
Using a Genetic Algorithm to Evolve Behavior in
Multi Dimensional Cellular Automata

Emergence of Behavior

R. Breukelaar
Leiden Institute of Advanced Computer Science,

Universiteit Leiden
P.O. Box 9512, 2300 RA Leiden, The

Netherlands

rbreukel@liacs.nl

Th. Bäck
Leiden Institute of Advanced Computer Science,

Universiteit Leiden
P.O. Box 9512, 2300 RA Leiden, The

Netherlands
and

Nutech Solutions GmbH,
Martin-Schmeisser-Weg, 44227 Dortmund,

Germany

baeck@liacs.nl

ABSTRACT
Cellular automata are used in many fields to generate a
global behavior with local rules. Finding the rules that dis-
play a desired behavior can be a hard task especially in real
world problems. This paper proposes an improved approach
to generate these transition rules for multi dimensional cellu-
lar automata using a genetic algorithm, thus giving a generic
way to evolve global behavior with local rules, thereby mim-
icking nature. Three different problems are solved using
multi dimensional topologies of cellular automata to show
robustness, flexibility and potential. The results suggest
that using multiple dimensions makes it easier to evolve de-
sired behavior and that combining genetic algorithms with
multi dimensional cellular automata is a very powerful way
to evolve very diverse behavior and has great potential for
real world problems.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation, Performance, Theory

1. INTRODUCTION
Science has long since been fascinated by how simple lo-

calized behavior can produce very complex global behavior.
Well known examples can for instance be found in nature
in the form of ant colonies. Ants follow a few very simple

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

rules that don’t seem to be very intelligent or complex at the
level of a single ant. Yet the behavior and structure of an
entire ant colony seems very complex and organized. Ants
seem to work together to collect food, defend the colony and
attack the enemy. This paper will not go into the behav-
ior of ants or any other specific species, but will rather use
a far more abstract representation of individuals and their
behavior called Cellular Automata (CA).
In nature behavior can often be contributed to evolution.

Especially in small insects like ants the behavior seems only
to have a genetic origin. This implies that the organiza-
tion and communication in an ant colony could also be con-
tributed to evolution. This paper reports how the same ge-
netic principles of evolution can be applied to CA to evolve
a desired global behavior with only local rules. Earlier work
[9, 10, 8] has shown that using evolution on one dimensional
CA can be a very powerful combination. This paper sug-
gests an improved Genetic Algorithm (GA) and more im-
portantly shows how this algorithm can be applied to multi
dimensional CA. By evolving behavior in a multi dimen-
sional space the hope is that the approach could be applied
to real world problems in areas like robotics, parallel com-
puting, biological and social modeling, artificial intelligence
and image analysis. CA are already used in these areas and
designing these models is often very time consuming, there-
fore automating this process will be a welcome application.
The paper starts by giving a brief introduction to CA,

first the one dimensional case, followed by a generic way to
extend this to multiple dimensions. Next it describes an
approach using a generic GA to evolve the behavior in the
CA. This approach is then used in three different experi-
ments that show its potential and flexibility.

2. CELLULAR AUTOMATA
According to [11] Cellular Automata (CA) are mathemat-

ical idealizations of physical systems in which space and time
are discrete, and physical quantities take on a finite set of
discrete values. The simplest CA is one dimensional and
looks a bit like an array of ones and zeros of width N , where
the first position of the array is linked to the last position. In

107

(a) (b)

Figure 1: Two often used and well known two di-
mensional neighborhoods. (a) the von Neumann
neighborhood and (b) the Moore neighborhood.

other words, defining a row of positions C = {a1, a2, ..., aN}
where C is a CA of width N and aN is adjacent to a1.
The neighborhood sn of an is defined as the local set of

positions with a distance to an along the connected chain
which is no more than a certain radius (r). This for instance
means that s2 = {a148, a149, a1, a2, a3, a4, a5} for r = 3 and
N = 149. Please note that for one dimensional CA the size
of the neighborhood is always equal to 2r + 1.
The values in a CA can be altered all at the same time

(synchronous) or at different times (asynchronous). Only
synchronous CA are considered in this paper. In the syn-
chronous approach at every time step (t) every cell state in
the CA is recalculated according to the states of the neigh-
borhood using a certain transition rule Θ : {0, 1}2r+1 →
{0, 1}, si → Θ(si). This rule basically is a one-to-one map-
ping that defines an output value for every possible set of
input values, the input values being the ‘state’ of a neigh-
borhood. The state of an at time t is written as at

n, the state
of sn at time t as st

n and the state of the entire CA C at
time t as Ct so that C0 is the initial state and ∀n = 1, . . . , N
at+1

n = Θ(st
n). Given Ct = {at

1, ..., a
t
N}, Ct+1 can be defined

as {Θ(st
1), ...,Θ(s

t
N)}.

