

800

Journal of Computer and Systems Sciences International, Vol. 44, No. 5, 2005, pp. 800–807.
Translated from Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, No. 5, 2005, pp. 137–145.
Original Russian Text Copyright © 2005 by Naumov, Shalyto.
English Translation Copyright © 2005 by Pleiades Publishing, Inc.

INTRODUCTION

Cellular automata have been studied in numerous
publications, e.g., [1–4]. Of great interest here is the
consideration of one-dimensional cellular automata,
which generate self-reproducing configurations such as
the Sierpinsky gasket and the binary Pascal triangle. In
papers [5, 6], these structures are obtained by rather
elaborate mathematical methods. One-dimensional cel-
lular automata are the simplest tools for generating
structures like these. Here, by a structure, we mean a
sequence of states of a one-dimensional grid [7], i.e., a
set of configurations of an automaton arranged one
under the other.

All 256 possible structures generated by a one-
dimensional binary cellular automaton containing a
single point embryo at step zero are listed in paper [4].
Some of these structures are equivalent with respect to
invariant operations such as mirror reflection, inver-
sion, offset by a single cell, etc.

The purpose of this paper is to classify structures
generated by one-dimensional cellular automata from a
point embryo with respect to the invariant operations
introduced and to calculate the number of representa-
tives in various classifications.

1. SPECIFICATION OF THE NEXT-STATE
FUNCTION OF A ONE-DIMENSIONAL BINARY

CELLULAR AUTOMATON

We consider cellular automata whose neighborhood
pattern consists of the right and left neighbors of a cell
(with regard for the toroidal boundary conditions).
Since, in this paper, we study the automaton behavior
for the number of steps, which is significantly smaller
than the grid width, the boundary conditions do not
show up.

The next-state function of the automaton, which
determines the evolution of the state of a cell is best

specified in tabular form. The left column of the table
contains the current states of cells

i

 – 1,

i

, and

i

+ 1
arranged lexicographically; the right column has the
next state of cell

i

.
This table has eight rows, each containing one of the

two possible values of the next state. Thus, there are
256 various next-state functions and, hence, 256 cellu-
lar automata for arbitrary initial conditions.

Associate each automaton with the number in the
range from 0 to 255 whose binary representation
appears in the right column of the next-state table. For
example, the function

f

(

c

i

 – 1

,

c

i

,

c

i

 + 1

) =

with the
transposed right column

|

0 0 0 1 0 1 1 1

|

T

 is associ-
ated with the number

0

 ·

2

0

 + 0

 ·

2

1

 + 0

 ·

2

2

 + 1

 ·

2

3

 +
0

 ·

2

4

 + 1

 ·

2

5

 + 1

 ·

2

6

 + 1

 ·

2

7

 = 232

. This function is
called two and more out of three and can be realized by
the Boolean formula

Function number

90 = 0

 ·

2

0

 + 1

 ·

2

1

 + 0

 ·

2

2

 + 1

 ·

2

3

 +
1

 ·

2

4

 + 0

 ·

2

5

 + 1

 ·

2

6

 + 0

 ·

2

7

 has the form

Note that this function determines a memoryless
automaton, because the right-hand side of the corre-
sponding formula is free of variable

c

i

.
In addition to automaton number 232, let us give

another example of an automaton with memory,
namely, automaton number

18 = 0

 ·

2

0

 + 1

 ·

2

1

 + 0

 ·

2

2

 +
0

 ·

2

3

 + 1

 ·

2

4

 + 0

 ·

2

5

 + 0

 ·

2

6

 + 0

 ·

2

7

. The next-state
function of this automaton can be written as

where “!” denotes the operation INVERSE.
Consider one more next-state function of an autom-

aton with memory. This function is called one out of
three, has the number

22 = 0

 ·

2

0

 + 1

·

2

1

 + 1

 ·

2

2

 +

ci'

ci' ci 1– ci∨()ci 1+ ci 1– ci.∨=

ci' ci 1– ci 1+ .⊕=

ci' !ci ci 1– ci 1+⊕(),=

Classification of Structures Generated by One-Dimensional
Binary Cellular Automata from a Point Embryo

L. A. Naumov and A. A. Shalyto

St. Petersburg State University of Information Technologies, Mechanics,
and Optics, ul. Sablinskaya 14, St. Petersburg, 197101 Russia

Received October 20, 2004

Abstract

—Various classifications of structures generated by one-dimensional binary cellular automata from a
point embryo are presented. The number of classes of automata is calculated for different invariance operations.
It is demonstrated that there exist cellular automata with memory and memoryless cellular automata exhibiting
the same behavior.

