

792

ISSN 1064-2307, Journal of Computer and Systems Sciences International, 2007, Vol. 46, No. 5, pp. 792–801. © Pleiades Publishing, Ltd., 2007.
Original Russian Text © P.G. Lobanov, A.A. Shalyto, 2007, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2007, No. 5, pp. 127–136.

INTRODUCTION

There are complex problems that can be efficiently
solved with the help of finite-state automata [1]. In
most cases, the synthesis of automata is performed heu-
ristically. Therefore, it is of current interest to solve the
problem of formalization of methods for the construc-
tion of automata and automation of these methods.
There is a well-known class of problems (for example,
prisoner’s dilemma [2], “intelligent” ant [3], and syn-
chronization [4] and classification of density [5, 6] for
cellular automata), where genetic algorithms [7] can
automatically construct automata solving these prob-
lems. In this paper, we consider a member of this class,
the problem of flibs [8].

1. THE PROBLEM OF FLIBS

This problem is to simulate a simplest living being
capable of predicting the periodic variations in a sim-
plest environment. The living being is simulated by a
finite-state automaton, and genetic algorithms make it
possible to automatically construct an automaton pre-
dicting the environmental changes with a sufficient
accuracy. Thus, one needs to generate a “device” (pre-
dictor) that estimates the future environmental changes
with a maximum probability. This problem was solved
in [8] by using one of the genetic algorithms [8]. Here,
the accuracy of predictions by the constructed automa-
ton is not sufficiently high. This is largely caused by the
method used for constructing the next-generation enti-
ties (automata). The aim of this paper is to develop an
approach eliminating this deficiency. We propose a C#
program that implements both this and the existing
approaches, which makes it possible to compare the
approaches.

2. STATEMENT OF THE PROBLEM

An important feature of living beings is that they are
able to predict the environmental changes. A simplest
model of a living being can be represented by a finite-
state automaton. Such finite-state automaton models
are called flibs (an abbreviation of

finite

living

blobs

)
[8].

The flib input variable can take one of the two val-
ues: 0 or 1. This variable describes the state of the envi-
ronment at the current time instant. The environment is
so simple that it has only two states. The flib changes its
state and generates the value of the output variable.
This value corresponds to the possible environmental
state at the next time instant. The flib aims at predicting
the actual state of the environment at the next time
instant. This can be done due to the periodicity of its
changes. Here, it is assumed that the more the accuracy
of the flib-predicted environmental change, the higher
its chances to survive and leave offspring.

3. THE DESIGN OF GENETIC ALGORITHMS
IN THE PROBLEM OF FLIBS

Let us describe the designs of the existing and pro-
posed algorithms.

3.1. The Existing Algorithm

The search for an optimal predictor is performed by
the following genetic algorithm [8].

(1) A generation of random flibs is created.

(2) The number of changes in the environmental
state predicted correctly by each of these flibs is calcu-
lated.

(3) The worst and best predictors in the generation
are determined.

ARTIFICIAL
INTELLIGENCE

Application of Genetic Algorithms for Automatic Construction
of Finite-State Automata in the Problem of Flibs

P. G. Lobanov and A. A. Shalyto

St.-Petersburg State University of Information Technologies, Mechanics, and Optics, ul. Sablinskaya 14,
St. Petersburg, 197101 Russia

Received January 9, 2007; in final form, May 28, 2007

Abstract

—A genetic algorithm is proposed to solve the problem of flibs, which simulate the behavior of a sim-
plest living being in a simplest environment. Computational experiments have been performed demonstrating
the efficiency of this algorithm compared with the existing algorithm.

DOI:

10.1134/S1064230707050115

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

Vol. 46

No. 5

2007

APPLICATION OF GENETIC ALGORITHMS FOR AUTOMATIC CONSTRUCTION 793

(4) The best predictor is

crossed

 with a randomly
chosen flib.

(5) The need of applying an

operator of mutation

 to
the resulting flib is randomly determined. If needed,
this operator is applied to the flib.

(6) The worst predictor in the generation is replaced
by the flib resulting from crossover. After this replace-
ment, it is assumed that a new generation is created.

(7) If one of the flibs reaches a 100%-prediction
level or the program is terminated by the user, the algo-
rithm stops. Otherwise, we go to item (2).

