
Proceedings of the Second Spring Young Researchers’ Colloquium on Software Engineering. SPb.: SPbSU.

2008. V. 1, pp. 45–49.

45

Abstract – This paper describes the declarative approach to

implementation of automata objects in imperative object-oriented

programming language with static type checking. The main

advantage of proposed approach is the ability to use nesting and

inheritance of macro-states.

Keywords – Automata-based programming, declarative

programming, object-oriented programming.

I. INTRODUCTION

There are several approaches to implementing automatons in

object-oriented programming languages. Those can be divided

on imperative and declarative.

Among imperative approaches the most commonly used is

State design pattern [1,2]. The main advantage of using this

approach is encapsulation of specific behavior into states and

implementation of the transition in explicit form in the source

code. The primary disadvantage of this pattern is that the

implementation of the automaton with a significant number of

states will result in a highly complex class hierarchy. This

problem can be solved using Decorator design pattern [2,3].

The primary disadvantage of imperative approach is explicit

delegation of a call from context to the concrete state or

delegating the call to the nested automata.

In this paper we propose the approach that acts as a tradeoff

between declarative and imperative approaches. We will

inherit the ability of declaratively describing the features of

automata from declarative approach. The implementation of

transition logic will be inherited from imperative approach as

it is imperative by its nature.

Even though the described approach to implementing automata

classes is declarative it is still applicable for usage in object-

oriented languages with static type checking. The approach is

illustrated with samples written in C# in this paper.

II. THE APPROACH

When describing the behavior of automaton we’ll be using a

modified notation of Statecharts diagrams [4]. The main

difference between Statecharts and SWITCH-technology [5] is

that SWITCH-technology clearly defines the term

“automaton” and Statecharts doesn’t. The semantics of

transition charts used in SWITCH-technology is close to the

semantics of Statecharts but is not the same. In SWITCH-

technology terms “automaton” and “inheritance of

automatons” are introduced and there are no concepts of

“nested” and “orthogonal” states. The nesting and

orthogonalization are achieved using nested automatons and

introducing the concept of the “system of automatons”.

SWITCH-technology is good for use in documentation: there

are no problems with notation when describing nested

automatons as opposed to using nested orthogonal states in

Statecharts, specifically when it comes to laying out the titles

of macro-states containing orthogonal states.

In the given approach the automaton along with all of its

nested states and nested automatons is treated as a set of

macro-states as there are no specific features of the state

compared to automaton. Macro-state can contain other macro-

states along with their nested states. Also there will be no

difference between states and automata when it comes to

implementing an automata programming framework. The

library designed to support the approach will define the class

State which represents the state concept and also contains

nested macro-states. Every specific State class will also

implement the interface (or set of interfaces) that specifies

input and output events that can be handled by that state.

Also it is worth mentioning that UML 2 State Machine

diagram (State Chart diagram in UML) [6] also doesn’t define

the concept of automaton. It defines only states which can have

nested states, thus addressing the problem of nested

automatons.

A. Nesting of Automaton Objects

Due to elimination of Automaton term and introduction of

Macro-State instead let’s define nesting of automata objects in

the following manner: when the state A receives an event, the

event will be broadcasted to all of its nested states and then

handled by the state A after that. In this paper we’ll be using

the same concept of broadcasting the event to inner-states and

then handling it in outer state.

B. Inheritance of Automaton Objects

Let’s discuss the problem of inheritance of automata objects.

The approach described in this paper should allow inheriting

Artyom Astafurov, Anatoly Shalyto (research supervisor),

Fac. of Information Technologies and Programming

St. Petersburg State University of Information Technologies, Mechanics and Optics

Email: Artyom.Astafurov@gmail.com, shalyto@mail.ifmo.ru

Declarative Approach to Implementing

Automata Classes in Imperative Programming

Languages

Proceedings of the Second Spring Young Researchers’ Colloquium on Software Engineering. SPb.: SPbSU.

