

ISSN 0361-7688, Programming and Computer Software, 2007, Vol. 33, No. 6, pp. 343–355. © Pleiades Publishing, Ltd., 2007.
Original Russian Text © V.S. Gurov, M.A. Mazin, A.S. Narvsky, A.A. Shalyto, 2007, published in Programmirovanie, 2007, Vol. 33, No. 6.

343

1. INTRODUCTION

To improve abstraction level of software develop-
ment tools, a new direction in software engineering
[1]—model-driven engineering (MDE) [2]—is being
evolved.

This direction includes model-driven development
(MDD), which is also referred to as model-driven
design [3, 4]. A variant of the MDD is the model-driven
architecture (MDA) [5], which is being developed by
the Object Management Group (OMG).

When using the MDA, models of program systems
are represented by means of the unified modeling lan-
guage (UML) [6].

Over a period of years, this language was used only
for representing models; however, the idea of

execut-
able

 UML is becoming very popular recently [7, 8].
This is explained by the fact that, in the majority of
cases, practical use of UML is limited to modeling of
only static part of programs by means of class diagrams
and generating of program skeleton by them. This is not
sufficient for effective software design.

The modeling of dynamical aspects of programs in
UML is difficult because of the lack of formal unam-
biguous description of interpretation rules (operational
semantics) for the behavior diagrams in the language
standard.

Besides, none of the great number of methods for
designing object-oriented systems described in [9]
clearly explains how to bind static diagrams with
dynamical ones.

Currently, in spite of the existence of many tools for
automated transformation of behavior diagrams (state
diagrams) into codes in various programming lan-
guages [10], the widely used design tools, such as, for
example, Sun Studio Enterprise [11], are lacking such
functionality.

Some tools have graphical editors for constructing
these diagrams; however, the possibility of code gener-
ation by them is lacking.

Jacobson, one of the developers of UML, listed four
most important trends in the process of software devel-
opment in his talk [12].

He noted that the technological basis of the develop-
ment of object-oriented software, which consists of
UML and the standard development process RUP
(rational unified process) [13], is well known. Accord-
ing to Jacobson, UML is taught in more than 1000 uni-
versities worldwide. In his opinion, the next step should
be wide adaptation of UML and RUP.

As applied to the subject of this paper, the following
two trends mentioned by Jacobson should be noted.

1. Executable UML. Currently, UML is used basi-
cally as a specification language for system models.
The existing UML means make it possible to build var-
ious diagrams and to automatically create code “skele-
tons” for the target programming language (e.g., in Java
or C#) by a class diagram. Some of these means make
it possible also to automatically generate a program
behavior code by the state diagrams. However, it should
be noted that this functionality exists in only an incho-
ative stage, since the known tools cannot efficiently
relate model behavior, which can be described by
means of diagrams of four kinds (state, activity, coop-
eration, and sequence diagrams), and the generated
code.

The lack of unambiguous operational semantics in
the case of the traditional program development results
in different descriptions of behavior in the model and in
the program, as well as in arbitrary interpretation of the
behavior diagrams by the programmers. Moreover, the
behavior description in the model is often informal.
The opposite situation, when the model is formal and
its implementation is heuristic, is also possible. It often

Tools for Support of Automata-Based Programming

V. S. Gurov

a

, M. A. Mazin

a

, A. S. Narvsky

a

, and A. A. Shalyto

b

a

 eVelopers Corporation, ul. B. Raznochinnaya 14-5, St. Petersburg, 197110 Russia

b

 St. Petersburg State University of Information Technologies, Mechanics, and Optics,
Kronverkskii pr. 49, St. Petersburg, 197101 Russia

e-mail: vadim.gurov@gmail.com

Received August 1, 2006

Abstract

—A method for designing and implementing reactive object-oriented programs with explicit empha-
sis of states is suggested. The method relies on the automata-based programming (SWITCH-technology) and
the UML notation. The UniMod tool based on this method, which is a plug-in module for the Eclipse platform,
is described.

DOI:

10.1134/S0361768807060059

344

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 6

2007

GUROV et al.

happens that the formal model is constructed by an
architect and the programmer does not rely on it but
writes the program on its own.

The appearance of operational semantics will make
diagram understanding unambiguous and will allow
one to construct an executable UML for which the code
(in the ordinary sense of this word) may not be gener-
ated. This can be achieved owing to direct model inter-
pretation.

2. The process of software development should be
active. The existing development tools need much time
to be studied. Jacobson believes that the development
means should envision the developer’s actions and sug-
gest variants of solving encountered problems depend-
ing on the current context. Note that a similar approach
is implemented in many modern development environ-
ments (e.g., Borland JBuilder, Eclipse, and IntelliJ
IDEA) for text programming languages (but not for
UML).

The admission of the fact that programs should not
be written haphazardly but rather be carefully designed
with the help of development tools of a high level of
abstraction resulted in the appearance of new trends in
software design, such as model-driven design and
visual software design [14].