The algorithm for the generation of random flibs, as
well as the operators of one-point crossover and muta-
tion, will be considered in detail in Sections 4, 7, and 8.

3.2. The Proposed Algorithm

In this paper, to create a new generation, we use a
method distinct from the one described in Subsection
3.1. Here, we apply the tournament selection [9] and
principle of elitism (the new generation is added by a
single or several better entities of the previous genera-
tion) [10]. The number of flibs in the generation is
called the size of the generation.

The proposed algorithm has the following form.
(1) A current generation of random flibs is created.
(2) The number of changes in the environmental

state predicted correctly by each of these flibs is calcu-
lated.

(3) A new generation of flibs is constructed:
(a) a new empty generation is created and the best

predictor from the previous generation is added into it;
(b) two pairs of flibs are randomly taken from the

current generation;
(c) the best predictor of each pair is selected;
(d) the best predictors of these pair are

crossed

;
(e) one randomly determines the need of applying

the

mutation operator

 to the resulting flib. If needed,
this operator is applied to the flib;

(f) a new operation (“restoration of links between
automaton states”) is applied to the flib;

(g) the flib is added to the new generation;
(h) go to item (b) if the size of the new generation is

smaller than the size of the current generation.
(4) The current generation of flibs is replaced by the

new generation.
(5) If the number of generations is smaller than the

user-defined number, return to item (2).

4. FLIB IMPLEMENTATION

Let us describe the existing and proposed methods
for the flib implementation.

4.1. The Existing Method

The behavior of the flib is given by the table of
branches and exits. Table 1 presents an example of a flib
with three states:

A

,

B

, and

C

. Let us represent this table
as the string 1B0A0C0A1A0B used in [8]. The number
of elements in this string is four times greater than the
number of flib states. Let us enumerate the flib states
and elements of its specifying string. The first state and
first element are assigned to zero. If the flib is in the
state with a number

s

 and the current state of the envi-
ronment is

i

, then the future state to which the flib will
pass is contained in the element of the string specifying
the flib. The number of this element is 4

s

 + 2

i

 + 1. The
value of the output variable generated by the flib is con-
tained in the element with the number 4

s

 + 2

i

.
To create a random flib, it is required that the string

elements be given randomly. Let us describe the algo-
rithm for creating a random flib given by the string.

(1) A loop over all elements of the string specifying
the flib:

(a) if the number of an element is even, the element
is assigned to one of the possible environmental states
chosen randomly;

(b) otherwise, the element is assigned to one of the
possible flib states chosen randomly.

4.2. The Proposed Method

In this paper, we use another method of flib encod-
ing, which is implemented with three classes:

Flib,
State

, and

Branch

 (see Listing 1 in the Appendix). The
main class of the flib implementation is taken to be the
class

Flib.

 The classes

State

 and

Branch

 implement its
states and branches, respectively. Each of these classes
has a method

Clone

 designed for cloning objects.
The array

_states

 in the class

Flib

 contains the flib
states. The field

_curStateIndex

 is used to store the
number of the current state of the flib in the
array

_states.

 The number of correctly predicted input
characters is stored in the filed

_guessCount.

 The
method

Step

 transfers the flib to a new state and, if
necessary, changes the number of correctly predicted
characters. The method

Nulling

 returns the flib to the
original state and nulls the number of correctly pre-
dicted input characters.

The array

_branches

 of the class

State

 includes arcs
of changes from a given state. The number of an ele-
ment in the array corresponds to the input variable. The
variables

_stateIndex

 and

_output

 of the class

Branch

Table 1.

A three-state flib

State 0 1

A 1, B 0, A

B 0, C 0, A

C 1, A 0, B

794

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

Vol. 46

No. 5

2007

LOBANOV, SHALYTO

contain the number of the state reached by the flib
going along this arc and the value of the input variable.
The constant

TARGET_COUNT

 defines the numbers of
values that can be taken by the output variable gener-
ated by the flib.

Let us describe the algorithm for creating a random
flib.

(1) Objects corresponding to the flib states are cre-
ated.

(2) Each object undergoes the following operation:
(a) for a state, the transfers from it are generated;
(b) for each transfer, the number of the future state

of the flib and value of the output variable are deter-
mined randomly.

5. GENERATOR OF INPUT SIGNAL

As an input signal for flibs (like in [8]), we use a
recurrent sequence of bits (bit mask) specifying
changes in the environmental states. This mask is
looped in the program. The code class for generating the
input signal is presented in Listing 2 of the Appendix.