2008. V. 1, pp. 45–49.

46

automatons overriding the states and the transition logic. The

inheritance of automata objects is based on overriding of the

states of the base automaton: the resulting automaton should

override the behavior of the base automaton at least in one of

its states. The resulting object can also contain new states and

transitions [7].

III. DECLARATIVE APPROACH WHEN USING IMPERATIVE

LANGUAGES

A. Declarative Approach and Imperative Language

Despite of the imperative nature of many contemporary

programming languages we still can leverage a declarative

approach when using them. In order to do this we need in

encapsulate all non-declarative details in a framework which

will be controlled using declarative meta-information, thus

allowing using declarative approach. Depending on the

language and framework this can be achieved in several ways.

For example, in Java and Microsoft .NET there is reflection

framework that allows accessing the components of assemblies

and classes in runtime. This approach has the benefits of

declarative description of a class behavior and also adds the

imperative behavior in the runtime.

B. Using Attributes in Declarative Approach

For more detailed analysis of implementing declarative

approach using imperative languages let’s use C# and

Microsoft .NET as a sample language/platform. The presence

of an attribute clause allows implementing a declarative

approach in this language. Attributes in C# allow adding meta-

information to class members and classes themselves. In

runtime this information can be accessed by library that

encapsulates non-declarative parts of the program using the

reflection mechanism.

Let’s discuss the approaches to execution of declarative

program in imperative environment.

C. Context Bound Objects

The central concept in the interception mechanism employed

by the CLR is the notion of a context associated with a target

object. A context is a set of properties or usage rules that

define an environment. One or more target objects may share

the same context. The rules defined in a context are enforced

by the CLR at runtime when the objects are entering or leaving

the context. A context is an object of type

System.Runtime.Remoting.Contexts.Context. Objects that

reside in a context and are bound to the context rules are called

context-bound objects. Objects that are not context-bound are

called agile objects. The context associated with the current

thread of execution is obtained using the property

System.Threading.Thread.CurrentContext. While executing

within a method or accessing a field or property of a context-

bound object, the CLR will ensure that this thread property

always returns a reference to the same context object that the

context-bound object was originally bound to thus

guaranteeing that the latter executes in the same environment

every time. In order to make an object context-bound, its type

must be derived from System.ContextBoundObject which in

turn derives from System.MarshalByRefObject. An important

distinction between a context-bound and an agile object is that

a client can never obtain a direct reference to an instance of a

context-bound object.

When the new operator is used to instantiate a context-bound

object, the CLR intervenes and executes a series of steps

which together constitute the object activation phase. During

this phase, the CLR generates two proxies, namely, an instance

of TransparentProxy and an instance of RealProxy. Both these

types are defined in the System.Runtime.Remoting.Proxies

namespace.

The TransparentProxy is merely a stand-in for the target

object and it is this proxy that a client always gets a reference

to whenever it tries to communicate with a context-bound

object. The injection of these proxies thus enables the CLR to

always intercept any type of access to the context-bound

object. In addition to these proxies, the CLR also provides an

extensible mechanism for inserting message sinks between the

proxies and the target object. A message sink is an object that

implements the type

System.Runtime.Remoting.Messaging.IMessageSink.

After the object activation phase is completed, the objects that

appear in the invocation chain between the client and the target

object may be visualized. The method invocation by the client

is delegated by the TransparentProxy to the RealProxy which

in turn sends it through a chain of IMessageSink instances

before it reaches the target object. These message sinks

provide us an entry point in order to inject the desired aspect at

runtime.

This can be used for intercepting the messages and also

changing them to modify the behavior of the object without

changing its code.

We should also note that Context Bound Objects should be

used when performance is not critical. The code in this

approach is easy to debug so it can be used on prototyping

stages when performance is not critical and debugging is

essential.

