accessibility
— and people more concerned with the risks it poses, such
as digital divide, violations to secrecy and anonymity, al-
teration of the votes and of the results, either because of
malicious attacks or simply because of bad design and cod-
ing. (See, for instance, [10, 23, 28, 6, 21] for a more in depth
view on some of the topics mentioned above.)

The development of e-voting systems is particularly demand-
ing. System development is subjected to strong deadlines (a
delay of one day can make the difference between success and
failure, as election days cannot be shifted), systems availabil-
ity during election is a critical issue (in Italy most elections
are run in one day, from 6.00am to 10pm, during which all
voters must be given the right to express their votes when
they show up at the polling station), and are under con-
stant scrutiny by citizens, experts, and representatives of
the parties.

The last few years have seen a wider adoption of tools and
techniques to simplify the development and increase the
quality of complex embedded systems. In various safety
critical sectors, such as automotive, railway, avionics, the
use of finite state machines for the specification of embed-
ded controllers and the use of theorem provers and model
checkers to increase confidence in the design have become
more common. However, to our knowledge, the use of such
techniques in the e-voting domain does not seem to be com-
mon practice.

The Autonomous Province of Trento (also PaT, from now
on), which benefits of special autonomy and determines by
its own legislation how the council and the President of the
province are elected, is considering the introduction of e-
voting for the next provincial elections as mandated by Art.
84 of PaT law 2/2003. To actuate the law PaT is spon-
soring the ProVotE project1, a two-phase project which has
the goal of ensuring a smooth transition to the new way of
voting, eliminating risks of digital divide, and providing the

1ProVotE is the acronym of “Progetto Voto Elettronico”,
e-Voting Project in Italian

93

technological solutions required for an electronic election.
The project is organized in three lines of activities, sociolog-
ical, normative, and technological, which strictly interact.
(See [32, 9] for more details and [26] for some considerations
related to the sociological aspects of e-voting.)

During the first phase of ProVotE we built jprovote, a Java/Linux
e-voting system, which, so far, has been tested by more than
11000 citizens in various trials conducted in Trentino during
local elections.

A critical component of jprovote is its core logic, whose main
functions are:

• ensure that the e-voting machine correctly implements
the procedures required by the Italian electoral law;

• coordinate and control all the devices of the voting
machine (touchscreen, smartcard reader, printer);

Malfunctions and errors in jprovote’s core logic may com-
promise some fundamental principles of the law, such as
allowing people to vote more than once, exposing the ex-
pression of a voter to other voters, or cause interruptions in
the availability of e-voting machines during the election day.

In order to minimize risks related to the development of
the core logic we decided to adopt some of the practices
commonly used for the development of embedded systems.
For the development of the core logic of jprovote, thus we
adopted a model-driven approach [8] that supported code
generation and formal verification using model checking [20,
13]. In parallel, we implemented a tool, called FSMC+, to
support our development process.

FSMC+ is a compiler that takes as input a subset of the
Statecharts [19] notation and produces the corresponding
Java and NuSMV code. (NuSMV is a model checker devel-
oped at ITC-irst — see [11]). Similarly to other freely (and
commercially) available tools, such as, e.g., Hugo/RT [30],
SPIDER/Theseus environment [17], Statemate2, FSMC+
implements a model-driven approach in which the the con-
trol logic of a system can be specified using a high-level nota-
tion and the code implementing such logic can be automati-
cally generated and verified using model-checking. Support
for UML Statecharts, parameters in events, complex expres-
sions in guards, nested states, a template system for code
generation and easier inspection of the performed steps are,
however, some of the distinguishing features of FSMC+.

In this paper we present FSMC+ and we show how we used
it for the development and the verification of the ProVotE
e-voting system.

The rest of the paper is organized as follows. The next
two sections provide some motivations for the implemen-
tation of FSMC+ and some information on how FSMC+
distinguishes from other similar tools. Section 4 presents
FSMC+ and Section 5 a case study, namely the develop-
ment of the jprovote system. We conclude with an analysis

2http://modeling.telelogic.com/

of the advantages and limits of the approach and with some
considerations about future work.

2. MOTIVATIONS
The development of FSMC+ within ProVotE has been driven
by the following considerations:

• applicative domain: the (Italian) electoral norms pro-
vide detailed descriptions of the procedures that have
to be followed and are particularly adapt at being rep-
resented as finite state machines. By designing the
e-voting machine architecture to incorporate state ma-
chines in its core, we could provide a tighter link be-
tween the behavior of the machine and the Italian elec-
toral law and, at the same time, allow for the use of
formal verification techniques.