ARTIFICIAL
INTELLIGENCE

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

Vol. 44

No. 5

2005

CLASSIFICATION OF STRUCTURES 801

0

·

2

3

 + 1

 ·

2

4

 + 0

·

2

5

 + 0

·

2

6

 + 0

·

2

7

, and is realized by
the formula

Function odd parity has the number

150 = 0

·

2

0

 +
1

· 21 + 1 · 22 + 0 · 23 + 1 · 24 + 0 · 25 + 0 · 26 + 1 · 27 and
is realized by the formula

Function number 60 = 0 · 20 + 0 · 21 + 1 · 22 + 1 · 23 +
1 · 24 + 1 · 25 + 0 · 26 + 0 · 27 has the form

Note that this function, as well as function number
90, being independent of one variable, nevertheless,
describes an automaton with memory, because, in this
case, variable ci appears in the right-hand side of the
formula. Function number 165 = 1 · 20 + 0 · 21 + 1 · 22 +
0 · 23 + 0 · 24 + 1 · 25 + 0 · 26 + 1 · 27 realized by formula

is the inverse of function number 90; this is evidenced
by the equality 90 + 165 = 255.

2. INITIAL CONDITIONS

The structure generated by a cellular automaton
with a fixed next-state function is defined by its initial
state. In this paper, each automaton at step zero con-
tains a single cell in state 1.

3. INVARIANCE WITH RESPECT
TO THE OPERATION EQUALITY

The same behavior of cellular automata with differ-
ent next-state functions provides a basis for classifying
them together. In this case, the EQUALITY invariance
operation is applied.

The same class may contain cellular automata hav-
ing essentially different next-state functions. For
instance, trivial behavior (the embryo dies at the very
first step) is exhibited by automata with different func-
tions such as identical zero and two and more out of
three. The whole class consists of 16 functions: {0, 8,
32, 40, 64, 72, 96, 104, 128, 136, 160, 168, 192, 200,
224, 232}. It is characteristic of these functions that the
right columns of their next-state tables have zero in the
rows whose left part contains at most a single unit. The
transposed columns of their values have the form
|0 0 0 ? 0 ? ? ?|T, where the symbol “?” stands for
either “0” or “1.”

The authors expect that, if two cellular automata of
this type exhibit the same behavior in the first five steps,
then they continue exhibiting it in the sequel.

3.1. The “Sierpinsky Gasket” Type of Behavior

Automaton number 90 generates a self-reproducing
structure called “Sierpinsky gasket.” Below, we present
the structure generated by this automaton after eight

ci' !ci ci 1– ci 1+⊕() !ci 1– ci!ci 1+ .∨=

ci' ci 1– ci ci 1+ .⊕ ⊕=

ci' ci 1– ci.⊕=

ci' ! ci 1– ci 1+⊕()=

steps:

Figure 1 demonstrates the same structure after 64 steps.

Automaton number 18 generates exactly the same
structure as automaton number 90, since the right col-
umns of their next-state functions differ only in the
rows where combinations in the left parts involve two
units; however, this cannot occur for the initial condi-
tions mentioned above. Thus, in the case considered,
memoryless automata and automata with memory
exhibit the same behavior. It should be noted here that
the formula that realizes the next-state function number
90 seems to be the simplest mathematical description of
the Sierpinsky gasket [5, 6, 8].

Note also that the whole class of Sierpinsky gaskets
contains eight automata with numbers {18, 26, 82, 90,
146, 154, 210, 218} = C.

It should be observed that this class does not contain
automaton number 22. This automaton is unique in its
class and generates the modification of the Sierpinsky
gasket that consists of zero and unit pedestals. In the
structure presented below, adjacent pedestals are differ-
ently colored:

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0 1 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0 0 1 0 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Fig. 1.