2. REACTIVE SYSTEMS

A wide class of software systems is that of reactive
systems, i.e., systems that perform certain actions in
response to external events. It is shown in [15] that such
systems can nicely be modeled by means of extensions
(for example, through the use of nested states) of finite
automata transition diagrams called statecharts. For
construction of such diagrams and code generation by
them, special tools have been created. A list of such
tools is presented in [10]; it includes, in particular,
I-Logix Statemate (http://ilogix.com/sublevel.aspx?id=74),
XJTek AnyState (http://www.xjtek.com/anystates/),
StateSoft ViewControl (http://www.statesoft.ie/prod-
ucts.html), SCOPE (http://www.itu.dk/~wasowski
/projects/scope/), IAR Systems visualSTATE (http://
www.iar.com/p1014/p1014_eng.php), and The State
Machine Compiler (http://smc.sourceforge.net/) [16–21].

There also exist other tools for code generation by
these diagrams (see, e.g., [22]).

The disadvantage of these tools is that they allow
one to build and implement only the behavior part of
the program model without regard to the program stat-
ics. Therefore, the

program on the whole cannot be
constructed

by means of these tools.
It follows from the above said that the static part of

the program can be constructed by means of one set of
tool, whereas the dynamic part, by means of other tools.
Therefore, the task of creation of tools for development
of object-oriented programs on the whole remains
open.

3. EXECUTABLE UML

As has already been noted, to solve the above-spec-
ified problem, executable UML, which will combine
static and dynamic diagrams, is being developed.

One of the approaches to solving this problem is
development of a

UML virtual machine

 [23–25].
In the project [24], the model of software system is

constructed as follows: the program structure is mod-
eled by means of the UML class diagrams, and the
behavior, by means of the description of each method
of each class in the form of a UML sequence diagram.
Such an approach is very inconvenient in the case of a
complicated application logic, since it results in very
cumbersome models.

In the project [25], UML is extended by a text plat-
form-independent imperative language for action
description, which results in overloading graphical dia-
grams by text information.

Speaking of industrial developments, the idea of an
executable UML is implemented in the Telelogic TAU2
product [26]. However, since this is not an open-source
project, it presents no interest from a scientific stand-
point. IBM Rational Rose and Borland Together are
also commercial closed-source tools.

Therefore, of interest is the project with the open-
source code UniMod (http://unimod.sourceforge.net),
which underlies this work.

Further in this paper, we describe an executable
graphical language based on the use of the UML nota-
tion, an automata-based programming method, and the
UniMod tool supporting this method.

4. EXECUTABLE GRAPHICAL LANGUAGE
AND METHOD OF CONSTRUCTION

OF AUTOMATON PROGRAMS BASED ON IT

A method of program design with explicit separa-
tion of states called the SWITCH-technology, or the
automata-based programming, was proposed in [27].
Further, this method was extended to event systems
[28] and to object-oriented systems [29].

A specific feature of this method is that programs
are constructed in the same way as the automation of
technological (and not only technological) processes is
carried out. In the course of the latter, a connectivity
scheme is first constructed, which contains sources of
information, control system, controlled objects, and
feedbacks from the controlled objects to the control
system. In the proposed approach, the control system is
implemented as a system of interacting finite automata
each of which has several inputs and outputs.

The SWITCH-technology defines for each automa-
ton two types of diagrams (a connectivity scheme and
transition graph) and their operational semantics.
If there are several automata, a scheme of their interac-
tion is also constructed. For each diagram type, an

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 6

2007

TOOLS FOR SUPPORT OF AUTOMATA-BASED PROGRAMMING 345

appropriate notation is used (http://is.ifmo.ru/?i0=sci-
ence\& i1=minvuz2).

In this work, having preserved the automaton
approach, we propose to use the UML notation when
constructing diagrams in the framework of the
SWITCH-technology. In so doing, with the use of the
UML class diagram notation, connectivity schemes are
constructed, which determine interface of the automata,
and the transition graphs are constructed with the help
of the UML state diagram notation. If there are several
automata, the scheme of their interaction is not con-
structed, and all of them are shown in the diagram of
classes. The diagram of classes (as a connectivity
scheme) and the state diagrams form the suggested
graphical language.

To design programs on the basis of this language,
the following method is proposed.

• Based on the analysis of the problem domain, a
conceptual model of the system is developed, which
determines entities and relationships between them.

• Unlike in traditional approaches of object-oriented
programming [9], all entities are classified into event
sources, controlled objects, and automata. The event
sources are active: they affect the automata on their own
initiative. Controlled objects are passive: they perform
actions having received commands from the automata.
Controlled objects can also form values of input vari-
ables for the automata. The automata is activated by the
event sources; based on the values of input variables
and current states, affect the controlled objects; and
transit to new states.

• By using the class diagram notation, a connectivity
scheme is constructed, which specifies interface of each
automaton. The left part of this scheme shows the event
sources; the central panel depicts the automata; and the
right panel, the controlled objects. The event sources
connect to the automata by means UML associations
and supply them with events. The automata connect to
the objects they control, as well as to other automata,
which are either invoked by the former or nested in
their states.

• In addition to the automaton interface, the connec-
tivity scheme performs a function typical of the class
diagram; namely, it specifies the object-oriented struc-
ture of the program.