• project constraints: in order to meet the first deadline
of the project (an experimentation during the the May
2005 election) the first prototype of the e-voting ma-
chine had to be developed under a rather tight sched-
ule. In order to keep with the project deadlines we
needed an approach and tools that could allow us to in-
tegrate state machines in our system “incrementally”.
The implementation of a tool which we could make
grow together with and adapt to the project needs
could allow us to address such issue. The development
of FSMC+ thus, has proceeded in parallel to the de-
velopment of jprovote, by first providing a set of core
functions (i.e. translation form textual representation
of state charts to Java code) and then adding more
complex functions (such as a support for a graphical
front-end) as the need arose.

• verifiability and compliance to standards: we wanted
to be able to easily inspect the generated code and have
the generated code conform to our coding guidelines.

• “market” opportunity : various characteristics of FSMC+
cannot be found in other freely available tools (see the
next section for more details).

3. RELATED WORK
UniMod [4] is a tool for specifying the logic of Java programs
using state machines. It provides its own UML model editor
as a plugin for the Eclipse platform. It also comprises a
visual debugger, a validator, a compiler, and an interpreter.
However, the notation does not support some features we
need, such as parameters in call events and the possibility
of using custom names for events.

Hugo/RT [30] is a UML model tool that supports model
checking (using the SPIN [2] model checker) and code gen-
eration (e.g. Java). In particular, given a set of state ma-
chines, that describe the behavior of different objects, and
a collaboration diagram Hugo/RT can prove if the scenario
described by the collaboration diagram can be generated by
the execution of the state machines. Thus, Hugo/RT is more
focussed on modelling and analyzing protocols rather than,
as FSMC+ does, properties of the state machines.

Tabu [7] is a UML model checker based on SMV with em-
phasis on usability also by users with little or no knowledge

94

Figure 1: FSMC+ Architecture

in formal verification and temporal logic. Despite its ap-
pealing approach which comprises an assistant for guiding
the user in the verification task, it lacks, to our knowledge,
the possibility of generating Java code.

SMC (State Machine Compiler [29]) is an open-source trans-
lator from a textual representation of a state machine to var-
ious output formats (Java, C, C++, HTML, etc.). FSMC+
is partially based on SMC. FSMC+ maintains the internal
textual representation for state machines defined by SMC
and, partially, the structure of the generated Java code,
along with the runtime library. The code generator, how-
ever, is completely rewritten and so is the compiler to the
NuSMV language. Moreover, the module which implements
the XMI-to-SMCL translation (see Section 4) is a completely
original effort of our project.

Providing a detailed review of the work related to define a
formal semantics for Statecharts and to compile them in a
language suitable for formal verification is outside the scope
of this paper. Suffice it here to mention that FSMC+ follows
the work presented by Clarke and Heinle in [12].

4. THE FSMC+ TOOL
FSMC+ is composed of two main components, as shown in
Figure 1:

• a UML modeling tool. The UML modeling tool is
used as a graphical front end to write one or more Stat-
echart(s), that specify the control logic of the system,
that is, how the system interacts with its environment
and the logic it must implement.

• the FSMC+ Backend. The FSMC+ backend trans-
lates the UML Statecharts into the target languages.
At the moment, we support the following three out-
puts:

Figure 2: Supported Notation (I)

Figure 3: Supported Notation (II)

1. Java code, that, when put together with a set of
run-time libraries, implements, in Java, the con-
trol logic specified by the Statecharts;

2. NuSMV source code, that can be given as input
to the NuSMV model checker in order to verify
whether the logic specified by the Statecharts sat-
isfy a set of properties, written in CTL or LTL
temporal logic;

3. HTML documentation, which is used for docu-
mentation purposes and for some inspection ac-
tivities.

In the following subsections we provide a more detailed de-
scription of the different components of FSMC+ and some
hints on its usage.

4.1 Step 1. Model the Control Logic
The first step when using FSMC+ is writing the control
logic of the system using UML Statecharts.

FSMC+ is based on UML metamodel version 1.4 [5] and
supports a subset of the UML Statechart notation, which
has been specifically customized for Java generation. In
particular (numbers in parenthesis refer to Figures 2 and
3):

• the states’ entry and exit actions can be sequences of
Java method invocations (1);

• transitions can use

– guards that refer to event parameters and to the
internal state of the machine (2);

95

– sequences of Java method invocations as the ac-
tions to be performed when the transition is exe-
cuted (4);

– junction pseudo-state as source or target state-
vertexes, to simplify the notation (5).