D. Assembly Instrumentation

One key aspect of many modern programming languages is

that they are compiled into a portable intermediate form and

executed by a language runtime. Typically, the language

runtime allows code to be loaded at runtime from a binary

source (e.g. from a file or from the network) and executed.

Two well known examples are the Java platform, which

supports dynamic class loading, and the .NET framework

which allows assemblies to be dynamically loaded and

executed. One interesting side effect of having dynamic code

loading is that before actually loading the code into a virtual

machine, it is possible to instrument the code, introducing or

removing specific instructions, changing the use of classes,

variables and constants. The key idea is that it is possible to

alter the code, performing some modifications, before the code

is actually executed. These transformations are either

performed after compile time, or at load time. This approach

can be quite powerful. For instance, it is possible to instrument

the code so that proper resource control takes place, change

the code so that it is possible to serialize and relocate

Proceedings of the Second Spring Young Researchers’ Colloquium on Software Engineering. SPb.: SPbSU.

2008. V. 1, pp. 45–49.

47

executing threads in a cluster, perform program consistency

checks according to security policies, redirect method calls to

proxies, among others.

For making things clearer, let’s consider an example. Suppose

that you have downloaded an application from the Internet but

you cannot really consider it trustworthy. It would be desirable

to be able to know all the files that it is reading and writing

from disk, so that one could be sure that it is not really stealing

confidential information and sending it to a foo. One possible

approach is to try to use a disassembler and understand the

code structure. But, as it is easy to comprehend, that is not

really feasible except for trivial applications. Nevertheless,

using code instrumentation, it is simple to replace all the

references to classes that perform I/O with corresponding

proxies that implement the same interface. Those proxies can

log all the calls that are made before allowing the original

invocations to take place. This way, the user can examine the

log and determine which files have been accessed.

This approach can be used in performance critical solutions as

all additional calls are performed inline, without queue

management overhead, as it is done in Context Bound Objects

approach. The main disadvantage of this approach is that it is

difficult to debug instrumented code: the byte-code is modified

and doesn’t match the debug information generated by

compiler.

IV. .NET IMPLEMENTATION

A. DOME Library Description

In this paper in order to illustrate the declarative approach in

imperative languages we have developed a class library

DOME (Declarative Object Machines Extension) that supports

.NET CLR-compliant languages, for example C# and Visual

Basic .NET. Fig. 1 illustrates the core class diagram for this

library.

On this figure State – is the base class for all states.

State.Container property is the reference to the instance of

State class that represents the macro-state containing this state.

This property is used to access outer macro-state to support

nesting. State.CurrentState property is the current state of the

macro-state. This property is used for nesting purposes and

also can be referenced in the code of automata object.

SetState(Type state) method changes the current state. This

method accepts Type (class) as a parameter; this parameter

represents the state we should transition to. Please note, that

each state is represented by a separate class. StateAttribute is

the attribute that can be applied to the state class to describe its

inner states. Type – CLR-type (class) representing a single

state. Name – the name of the state. StateAttribute constructor

accepts type as a parameter, this type represents the state, and

the overloaded constructor provides the mechanism for

overriding states in order to support inheritance of automatons.

In order to do this, Type parameter should correspond to the

original state we are going to override and Overrides

parameter should represent the new state that will override the

original state. On case of overriding the state, the runtime

engine will check that the original state supplied in Type

parameter is present in the automata.

+SetState(in state : State)

+Container : State

-CurrentState : State

State

+StateAttrinbute(in Type)

+StateAttribute(in Type, in Overrides)

+Type
+Name

StateAttribute

InitialStateAttribute

Fig 1. DOME Framework class diagram

InitialAttribute has the same semantics as StateAttribute and

used to define the initial state of the automata or initial state of

the inner state.

B. Implementing Automata Objects

As the first example, let’s take a simple two-state automaton

with ON and OFF states (fig. 2)

Let’s define three interfaces: IOn – interface for state ON

containing only one method E0 which corresponds to the only

event the automaton can accept in this state, IOff – interface

for sate OFF containing method E1 that corresponds to E1

event, ISwitch – interface describing the entire automaton,

implementing IOn and IOff interfaces.