Fig. 2.

Fig. 3.

802

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 44 No. 5 2005

NAUMOV, SHALYTO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

Replacing zero pedestals with zeros and unit pedes-
tals with units, we obtain the Sierpinsy gasket men-
tioned above. Figure 2 shows the structure generated by
automaton number 22 after 64 steps.

Another unique automaton has number 150. It gen-
erates another self-similar structure:

Figure 3 demonstrates the same structure after 64 steps.

3.2. The “Binary Pascal Triangle” Type of Behavior

There are different ways to construct the Pascal tri-
angle [6, 9–11]. Below, we suggest one more method
based on calculating symmetric Boolean functions [12,
13]. It consists of the following steps:

construct a Shannon symmetric multiterminal net-
work [12];

transform it into a symmetric scheme of an algo-
rithm [13];

with the use of Kirchhoff’s law, calculate the paths
in the scheme constructed; the number of paths to each
node of the scheme corresponds to a component of the
Pascal triangle.

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 1 0 0 0 0 0

0 0 0 0 1 1 0 1 0 1 1 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 1 1 1 0 1 1 1 0 1 1 1 0 0

0 1 0 1 0 0 0 1 0 0 0 1 0 1 0

1 1 0 1 1 0 1 1 1 0 1 1 0 1 1

As an example, Fig. 4 shows a symmetric scheme of
an algorithm for five variables, and Fig. 5 shows the
structure that reproduces the first five rows of the Pascal
triangle.

By the Pascal triangle, construct the binary Pascal
triangle

Rearrange this triangle as follows

Automaton number 60 generates the rearranged
binary Pascal triangle (Fig. 6), which is unique in its
class.

3.3. Reproducing Fibonacci Numbers

It is known [10] that left-diagonal cuts of the Pascal
triangle reproduce Fibonacci numbers. Let us present
an original method for reproducing Fibonacci numbers.
This method involves calculation of alternating repeti-
tion-free threshold formulas. It is described in [13] and
consists of the following steps.

1

0

0
0

1 1

11

1 1 1 1

0 0 11
1 1 0 1 1

1

1 1

1 0 1

1 1 1 1

1 0 0 0 1

1 1 0 0 1 1

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 44 No. 5 2005

CLASSIFICATION OF STRUCTURES 803

By the given formula, construct a linear binary
graph;

with the use of Kirchhoff’s law, calculate the num-
ber of paths from the initial node to the terminal nodes.

Here, the numbers assigned to each conditional
node of the graph correspond to the Fibonacci numbers.
The number of “unit” and “zero” paths, as well as their
total number, are also Fibonacci numbers. Reproduce
the Fibonacci numbers by means of calculating the for-
mula

This calculation is illustrated in Figs. 7 and 8.

There are 143 invariance classes with respect to the
EQUALITY operation. This number, as well as all the
subsequent numbers characterizing different classifica-
tions, is calculated with the use of the program men-
tioned in Section 10. Note that, of these 143 classes,
115 classes consist of a single representative, while the
other 28 classes (see Appendix 1) contain two and more
representatives. By analogy with classification of the
Boolean functions [13], for instance, the PN-classifica-
tion (abbreviation for Permutation and Negation), we
call the above partition into classes E-classification
(abbreviation for EQUALITY).

4. INVARIANCE WITH RESPECT
TO THE OPERATIONS EQUALITY

AND INVERSE

As an example, let us consider the inverse of the
structure generated by the automaton number 90. It is
generated by the automaton number 165 (Fig. 9). Note
that, in this paper, we consider inversion up to the
zeroth step.

The above interrelation between “direct” and
“inverse” structures can serve as a basis for classifying
them together with respect to the invariance operation
INVERSE. However, it is unreasonable to classify with
respect to the only invariance operation INVERSE,
because, in this case, firstly, each class would contain at
most two items and, secondly, many items would

f = x1x2 x3∨()x4 x5∨()x6 x7.∨

belong to more than one class. Therefore, the total num-
ber of classes could significantly increase.