• both call-events and signal-events are supported;

• parameters can be specified for call-events (2);

• signals can be organized in hierarchies to allow priori-
tization of transitions;

• composite states and submachine states allows for spec-
ification of the logic (3);

Even though we use ArgoUML [31] as the front-end, FSMC+
can use any UML tool that supports Statecharts and XMI
export, version 1.2 [25].

4.2 Step 2. Generate NuSMV, HTML, and
Java Code

The second step is invoking the FSMC+ backend to generate
the target outputs.

FSMC+ is integrated in Maven [1], a freely available build
tool. The FSMC+ backend, thus can either be invoked from
the command line or integrated in the build process by using
some maven plugins we specifically developed3.

The generation is the responsibility of the following two com-
ponents:

• the XMI to SMC Translator, which takes as input
the XMI produced at the previous step and generates
the SMCL representation of the Statechart (SMCL is
the SMC input language [29]);

• the Output Generator, which takes as input the
SMCL representation of the Statechart and generates
the output in the target languages.

Dividing the translation in two distinct steps and basing
it on a textual format allowed us to achieve the following
goals (the first is specifically related to ProVotE’s time con-
straints, whereas the second has a wider scope):

• incremental development : the output generator is the
core function of FSMC+. By starting from SMCL and
SMC we managed to incorporate Statecharts early in
the development of jprovote and move to more sophis-
ticated source generation and functions as the devel-
opment of jprovote progressed;

• manual inspection: by dividing the translation in smaller
steps we mitigate risks related to bugs in the genera-
tors and allow for manual inspections of the generated
outputs. (Manual inspection of the code generated by
the translation has been performed for the jprovote
system).

3To the reader familiar with maven, FSMC+ runs as a plu-
gin in the generate-sources phase.

Figure 4: Flattening Example

4.2.1 From XMI to SMCL
The XMI-to-SMCL translator, developed in SWI-Prolog [3],
reads an XMI specification produced by the UML modeling
tool and transforms it into SMCL, a simple text-based rep-
resentation of a Statechart.

The translation process is roughly divided in the following
steps:

1. the XMI document is parsed using the SWI-Prolog’s
SGML package to produce a set of prolog facts that
resemble content of the XMI;

2. from such set of facts an internal model for the state
machine is deduced. The model is described by pred-
icates whose names reflects the state machine domain
i.e. state machine, transition, action, etc. The model
is as rich as the UML one, i.e. it allows, for example,
for composite states and concurrent regions;

3. the model obtained in the previous step goes through
a flattening process, which basically removes compos-
ite and submachine states and leaves only simple states
and (possibly inherited) transitions between simple states,
maintaining the same semantics. (A simple example
of flattening is drawn in Figure 4);

4. the simplified model is finally translated in the SMC
representation, by means of a grammar specified as a
DCG (Definite Clause Grammar).

Such an approach, in our opinion, has the following strengths:

• the generation of an internal model isolates tool’s al-
gorithms from external dependencies, e.g. UML meta-
model and XMI version;

• the specification of the output format with a DCG
grammar simplifies the extension of the tool to gener-
ate outputs in other modeling languages;

• the usage of a logic programming language significantly
reduced the implementation effort of the flattening al-
gorithm.

96

4.2.2 The Output Generator
The output generator takes as input an SMC specification
and produces as outputs Java, NuSMV, and HTML. The
generator is a completely rewritten version of the one pro-
vided with the SMC tool.

Code generation in FSMC+ is based on code templates and
on Velocity [27], a template engine written in Java. For each
target of the output generator we define, once and for all, a
template that encodes the structure of the generated code.
At run-time the structure is instantiated by Velocity taking
as input the output produced at the previous step.

Using a template engine for specifying the target outputs
allows, among other things, to easily extend the set of sup-
ported output formats and to change the style of the gener-
ated code.

4.3 Step 3. Verify the Control Logic
FSMC+ can translate the Statechart into the NuSMV input
language. NuSMV [11] is a software tool for the formal veri-
fication of finite state systems. It has been developed jointly
by ITC-IRST and by Carnegie Mellon University. NuSMV
allows to check finite state systems against specifications
written in temporal logics.

The third step, thus, consists in verifying the control logic
with NuSMV.

The current implementation of FSMC+ implements a trans-
lation algorithm which resembles the one presented in [12].
As described in Figure 5, the code generated for the NuSMV
verification consists of the following modules:

1. the state machine itself;

2. a skeleton of the delegate modules, that define the se-
mantics of the actions invoked by the state machine;

3. a skeleton of driver modules, that model how events
are generated.

