
1

Finite State Machine Based Object-Oriented Applica-
tions Development Using UML and Eclipse Platform

Vadim Gurov, Maxim Korotkov, Maxim Mazin

eVelopers Corp.

Abstract

This paper describes methodology and tool for
developing object-oriented applications using
Eclipse platform, UML and finite state machine
paradigm.

Described methodology is based on [1, 2] and
suggests to model finite state machines using
Class and Statechart UML diagrams, then to con-
vert diagrams content into XML state machine
description and finally to execute resulting XML
using special finite state machine interpreter. For
visual modeling purposes UML editor was created
as Eclipse plugin using Graphical Editing Frame-
work [3]. UML editor supports such originally
text-oriented features as “markers” and “quick
fixes”.

Described tool was implemented as UniMod
Project that may be accessed via URL
http://unimod.sf.net.

1 Introduction
CASE tools are very popular now. They allows to
describe application model with a help of set of
different diagrams. Diagrams may be converted
into target programming language code late on.

In UML there are means to model both static
application structure using Class diagrams and
application behavior using Statechart, Collabora-
tion and Sequence diagrams.

UML itself doesn’t define object-oriented ap-
plications modeling methodology, but only de-
fines set of diagrams. There are number of
methodologies [4, 5, 6, 7, 8] for application mod-
eling. They have good formal description of ap-
proach for modeling static application structure,

but there is no acceptable formal description of
application behavior modeling process. Semantic
relation with program behavior code is absent.
Also, if application has complicated logic, State-
chart diagrams as proposed by UML authors
could hardly be used because of identifiers.
Moreover there are limits on state machines nest-
ing.

In [1, 2] methodology called SWITCH-
technology for modeling behavior of event-driven
applications with explicit state emphasis was sug-
gested. Key feature of this methodology is that
entity behavior described with a help of finite
state machine. Finite state machine defined using
labeled transition graph with special very compact
notation for labels.

This paper describes methodology for design-
ing object-oriented application behavior based on
SWITCH-technology and plugin for Eclipse plat-
form that supports created methodology.

2 Methodology
First step during creation of methodology was to
adapt SWITCH-technology for object-oriented
approach and UML.

SWITCH-technology defines two types of
diagrams for describing application behavior:

- Connectivity schema;
- Transition graph.

2.1 Connectivity Schema
Connectivity schema describes relations between
finite state machines, event sources and controlled
entities. Event sources must be placed on the left.
Controlled entities must be placed on the right.
State machines must be labeled with AR, where R

2

– state machine number, and placed in the middle
of schema.

For every event that produced by event
sources link between event source and state ma-
chine is created. Link directed into state machine
and labeled with short event name eN, where N –
is event number, and long event description.

For every ingoing effect link between con-
trolled entity that owns ingoing effect and state
machine is created. Link directed into state ma-
chine and labeled with short ingoing effect de-
scription xM, where M - is ingoing effect number,
and long ingoing effect description.

For every outgoing effect link between state
machine and controlled entity that owns outgoing
effect is created. Link directed into controlled
entity and labeled with short outgoing effect name
zK, where K – is outgoing effect number, and long
outgoing effect description.

Connectivity schema may contain arbitrary
amount of event sources, state machines and con-
trolled entities.

2.2 Transition Graph
Transition graph is created for every state ma-
chine defined on Connectivity schema. Transition
graph describes combined machines (C-machines
or Moore-Mealy machines) [8].

Transition graph contains states and transi-
tions between states. States labeled with it’s name,
list of outgoing effects short names that executed
on-enter and list of included state machines names.
Transitions labeled with logical condition that
trigs transition and list of outgoing effects that
must be executed if transition trigs. Logical condi-
tion contains logic formula in basis AND, OR,
NOT. Terms of formula are short names of events,
short names of ingoing effects and 1 (TRUE), 0
(FALSE) constants.

A lot of sample projects based on SWITCH-
technology may be found at SWITCH-technology
home site http://is.ifmo.ru/projects_en/.

Adaptation process of described diagrams is
introduced below.

2.3 Connectivity Schema Adap-
tation

SWITCH-technology Connectivity schema is
converted into UML Class diagram. To do so,
event source class, state machine class and con-
trolled object class are introduced. Instances of

these classes (objects) are placed on UML Class
diagram. It’s very important to note, that just ob-
jects are placed on Class diagram, because, for
example, if there are two different state machines
that drive the same controlled object, they must
share the same instance of this controlled object in
runtime.