The interfaces are declared in the following way:

public interface IOn

{

 void E0();

}

public interface IOff

{

 void E1();

}

public interface ISwitch : IOn,IOff

{

}

After that we can implement the classes that represent actual

ON and OFF states:

class On : State, IOn

{

 public void E1()

 {

 Container.SetState(typeof(Off));

 }

}

class Off : State, IOff

{

 public void E1()

 {

 Container.SetState(typeof(On));

 }

}

Proceedings of the Second Spring Young Researchers’ Colloquium on Software Engineering. SPb.: SPbSU.

2008. V. 1, pp. 45–49.

48

Let’s discuss the code sample above. The Container property

references the automaton (or meta-state) this state belongs to.

SetState(Type) changes the current state of the automaton.

Fig. 2. Simple switch automaton

After that we should implement the automaton itself which, as

stated earlier, can be treated as a set of states contained in a

macro-state and thus represented by the same State class. In

order to comply with the events the automaton can receive, it

should implement ISwitch interface described above.

[State(typeof(On)), State(typeof(Off))]

class Switch : State, ISwitch

{

 public void E0() { }

 public void E1() { }

}

Let’s take a on the attributes of the Switch class. These

attributes indicate that the automaton (or macro-state)

described in this class contains two states ON and OFF

described by On and Off classes respectively.

In runtime all the Switch object method calls will be

intercepted and delegated to the method of the automaton’s

current state that has the same signature as the automaton’s

method being called. After that, the original automaton’s

method will be called. If current state doesn’t have a method

with the same signature, the call will be delegated back to the

automaton which means the current state doesn’t support the

event received.

C. Implementing Nested States

In order to illustrate nesting process let’s take a more complex

example (fig. 3).

Let’s take a state diagram of the Fighter computer game

character (Fighter) with a detailed “Jump” state.

Let’s see how nesting states are implemented in the source

code:

[InitialState(typeof(Jumping.Rising)),

State(typeof(Jumping.Falling)),

State(typeof(Jumping.Hovering)),

State(typeof(Jumping.Finished))]

public class Jumping : State, IFighter

{

 public void Tick()

 {

 if (CurrentState is Finished)

 Container.SetState(

 typeof(Fighter.Main));

 }

 public void ButtonPressed(Keys key)

 {}

 public bool InAir()

 {

 return true;

 }

 public class Rising : State, ITickable

 {

 public void Tick()

 {

 Console.WriteLine("rising");

Container.SetState(typeof(Hovering));

 }

 }

 public class Hovering : State, ITickable

 {

 public virtual void Tick()

 {

 Console.WriteLine("hovering");

 Container.SetState(

 typeof(Falling));

 }

}

public class Falling : State, ITickable

{

 public void Tick()

 {

 Console.WriteLine("falling");

 Container.SetState(

 typeof(Finished));

 }

}

public class Finished : State, ITickable

 {

 public void Tick()

 {

 }

 }

}

0. MAIN

Tick

2. JUMPING

KeyPressed && key == Keys.UP

2. FALLING

0. RISING

1. HOVERING

3. FINISHED

Tick

Tick

Tick

Tick

Fig. 3. State chart of the fighter character detailing the JUMPING state

Proceedings of the Second Spring Young Researchers’ Colloquium on Software Engineering. SPb.: SPbSU.

2008. V. 1, pp. 45–49.

49

Let’s take a look on the nested states of Jumping state. In this

case when one of the inner states (Raising, Hovering, Falling,

Finished) is triggered, the event sent to Jumping state will be

first passed to the current inner state and then handled by the

corresponding method of Jumping class. Like in the sample

above, the call is delegated using message interception

mechanism of Context Bound Object described in the

corresponding section of this paper.