To perform the verification the designer has to complete the
skeletons of the delegate and of the driver modules. This
corresponds to providing an implementation of the environ-
ment in which the state machine is run, namely, of the inputs
the machine can receive (driver) and of the actions the ma-
chine performs on (delegate). For example, if the system
being modeled is an interactive application provided with a
graphical user interface, the driver will model the user ac-
tions and the delegate the changes in the interface required
by the state machine as responses to the user actions.

The level of abstraction to keep in the specification of the
environment is up to the user. The simplest implementation
of the driver and delegate modules consists in an environ-
ment in which inputs are completely random. The random
environment is the simplest model to produce with NuSMV,
as it does not require to write a single line of code. More-
over it produces the harshest environment in which to test
the state machine. In various real-life situations, however,
designers may want to put some constraints on the inputs

Figure 5: NuSMV Specification Structure

and/or provide some constraints between the outputs gen-
erated by the delegate module and the inputs produced by
the driver module. Even though defining such constraints
requires more work, it allows to tackle the state explosion
problem, namely, keep the formal verification feasible.

After having modeled the system, the user has to define the
properties the system is supposed to have. NuSMV allows
properties to be specified either in CTL (Computation Tree
Logic) or LTL (Linear Temporal Logic). Such properties
usually involve delegates’ state variables and prescribe in-
tended system behavior deduced from system requirements
traditionally classified in terms of safety and liveness.

In addition to the user-specified properties FSMC+ pro-
duces a set of properties aimed at verifying various syntactic
characteristics of the model to ensure that

1. the designer correctly used the invocation model of the
state machine on the delegate

2. the translation process from Statecharts to NuSMV
was successful.

The last action consists in launching the NuSMV model
checker, which reads the model, the properties and verifies
whether the properties are always satisfied, that is, in any
possible execution of the system.

If a property can be violated by the system NuSMV outputs
a trace with the counterexample. By analyzing the traces
produced by NuSMV the designer can find the conditions
that cause the system to fail and fix the problem. The pro-
cess is iterated until every property is satisfied.

4.4 Step 4. Integrate the Java Code
The last step consists in integrating the generated Java code
in the system.

The structure of the Java code generated by the FSMC+
comprises (see Figure 6):

1. a class which implements the logic described by the
Statechart (StateMachine in the figure)

2. an interface which collects all the Java methods and
boolean conditions mentioned in the Statechart (Del-
egateInterface in the figure).

The StateMachine class exposes a method for each call event
in the Statechart. For example the call event f(i : int)

97

Figure 6: Generated Code Structure

Figure 7: Signal Handling

defined in Figure 3 tells FSMC+ to define a method of the
same signature.

The interface generated by FSMC+ has to be implemented
by an application class (DelegateImplementation in the fig-
ure) to specify the proper semantics of actions and condi-
tions.

FSMC+ supports two strategies to effectively integrate a
FSMC+ generated state machine into a system and design-
ers are left to choose, depending on the situation, which one
is better.

The first strategy consists in providing a class that dis-
patches the events to the state machine, explicitly triggering
its execution.

As an alternative modeling strategy, FSMC+ allows to use
a signal-oriented paradigm for modeling transitions. In this
case the state machine reacts to signal events which are, ac-
cording to UML ver. 1.4, occurrences of Signals and that
FSMC+ requires to be organized in a hierarchy, i.e. every
Signal must derive from a root Signal. To support such an
approach FSMC+ generates the state machine class having
just a handle(TopSignal s) method, supposing that, for ex-
ample, TopSignal is the root signal which is the parent of
every signals in the model. To solve conflicts in selecting
which transition to fire, FSMC+ follows the signals’ hier-
archy. For example, as shown in the left side of Figure 7,
if the state machine contains two transitions with trigger
t1 (occurrence of ASignal not shown in the figure) and t2
(occurence of SubSignal not shown in the figure) t2 will be
fired because SubSignal is more specific than ASignal.

5. CASE STUDY: THE JPROVOTE SYSTEM
In the following sections we provide some hints related to the
application of FSMC+ to the development of the jprovote
system.

We start by providing some insights related to the adop-
tion of e-voting system in Italy, continue by describing the
e-Voting machine we developed, and describing how we ap-
plied FSMC+ for specifying and verifying the control logic
of the e-voting machine.