Because an ∈ {0, 1} the number of possible states of sn

equals 22r+1. Because all possible binary representations of
m where 0 ≤ m < 22r+1 can be mapped to a unique state
of the neighborhood, Θ can be written as a row of ones and
zeros R = {b1, b2, ..., b22r+1} where bm is the output value of
the rule for the input state that maps to the binary repre-
sentation of m−1. A rule therefore has a length that equals

22r+1 and so there are 222r+1
possible rules for a binary one

dimensional CA. This is a huge number of possible rules (if
r = 3 this sums up to about 3, 4×1028) each with a different
behavior.

2.1 Multi Dimensional Cellular Automata
It is not unthinkable that the capabilities of these one

dimensional CA are restricted by the number of directions
in which information can “travel” through a CA and that
using multiple dimensions might remove these restriction
and therefore improve performance.
The most simple two dimensional CA can be viewed as a

grid of positions a(i, j) instead of a row in the one dimen-
sional case. The borders of this CA are connected in such
a way that every first cell in a row a(1, j) is connected to
the last cell a(w, j) and every first cell in a column a(i, 1)
is connected the the last cell in that column a(i, h). This
topology is also known as a ’torus’ or ’donut’ shape.
There are two neighborhoods that are often used in this

two dimensional space being the von Neumann neighbor-
hood and the Moore neighborhood (Figure 1). These neigh-
borhoods can be extended to have a larger radius and more

r
0 1 2 3 4 5 6

SN (1, r) 1 3 5 7 9 11 13
SN (2, r) 1 5 13 25 41 61 85
SN (3, r) 1 7 25 63 129 231 377
SN (4, r) 1 9 41 129 321 681 1289
SN (5, r) 1 11 61 231 681 1683 3653
SN (6, r) 1 13 85 377 1289 3653 8989

SM (1, r) 1 3 5 7 9 11 13
SM (2, r) 1 9 25 49 81 121 169
SM (3, r) 1 27 125 343 729 1331 2197
SM (4, r) 1 81 625 2401 6561 14641 28561
SM (5, r) 1 243 3125 16807 59049 161051 371293
SM (6, r) 1 729 15625 117649 531441 1771561 4826809

Table 1: The number of cells in neighborhoods in
multi dimensional CA. SN (d, r) stands for a d dimen-
sional von Neumann neighborhood with a radius r
and SM (d, r) represents a d dimensional Moore neigh-
borhood with radius r. Note that SN (d, r) is a lot
smaller and symmetric.

dimensions if defined in terms of distance: Every cell in a
neighborhood has a path to the center cell that is equal or
less than r steps to ‘adjacent’ cells. In a CA with d dimen-
sions e1, e2, ..., ed cells a(i1, i2, ..., id) and b(j1, j2, ..., jd) are
‘adjacent’ in a von Neumann neighborhood if

dX

k=1

min(|ik − jk|, ek − |ik − jk|) = 1

In a Moore neighborhood cells are ‘adjacent’ if

min(|ik − jk|, ek − |ik − jk|) ≤ 1 for 1 ≤ k ≤ d

Note that a one dimensional von Neumann neighborhood is
equal to a one dimensional Moore neighborhood.
Transition rules are defined in the same way as in the one

dimensional CA where every bit in the index of the bitstring
represents one input cell in the neighborhood. The cells in
the neighborhood are numbered from 1 to n in a recursive
way over the d dimensions. Note that this means that the
center cell is always numbered n+1

2
.

The number of cells in these neighborhoods grows very
fast if r or d is increased. Table 1 clearly shows that the
Moore neighborhood grows a lot faster than the von Neu-
mann neighborhood. In this paper we will use a few different
combinations and explore their differences.