In view of the above, we suggest that each class
assembles structures that are invariant with respect to
two operations, namely, operations EQUALITY and
INVERSE. With these operations being used, for
instance, there is a class that assembles nine automata
with the numbers C ∪ {165} = {18, 26, 82, 90, 146,
154, 165, 210, 218}.

It is noteworthy that, for the example considered in
this section, both the automata behavior and their func-
tions are inverse; this is evidenced by the fact that the
sum of their numbers (90 + 165) equals 255. Note also
here that the inverses of functions number 18, 26, 82,
146, 154, 210, and 218 do not generate inverse struc-
tures for class C. In particular, the behavior generated
by function number 37 (the inverse of function number
218) is of little interest (see Fig. 10).

In conclusion to Section 3, note that there are 135
invariance classes with respect to the operations
EQUALITY and INVERSE. We call this classification
EI-classification (abbreviation for EQUALITY and
INVERSE).

5. INVARIANCE WITH RESPECT
TO THE OPERATIONS EQUALITY AND MIRROR

REFLECT

Let us give an example of the structure that is the
twin (mirror reflected with respect to the vertical axis)
of the structure generated by automaton number 60. In
turn, it is generated by automaton number 102 (see
Fig. 11).

There are 89 invariance classes with respect to oper-
ations EQUALITY and MIRROR REFLECT. Call this

x1

x2 x2

x3 x3 x3

x4 x4 x4 x4

x5 x5 x5 x5 x5

0

0

0

0

0 0 0 0 01 1 1 1 1

0 0 0 1111

1

01 1

0 0 111

S5
0 S5

1 S5
2 S5

3 S5
4 S5

5

1

4 6 4 11 4 6 4 1

3 3 1 1331

1

11 1

2 1 121

1

1

1

1

1

1

1
1
1

1
1

1
1

1
1

2

3 3

4 6 4

5 51010

Fig. 4. Fig. 5.

Fig. 6.

804

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 44 No. 5 2005

NAUMOV, SHALYTO

classification EM-classification (abbreviation for
EQUALITY and MIRROR).

Consider the EM-class with the maximal number of
representatives: {2, 10, 16, 24, 34, 42, 48, 56, 66, 74,
80, 88, 98, 106, 112, 120, 130, 138, 144, 152, 162, 170,
176, 184, 194, 202, 208, 216, 226, 234, 240, 248}. This
class contains 32 elements, because it unites two
E-classes:

{2, 10, 34, 42, 66, 74, 98, 106, 130, 138, 162, 170,
194, 202, 226, 234}, the left diagonal, for which the
columns of the next-state table have the form
|0 1 0 ? 0 ? ? ?|T;

{16, 24, 48, 56, 80, 88, 112, 120, 144, 152, 176, 184,
208, 216, 240, 248}, the right diagonal, for which the
columns of the next-state table have the form
|0 0 0 ? 1 ? ? ?|T.

6. INVARIANCE WITH RESPECT
TO THE OPERATIONS EQUALITY, INVERSE,

AND MIRROR REFLECT
Consider the example of four structures with the

numbers {60, 102, 153, 195} belonging to the same
class with respect to the operation kit under discussion
(see Fig. 12).

It can be seen in this figure that structures number 60
and 102 are twins, as well as structures number 153 and
195. Then, structures 60 and 195 are inverse, as well as
structures number 102 and 153.

There are 83 invariance classes with respect to oper-
ations EQUALITY, INVERSE, and MIRROR
REFLECT. Call this classification EIM-classification
(abbreviation for EQUALITY, INVERSE, and MIR-
ROR). It contains the least number of representatives
among the classifications considered above.

7. INVARIANCE WITH RESPECT
TO THE OPERATIONS EQUALITY
AND INVERSE-MIRROR REFLECT.

Consider the same example of structures with the
numbers {60, 102, 153, 195}. Under the classification
with respect to the operation kit considered, there are
two classes, one consisting of two automata with the
numbers {60, 153} and the other containing the pair
with the numbers {102, 195}. Call this classification
E(I + M)-classification (abbreviation for EQUALITY,
INVERSE, and MIRROR).

There are 135 invariance classes with respect to the
operations EQUALITY and INVERSE-MIRROR
REFLECT; this coincides with the number of EI-
classes. In fact, these two classifications generate simi-
lar classes; only 40 structures are differently classified.
They fall into four different classes under EI- and E(I +
M)-classifications. The differences between these four
classes are demonstrated in Table 1.