• Each controlled object contains methods of two
types, namely, methods implementing input variables
(

xj

) and those implementing output actions (

zk

).
• For each automaton, by means of the state diagram

notation, the transition graph of the

Moore–Mealy

 type
is constructed. The arcs of this graph are labeled by
events (

ei

), by a Boolean formula relating the input
variables, and by the output actions formed on the tran-
sitions.

• In the vertices, the output actions performed upon
entering the state and the names of nested automata that
are active while the state is active may be specified.

• In addition to the interaction between the nested
automata, the automata can interact through calls.
In this case, the calling automaton passes an event to
the automaton being called, which is indicated in the
transition or in the vertex as an output action. In the lat-
ter case, the event is sent to the automaton being called
upon entering the state.

• Each automaton has one initial state and an arbi-
trary number of terminal states.

• The states in the transition graph may be simple or
complex. If a state is nested into another state, the latter
is called complex. Otherwise, the state is said to be sim-
ple. A specific feature of the complex states is that sim-
ilar arcs from the nested states are replaced by one arc
originating from the complex state.

• All complex states are unstable, whereas all simple
states, except for the initial one, are stable. If there are
complex states in an automaton, an incoming event
may result in more than one transition. This is because
any complex state is unstable, and the automaton per-
forms transitions until the first simple (stable) state is
attained. Note that, if there are no complex states in the
transition graph, then, like in the SWITCH-technology,
not more than transition is performed in each automa-
ton run.

• Each input variable and each output action are
methods of the corresponding controlled object, which
are implemented manually in the target programming
language. The sources of the events are also imple-
mented manually.

• The use of symbolic notation in the transition
graphs makes it possible to compactly describe com-
plex behavior of the designed systems. The meaning of
such symbols is specified by the connectivity scheme.
The placement of the cursor on a symbol results in a
pop-up prompt with its text description.

The proposed method makes it possible to

design
the program on the whole.

Figure 1 shows an example of a connectivity
scheme, and Fig. 2, its transition graph.

Now, we describe the syntax and operational seman-
tics of the proposed graphical language.

4.1. Syntax

For the text programming languages, syntax is usu-
ally described by means of formal grammars. UML is a
graphical language and uses another approach: first,
a metamodel defining a set of correct models is
described; then, graphical primitives corresponding to
the elements of the metamodel are defined. The dia-
grams are constructed from these primitives. The UML
metamodel itself is described by means of MetaObject
Facility (MOF) [30], a high-level means for specifying
metamodels.

As noted earlier, the suggested graphical language
uses UML diagrams of only two types and, hence, not

346

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 6

2007

GUROV et al.

all elements of the metamodel. A formal description of
the UML metamodel subset used is a list of elements of
the metamodel. Such a description occupies too much
space and is difficult to read. Therefore, below is a
meaningful description of this subset.

In the framework of the UniMod project, a system
model consists of one class diagram, which depicts
classes with the following stereotypes:

EventProvider

,
an event source;

StateMachine

, an automaton; and

Con-

trolledObject

, an object of control. Between these ste-
reotypes, there may exist directed associations (arcs
with arrows of certain kinds) of the following three
types: from an event source to an automaton, from an
automaton to a controlled object, and from an automa-
ton to another automaton. The associations are labeled
by identifiers.

For each automaton, shown in the class diagram, it
is required to create a state diagram. This diagram may

Fig. 1.

 Example of an automaton connectivity scheme.

dent.unimod

Palette

Connectivity A1

[Io3.x1]

[o3. x1]/o2.z6
e2/o1.z1

e1/o1.z1, o1.z3
e100 e100

e22/o2.z6
e2/o1.z2, o2.z6

e21/o2.z5

e23/o2.z4

e24/o2.z3

e1/o1.z3

Disconnected Connected

Fig. 2.

 Example of an automaton transition graph.

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 6

2007

TOOLS FOR SUPPORT OF AUTOMATA-BASED PROGRAMMING 347

depict initial, terminal, simple, and composite states.
The composite states may include states of any other
types.

Transitions between the states may have labels of
the form

e1[o1.x1 && o2.x3 > 10]/o1.z1,

o2.z2, A2.e2

Here,

e1

 is the event name,

o1

 is the identifier label-
ing the association that leads to the first controlled
object,

x1

 is a method of the controlled object returning
a value of the type

boolean

 or

int

,

z1

 is a method of
the controlled object,

A2

 is an identifier labeling the
association that leads to the automaton being called,
and

e2

 is the event sent to the automaton

A2

.
The square brackets contain a Boolean formula, which
is the condition of the transition firing (guard condi-
tion).

Simple states may contain a string in which actions
executed upon entering the state are specified. For
example,

o1.z1, o2.z2

The language described does not support actions
executed upon exiting the simple states.

As noted earlier, simple states may also contain a list
of nested automata.

The UML states with parallel regions reflecting par-
allelism are not supported. This is because the design of
objects with one control flow is relatively simple,
whereas parallelism requires several objects (in our
case, automata) executed in parallel [31].

4.2. Operational Semantics

Let us define operational semantics of the system
model constructed as described above, which satisfies
certain syntax.

• When launching the model, all event sources and
controlled objects are initialized. Then, the event
sources start to affect the automata related to them.