3. GENETIC ALGORITHM
Genetic algorithms (GAs) are often used to find solutions

in large discrete search spaces that are to big to iterate com-
pletely [4, 5, 6]. From an evolutionary point of view, the fact
that CA define behavior in the form of a binary transition
rule which can easily be evolved with a GA is a bonus. M.
Mitchell, J. P. Crutchfield and P. T. Hraber have shown [9,
10] that using a simple GA to evolve transition rules for the
majority problem (explained in section 4) can already give
surprisingly good results. Other approaches have been pro-
posed by for instance S. Inverso, D. Kunkle and C. Merrigan
[7]. In this paper we will suggest a different GA that out-
performs used approaches and test its robustness by running
different experiments with different radius r and dimension
d settings.
The GA in this paper uses tournament selection as defined

in [1]. This selection involves running ‘tournaments’ on the

108

population in order to determine the next generation. Every
tournament q individuals are selected at random from gen-
eration t and the one with the highest fitness is then copied
to generation t + 1. For a population of λ individuals this
process is repeated λ times and the result is generation t+1
with λ individuals.
After selection generation t + 1 is mutated. Mutation is

done by using single-point crossover on a subset of the pop-
ulation and mutating the resulting individuals using proba-
bilistic bit flip. The relative number of individuals that are
mutated in this way is denoted by the crossover-rate c. Mu-
tation is done by flipping every bit in the individual with a
probability m.
All the individuals in the pool are initialized at random

with a normal distribution over the number of ones in an
individual. This means that the number of individuals with
a certain number of ones will be roughly equal to the number
of individuals with another. This prevents the algorithm
from specializing in a particular area of the search space at
the beginning of the algorithm. The evolution ends after D
generations and the best individual of the last generation is
considered to be the answer.
The GA is expected to behave differently with different

settings of q, c, m and D, but it should ideally be usable in a
large range of different experiments without much changes.
The majority problem was used to determine some good
settings and then these settings were used in the other ex-
periments without any changes. It is expected that the al-
gorithm is capable of better results if the setting-space is
explored more intensely. This will take a long time though
and is fuel for further work.

4. MAJORITY PROBLEM
The majority problem is often used to show the power of

cellular automata. Its a simple example of how local rules
can perform a global task and is often studied in the one
dimensional form. The majority problem can be defined as
follows:

Given a set A = {a1, ..., an} with n odd and am ∈ {0, 1}
for all 1 ≤ m ≤ n, answer the question: ‘Are there more
ones than zeros in A?’.
The majority problem at first glance does not seem to be

a very difficult problem to solve. It seems only a matter of
counting the ones in the set and then comparing them to
the number of zeros. Yet when this problem is converted to
the dimensions of a CA and the restriction of local rules it
becomes a lot more difficult. This is because the rule in a
CA does not let a position look past its neighborhood and
that is why the cells all have to work together and use some
form of communication.
Given that the relative number of ones in C0 is written

as λ, in a simple binary CA the majority problem can be
defined as:

Find a transition rule that, given an initial state of a CA
with N odd and a finite number of iterations to run (I), will
result in an ‘all zero’ state if λ < 0.5 and an ‘all one’ state
otherwise. The ‘all zero’ state being the state in which every
cell in the CA is zero and the ‘all one’ state being a the state
in which every cell is one.
Evaluating a transition rule for this problem is done by it-

erating M randomly generated initial states and calculating
the relative number of correct classification. The fitness of a
transition rule is denoted with FN,M where N is the width

Time

Position

0

199

0 148

Time

Position

0

199

0 148

Figure 2: These are examples of majority problem
classification by the “majority rule”. The pictures
show how the rule gets stuck on “thick lines” in the
time plot. Time t proceeds from top to bottom and
every row corresponds to Ct.