5.1 Voting and e-Voting in Italy
The current Italian ballot system consists of a paper-and-
pencil method and electors are allowed to vote only in the
polling station where they are registered. Simplifying both
on the law and on the procedures for the sake of presenta-
tion, voting in Italy happens as follows:

1. identification and registration of the voter. At
the polling station the voter is usually required to
show his/her ID card and the electoral card. If the
name of the voter is present in the electoral list of the
polling station, the voter is registered, the electoral
card stamped, and the voter is admitted to voting.

2. casting a vote. The voter is given a ballot and a
pencil and is shown a cabin where the vote can be cast
in secrecy. Secrecy is both a right and a duty. The
Italian law and procedures are aimed at ensuring that
the voter cannot make his/her vote manifest to other
people.

At the end of the voting day, the ballot boxes are opened
and the counting procedure starts:

3. counting. Votes are counted and the results tabu-
lated in special registers. The Italian law aims at pro-
tecting the intention of the voter. Thus, even if a vote
is not compliant with the definition given by the law,
the vote may still be partially assigned and counted, if
some its parts can be unambiguously interpreted. Rep-
resentatives of the political parties monitor the count-
ing procedure.

4. transmission of the results. When all the ballots
have been tabulated, the results are transcribed in var-
ious paper documents and transmitted to the offices
responsible of aggregating all the data.

5. sum and proclamation of the elected represen-
tatives. All the data coming from the different polling
stations are counted and seats assigned according to
algorithm defined by the law. Data are then made
available to the general public.

Systems for automating steps 4 and 5 above have been in
use, for some time, in Italy. Even though they are used only
to make provisional results available, the verification pro-
cedures generally confirm the provisional results and voters
usually looks at the results produced by these systems are
the ”official” ones.

98

Figure 8: The ProVotE Machine

Some experimentations have been conducted in Italy to try
and automate the other phases as well. The largest trial, so
far, was sponsored by the central government, and concerned
a system for automating steps 3 and 4 above. The system,
operated by specially appointed technicians, was installed in
47 precincts at the last European elections and repeated at
the last political elections (2006). Little, however, is known
about the results of the experimentation. See [18] for some
more details.

Proper e-voting experimentations (i.e. including step 2)
have been conducted at the local level, usually on a small
scale, in experimentations which seem to have had little con-
tinuity and/or on which information is scarce. We mention
San Benedetto del Tronto (2000), trials sites in Avellino
(2001), Campobasso (2001), Cremona (2002, 2006), Ladis-
poli (2004), Specchia (2005) [14, 16]. Other experimenta-
tions have been conducted in Valle D’Aosta, Friuli Venezia
Giulia, and Milan.

Independently from their scope, past experiences demon-
strate the extreme caution of the central and local govern-
ment in trying and modernizing the way in which voters ex-
press their vote and the difficulty in overcoming doubts and
suspicion in citizens. Providing usable, reliable, safe, and se-
cure systems also for trials becomes extremely important, as
trust on the systems is built also during experimentations.
Proper development of e-voting prototypes, therefore, not
only plays a key role in contributing to the quality of the
final product, but it is also an essential step for project suc-
cess.

The experimentations conducted within the ProVotE project
are among the biggest (if not the biggest) experimentation
of e-voting in Italy.

5.2 The ProVotE e-voting System
Even though the solution we developed in trials involves var-
ious subsystems (to cover steps 1-5), the e-voting machine
is probably the most critical and ”visible” component.

In fact, the e-voting machine has to be continuously avail-
able during the electoral day (6.00am to 10.00pm in Italy),
it has to store votes safely and securely, it is used by all
the voters and, as mentioned earlier, it is one of the main
systems on which citizens judge the feasibility of e-voting.

The ProVotE e-voting machine we developed (see Figure 8)
is a DRE with a voter verifiable printed trail as suggested
by e.g. [23, 24] with a signaling system to specify the status

Figure 9: The ProVotE Machine

of the machine and a smartcard reader to enable operations
on the machine.

The voting machine is installed in a standard voting cabin
as shown in Figure 9.

All the interaction with the voting machine happens through
a touchscreeen which, during voting, reproduces the paper
ballot. Votes are printed and shown to the voters, who are
required to confirm them or make them void. Verification by
the voter increases auditability of the system. The printer
tape is cut after each vote (and the electronic data is shuffled
after each vote), so that no sequence remains4.

The machine is locked by default. A smartcard reader, out-
side the cabin, is used to unlock it. Two smartcards, that
need to be alternated, are used to enable the machine for
voting. This helps avoiding the possibility of casting more
than one vote per voter. A third smartcard is used for the
functions of the precinct’s officers (e.g. opening and closing
elections).

A set of lights (two green and one red) is used to inform
about the state of voting machine. The red light signals
that the machine is being used for voting and the green
ones encode which card will enable the machine for the next
vote.