• Each automaton starts its operation from the initial
state and stops at one of the terminal states.

• Upon receiving an event, the automaton selects all
transitions from the current state that are labeled by the
symbol of this event.

• The automaton searches the selected transitions
and calculates the Boolean formulas written on them
until it finds a formula with the

true

 value.
• If a transition with such a formula is found, the

automaton performs output actions written on the arc
and turns to a new state. In this state, the automaton per-
forms the output actions and launches the nested
automata. If the new state turns out composite, the tran-
sition is performed from the initial state contained
inside the given composite state.

• If, among the output actions, there is an automaton
being called, it is called with an appropriate event.

• If a transition is not found, the automaton contin-
ues to search for a transition turning to the parent state,
the state into which the current state is nested.

• When transiting to a terminal state, the automaton
stops all event sources, and the system operation termi-
nates.

A more detailed formal description of the opera-
tional semantics is given in [32].

Now, having described the graphical language based
on the UML notation, its operational semantics, and the
method of its use, we turn to the description of the tool
for implementing the method.

5. THE UNIMOD TOOL FOR SUPPORTING
AUTOMATA-BASED PROGRAMMING

The UniMod tool is designed for the development
and execution of automaton programs. It allows one to
create and edit UML diagrams of classes and states,
which correspond to the connectivity schemes and tran-
sition graphs.

As noted earlier, the design of programs with the use
of this tool consists in the following. The behavior of
the application is described by a system of interacting
automata given as a set of the above-mentioned dia-
grams constructed with the help of the UML notation.
The event sources and controlled objects are imple-
mented manually in the target programming language.

The tool under consideration supports two basic
types of implementation of the diagrams constructed,
namely, interpretation and compilation.

5.1. Interpretation

The interpretational approach implements the

UML
virtual machine

.

The structural scheme of the interpretational
approach is shown in Fig. 3.

As can be seen from Fig. 3, in the interpretational
approach,

the source code is a UML model

 (connec-
tivity schemes and state diagrams by the SWITCH-
technology)

and a Java code of the event sources and
controlled objects.

When launching the program, the interpreter con-
tained in the UniMod tool loads the XML description
of the model into the memory and creates instances of
the event sources and controlled objects. The sources
form events and direct them to the interpreter, which
processes them in accordance with the logic described
by the automata. The automata call methods of the con-
trolled objects that implement input variables and out-
put actions.

348

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 6

2007

GUROV et al.

5.2. Compilation

The structural scheme of the compilation approach
is shown in Fig. 4.

In the case of the compilation approach, the UML
model is transformed directly to a code in the target
programming language, which is then compiled and

run. When transforming to the code,

Velocity

 templates
are used [33]. This makes it possible to adapt the com-
pilation approach for programming languages different
from Java (for example, the authors of this paper made
this for C++ used in development of applications for
mobile devices).

Model transformer Compiler javac

java-byte code

Model operation
protocol in terms

of automata

XML description
of UML-model

Eclipse

Java code of event sources
and controlled objects

UML-model (connectivity
schemes and state diagrams
by SWITCH-technology)

Java virtual machine (JVM)

Interpreter
of XML description

Fig. 3.

 Structural scheme of the interpretational approach.

Compiler javac

Java virtual machine (JVM)

Templates
for Java

Java code of
UML-model

java-byte code

Model operation
protocol in terms

of automata

Java code of event sources
and controlled objects

Eclipse

UML-model (connectivity
schemes and state diagrams
by SWITCH-technology)

Model compiler

Fig. 4.

 Structural scheme of the compilation approach.

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 6

2007

TOOLS FOR SUPPORT OF AUTOMATA-BASED PROGRAMMING 349

This approach is reasonable to use in the cases of
limited resources. Note that this approach is typical of
the “classical SWITCH-technology.”

6. IMPLEMENTATION OF THE DIAGRAM
EDITOR ON THE ECLIPSE PLATFORM

The diagram editor is a plug-in module for the
Eclipse platform (http://www.eclipse.org). The advan-
tages of this platform over IntelliJ IDEA or Borland
JBuilder are as follows:

• it is a freeware with an open-source code,
• it contains the Graphical Editing Framework

library for development of graphical editors,
• it is actively supported by IBM and, even now, its

functionality is not less than that of the above-men-
tioned analogues.

To ensure the process of active development of pro-
grams in text languages, the following features are
implemented in the above-listed development tools:

• highlighting of semantic and syntax errors,
• input auto-complete and correction of input errors,
• code formatting and refactoring [34],

• program debugging and execution in the develop-
ment environment.

These features are called code assist. They have
been implemented for editing diagrams in the devel-
oped module for the Eclipse platform.

6.1. Model Validation

The editors for text programming languages check
whether the program is written in a given language and
highlight places containing syntax errors. Semantic
errors in the case of text programming languages
include, for example, use of undeclared variables, calls
of non-existing methods, and incorrect type casting.

In the UML standard, the diagram syntax and
semantics are defined by a set of constraints written in
the object constraint language. This set of constraints
must be satisfied for any correctly constructed diagram.
The validation of the diagram syntax and semantics is
based on just these constraints.