6. EVALUATION FUNCTION

The best flib is that with a maximum of correct pre-
dictions of the input signal. The evaluation function is
taken to be the number of correctly predicted characters
(the field

_guessCount

 in the class

Flib

). When a new
generation is created, all the flibs available there are put
into the original state with the help of the method

Null-
ing.

 Then, the fitness of flibs is determined by sending
to their inputs several input characters (by default, their
number is equal to 100). After this, a new generation of
solutions can be constructed, using as the flib fitness the
value of the field

_guessCount

, containing the number
of correctly predicted characters.

7. ALGORITHMS OF THE OPERATOR
OF ONE-POINT CROSSOVER

Let us consider the existing and proposed algo-
rithms for the operator of one-point crossover.

7.1. The Existing Algorithm

In [8], the new flib is generated from two parents by
an operator of one-point crossover. Let us describe the
algorithm of this operator for a flib encoded by a string
of length

m

.
(1) A random number

j

 is chosen in the range
between 0 and

m

 – 1.
(2) The elements with numbers smaller than or

equal to

j

 of the string that specifies the first parent flib
are copied into the string describing the new flib.

(3) The elements with numbers greater than

j

of the
string that specifies the second parent flib are copied
into the string corresponding to the new flib.

7.2. The Proposed Algorithm

To use the operator of one-point crossover for the
flib implemented as an object of the class

Flib

, the algo-
rithm of [8] should be modified. Here, the proposed
algorithm has the following form.

(1) The number of a state of the new flib is chosen
randomly.

(2) This flib is added by the states of the first parent,
with their numbers being smaller than the chosen num-
ber, and by the states of the second parent, with their
numbers being higher than the chosen number.

(3) A new state generated from the states of the first
and second parents (corresponding to the chosen num-
ber) is formed and added. The algorithm of the state
formation is similar to the algorithm of the operator of
one-point crossover described in Subsection 7.1.

The description of this algorithm can be found in
Listing 3 of the Appendix.

8. ALGORITHMS
OF THE MUTATION OPERATOR

Let us consider the existing and proposed algo-
rithms for the mutation operator.

8.1. The Existing Algorithm

The algorithm of the mutation operator used in [8]
has the following form.

(1) An element of the string specifying the flib is
chosen randomly.

(2) If the number of the element is even (the element
contains the value of the output variable generated by
the flib), the value of the variable is inverted.

(3) If the number of the element is odd (the element
contains the flib state), the current state of the flib is
replaced by the next one.

8.2. The Proposed Algorithm

In this paper, the following algorithm of the muta-
tion operator is proposed.

(1) The flib state is set randomly.
(2) An arc is chosen from this state randomly.
(3) It is determined randomly what will be changed,

the value of the output variable generated by the flib or
the number of the state reached by the flib going along
this arc:

(a) if it has been confirmed that the value of the out-
put variable is to be changed, this variable is assigned
to the value of the environmental state chosen ran-
domly;

(b) if it has been decided that the number of the state
is to be corrected, the number of the state reached by
the flib is assigned with the number of a randomly cho-
sen state of the flib.

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

Vol. 46

No. 5

2007

APPLICATION OF GENETIC ALGORITHMS FOR AUTOMATIC CONSTRUCTION 795

The class implementing this mutation operator can
be found in Listing 4 of the Appendix.

9. RESTORATION OF LINKS BETWEEN STATES

When a new generation created by the operators of
crossover and mutation, the branching arcs in the flibs
are changed randomly. This can lead to states that can-
not be reached from the original state for any sequence
of changes in the environmental states. These states are
called

inaccessible

 states. The states that can be
reached from the original state for some sequence of
changes in the environmental states are called

accessi-
ble

 states. The algorithm for the restoration of the links
between states changes the branching arcs in the flib so
that there will be no inaccessible states.

The class

FlibRestorer

, implementing the algorithm
of restoration between states, can be found in Listing 5
of the Appendix. The proposed algorithm operates in
the following way.

(1) The list of

accessible states

 is formed (the
method

InitIndexList

). This is performed using the
function

AddIndex

 of recursive traversal of states.