The voter can abort the voting operation at any moment
(for instance, if in difficulty) by extracting the smartcard.
In such a scenario the machine has to be reset so that no
trace of the voter’s intent remains revealed.

The electronic ballot data are stored by means of redun-
dant hardware: all the data generated by the machine is
written both in the internal hard-disk and in a removable
mass storage device. This solution allows for the detection
of hardware failures in the storage devices. Electronic bal-
lots are scrambled, encrypted (during the voting day) and
signed (after the voting day).

The software system is based on a stripped-down version
of Linux and an application (jprovote) written in Java (fol-
lowing e.g. [21]). The jprovote system is structured in four
layers:

• services, which provides the basic functionality to the

4Being able to determine the order in which votes are given
has resulted to be one of the concerns of Trentino’s voters.

99

rest of the application, such as drivers for controlling
the three-light indicator and the printer, managing
logs for audits, and transparently managing redundant
and ciphered persistence of data;

• data model management, which manages all the
election specific data, comprising candidates and par-
ties, the ballot data, per-machine election results, and
the symmetric and asymmetric keys used for ciphering
and signing;

• control logic, which defines how the machine has to
react to user actions both in administration and in
voting mode. The control logic also specifies the logic
of the user interface (e.g. what screens has to be shown
next).

• user interface, which manages the graphical layout
of the administration and of the voting interface.

The control logic component of jprovote is among the most
critical part of the system. The component, in fact, is re-
sponsible of implementing a well-defined life cycle, which
encodes the procedures defined by the law and which limits
the operations poll-officers can do.

Errors in its specification may lead to violations of funda-
mental principles on which the law is based (e.g. allowing a
voter to vote twice, denying the right to vote to a voter). Fi-
nally, the e-voting machines need to be adaptable to different
kind of elections and come in different configurations (e.g.
testing, voting), which require both flexibility in the speci-
fication of the user interface and efficiency in being able to
adapt the behavior of the control logic. We decided, there-
fore, to specify the control logic using finite state machines.

5.3 Control Logic Development
Broadly speaking, the process we followed for the develop-
ment of the e-voting system is a waterfall which we adapted
to incorporate (formal) verification activities. Not surpris-
ingly (as the system was developed for the development of
the e-voting system, as mentioned earlier), FSMC+ signifi-
cantly helped during the development phases.

The process is summarized in Figure 10:

Process Modeling an initial set of discussions and analysis
of the Italian electoral law allowed to provide a formalization
and a view of the voting procedures in Italy. The formaliza-
tion was given using activity diagrams in UML and textual
descriptions. Such documentation served as the basis for the
subsequent requirements analysis.

Requirements Definition the initial requirements defini-
tion activity produced a requirements document which con-
tains high-level Statecharts and use cases. The Statechart
specifies the life cycle of the machine (e.g. opening the poll-
site, starting the counting, etc.), according to the processes
identified above and the use cases provide the usage scenar-
ios for each of the states of the machine’s life-cycle (e.g. the
actions necessary to open the poll-site).

The voting and the administration user interfaces are spec-
ified through a Statecharts which describes their logic and

Figure 10: ProVotE Development Process

in which each state corresponds to a different “screenshots”
of the system.

The specifications and, in particular, the UML Statecharts
have been discussed and validated by the Electoral Service
of the Province of Trento. The voting interface was vali-
dated using throw-away prototypes developed from the Stat-
echarts, in experiments set up by the Faculty of Sociology
with selected voters before the trials.

Software Design During the design phase, the Statecharts
validated by the Electoral Service have been detailed into
an executable Statecharts, that is, Statecharts that we can
give as input to FSMC+ to generate code that controls the
e-voting machine.

Formal Validation The executable Statecharts specifica-
tion have then been translated using FSMC+ into the NuSMV
input language and formally verified.

For the validation we started by providing simple NuSMV
models for the environment of the control logic and manually
specified the main principles/properties that the machine
had to satisfy using CTL.

In the model of the environment, for example, we specified
the semantics of actions that controls the state for hardware
parts such as the lights (e.g. which light is on), the printer
(e.g wether a vote is exposed in the printer or not), the
screen (e.g. which form is shown to the user), the internal
state of the memory, etc. We also model the behavior of
input hardware, i.e. the smartcard reader and the touch-

100

Figure 11: JProvote Application Architecture

screen. Furthermore, an example of the feedback loop cited
above is the dependency from the state of the screen on the
type of signals that could be generated, i.e. the user could
confirm the vote only if the button to do it is shown on the
screen.