We suggest extending of the set of constraints as fol-
lows:

• All states in the state diagram must be attainable.

dent.unimod

Palette

Connectivity A1

Console Probleme

1 error, 0 warnings, 0 infos

Description

[A1:Error] State is unattainable

Resource In Folder

clent.unimod Messenger Standalone/resources/

e2/o1.z1

Disconnected Connected

Error

/o2.z6

e2/o1.z2, o2.z6

e21/o2.z5

e1/o1.z1, o1.z3

e100

e23/o2.z4

Fig. 5.

 Unattainable state in a transition graph.

350

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 6

2007

GUROV et al.

• The set of transitions originating from any state
must be complete and consistent. The completeness
means that, for any event, the disjunction of the protect-
ing conditions on all arcs originating from the consid-
ered state is identically equal to unity. The consistency
means that, when processing any event, there do no
exist transitions that can be executed simultaneously
(only deterministic finite automata are used).

The above-described constraints specify correctness
conditions. Validation of the diagram correctness pro-
ceeds as follows. In a background mode, a process is
launched that checks the above-specified conditions
when the diagram is modified. If an error is found, the
incorrect element is highlighted in the diagram by a
color. Figure 5 shows an example of a diagram with an
unattainable state.

6.2. Input Auto-Complete and Correction
of Input Errors

Traditionally, input auto-complete for text program-
ming languages consists in the following: by a given
beginning of a lexeme, a set of admissible constructs
whose prefix is the given beginning is determined, and
the user is suggested to select one of the lexemes.

In text languages, correction of input errors consists
in displaying variants of correction for any error found.

In the proposed graphical language, both these
approaches are used for editing labels of the transitions.

Since the proposed language contains not only text
but also graphical information, correction of graphical
input errors is also performed. For example, for the
unattainable state in Fig. 5, the user will be advised to
add a transition to this state from any attainable state
(Fig. 6).

dent.unimod

Palette

Connectiv

Quick Fix

e2/o1.z1

e1/o1.z1, o1.z3

e100e2/o1.z2, o2.z6

e21/o2.z5

e23/o2.z4

Disconnected Connected

Error

include /
enter /

Available fixes:

Add transition from state [Connected] to state [Error]
Add transition from state [Start] to state [Error]
Add transition from state [Disconnected] to state [Error]

OK Cancel

[A1:Error

Descripti
1 error, 0 war

Problems

e/resources/

Fig. 6.

 Suggested variants of error correction in a diagram.

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 6

2007

TOOLS FOR SUPPORT OF AUTOMATA-BASED PROGRAMMING 351

6.3. Formatting

Formatting of a code facilitates reading it. Many text
editors format codes automatically.

As applied to the diagrams, an analogue of the code
formatting is, in the authors’ opinion, the diagram lay-
out. The problem of the diagram layout is considerably
more complicated than that of the code formatting,
since there are no commonly accepted aesthetic criteria
of the layout quality. In the UniMod project, the dia-

gram layout is performed by the annealing method
[35]. It yields satisfactory results, which can further be
improved manually if needed.

6.4. Model Execution

Traditionally, the following variants of execution of
programs written in text programming languages are
used:

Debug - Model1.unimod - Eclipse SDK

File Edit View Navigate Search Project Run Window Help

Debug

Model1.unimod

Connectivity A1

S2 S4
/01.z1 * */01.z2

Variables Breakpoints Expressions

EventContext (com.evelopers.unimod.runtime.context.State

UserContext (com.evelopers.unimod.runtime.context.StateM
AppContext (com.evelopers.unimod.runtime.context.StateM

A1[32065661] [UnMod Interpreter]
com.evelopers.unimod.adapter.standalone.Run at localhost:2929
/st/src/test/Model1.unimod:A1

com.evelopers.common.conocurrent.AbstractQueue$EventPump=0
[/A1] Come to state s4

C:\Program Files\Java\jdk1.5.0_06\bin\javaw.exe (31.03.2006 18:15:56)

1:1

Fig. 7.

 Debugging session.

UML-model
(connectivity schemes and

state diagrams
by SWITCH-technology)

Symbian C++ code
of event sources

and controlled objects

Eclipse with C/C++ Development Tools plug-in

Symbian C++ code
of UML-model

Executable file

Templates for
Symbian C++ Model compiler

Mobile device under control of OS Symbian
Model operation
protocol interms

of automata

Compiler C++

Fig. 8.

 Structural scheme of the compilation approach when using Symbian C++.

352

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 6

2007

GUROV et al.

• the text is compiled into a code executed by the
operating system (Pascal, C++);

• the text is compiled into a code executed by a vir-
tual machine (Java, C#);

• the text is executed directly by the interpreter (Jav-
aScript, Basic).

Similar variants are used for the proposed graphical
language. The second and third variants are basic ones.
They are described in detail in Section 5. In some cases,
the first variant is also used (see Section 7).

6.5. Model Debugging

Traditionally, program debugging is a tracing of the
program code, one statement after another, with simul-
taneous analysis of variable values.