Time

Position

0

199

0 148

Time

Position

0

199

0 148

(a) (b)

Figure 3: These are examples of majority problem
classification by the rule found by David, Forrest
and Koza. Both are correct classifications (a) with
74 ones in the initial state, (b) with 75.

of the CA. The fitness can be calculated with different dis-
tributions over the number of ones in the initial state, but
the default is a binomial distribution (denoted with FB

N,M)
where every cell in the CA has a 50% chance of being initi-
ated with a one or a zero for every initial state.
The first intuitive rule to come up with is often called

the ‘majority rule’. This being the rule where the output
value is 1 if the number of ones in the neighborhood is more
than the number of zeros, and a zero otherwise. Surprising
as it may seem this does not at all solve the problem (as
is shown in figure 2). The majority rule fails to work on
boundaries of thick lines in the time plot. There the cells
can’t “agree” on the global answer. The cell just left of
such a thick line is zero and because all other cells left of
it in the neighborhood are also zero, it “decides” to stay
that way. Yet its neighbor to the right is one and sees only
ones on its right and therefore decides to stay one. This
way the information fails to propagate through the CA and
classification is incorrect.
A lot of people have come up with different rules to solve

this problem, one such rule is the GKL rule after Gacs, Kur-
dyumov and Levin [3]. This rule is good at classifying the
majority problem and does it for 81.6% of the test cases
with a width of 149 cells. For 17 years this was the best rule
and then Lawrence Davis found a better one in 1995 which

109

Time

Position

0

199

0 148

Time

Position

0

199

0 148

(a) (b)

Figure 4: This figure displays two correct classi-
fication of the majority problem by two different
particle based rules generated with the GA. (a)
has FB

149,104 ≈ 0.76 and (b) has FB
149,104 ≈ 0.75. with

N = 149.

did 81.8%. In the same year Rajarshi Das found a rule that
did 82.178%. Then in 1996 David, Forrest and Koza found
a rule by cleverly using genetic programming that was able
to classify 82.326% correctly [2].
Although these rules are very impressive it is believed that

there is no definite solution for the problem as long as the
neighborhood is smaller than the size of the CA. It is already
a big accomplishment for a CA to get 70% of all random
initial states correct, for this shows there is some kind of
communication going on; some kind of emerging behavior.

4.1 Genetic Algorithm
The algorithm as proposed in section 3 was used to evolve

transition rules for this problem. Different parameter set-
tings were tried to find optimal setting and to examine the
robustness of the algorithm. The experiment started out
with one dimensional CA with N = 149 and I = 320 for his-
torical reasons [9, 10, 8, 12]. Initial parameters for the GA
were λ = 100, q = 10, c = 0.10, m = 2

2S = 2
128

= 0.015625
and D = 100.
Preliminary experiments as well as experiments by Packard

et al. [8] and Mitchell et al. [9, 10] suggest that it is very dif-
ficult to evolve good transition rules with a GA while using
a binomial distribution over the number of ones in the initial
states. Note that with this distribution the number initial
states with λ ≈ 0.5 which are the hardest to classify is very
high. The solution for this is using a uniform distribution
while evolving the rules. This distribution generates more
‘easy’ initial states with a large difference between the num-
ber of ones and the number of zeros, thus making it easier
to train the desired behavior. The fitness using initial states
with this uniform distribution over the number of ones is
denoted with FU

N,M .
This distribution has a drawback though. Because rules

are selected using a different fitness function than the one
used to test them in the end, it seems possible that the
rules will specialize in a behavior that would seem good for
the uniform distribution, but very bad for the binomial dis-
tribution. To counter this effect a “gliding distribution” is
used. This distribution is different for every generation of
the genetic algorithm. It “glides” gently from an uniform
distribution in generation 0 to a binomial distribution in
generation D. This is achieved by generating �M · g

D
 initial

q
FB

149,104 2 3 5 10 20 50

0.0 - 0.5 23 0 1 0 2 3
0.5 - 0.55 37 0 0 0 2 2
0.55 - 0.6 14 6 4 1 2 4
0.6 - 0.65 25 79 69 48 52 47
0.65 - 0.7 1 16 42 50 39 40
0.7 - 0.75 0 0 0 1 3 4
0.75 - 0.8 0 0 0 0 0 0
0.8 - 1.0 0 0 0 0 0 0

Table 2: This table shows the fitness distribution us-
ing different values for the tournament size q. Other
settings are the same as the initial values proposed
in section 4.1.

states with a binomial distribution and �M · (1− g
D
) initial

states with a uniform distribution, where g is the current
generation. This distribution has the benefits of the uni-
form distribution in the beginning of the algorithm without
the drawbacks at the end. The fitness using this distribu-
tion is denoted with FG

N,M,g. Note that F
G
N,M,0 = FU

N,M and

FG
N,M,D = FB

N,M .