The CTL properties are mainly expressed in terms of actions
the control logic has to perform on the peripherals to ensure
that no basic principle of the law is violated (e.g. the ma-
chine is always put in a safe state if the current voter has to
be interrupted) and that the behavior of the machine is com-
pliant with the specification provided in the requirements
document (e.g. the driving of the signaling and log system
comply with the specification provided in the requirements
document).

Interestingly enough, even the violation of trivial properties,
such as the last one, are critical. Matter of fact, if the sys-
tem does not properly log and signals whether a voter has
cast his/her vote, the voter may be procedurally (i.e. by
the polling officers) negated the right to use the system to
express his/her opinion or given the possibility to vote twice.

See, e.g., [22] for a list of the properties verified. Notice that
in order to standardize the representation of the properties,
we used the patterns found [15].

Code Generation After having validated the specification
of the control logic, we used FSMC+ to generate the Java
code of the control logic and of the user interface.

The architecture of the software is shown in Figure 11.

An Event Queue Manager handles all asynchronous events
(e.g. smart-card inserted/extracted events, power fail events
from the UPS) and feeds the State Machine, which reacts
to the events and sends commands to a Delegate. The Del-
egate’s methods can be thought like atomic building blocks
(e.g. ’print the current ballot’, ’clear the interface’, ’turn
the outside red light on’, etc.) that are combined by means
of the Statechart specification.

The Java code generated by FSMC+ was inspected by hand,
to mitigate risks related to bugs in the translator, and the
source code then compiled and packaged to produce jprovote.

Manual Implementation and Unit test The code im-
plementing the services, data model management layers and
some glue code to link the user interface was implemented
and tested using standard practices.

Packaging and System Test The code generated by hand
and that produced by FSMC+ have been then packaged
together.

The formal verification performed with FSMC+ does not
eliminate the need for testing, as properties related to e.g.
integration of the different components, actual implementa-
tion of the drivers (is the driver really turning on the green
light, when the system tells to do so?), etc. need to be
performed on the actual system.

Thus, the application was finally verified during the System
Test phase, conducted using standard techniques.

Even though the process followed above does not guaran-
tee that the system is error-free (due to, e.g., completeness
of properties, errors in the translators), the use of graphi-
cal notations and the formal verification of the control logic
allowed to significantly increase our confidence in the con-
ceptual correctness of the design of the control logic. The
use of Statecharts, in fact, significantly simplified interaction
with other stakeholders and increased understandability of
the requirements by the people in the electoral service. (The
Electoral Service is now evaluating the possibility of making
the activity diagrams used to specify the electoral processes
available to the general public.)

6. CONCLUSIONS AND FUTURE WORK
This paper presented FSMC+, a tool for automatically gen-
erating Java code and NuSMV specification from UML Stat-
echarts. FSMC+ can simplify the development of com-
plex/embedded systems by supporting a model-driven ap-
proach in which certain components are automatically gen-
erated from high-level specifications.

Various tools, both commercial and freely available, exist
to support the approach FSMC+ adopts. However, some
of the features FSMC+ provides are peculiar and/or not
readily available in other similar tools, among which a rather
complete support to the UML ver. 1.4 Statechart notation
and a flexible and extensible architecture.

Even though FSMC+ has been specifically created to ease
the development of jprovote we believe the approach and the
tool we developed to be general enough to be used in other
applications.

Future work will include the extension of supported nota-
tion to concurrent regions and to new versions of the UML
metamodel, which are not currently supported.

The jprovote system has been used, so far, in four different
experimentations held during local elections and for electing
the representatives of the students in a local High School.
So far more that 11000 citizens tried our system. No glitches
have been signaled during the experimentations.

7. ACKNOWLEDGMENTS
The work described in this paper has been and is being
developed within the ProVotE Project, a project sponsored
by Provincia autonoma di Trento.

As with any large project, the results presented in this paper

101

based on the joint and coordinated work of several people.
We wish in particular to thank: S. Bettotti, C. Buzzi, L.
Caporusso, A. Ceschi, C. Charalabopoulos, G. Conti, C.
Covelli, R. Deamicis, G. Fasanelli, A. Faustini, G. Fele, P.
Gentile, L. Giuliani, F. Gleria, B. Lanzalone, A. Lavarian,
G. Negri, E. Parola, E. Passante, G. Pedrotti, P. Peri, N.
Prantil, R. Resoli, F. Sartori, G. Stellucci, C. Tonini, P.
Troebinger, M. Welponer.