D. Implementing Inheritance

Using the declarative approach it is quite easy and intuitive to

describe the inheritance of automatons. In order to do this we

just need to implement the class inherited from the automaton

base class. Also when state is overridden it needs to be

described using State attribute. Thanks to terminology, base

states can be inherited the same way automatons are: one just

needs to override some of its inner states and/or add new.

As an example, let’s take the problem of overriding one of the

states in Fighter automaton from a previous example. Assume

we need to override Hovering inner-state of Jumping state. In

order to do this we need to create a derived class

EasternFighter inherited from a Fighter class. Using attributes

we need to describe the overriding of Fighter.Jumping state.

So let’s assume we will be overriding this state with

Fighter.EasternJumping state which will contain an

overridden Hovering state.

In C# by means of attributes this can be expressed in the

following manner:

[State(typeof(EasternJumping),

typeof(Fighter.Jumping))]

public class EasternFighter : Fighter

{

}

Now we need to create a derived class of the class-state

Jumping in order to override it’s inner state Hovering with a

new EasterHovering one:

[State(typeof(EasternHovering),

typeof(Fighter.Jumping.Hovering))]

public class EasternJumping :

Fighter.Jumping

{

}

Eventually we need to implement the state EasternHovering

itself creating a class derived from Jumping.Hovering:

public class EasternHovering :

Fighter.Jumping.Hovering

{

 public override void Tick()

 {

 Console.WriteLine("Eastern Hovering");

 Container.SetState(

 typeof(Fighter.Jumping.Falling));

 }

}

This way when the new automaton is executed, when the

transition to Jumping state is made the new EasternJuping

class will be used which in turn will be using an overloaded

EasternHovering state which will be logged into console.

V. CONCLUSIONS

This paper presents a declarative approach to implementation

of automaton objects. During the research process the ways to

implement this approach using imperative methods have been

defined and supporting DOME (Declarative Object Machines

Extension) framework has been implemented. This framework

allows to fully implement the approach described using

Microsoft .NET platform. The usage of the library is

illustrated with a series of samples of nesting and inheritance.

DOME framework has been published on http://is.ifmo.ru.

The approach presented in this paper allows combining

declarative and imperative programming paradigms providing

a framework to use declarative object-oriented approach in

implementing of automatons using imperative languages. Due

to the fact that the concept has been described on the level of

declarative programming paradigm without referencing to any

concrete programming language this approach can be applied

in other programming languages like Java and others.

Further research will cover the creation of DOME-like library

for other languages such as Java and will also solve the issue

of overriding virtual and non-virtual states.

VI. REFERENCES

[1] E. Gamma et al, (1995). Design Patterns. Boston: Addison-Wesley.

[2] P. Adamczyk “The Anthology of the Finite State Machine Design

Patterns”, The 10th Conference on Pattern Languages of Programs,

2003.

[3] J. Odrowski, P. Sogaard “Pattern Integration – Variations of State”,

Proceedings of PLoP96, 1996.

[4] D. Harel, “Statecharts: A visual formalism for complex systems”,

Sci.Comput. Program. 1987. Vol.8, pp. 231–274.

[5] Shalyto (1998). SWITCH-technology. Algorithmization and

programming the logical control problems. St.Petersburg: Nauka.

Available: http://is.ifmo.ru/books/switch/1

[6] D. Shopyrin, “Methods for object oriented design and development of

the software for reactive systems”, Ph.D. thesis, Department of

Computer Technology, St.Petersburg State University of Information

Technologies Mechanics and optics, St.Petersburg, Russia, 2005.

Available: http://is.ifmo.ru/disser/shopyrin_disser.pdf

[7] Booch, G., Rumbaugh, J., & Jacobson, I. (2000). Complete Uml

Training Course, the. Upper Saddle River: Prentice Hall PTR.

[8] D. Box, C. Sells (2002). Essential .NET Vol. 1, The Common Language

Runtime. Boston: Addison-Wesley.