(2) A complete loop is done. If the current state is not

accessible

, the following operations are enabled for it:

(a) a random state is chosen from the list of

accessi-
ble states

;

(b) a likewise random arc is determined from the
chosen state;

(c) in the current state, an arc of this state is replaced
by another leading to the same state as the arc obtained
in item (b);

(d) the arc chosen in item (b) is replaced by another
arc leading to the current state;

(e) the best of

accessible states

 is updated by
appending the current state and all the states that can be
reached from it.

10. PROGRAM FOR EXPERIMENTS ON FLIBS

Based on the considered algorithms (existing and
proposed), we had written a program with its user inter-
face having the form shown in Fig. 1. This program
makes it possible to implement the algorithms with the
help of the dropdown list “Method of Formation of
New Generation”. In the proposed algorithm, the elit-
ism can be changed in the range from zero to the size of
the generation. The program admits the choice of the
generation size and the number of generations. Also,
one can set the mutation probability (in the range
between zero and unity) and the type of crossover oper-
ator (one-point or two-point). The program can gener-
ate a bit mask describing the environment. For each flib,
one can set the number of its states and determine
whether the algorithm of link restoration will be used.

To compare the efficiency of genetic algorithms, it is
conventional to conduct repeated runs on the same sets
of test data and compare the averaged results. Thus, the
program is capable of doing an automatic run of the
algorithm at a given number of times and yielding aver-
aged results. The algorithm can be executed for a user-
defined number of runs. The listings presented in the
Appendix constitute the core of the program for the
proposed approach.

Size of generation

Number of generations

Signal mask

Probability of mutation

Method

of new-generation
formation

Elitism

Restore links

Number of

automaton states

Number of test

Crossover
operator

Number

Plot view Experiment

20100

400

1111010010111101001

0.03

Tournament selection

1

50

One-point

100

Fig. 1.

 User-interface window.

of passes

796

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

Vol. 46

No. 5

2007

LOBANOV, SHALYTO

11. GENERAL REQUIREMENTS
TO EXPERIMENTS

All the experiments was conducted for a generation
size of 100 and a mutation probability of 0.03. The
number of environmental influences on the flib is taken
to be equal to 100. Therefore, the number of correctly
predicted characters is equal to the accuracy of charac-
ter prediction in percents. Tables 2–4 present the exper-

imental results with an indication of the minimum,
maximum, and average accuracy of prediction of auto-
matically generated flibs.

The plots in Figs. 2–4 show the number of genera-
tions (axis of abscissa) and the number of correctly pre-
dicted characters by the best predictor in each genera-
tion (axis of ordinates). The plots include

averaged
data

 obtained from 50 experiments with the same ini-
tial parameters. The plots for the existing algorithm are
shown by dots. The dashed lines correspond to the algo-
rithm proposed in this paper (no operation of restora-
tion of links between states is used here). For the case
when this operation has been used, solid lines are
depicted. Below, we present the results of three experi-
ments differing in the chosen number of generations,
bit mask, and number of flib states.

11.1. The First Experiment

Here, the number of generations is 400, the number
of flib states is 20, and the bit mask specifying the envi-
ronment has the form

1111010010111101001.

The plots of the first experiment are shown in Fig. 2.
It follows from these plots that the algorithm proposed
in this paper for the formation of a new generation sig-
nificantly enhances the accuracy of prediction as com-
pared to the existing approach. The use of the algorithm
of link restoration also enhances the efficiency of the
proposed algorithm. The results of the first experiment
are presented in Table 2.

11.2. The Second Experiment

Here, the number of generations is 400, the number
of flib states is 10, and the bit mask specifying the envi-
ronment has the form

111101001011110.

Table 2.

 The results of the first experiment

Algorithm Restoring links
between states

Results

 worst averaged best

Existing – 70 78.3 88

Proposed
– 83 92.26 100

+ 84 93.48 100

Table 3.

The results of the second experiment

Algorithm Restoring links
between states

Results

 worst averaged best

Existing – 71 82.2 93

Proposed
– 86 92.2 94
+ 87 93.06 94

Table 4.

The results of the third experiment

Algorithm Restoring links
between states

Results

 worst averaged best

Existing – 70 75.86 87

Proposed
– 83 90.44 97
+ 86 92.72 97

95

51

90

85

80

75

70

65

101 151 201 251 301 3511
60

100

Fig. 2.

 Plots of averaged prediction data for the first experi-
ment.