For the graphical automaton model, “graphical
debugging” is suggested. It consists in the tracing of the
transition graph accompanied by the analysis of the
current state, events, and values of input variables
marking the transition being analyzed. If necessary, text
debugging of input variables and output actions is pos-
sible.

An example of a debugging session in the UniMod
tool is shown in Fig. 7.

In the lower part of the figure, the debugged model
is shown. The small circles depict stopping points.
The

state enclosed in the frame is the current debugger
state.

7. APPLICATION OF THE PROPOSED APPROACH
TO MOBILE DEVICES

It has been noted earlier that the considered tool is
based on the Java language. However, in some cases
(for example for mobile devices), to ensure the desired
performance, C++ is used. In this case, only the compi-
lation approach can be used.

Figure 8 shows how the structural scheme for the
compilation approach (Fig. 4) is changed when C++ is
used for the mobile platform Symbian (http://www.sym-
bian.com).

It should be noted that the

development

 of pro-
grams in this case is carried out in the same way as in
Java. The only difference is that the C++ templates
rather than those for Java are used. An example of pro-
gram development in C++ with the help of the UniMod
tool can be found at the address http://is/ifmo/ru/sci-
ence/MD-Mobile.pdf.

For the illustration, the state diagram of the basic
automaton for a mobile phone answering machine is

Application rinning

e1/A1.e4, A2.e4, A3.e4, o1.

z

0

Active

Main

View

Select user or group

Select greeting message

Record

e3

include /A3
enter /o1.

z0

enter /o1.z1

include /A1
enter /o1.z4

enter /o1.z3

include /A1
enter /o1.z5

include /A2
enter /o1.z6

e4/A3

e2

e10

e5[o1.x2 > 1] /o1.z14

e6/A1.e4

e11/A2.e4

e11/A1.e4

e8e11/A1.e4

e5[o1.x1 <= 0]

e9[o1.x1 <= 0]

e9[o1.x1 > 0]/o1.z17 e9[o1.x1 > 0]/o1.z18, o2.z3, o1.z12

e5[o1.x1 > 0]/o1.z14

e7[o1.x1 > 0]/o1.z15, o1.z16

e9[o1.x1 <= 0]

e7[o1.x1 <= 0]

Fig. 9. State diagrams of a mobile phone answering machine.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 6 2007

TOOLS FOR SUPPORT OF AUTOMATA-BASED PROGRAMMING 353

presented in Fig. 9. This diagram contains all types of
syntax constructs described above.

Thus, we can state that, although Eclipse and Uni-
Mod are designed for the Java language, the use of tem-
plates in the model compilation makes the UniMod tool
a multilanguage platform. However, the graphical
debugging of models for the languages different from
Java is impossible.

8. CONCLUSIONS

In the paper, an approach to the creation of a tool for
the automata-based programming is discussed.

This approach allows us to
• reduce the length of the code in a text program-

ming language through the use of the graphical pro-
gramming language;

• construct connectivity schemes and transition
graphs suggested in the SWITCH-technology using the
UML notation for the class diagrams and state dia-
grams, respectively, and include them into the project
documentation [36];

• formally and clearly describe behavior of pro-
grams and change them, in the majority of cases, by
modifying only the transition graphs;

• simplify project maintenance owing to increased
centralization of program logic.

The proposed approach has been shown to possess
the following advantages compared to its analogues:

• It is allowed to use a system of interrelated autom-
ata in the model, which makes it possible to decompose
the behavior of a complex system into subproblems. It
should be noted that each state also implements decom-
position of a subproblem separating only those input
and output actions that are related to this subproblem.

• The programs created on the basis of the suggested
method are suitable for verification by construction.
This is explained by the fact that, in the verification of
behavior with the use of the Model Checking method
[37], for programs written in a traditional way, it is
required to construct models (for example, as a system
of transitions), whereas, in the automata-based pro-
gramming, models in the form of transition graphs are
given upon program specification.

• The structure of the automaton programs, in which
functions of the input and output actions are almost
completely separated from the program logic, makes
the verification of these functions on the basis of formal
proofs with the use of pre- and postconditions [38, 39]
practical.

• Along with the nested states, nested automata are
also used; the number of which, as well as the nesting
level, is not restricted.

• The automata can also interact through calls by
receiving appropriate events on transitions or upon
entering a state.

• In addition to the compilation approach, model
interpretation is possible. In this case, the “source
code” is diagrams themselves.

• The use of the Eclipse platform and the Java and
XML languages makes the models and the program
easily portable from one operating system to another
(for example, from Windows to Linux).

• The interactive model validation makes it possible
to localize many syntax, semantic, and logical errors as
early as at the modeling stage.

• The program framework is specified by the tool, so
that the user does not need to develop it for each appli-
cation anew.

• The proposed method makes it possible to create
the program on the whole.

• The project is open-source.
• Our experience shows that the use of the compila-

tion approach in the case of complicated logic results in
that more than half of the application code is con-
structed automatically.

The proposed operational semantics is deterministic
owing to checking of the existence of conflicting tran-
sitions, which is not performed, for example, in Ratio-
nal Rose and Borland Together [40]. This disadvantage
presents also in the VisualSTATE tool [20]; however,
here, it is eliminated by means of the SCOPE tool [19].