4.2 Results
Different parameter settings were tried on the GA. Ex-

periments with different values for the mutation rate m did
not show any real improvement and it was concluded that
m = 2

128
= 0.015625 was a good setting. Also changing the

number of generationsD did not seem to yield improvements
immediately although in theory a larger D should increase
the chance of good results. Because of the time restrictions
and historical compatibility with [9, 10] D = 100.
Exploring different tournament sizes q values however seemed

to give very different results. Six different experiments were
conducted using q = {2, 3, 5, 10, 20, 50}. Each setting was
run a 100 times. Results are shown in Table 2. Note that
these results imply that a high selection pressure is needed
to gain good results. Settings q = {2, 3, 5} do not seem to
be very good in generating rules that exceed the 0.7 barrier,
q = 10 is better, but q = {20, 50} generate both very good
results. Because q = 50 seems to produce more ‘bad’ rules
with F < 0.6, therefore it was decided to use q = 20 in the
future.
Different crossover rates also seemed to change the re-

sults. Using the new tournament size q = 20 four different
values for c were tried: 0.6, 0.8, 0.9 and 0.95. Table 3 shows
the results. Note that the best results are achieved using
c = 0.6, but the difference is minimal. This together with
the findings for the different mutation rates m implies that
the algorithm is robust under different mutation settings
and might be usable for different problems without chang-
ing these settings.
Next this same algorithm was used to evolve transition

rules for CA with multiple dimensions. Instead of using a
one dimensional neighborhood with r = 3 the von Neumann
neighborhood with r = 1 was used with d = {2, 3}. Note
that SN

2,2 = 5, that is two cells less than the one dimensional
experiment and that means a bit string of 25 = 32 bits in-
stead of 128 bits. In theory this would imply less complex
rules and worse performance. The algorithm was run a 100
times with d = 2 and d = 3. Because a two dimensional

110

c
FB

149,104 0.6 0.8 0.9 0.95

0.0 - 0.5 0 0 2 2
0.5 - 0.55 2 1 2 0
0.55 - 0.6 1 1 2 2
0.6 - 0.65 54 52 52 56
0.65 - 0.7 37 42 39 36
0.7 - 0.75 3 4 3 3
0.75 - 0.8 3 0 0 1
0.8 - 1.0 0 0 0 0

Table 3: This table shows the fitness distribution
using different values for the crossover rates c, q = 20
and other settings are the same as the initial values
proposed in section 4.1.

d
FB

N,104 1 2 3

0.0 - 0.5 0 0 1
0.5 - 0.55 2 0 0
0.55 - 0.6 1 4 0
0.6 - 0.65 54 17 14
0.65 - 0.7 37 72 55
0.7 - 0.75 3 1 30
0.75 - 0.8 3 0 0
0.8 - 1.0 0 0 0

Table 4: This table shows the fitness distribution
using different number of dimensions d. Note that
N = 149 for d = 1, N = 169 for d = 2 and N = 343 for
d = 3. q = 20, c = 0.6 and other settings are the same
as the initial values proposed in section 4.1.

0

20

40

60

80

100

120

140

160

180

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

av
er

ag
e

du
ra

tio
n

fitness (F)

1D
3D

Figure 5: This figure plots the average duration of
the evolved rules against the fitness of the rules. It
compares the one dimensional with the three dimen-
sional topology and shows that a three dimensional
topology has a much smaller average duration, but
similar fitness. Note that the two dimensional rules
are omitted to make the plot readable.