8. REFERENCES
[1] Apache maven project. http://maven.apache.org.

[2] On-the-fly, ltl model checking with spin. Available at
http://spinroot.com/spin/whatispin.html.

[3] Swi-prolog’s home. Available at
http://www.swi-prolog.org/.

[4] Unimod. Available at
http://unimod.sourceforge.net.

[5] Omg unified modeling language specification, 2001.
version 1.4.

[6] B. V. Acker. Remote e-voting and coercion: a
risk-assessment model and solutions. In the
International Workshop on Electronic Voting in
Europe, 2004.

[7] M. E. Beato, M. Barrio-Solrzano, and C. E. Cuesta.
Uml automatic verification tool (tabu). In SAVCBS’04
Specification and Verification of Component-Based
Systems Workshop at ACM SIGSOFT 2004/FSE-12,
2004.

[8] M. Book, G. Beydeda, and V. Gruhn. Model-driven
Software Development. Springer Verlag, 2005.

[9] L. Caporusso, C. Buzzi, G. Fele, P. Peri, and
F. Sartori. Transitioning to evoting and citizen
participation. In Proceedings of eVoting-2006, 2006.

[10] D. Chaum. Secret-ballot receipts: True voter-verifiable
elections. In CryptoBytes, volume 7 (2). RSA
Laboratories, 2004.

[11] A. Cimatti, E. M. Clarke, F. Giunchiglia, and
M. Roveri. NUSMV: A new symbolic model checker.
International Journal on Software Tools for
Technology Transfer, 2(4):410–425, 2000.

[12] E. Clarke and W. Heinle. Modular translation of
statecharts to smv, 2000.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts,
1999.

[14] M. I. Comune di San Benedetto del Tronto.
Preliminar report on the electronic voting
expreimentation (sperimentazione sulla votazione
elettronica - preliminare). In Italian. Available at
http://www.comune.san-benedetto-del-tronto.ap.

it/ePoll/rl00.html.

[15] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in property specifications for finite-state
verification. Technical Report UM-CS-1998-035, ,
1998.

[16] E-Poll. Electronic polling system for remote voting
operations. Available at
http://www.e-poll-project.net/.

[17] H. Goldsby, B. H. Cheng, S. Konrad, and
S. Kamdoum. A visualization framework for the
modeling and formal analysis of high assurance

systems. pages 707–721, 2006.

[18] Governo Italiano. European Elections 2004,
Automated Counting of the Votes (Elezioni Europee
2004, Conteggio Automatizzato del Voto). In Italian.
Available at http://www.governo.it/

GovernoInforma/Dossier/voto conteggio.

[19] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8(3):231–274, June 1987.

[20] J.M. Wing. A specifier’s introduction to formal
methods. IEEE Computer Magazine, 23(9):8–24, Sept.
1990.

[21] T. Kohno, A. Stubblefield, A. Rubin, and D. Wallach.
Analysis of an electronic voting system. In IEEE
Symposium on Security and Privacy, 2004.

[22] M. McGaley and J. Gibson. Electronic voting: A
safety critical system. Final year project report, 2003.

[23] R. Mercuri. Explanation of voter-verified ballot
systems. ACM Software Engineering Notes
(SIGSOFT), 27(5). Also at
http://catless.ncl.ac.uk/Risks/22.17.html.

[24] R. Mercuri. A better ballot box? IEEE Spectrum
Online, October 2002. Available on line at
http://www.spectrum.ieee.org/WEBONLY/

publicfeature/oct02/evot.html.

[25] OMG. Omg xml metadata interchange (xmi)
specification, version 1.2, January 2002.

[26] A. Ostveen and P. van den Besselaar. Security as
belief - user’s perceptions on the security of electronic
voting systems. In the International Workshop on
Electronic Voting in Europe, 2004.

[27] T. A. J. Project. Velocity. Available at
http://jakarta.apache.org/velocity.

[28] A. Prosser, R. Kofler, R. Krimmer, and M. K. Unger.
Security assets in e-voting. In the International
Workshop on Electronic Voting in Europe, 2004.

[29] C. W. Rapp. The state machine compiler.
http://smc.sourceforge.net/.

[30] T. Schafer, A. Knapp, and S. Merz. Model checking
uml state machines and collaborations. Electronic
Notes in Theoretical Computer Science, 55, 2001.

[31] T. O. S. S. E. Tools. Argouml. Available at
http://argouml.tigris.org/.

[32] A. Villafiorita and G. Fasanelli. Transitioning to
evoting: the provote project and trentino’s experience.
In Proceedings of EGOV-06, 2006.

102