89

51

87
85
83
81
79
77

101 151 201 251 301 3511
75

91
93
95

Fig. 3.

 Plots of averaged prediction data for the second
experiment.

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

Vol. 46

No. 5

2007

APPLICATION OF GENETIC ALGORITHMS FOR AUTOMATIC CONSTRUCTION 797

Let us note that the bit mask in this experiment is
shorter than in the first experiment. The plots of the sec-
ond experiment are shown in Fig. 3. The results of the
second experiment are presented in Table 3. It follows

from these results that the proposed algorithm is supe-
rior to the existing one in all parameters. The values
given in the column “Averaged Data” correspond to the
right-most points of lines in Fig. 3.

11.3. The Third Experiment

Here, the number of generations is 1600, the number
of flib states is 30, and the bit mask specifying the envi-
ronment has the form

1010111101100011110111110011001.
Let us note that the bit mask in this experiment is

longer than in the first and second experiments. The
plots of the third experiment are shown in Fig. 4. The
results of the third experiment are presented in Table 4.

CONCLUSIONS
The experiments have shown that the proposed

method is more efficient than the existing one for both
different bit masks specifying the environment and dif-
ferent numbers of flib states.

APPENDIX

Listing 1. Flib Implementation

.
namespace Flibs {

public class Flib {
private State [] _states;
private int _curStateIndex = 0;
private double _guessCount;
public Flib (int stateCount) {
_states = new State[stateCount];
}
public Flib(State [] states) {
_states = states;
}
public void Step(int input, int output) {
Branch branch = _states[_curStateIndex].Branches[input];
if (branch.Output == output) _guessCount++;
_curStateIndex = branch.StateIndex;
}

public double Fitness {
get { return _guessCount; }
}
public void Nulling() {
_guessCount = 0;
_curStateIndex = 0;
}
public State[] States {
get { return _states; }
}
public Flib Clone() {

95

201

90

85

80

75

70

65
401 601 801 1001 1201 14011

Fig. 4.

 Plots of averaged prediction data for the third exper-
iment.

798

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

Vol. 46 No. 5 2007

LOBANOV, SHALYTO

Flib flib = new Flib(_states.Length);
flib._curStateIndex = _curStateIndex;
flib,_guessCount = _guessCount;
for (int i = 0; i < _states. Length; i++) {
flib.States [i] = _states[i].Clone();
}
return flib;
}
}
public class Branch {
public const int TARGET_COUNT = 2;
private int _stateIndex;
private int _output;
public Branch(int stateIndex, int output) {
_stateIndex = stateIndex;
_output = output;
}
public Branch Clone() {
return new Branch(_stateIndex, _output);
}
public int StateIndex {
get { return _stateIndex; }
}
public int Output {
get { return _output; }
}
}
public class State {
private Branch[] _branches;
public State () {
_branches = new Branch[Branch.TARGET_COUNT];
}
public State Clone() {
State state = new State();
state._branches = new Branch[_branches.Length];
for (int i = 0; i < _branches.Length; i++) {
state._branches[i] = _branches[i].Clone();
}
return state;
}
public Branch [] Branches {
get { return _branches; }
}
}
}

Listing 2. Generator of Input Signal.
namespace Flibs {

public class SimpleSignalSource : ISignalSource {
private int _state;
private int[] _mask;

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 46 No. 5 2007

APPLICATION OF GENETIC ALGORITHMS FOR AUTOMATIC CONSTRUCTION 799

public void DoStep() {
_state++;
}
public SimpleSignalSource(int[] mask) {
Nulling();
_mask = mask;
}
public int Input {
get { return _mask[_state%_mask.Length]; }
}
public int InputNext {
get { return _mask[(_state + 1)%_mask.Length]; }
}
public void Nulling() {
_state = -1; }
}
}
}

Listing 3. Crossover Operator.
namespace Flibs {

public class SimpleCrossover : ICrossover {
public SimpleCrossover() {
}
public virtual Flib CreateChild(Random random, Flib firstParent, Flib secondParent) {
Flib result = new Flib(firstParent.States.Length);
int bound = random.Next(result.States.Length);
for(int i = 0; i < result.States.Length; i++) {
if(i < bound)
result.States[i] = firstParent.States [i].Clone();
else if(i > bound)
result.States[i] = secondParent.States[i] .Clone (); else
result.States[i] = CreateState(random, firstParent.States[i], firstParent.States[i]);
}
return result;
}
private State CreateState(Random random, State firstState, State secondState) {
State result = new State();
int bound = random.Next(result.Branches.Length);
for(int i = 0; i < result.Branches.Length; i++) {
if(i < bound)
result.Branches[i] = firstState.Branches[i].Clone();
else
result .Branches [i] = secondState.Branches [i] .Clone ();
}
return result;
}
}
}