CA is square and must have an odd number of cells the di-
mensions were set to 13× 13, this means the CA consist of
169 cells. For the three dimensional CA it was even harder,
because the nearest, bigger dimension with an odd number
of cells is 7 × 7 × 7, resulting in 343 cells. That is why the
results in Table 4 are so surprising. They show how the GA
did not have any problem finding rules for the two dimen-
sional CA that performed with similar fitness on a larger
CA. Note that the number of rules with F > 0.65 is even
higher in the two dimensional case. With d = 3 the results
are even more compelling. The number of rules found with
F > 0.7 is a lot higher than in the one dimensional exper-
iment. This suggest that using a topology with multiple
dimensions makes it easier to solve the majority problem.
The average duration of a transition rule is defined as the

average number of iterations a rule needs to result in a fixed
state. Note that this does not have to be the desired state.
The time it takes for a CA to perform its task is of great
importance in real world problems. The quicker the rule,
the better the solution. Figure 5 shows the average dura-
tions for every evolved rule in the one dimensional and three
dimensional experiment plotted against their fitness. Note
that the average duration of the three dimensional rules is
a lot lower than the duration of the one dimensional rules,
especially for the best rules around F ≈ 0.73. This suggests
that using multiple dimensions is a lot more efficient than
using only one dimension. The two dimensional rules are
omitted from the plot to make the plot readable, but with
most of the average durations of the two dimensional exper-
iment between 20 and 60, and the best rules with a duration
of around 50, the theory is supported.

5. CHECKERBOARD PROBLEM
Another often presented CA problem is the “checkerboard

problem”. This problem demonstrates how a CA can gen-
erate a simple global pattern using only local rules. The
checkerboard problem can be defined as follows:

Find a transition rule that, given an initial state of a CA,
iterates this CA to a “checkerboard pattern” within I itera-
tions.
A checkerboard pattern can be defined as a state in which

directly adjacent cells in a CA have different values. Such a
pattern could look like: {0, 1, 0, 1, ..., 1, 0, 1} in a one dimen-
sional CA. Note that the first cell and the last cell are linked
and should therefore also have different values. The problem
is more intuitive in a two dimensional CA where cells are not
only connected horizontally, but also vertically and the de-
sired state therefore resembles a checkerboard. The problem
can even be imagined in three dimensional CA where the end
result should resemble a stack of checkerboards where every
odd board in the stack is turned 90 degrees. In theory this
problem is extendable to more dimensional spaces, but only
CA with d = {1, 2, 3} will be considered here.
Just like in the majority problem the checkerboard prob-

lem used multiple initial states to determine the fitness of
a transition rule. These initial states however don’t need
to use the gliding distribution used in the majority prob-
lem, because preliminary experiments showed that there is
already evolution with a binomial distribution. The fitness
of a transition rule is measured in the relative number of
directly adjacent cells in the end state that have an inverted
value.
The same GA was used as in the majority problem, even

111

Time

Position

0

199

0 148

Time

Position

0

199

0 148

(a) (b)

Figure 6: This figure shows two one dimensional CA
iteration for the checkerboard problem. Note that
(a) does not result in a perfect pattern, whereas (b)
does.

the parameters have the same values (that is optimal val-
ues as used in the last experiments). That means: q = 20,
c = 0.6, m = 2

2S and D = 100. The number of cells in a
dimension of the CA needs to be even, else a perfect checker-
board pattern will be impossible. CA with 150, 122 and 63

cells were used for d = 1, 2 and 3 respectively.

5.1 Results
The algorithm was run 100 times for all three topologies

also used in the majority problem: the one dimensional CA
with r = 3, the two dimensional CA with a von Neumann
neighborhood with r = 1 and the three dimensional CA
also with a von Neumann neighborhood with r = 1. For
all three runs the same parameters were used as in the last
experiments on the majority problem. Note that m has
different values for different topologies, because this variable
is dependent on the number of cells in a neighborhood S and
was always set to 2

2S . This means that for the one and three

dimensional CA m = 2
27 = 2

128
= 0.015625 and for the two

dimensional CA m = 2
25 = 2

32
= 0.625.

In the one dimensional experiment all the runs resulted in
transition rules with FB

150,103 > 0.95 and the best rule had a
fitness of 0.998. The two dimensional experiment had similar
results with about 80% of the runs with FB

122,103 > 0.95 and

the best rule with a fitness FB
122,103 = 0.994. Note that these

results are achieved with a lot smaller neighborhood. In the
three dimensional experiment however all the runs (except
two) evolved rules with fitness values FB

63,103 > 0.996. Some

of the rules even registered a perfect fitness for all the 103

random initial states. After some tests it seemed that the
best rules in the three dimensional experiment had a fitness
of FB

63,105 ≈ 0.99997 were the best one dimensional rule

scored FB
150,105 ≈ 0.99834.