Event sources connected with state machines
with the only directed association without labels.
State machines connected with controlled objects
with the only directed association labeled oP,
where P – is local number of controlled object
from state machine point of view. State machine
use this label as controlled object identifier to
refer to controlled object instance. Also such ap-
proach allows two different state machines to re-
fer to the same controlled object using different
identifiers.

Controlled object class has two types of pub-
lic methods: xM() – ingoing effect method, where
M – is ingoing effect number, and zK() – outgoing
effect method, where K – is outgoing effect num-
ber. Method name is used as short effect name.
Long effect description is shown as method tag –
standard UML extension mechanism.

Event source class has the only type of
method – eN(), where N is event number. Method
name is used as short event name. Long event
description is shown using method tag.

State machine object has name AR, where R –
state machine number. State machine class has no
methods. State machine name also called state
machine identifier.

2.4 Transition Graph Adapta-
tion

SWITCH-technology Transition graph is con-
verted into UML Statechart diagram. Statechart
diagram syntax changed in the following way:
state has only two internal transitions enter and
include, state can’t has concurrent regions, initial
and final pseudo -states are the only pseudo-states
allowed on diagram.

Enter internal transition defines list of meth-
ods of controlled objects to be executed on-enter
into state. Methods of controlled objects are re-
ferred as oP.zK(), where oP is controlled object
identifier defined on Class diagram (see section
2.3) and zK() – is controlled object method name.
Labels oP.zK() and oP.xK() called fully qualified
method identifier (FQMI).

3

Include internal transition defines list of in-
cluded state machines identifiers. State machines
referred as AR (see section 2.3).

Transition label has the following syntax:
eN[guard_condition]/list_of_FQMI, where eN –
is reference to method of event source,
guard_condition – is logic formula is basis AND,
OR, NOT, list_of_FQMI – the same list as list
defined for on-enter state internal transition.
Terms of guard_condition are FQMI, first order
predicates <, >, >=, <=, !=, ==, Boolean constants
and natural numbers constants.

Here is example of transition label:
e1[o1.x1&&o2.x2||o1.x10>10]/o1.z1,o2.z1.

Statechart has number of OCL constraints
that must be satisfied for well-specified diagram.
Some additional constraints are introduced in
methodology that is being described: all states on
diagram must be attainable; the set of state outgo-
ing transitions must be consistent and complete.

2.5 Methodology Process
Methodology suggests the following step-by-step
process for creating application model:
- analyze problem domain, create conceptual
model using classical methodologies such as [4];
- extract event sources, controlled objects and
state machines from conceptual model;
- create UML Class diagram, put event sources on
the left, put controlled objects on the right, put
state machines in the middle, create associations
between event sources, state machines and con-
trolled objects. This Class diagram called Connec-
tivity diagram;
 - assign names to links between state machines
and controlled objects using identifiers like oP;
- define public methods of two main types for
every controlled object: ingoing effects xM() and
outgoing effects zK();
- create one Statechart diagram per state machine;
- implement controlled objects and event source
on Java language. Note that eN() methods of
event sources are not needed to be implemented –
they are used for visualization purposes only;
- automatically create XML description of applica-
tion behavior model using designed Connectivity
and Statecharts diagrams for further interpreting;

Next section describes Eclipse plugin that
supports described methodology.

3 Eclipse plugin

To support described methodology Eclipse plugin
was developed. Plugin consists of two main parts:

- Core - Eclipse independent part;
- Eclipse plugin.
Core, in it’s turn, consists of:
- finite state machine meta-model;
- algorithms for parsing and translation of

guard conditions using ANTLR library [9];
- algorithms for state machines validation

(includes UML OCL contains validation and addi-
tional constraints described in section 2.4).

- transformers between in-memory state ma-
chine model representation and XML state ma-
chine description;

- framework for runtime XML description in-
terpreting.

XML description runtime interpreter operates
in the following way: on interpreter start-up, state
machine XML description is converted into in-
memory state machine model once and com-
pletely; resulting system consists of runtime envi-
ronment and object representation of state
machine; to handle events this system analyzes
next event and ingoing effects to chooses the tran-
sition, executes outgoing effects, invokes included
state machines.