Listing 4. Mutation Operator.
namespace Flibs {

800

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 46 No. 5 2007

LOBANOV, SHALYTO

public, class SimpleMutation : IMutation {
private double _mutationProbability;
public SimpleMutation(double mutationProbability) {
_mutationProbability = mutationProbability;
}
public void Mutate(Random random, Flib flib) {
if(random.NextDouble() > _mutationProbability) return;
MutateState(random, flib.States[random.Next(flib.States.Length)], flib.States.Length);
}
private void MutateState(Random random, State state, int. stateCount)
{
int branchIndex = random.Next(Branch.TARGET_COUNT); state.Branches[branchIndex] = Mutate-

Branch(random,
state.Branches[branchIndex], stateCount);
}
private Branch MutateBranch(Random random, Branch branch, int stateCount) {
if(random.NextDouble() < 0.5)
return new Branch(random.Next(stateCount),
branch.Output);
else
return new Branch(branch.StateIndex, random.Next(Branch.TARGET_COUNT));
}
}
}

Listing 4. Restoring Links Between States.
namespace Flibs {

public class FlibRestorer {
public void Restore(Random random, Flib flib) {
SortedList indexes = InitIndexesList(flib);
for (int i = 0; i < flib.States.Length; i++) {
if (!indexes.Contains(i)) {
int index = (int)
indexes.GetKey(random.Next(indexes.Count));
int branchNum =
random.Next(Branch.TARGET_COUNT);
flib.States[i].Branches[branchNum] = new
Branch(flib.States[index].Branches[branchNum].StateIndex,
flib.States[i].Branches[branchNum].Output);
flib.States[index].Branches[branchNum] = new Branch(i, flib.States[index].Branches[branchNum].Output);
AddIndex(indexes, i, flib);
}
}
}
private SortedList InitIndexesList(Flib flib) {
SortedList indexes = new SortedList();
int index = 0;
AddIndex(indexes, index, flib);
return indexes; }
private void AddIndex(SortedList indexes, int index, Flib flib) {
indexes[index] = b;

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 46 No. 5 2007

APPLICATION OF GENETIC ALGORITHMS FOR AUTOMATIC CONSTRUCTION 801

foreach (Branch branch in flib.States[index].Branches) {
if (!indexes.Contains(branch.StateIndex))

AddIndex(indexes, branch.StateIndex, flib);

REFERENCES

1. A. A. Shalyto, “Technology of Automaton Program-
ming,” Mir PK, No. 10, 74–78 (2003).

2. M. Mitchell, An Introduction to Genetic Algorithms
(MA: MIT Press, Cambridge, 1996).

3. W. Langdon and R. Poli, Better Trained Ants for Genetic
Programming (University of Birmingham, Birmingham,
1998).

4. S. A. Wolfram, A New Kind of Science (Wolfram Media,
Champaign, 2002).

5. M. Mitchell, J. Crutchfield, and P. Hraber, “Evolving
Cellular Automata to Perform Computations,” Phys. D.
(Amsterdam) 75, 361–391 (1993).

6. Yu. D. Bednyi, Application of Genetic Algorithms for
Solving a Problem on Cell Automata. The Problem of
Density Classification for Cellular Automata. Bachelor
Thesis (SPbGU ITMO, St. Petersburg, 2006) [in Rus-
sian].

7. D. Whitley, “A Genetic Algorithm Tutorial,” Statistics
and Computing 4, 65–85 (1994).

8. O. Voronin and A. D’yudni, “Darwinism in Program-
ming,” Moi Komp’yuter, No. 35 (2004).

9. B. Miller and M. Goldberg, “Genetic Algorithms, Tour-
nament Selection, and the Effects of Noise,” Complex
Systems 3, 193–212 (1995).

10. K. De Jong, An Analysis of the Behavior of a Class of
Genetic Adaptive Systems. PhD Thesis (Univ. of Michi-
gan, Ann Arbor, 1975).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