The average duration was calculated for every run like
it was done in the majority problem. Figure 8 shows the
results. Note that the two and three dimensional rules have
a lot smaller duration and a far better fitness distribution
than the one dimensional rules. These results support earlier
findings in the majority problem that suggest that multi
dimensional CA can perform a task much faster and are
easier to evolve with a GA.

Figure 7: This figure shows a correct two dimen-
sional CA iteration for the checkerboard problem.
It start top-left with a random initialization of a
10×10 CA, iterates from left to right, top to bottom
and ends up with a perfect checkerboard pattern in
the end state.

0

50

100

150

200

250

300

350

0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

av
er

ag
e

du
ra

tio
n

fitness (F)

1D
2D
3D

Figure 8: This figure plots the average duration
against the fitness for every run and compares the
one, two and three dimensional experiments. No-
tice how not only the fitness distribution improves,
but also the average duration decreases if the d is
increased.

Figure 9: The bitmaps used in the pattern genera-
tion experiment.

112

Table 5: Number of successful rules found per
bitmap.

Successful rules
Bitmap (out of a 100)

“square” 100
“hourglass” 96
“heart” 55
“smiley” 29
“letter” 18

6. EVOLVING BITMAPS
To test our approach on a more generic and complex prob-

lem than the previous to problems, the bitmap problem was
used. The bitmap problem is defined as follows:

Given an initial state and a specific desired end state: find
a rule that iterates from the initial state to the desired state
in less than I iterations.
Note that this does not require the number of iteration

between the initial and the desired state to be fixed and can
be any number between 1 and I .
The CA used in this experiment is the same as the one

used in the other two experiments. In preliminary experi-
ments we tried different sizes of CA, but decided to concen-
trate on small square bitmaps with a width and a height of
5 cells. The von Neumann neighborhood was chosen with
r = 1 and therefore sn consist of 5 cells and a rule can be
described with 25 = 32 bits. The search space therefore is
232. A bitmap of 32 b/w pixels would have the same number
of possibilities, therefore this experiment is very challenging
to say the least.
After testing different initial states, the ‘single seed’ state

was chosen and defined as the state in which all the positions
in the CA are zero except the position (�width/2, �height/2)
which is one. The CA was not expected to stay at the de-
sired state as was expected in section 4. The neighborhood
of a rule in the CA is very small and therefore it is already
very difficult to make a rule stop altering the CA ones it
has reached the desired state, but for a rule to go from the
initial state to a desired state in the CA and then stay there
is a bit to challenging.
For the GA the same parameters as for the other two

experiments were used, that means q = 20, c = 0.6, m =
2

2S = 0.625. Only the number of generations for one run D
was increased from 100 to 5000. Preliminary experiments
had shown that convergence in this challenging experiment
was a lot slower, but because there is only one initial state
to check, computation time is lot faster and longer runs are
possible.
In trying to be as diverse as possible five totally differ-

ent bitmaps were chosen, they are shown in figure 9. The
algorithm was run 100 times for every bitmap.

6.1 Results
The algorithm was able to find a rule for all the bitmaps,

but some bitmaps seemed a bit more difficult than oth-
ers. Table 5 shows the number of successful rules for every
bitmap. Note that symmetrical bitmaps seem to be easier
to generate than asymmetric ones. Figure 10 shows a few
successful transition rules generated by the GA. Note that
different transition rules can end up in the same desired state
and have totally different iteration paths.

Figure 10: This figure shows some iteration paths of
successful transition rules.

Figure 11: This figure shows two more iteration
paths of transition rules evolved with the GA that
use a Moore neighborhood with r = 1. The runs
show that the GA is able to work with larger CA
and bigger neighborhoods. The first image repre-
sents a house and the second a gecco (inspired by
the logo of the GECCO conference).