The source texts, documentation, and examples of
using the UniMod package can be found at the website
http://unimod.sourceforge.net.

In conclusion, we note that this study relies on the
work [28] and the approach described in [41, 42].

Note also that, as stated in [43], the UML language
obeys the “20–80 law.” Our study substantiates this
assertion: out of the entire variety of UML diagrams,
diagrams of only two types were used for constructing
the programs. This is in accordance with Okkama’s
razor principle, which says that entities should not be
multiplied without need. The tool developed is used for
teaching at the department of computer technologies of
St. Petersburg State University of Information Technol-
ogies, Mechanics, and Optics. Student projects contain-
ing project documentation are published at the site
http://is.ifmo.ru in the UniMod-projects section (e.g., [44]).

Results of this study were presented at a number of
scientific conferences, such as Methods and Tools for
Information Processing, MSU, 2005 (http://lvk.cs.
msu.su/mco/part9.html), Open Source Forum 2005
(http://www.opensource-forum.ru/rbio_view.php?num
=41), IEEE International Conference “110 Anniversary of
Radio Invention” (http://is.ifmo.ru/articles_en/_unimod.pdf),
and Software Engineering in Russia 2005 (http://
secr.ru/rus/program/schedule.html). At the last confer-
ence, Jacobson in his talk noted the originality of the
described approach [45], which stimulated the authors
to write the paper [46].

The UniMod tool started its advance over the world.
For example, a book on UML 2.0 (http://helion.pl/

354

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 6 2007

GUROV et al.

ksiazki/juml2.htm) where the UniMod tool is men-
tioned among the tools for the Eclipse platform was
published in Poland and its source texts are provided on
an attached CD. It has been noted at the polytechnic
institute of Turin (http://is.ifmo.ru/unimod_en/_torino.
pdf) and the Borland corporation (http://www.pcweek.
ru/?ID=504874) as a promising project. There is infor-
mation that it is used in other organizations (http://is.
ifmo.ru/unimod_en/_unimoduser.pdf).

The approach discussed in this work is close to that
described in [47], which is used for designing software
for important long-term systems.

ACKNOWLEDGMENTS
This paper relies on results of the work on the state

contract “Technology of Automata-based Program-
ming: Application and Tools” (http://www.fasi.gov.ru/
fcp/technika/konkurs/it/izv-it-6.doc) carried out in the
framework of the federal scientific–engineering pro-
gram “Studies and Developments in Priority Fields of
Science and Engineering” for 2002–2006.

REFERENCES
1. Sommerville, I., Software Engineering, Pearson Educa-

tion, 2001, 6th ed.
2. Kuznetsov, S., UML 2.0: Promises and Disappoint-

ments, Otkrytye systemy, 2006, no. 2, pp. 75–79.
3. 1st European Conf. on Model-Driven Software Engi-

neering, Germany, 2003, http://www.agedis.de/confer-
ence/.

4. Int. Workshop “e-Business and Model Based in System
Design”, IBM EE/A. SPb.: SPb ETU, 2004.

5. OMG Model Driven Architecture, http://www.omg.org/
mda/.

6. Booch, G., Rumbaugh, J., and Jacobson, I., The Unified
Modeling Language Reference Manual, Addison-Wes-
ley, 1998.

7. Mellor, S. and Balcer, M., Executable UML: A Founda-
tion for Model Driven Architecture, Addison-Wesley,
2002.

8. Raistrick, C., Francis, P., and Wright, J., Model Driven
Architecture with Executable UML, Cambridge Univer-
sity Press, 2004.

9. Graham, I., Object-Oriented Methods: Principles and
Practice, Addison-Wesley, 2000, 3d ed.

10. Wikipedia, Finite state machine. Tools, http:// en.wikipe-
dia.org/wiki/Finite_automaton#Tools.

11. Sun Studio Enterprise, http://developers.sun.com/pro-
dtech/javatools/jsenterprise/reference/techart/whatis.html.

12. Jacobson, I., Four Macro Trends in Software Develop-
ment Y2004, http://www.ivarjacobson.com/postnuke
/html/modules.php?op=modload&name=UpDownload
&file =index&req=getit&lid=9.

13. Jacobson, I., Booch, G., and Rumbaugh, J., The Unified
Software Development Process, Addison-Wesley, 1999.

14. Novikov, F., Visual Program Design, Informatsionno-
upravlyayushchie systemy, 2005, no. 6, pp. 9–22,
http://is.ifmo.ru/works/visualcons/.

15. Harel, D., Statecharts: A Visual Formalism for Complex
Systems, Sci. Comput. Program, 1987, vol. 8, pp. 231–
274.

16. I-Logix Statemate, http://ilogix.com/sublevel.aspx?id=74.
17. XJTek AnyState, http://www.xjtek.com/anystates/.
18. StateSoft ViewControl, http://www.statesoft.ie/prod-

ucts.html.
19. SCOPE, http://www.itu.dk/~wasowski/projects/ scope/.
20. IAR Systems visualSTATE, http://www.iar.com/

p1014/p1014_eng.php.
21. The State Machine Compiler, http://smc.sourceforge.net/.
22. Jia X. et al., Using ZOOM Approach to Support MDD,

http://se.cs.depaul.edu/ise/zoom/papers/zoom/SERP_ZO-
OM.pdf.