All the aforementioned invariance operations can be
classified as directly performed (with no offset) opera-
tions. Column L0 of Table 2 contains the numbers of
classes under the above classifications.

8. CLASSIFICATION WITH ACCOUNT
FOR A SINGLE-CELL OFFSET

Introduce new invariance operations, namely, oper-
ations OFFSET EQUALITY, OFFSET INVERSE,
OFFSET MIRROR REFLECT, and OFFSET
INVERSE-MIRROR REFLECT. These operations
mean that two structures are examined to mutually cor-
respond either directly or with a vertical, horizontal, or
diagonal single-cell offset. Here, structures that corre-

x1 x2 x3 x4 x5 x6 x7 f = 1 f = 0

1 1 1
1 1 1 000

0 0 0 0

1

f = 1 f = 0

1 3 8
1 2 5 831

1 2 5 13

131 2 3 5 8 13 21 13

Fig. 7.

Fig. 8.

Fig. 9. Fig. 10.

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 44 No. 5 2005

CLASSIFICATION OF STRUCTURES 805

spond to each other either directly or with account for
any of these single-cell offsets are said to be equivalent.

Classifications with respect to offset operations will
be abbreviated similarly to classifications with respect
to direct operations, but with the additional letter O
(abbreviation for OFFSET).

As an example, consider structures number 20 and
155 (see Fig. 13), which are equivalent with respect to
operation OFFSET INVERSE-MIRROR REFLECT.
Unlike the above figures, the structures in Fig. 13 are
magnified. Structure number 155 is obtained from
structure number 20 by means of mirror reflection,
inversion, and offset down by a single cell.

There is no point in considering invariance operations
with offset by more than a single cell, because the purpose
of this paper is to classify together automata with similar
behavior, while, in one step, the embryo can affect only the
cells that are offset from it by at most one cell.

Offset classifications allow reducing the number of
classes as compared to classifications without offset. For
instance, EIM-classification distinguishes 83 classes,
whereas EIMO-classification reduces their number down
to 57 (see Appendix 2). The numbers of classes under clas-
sifications with respect to offset invariance operations are
presented in column L0 of Table 3.

9. CLASSIFICATIONS WITH ACCOUNT
FOR LAPSES

It is reasonable that structures are tested for corre-
spondence with respect to invariance operations not
exactly, but up to several errors. Indeed, a few cells’
lapse is not a reason for classifying the generated struc-
tures as unrelated.

Fig. 11.

60 102

153 195

Fig. 12.

Table 1. Difference between EI- and E(I + M)-classifications

EI-classification E(I + M)-classification

2, 10, 34, 42, 66, 74, 98, 106, 130, 138, 162, 170, 173, 189,
194, 202, 226, 234

2, 10, 34, 42, 66, 74, 98, 106, 130, 138, 162, 170, 194, 202,
226, 229, 231, 234

16, 24, 48, 56, 80, 88, 112, 120, 144, 152, 176, 184, 208, 216,
229, 231, 240, 248

16, 24, 48, 56, 80, 88, 112, 120, 144, 152, 173, 176, 184, 189,
208, 216, 240, 248

60, 195 60, 153

102, 153 102, 195

Table 2. Number of classes in various classifications without offset

L0 L1 L2 L3 L4 L5 L6

E 143 134 129 128 128 128 127

EM 89 83 81 80 80 80 79

EI 135 124 120 119 119 119 118

E(I + M) 135 124 120 119 119 119 118

EIM 83 76 74 73 73 73 72

15520

233 235

Fig. 14.

Fig. 13.

806

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 44 No. 5 2005

NAUMOV, SHALYTO

As an example, consider structures number 233 and
235 (see Fig. 14), which differ only in five cells.

Classifications with respect to operations that
account for errors will be abbreviated similarly to clas-
sifications with respect to exact operations, but with the
addition of Ln (L is the abbreviation for LAPSE and
n is the maximal number of mismatches).