Eclipse plugin implements visual editor for
Connectivity (see fig. 1) and Statechart diagrams
(see fig. 2) using Graphical Editing Framework
[3]. Plugin shows structure of model that is being
developed as tree using Outline view (see fig. 3).

Plugin also starts validation process in back-
ground and reschedules it on every model change.
Every found validation error is put into Problems
view as marker (see fig. 4), graphical elements
associated with error are outlined (see fig. 5).

A number of quick fixes are available for
every found validation error. For example, for
unattainable state suggested quick fixes will in-
clude such quick fix as “add transition from some
attainable state to this one” (see fig. 6), for state
that has incomplete set of outgoing transitions
suggested quick fixes will include “create new
transition labeled with rest condition to make
transitions set complete” (see fig. 7)

4

Figure 1: Connectivity diagram

Figure 2. Statechart diagram.

In any moment of design process plugin al-

lows to start interpreter to see how created model
works. Behind the scene plugin converts diagrams
content into state machine XML description and
starts external process with interpreter passing
path to generated XML to it.

Sometimes the diagram may be made easier
to read by running the Layouter. Layouter tries to
place diagram elements better (to minimize the
number of intersections, to avoid overlaying states,
to minimize area of the drawing and to match
some other criteria). At present moment the sim-
ple modification of force-directed method [10] is
used. In future we are going to adapt algorithm for
orthogonal graph drawing described in [11] for
our purposes.

Figure 3. Outline view.

Figure 4. Problems view.

Figure 5. Elements with errors.

4 Conclusions
Developed methodology and Eclipse plugin im-
plement complete design and development envi-
ronment for modeling and executing object-
oriented applications logic, allowing to reduce
amount of manual programming and to increase
quality of resulting code because of advanced on-
the-fly model validation.

Created behavior diagrams used not only for
design purposes, but as “graphical programs” - it

5

helps to remove the gap between design and de-
velopment.

Figure 6. Unattainable state.

Figure 7. Incomplete set of transitions.

Acknowledgements

The author would like to thank Anatoly
Abramovitch Shalyto for creating SWITCH-
technology.

About the Author

Vadim Gurov is a Senior Software Developer in
eVelopers Corp. and a post graduate student in
Saint-Petersburg State University of Information
Technologies, Fine Mechanics and Optics. His
Internet address is vgurov@evelopers.com.
Maxim Korotkov is a Software Developer in
eVelopers Corp. and a student in Saint-Petersburg
State University of Information Technologies,
Fine Mechanics and Optics. His Internet address
is mkorotkov@evelopers.com.

Maxim Mazin is a Software Developer in eVelop-
ers Corp. and a student in Saint-Petersburg State
University of Information Technologies, Fine
Mechanics and Optics. His Internet address is
mmazin@evelopers.com.

References

[1] A.A. Shalyto. Logic Control and “Reactive”
Systems: Algorithmization and Programming.
Automation and Remote Control, Vol. 62, No.
1, 2001, pp. 1-29. Translated from Av-
tomatika i Telemekhanika, No. 1, 2001, pp.
3-39

[2] A.A. Shalyto. Switch-tekhnologiia: algorit-
mizatsiia i programmirovanie zadach
logicheskogo upravleniia. Sankt-Peterburg:
Nauka, 1998.

[3] Eclipse Graphical Editing Framework.
http://eclipse.org/gef/.

[4] G. Butch. Object-Oriented Analysis and De-
sign with Applications. Pearson Education,
1993.

[5] J. R. Rumbaugh, M. R. Blaha, W. Lorensen,
et al. Object-Oriented Modeling and Design.
Prentice Hall. 1990.

[6] C. Larman. Applying UML and Patterns.
Prentice Hall PTR, 1997.

[7] P. Coad. Object Models: Strategies, Patterns,
and Applications. Prentice Hall PTR, 1997.

[8] J.J. Odell. Advanced Object-Oriented Analy-
sis and Design using UML, New York: SIGS
Books, 1998.

[9] T.J Parr., R.W Quong. ANTRL: A Predi-
cated-LL(k) Parser Generator. Software -
Practice And Experience. 1995, №25(7). p.
789-810.

[10] T. M. J. Fruchterman, E. M. Reingold: Graph
Drawing by Force Directed Placement. Soft-
ware - Practice And Experience. 1991,
№21(11). p. 1129-1164.

[11] G. D. Battista, P. Eades, R. Tamassia, I.G.
Tollis: Graph Drawing. Prentice Hall PTR,
1999.