23. Riehle, D., Fraleigh, S., Bucka-Lassen, D., and
Omorogbe, N., The Architecture of a UML Virtual
Machine, Proc. of the 2001 Conf. on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA'01), ACM 2001.

24. Matilda UML Virtual Machine, http://dssg.cs.
umb.edu /projects/umlvm/.

25. Kennedy Carter iUML, http://www.kc.com/prod-
ucts/iuml/index.html.

26. Telelogic TAU G2, http://telelogic.com/corp/prod-
ucts/tau/g2/index.cfm.

27. Shalyto, A.A., SWITCH-tekhnologiya. Algoritmizatsiya
i programmirovanie zadach logicheskogo upravleniya
(SWITCH-Technology: Algorithmization and Program-
ming of Logic Control Problems), St. Petersburg:
Nauka, 1998, http://is.ifmo.ru/books/switch/1.

28. Shalyto. A.A. and Tukkel’, N.I., SWITCH-Technology:
An Automated Approach to Developing Software for
Reactive Systems, Programmirovanie, 2001, no. 5,
pp. 45–62. [Programming Comput. Software (Engl.
Transl.), 2001, vol. 27, no. 5, pp. 260–276].

29. Shalyto, A.A. and Tukkel’, N.I., Tanks and Automata,
BYTE, Russia, 2003, no. 2, pp. 69–73, http://s.ifmo.ru/
works/tanks_new/.

30. MetaObject Facility Core Speification Version 2.0.
http://www.omg.org/technology/documents/formal/MOF_
Core.htm.

31. Gomaa, H., Designing Concurrent, Distributed, and
Real-Time Applications with UML, Addison-Wesley,
2000.

32. Gurov, V.S., Mazin, M.A., and Shalyto, A.A., Opera-
tional Semantics of UML State Diagrams in the UniMod
Software Package, Trudy XII Vserossiiskoi nauchno-
metodicheskoi konferentsii “Telematika-2005” (Proc. of
the XII All-Russian Scientific Conference), St. Peters-
burg: SpbGU ITMO, vol. 1, pp. 74–76, http://tm.ifmo.
ru/tm2005/scr/224as.pdf.

33. Velocity—Java-based template engine, http://jakarta.apa-
che.org/velocity/index.html.

34. Fowler, M., Brant, J., Opdyke, W., and Roberts, D.,
Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 2000.

35. Fruchterman, T.M.J. and Reingold, E.M., Graph Draw-
ing by Force Directed Placemen, Software—Practice
and Experience,1991, vol. 21, no. 11, pp. 1129–1164.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 6 2007

TOOLS FOR SUPPORT OF AUTOMATA-BASED PROGRAMMING 355

36. Shalyto, A.A., A New Initiative in Programming: The
Demand for Open Project Documentation, PC Week/RE,
2003, no. 40, pp. 38–42, http://is.ifmo.ru/works/open_ doc/.

37. Clarke, E., Grumberg, O., and Peled, D., Model Check-
ing, MIT, 2000.

38. Dijkstra, E.W., Notes on Structured Programming,
Structured Programming, Dahl, O.-J., Dijkstra, E.W.,
and Hoare, C.A.R, Eds., London: Academic, 1972.

39. Meyer, B., Object Oriented Software Construction,
Prentice-Hall, 1997.

40. Borland Together, http://www.borland.com/us/ prod-
ucts/together/index.html.

41. Gorshkova, E.A. and Novikov, B.A., Use of Statechart
Diagrams for Modeling Hypertext, Programmirovanie,
2004, no. 1, pp. 64–80 [Programming Comput. Software
(Engl. Transl.), 2004, vol. 30, no. 1, pp. 47–51].

42. Gorshkova, E.A., Novikov, B.A., Belov, D.D.,
Gurov, V.S., and Spiridonov, S.V., A UML-Based Mod-

eling of Web Application Controller, Programmiro-
vanie, 2005, no. 1, pp. 44–51 [Programming Comput.
Software (Engl. Transl.), 2005, vol. 31, no. 1, pp. 29–33].

43. Eckel, B., Thinking in Java, Prentice-Hall, 2002.

44. Parashchenko, D.A., Tsarev, F.N., and Shalyto, A.A.,
Modeling Technology Based on Automata-based pro-
gramming for One Class of Multiagent Systems on the
Example of Game “Competition of Flying Saucers,”
http://is.ifmo.ru (UniMod Projects Section).

45. Shalyto, A.A., Two Meetings with I. Jacobson,
http://is.ifmo.ru/aboutus/uml_ph/, http://is.ifmo.ru/bel-
letristic/jacobson/.

46. Gurov, V., Narvsky, A., and Shalyto, A., Executable
UML from Russia, PC Week/RE, 2005, no. 26, pp. 18–
19, http://is.ifmo.ru/works/_umlrus.pdf.

47. Regan, P. and Hamilton, S., NASA’s Mission Reliable,
24–32, http://www.osp.ru/os/2004/03/045_print.htm.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