Columns L0–L6 in Tables 2 and 3 contain the numbers
of classes in various classifications K with zero to six mis-
matches. Note that, in the case of no offset (Table 2), all
the values in rows EI and E(I + M) coincide, whereas
the corresponding values in Table 3 are different.

10. OTHER MATERIALS

The following materials can be found in the Section
“Articles” of the Internet sites http://is.ifmo.ru and
http://camel.ifmo.ru:

software for simulating and studying automata of
the considered type;

software for analyzing and classifying the generated
structures;

256 pictures of the generated structures (in Portable
Network Graphic format);

256 quadruplicated pictures of the generated struc-
tures (in Portable Network Graphic format);

256 text representations of the generated structures;
70 variants of classifications of the generated struc-

tures;
generated structures and certain classifications.

CONCLUSIONS

In this paper, various classifications of structures
generated by one-dimensional cellular automata from a
point embryo are presented for the first time. It is dem-
onstrated that there exist automata with memory and
memoryless automata exhibiting the same behavior.

It has already been noted that the investigation of
this class of structures has been automated. At the
present time, the authors are developing a simulation
environment CAME&L (Cellular Automata Modeling
Environment & Library), which provides elaborate
tools for solving research problems with the help of cel-
lular automata [14, 15]. The environment supports dis-
tributed and parallel computations on the cluster plat-
form. For this type of computations, the CTP (Com-

mands Transfer Protocol) networking protocol has been
designed [16, 17].1

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation
for Basic Research, project no. 05-07-90086 and the
Borland Corporation.

APPENDIX 1

Equivalence classes with respect to the operation
EQUALITY (E-classes) containing more than one ele-
ment.

(1) 0 8 32 40 64 72 96 104 128 136 160 168 192 200
224 232;

(2) 1 33;
(3) 2 10 34 42 66 74 98 106 130 138 162 170 194

202 226 234;
(4) 3 35;
(5) 4 12 36 44 68 76 100 108 132 140 164 172 196

204 228 236;
(6) 6 38 134 166
(7) 7 19 21 23 31 55 63 87 95 119 127;
(8) 11 43 47;
(9) 14 46 142 174;
(10) 16 24 48 56 80 88 112 120 144 152 176 184 208

216 240 248;
(11) 17 49;
(12) 18 26 82 90 146 154 210 218;
(13) 20 52 148 180;
(14) 28 156;
(15) 50 58 114 122 178 186 242 250;
(16) 70 198;
(17) 81 113 117;
(18) 84 116 212 244;
(19) 129 161;
(20) 139 171;
(21) 151 159 183 191 215 223 233 235 237 239 247

249 251 253 255;
(22) 173 189;
(23) 203 217 219;
(24) 206 238;
(25) 209 241;
(26) 220 252;
(27) 222 254;
(28) 229 231.

1 You can see and download the CAME&L software on the site
http://camel.ifmo.ru.

Table 3. Number of classes in various offset classifications

OL0 OL1 OL2 OL3 OL4 OL5 OL6

EO 125 118 118 117 117 117 117
EM 78 75 75 74 74 74 74
EI 88 86 86 85 85 85 85
E(I + M) 88 85 85 84 84 84 84
EIM 56 55 55 54 54 54 54

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL Vol. 44 No. 5 2005

CLASSIFICATION OF STRUCTURES 807

APPENDIX 2

Equivalence classes with respect to the operations
EQUALITY, INVERSE, and MIRROR REFLECT
with account for a single-cell offset (EMIO-classes).

(1) 0 8 32 40 64 72 96 104 128 136 151 159 160 168
183 191 192 200 215 223 224 232 235 237 239 247 249
251 253 255;

(2) 1 33 123;
(3) 2 10 16 24 34 42 48 56 66 74 80 88 98 106 112

120 130 138 144 152 162 170 173 175 176 184 187 189
194 202 208 216 226 229 231 234 240 243 245 248;

(4) 3 17 35 49 59 115;
(5) 4 12 36 44 68 76 100 108 132 140 164 172 196

203 204 207 217 219 221 228 236;
(6) 5;
(7) 6 20 38 52 134 148 155 166 180 211;
(8) 7 19 21 23 31 55 63 87 95 119 127;
(9) 9 65 111 125;
(10) 11 43 47 81 113 117;
(11) 13 69 79 93;
(12) 14 46 84 116 139 142 143 171 174 209 212 213