To increase the challenge and test the scalability of this
approach the size of the CA was increased. CA of 7 × 7
and 9 × 9 were tested using some bitmaps. After some
preliminary experiments it seemed that the von Neumann
neighborhood with r = 1 was having trouble generating the
larger patterns. Note that a bitmap of 7× 7 is almost twice
big as a bitmap of 5 × 5 and has more cells than there are
bits in a von Neumann rule. The Moore neighborhood with
r = 1 however found rules that generated the bitmaps using
the same algorithm as was done for all other experiments.
Figure 11 shows some of these successful rules. Note that
the last bitmap was inspired by the GECCO logo and con-
tains no symmetry whatsoever. Although there is probably
a limit to what bitmaps the Moore neighborhood can pro-
duce, these results suggests that this approach is not limited
to CA size or neighborhood size.
Only one specific initial state was used in all the bitmap

experiments. It is likely that this initial state was not the
easiest initial state for iterating these different bitmaps. Other
initial states might yield even better results. The experi-
ments show the potential power of multi dimensional CA,
the many different global behaviors that can result from
one very simple CA and how an evolutionary approach can
find local rules for a wide range of desired global behavior.
Although in the bitmap problem only two dimensional CA
were used, the results from the majority problem and the
checkerboard problem suggest that this approach can eas-
ily be extended to CA with three or more dimensions and
has the potential to generate transition rules for CA in real
world problems.

113

7. CONCLUSIONS
The result show that the GA gives good results for three

different experiments without changing the evolution pa-
rameters. The GA exceeds the performance found in [9,
10] and does this for different topologies of CA. It therefore
shows to be a robust and flexible approach to evolve global
behavior with local rules.
Furthermore the results suggest that multi dimensional

CA can solve problems faster than one dimensional CA.
Rules for these topologies can be evolved using exactly the
same algorithm and have similar top fitness and better dis-
tribution of this fitness. Results therefore imply that it is
easier to evolve rules for multi dimensional CA.
The results for the bitmap problem also imply that the

global behavior of a CA is not limited to checkerboards and
majority problems. This approach might be robust and flex-
ible enough to be used in real world problems that are not
easily described in terms of neighborhoods, like the bitmap
problem for instance, and its simplicity might give an insight
into the evolution of behavior.

8. ACKNOWLEDGMENTS
This work is part of the research programme of the ’Stich-

ting voor Fundamenteel Onderzoek der Materie (FOM)’,
which is financially supported by the ’Nederlandse Organ-
isatie voor Wetenschappelijk Onderzoek (NWO)’.

9. REFERENCES
[1] Th. Bäck, D. B. Fogel, and editors Michalewicz, Z.,

editors. Handbook of Evolutionary Computation.
Oxford University Press and Institute of Physics
Publishing, Bristol/New York, 1997.

[2] A. David, B. Forest, and H. Koza. Discovery by
genetic programming of a cellular automata rule that
is better than any known rule for the majority
classification problem, 1996.

[3] P. Gacs, G. L. Kurdyumov, and L. A. Levin. One
dimensional uniform arrays that wash out finite
islands. Problemy Peredachi Informatsi, 12:92–98,
1978.

[4] David E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley,
1989.

[5] David E. Goldberg. The Design of Invocation:Lessons
from and for Competent Genetic Algorithms. Kluwer
Academic Publishers, 2002.

[6] J. H. Holland. Adaptation in Natural and Artificial
Systems. The University of Michigan Press, Ann
Arbor, 1975.

[7] S. Inverso, D. Kunkle, and C. Merrigan. Evolutionary
methods for 2-d cellular automata computation.
www.cs.rit.edu/˜drk4633/mypapers/gacaProj.pdf,
2002.

[8] W. Li, N. H. Packard, and C. G. Langton. Transition
phenomena in cellular automata rule space. Physica
D, 45:77–94, 1990.

[9] M. Mitchell and J.P. Crutchfield. The evolution of
emergent computation. Technical report, Proceedings
of the National Academy of Sciences, SFI Technical
Report 94-03-012, 1994.

[10] M. Mitchell, J.P. Crutchfield, and P.T. Hraber.
Evolving cellular automata to perform computations:
Mechanisms and impediments. Physica D, 75:361–391,
1994.

[11] S. Wolfram. Statistical mechanics of cellular
automata. Reviews of Modern Physics, 55, 1983.

[12] S. Wolfram. Theory and Applications of Cellular
Automata. World Scientific, Singapore, 1986.

114