241 244;
(13) 15 85;
(14) 18 26 82 90 146 154 165 167 181 210 218;
(15) 22;
(16) 23 31 55 63 87 95 119 127;
(17) 25 61 67 103;
(18) 27 39 53 83;
(19) 28 70 156 157 198 199;
(20) 29 71;
(21) 30 86 135 149;
(22) 37 91;
(23) 41 97;
(24) 45 101;
(25) 50 58 114 122 178 179 186 242 250;
(26) 51;
(27) 54 147;
(28) 57 99;
(29) 60 102 153 195;
(30) 62 118;
(31) 73;
(32) 75 89;
(33) 77;
(34) 78 92;
(35) 94;
(36) 105;
(37) 107 121;
(38) 109;
(39) 110 124;
(40) 126 129 161;
(41) 131 145;
(42) 133;
(43) 137 193;
(44) 141 197;
(45) 150;
(46) 158 214;
(47) 163 177;
(48) 169 225;
(49) 182;

(50) 185 227;
(51) 188 230;
(52) 190 246;
(53) 201;
(54) 205;
(55) 206 220 238 252;
(56) 222 254;
(57) 233.

REFERENCES

1. G. F. Luger, Artificial Intelligence: Structures and Strat-
egies for Complex Problem Solving (Addison Wesley
Longman, 1998).

2. J. Von Neumann, Theory of Self-Reproducing Automata
(University of Illinois Press, London, 1966).

3. T. Toffoli and N. Margolus, Cellular Automata
Machines: A New Environment for Modeling (MIT
Press, Cambridge, Massachusetts, 1987; Mir, Moscow,
1991).

4. S. Wolfram, A New Kind of Science (Wolfram Media,
2002), Vol. IL.

5. S. Welstead, Fractal and Wavelet Image Compression
Techniques (SPIE Press, 2003; Triumf, Moscow, 2003).

6. M. Gazale, Gnomon: From Pharaohs to Fractals (Prin-
ceton University Press, 1999; Institut Komp’yuternykh
Issledovanii, Moscow–Izhevsk, 2002).

7. L. Naumov, “Generalized Coordinates for Cellular
Automata Grids,” in Computational Science—ICCS
(Springer, 2003), Part 2.

8. N. Wirth, Algorithms and Data Structures (Prentice-
Hall, 1986; Nevskii Dialect, St. Petersburg, 2001).

9. M. Gardner, Mathematical Games, “Scientific Ameri-
can” (Simon and Schuster, New York, 1964–1969; Mir,
Moscow, 1974).

10. R. Bogatyrev, “Golden Triangle,” Mir PK, No. 6 (2001).
11. E. Sklyarevskii, “Wonderful Triangle of the Great

Frenchman,” Hard’n’Soft, No. 10 (2003).
12. C. Shannon, Selected Works on Information Theory and

Cybernetics (Izd-vo Inostr. Liter., Moscow, 1963) [in
Russian].

13. A. A. Shalyto, Logical Control: Methods of Hardware
and Software Algorithms Implementation (St. Peters-
burg, Nauka, 2000) [in Russian].

14. L. Naumov, “CAMEL—Cellular Automata Modeling
Environment & Library,” in Proceedings of Sixth Inter-
nat. Conf. on Cellular Automata for Research and Indus-
try (Springer, 2004).

15. L. Naumov, “CAME&L—Cellular Automata Modeling
Environment & Library,” in Proceedings of XI All-Rus-
sian Scientific Conference on Telematika (CPbGU
ITMO, St. Petersburg, 2004), Vol. 1.

16. L. Naumov, “CTP (Commands Transfer Protocol)—
Networking Protocol for High-Efficient Computations,”
in Proceedings of XI All-Russian Scientific Conference
on Telematika (CPbGU ITMO, St. Petersburg, 2004),
Vol. 1.

17. L. Naumov, “Commands Transfer Protocol (CTP)—
New Networking Protocol for Parallel or Distributed
Computations,” http://www.codeproject.com/inter-
net/ctp.asp (2004).

