

Automata-Based Programming and Automata-Based Control
Anatoly Shalyto

St. Petersburg, St. Petersburg State University of Information Technologies, Mechanics and Optics,

e-mail: shalyto@mail.ifmo.ru

 ———

Abstract: The article contains main theses of automata-based programming and discusses its advantages when applied

in software engineering. The apparatus for automata-based programming is described. Automata-based control is the

core of automata-based programming.

———

1. INTRODUCTION

Most expert programmers reckon that the software

engineering industry has no serious problems. Pretended

absence of problems leads to the situation when software

engineering solutions are mostly ad hoc, based on the

programmers’ experience. All difficulties are considered

“the inevitable evil of the industry”. The failure of the

major portion of software projects doesn’t influence the

opinion of the majority.

Software engineering theorists have a fully opposite

opinion – in 1968 they “openly admitted the software

crisis” (see Dijkstra [1972]). Nowadays, this thesis is

sometimes disputed, e. g. professors N. Wirth and

J. Gutknecht claimed (when visiting SPbSU ITMO) that

they don’t see problems in software engineering except for

the area of programming drivers with complex behavior

(note that implementation of such behavior is the topic of

the current article).

In spite of such views of influential scientists, many

theorists think that the mentioned crisis still goes on. They

tried resolving the crisis by switching from “the art of

computer programming” (see Knuth [1997]) to software

engineering (see Software Engineering [1968], Software

Engineering techniques [1969]) which is actively

promoted by B. Meyer, the “successor” of N. Wirth.

The continuing crisis is connected to the fact that software

engineering specialists almost never use approaches

developed in other areas. There is an opinion (see Kai-

Yuan C. et al. [2002]) that software engineering should use

the experience of designers of automated control systems,

and it would be advisable to make a step backward and

turn to the founders of cybernetics, such as N. Wiener,

J. von Neumann, and W. Ashby.

The stated above is advocated by the specialists in

Software Cybernetics (see Kai-Yuan C. et al. [2002]), the

area in which the first international workshop was held in

2004 and then became annual.

In this article we state the bases of automata-based

programming, the approach being developed since 1991 (see

Shalyto [1991]). The research in the area of automata-based

programming refers both to software engineering and

software cybernetics. The ideas come from the automata

theory and control theory – two of the three components of

cybernetics (the third being information theory). We

emphasize that automata-based programming doesn’t mean

programming with the use of automata, but the entire

programming paradigm and programming technology aimed

for designing systems with complex behavior (see Shalyto

[1998]). For comparison, UML (Unified Modeling

Language) is just a notation while RUP (Rational Unified

Process) is the process that uses the notation (see Booch et al.

[2005]).

The proposed approach is close to the approach of Harel

[1992], which was described by F. Brooks to be possibly

revolutionary (see Brook [1995]).

2. AUTOMATA-BASED PROGRAMMING AS A

PROGRAMMING STYLE

Automata-based programming is one of programming styles

(see Nepeyvoda [2005]). This term was proposed in Shalyto

[1998].

To put it simple, the approach proposes to describe the

behavior of programs using automata which are later

isomorphically converted into code.

Automata have been successfully used in software in the

field of compilers, protocol implementations etc. In Shalyto

[1998] it was suggested to use automata not as a discrete

math objects but as the universal approach for

implementing programs with complex behavior,

especially the reactive ones (see Harel et al. [1990]).

Note that “programming using automata” can’t be seen as

a programming paradigm, as it still leaves unclear how to

design and implement a program as a whole using

automata.

3. AUTOMATA-BASED PROGRAMMING AS A

PROGRAMMING PARADIGM

Many systems with meaningful behavior are nothing but

automated objects.

Automated control object is the aggregate of the control

object (CO) and control system (CS) related with

feedbacks (Figure 1).

Fig. 1. Automated control object

The task of designing automated control objects is

discussed in every course of automated control theory.

Surprisingly, it didn’t affect software engineering practice,

in spite of the fact that one of the major models in

algorithms is the Turing machine (Figure 2).

Fig. 2. Turing Machine Fig. 3. Turing machine as

automated control object

Turing machine is basically an automated object (see

Shalyto, Tukkel [2002a]) in which the control system is a

finite state machine (an automaton) and the control object

is the infinite tape (its cells) (Figure 3).

Switching from Turing programming to practical

programming is carried out due to complication of

complex object, which can run any complex operations.

Meanwhile the control system is a system of interacting

automata.

Thus, the proposed approach is a generalization of Turing

machine that allows implementation of arbitrarily complex

algorithms. Meanwhile, the theoretical results about the

limitations on recognized languages (e. g., regular

languages for finite state machines (FSM) and context-free

languages for FSM with stack) can be ignored, since the

proposed approach concerns not automata, but
automated control objects in general, in which the

complexity of the control objects can be arbitrarily high.

The main feature of automata-based programming is the

following: programs should be coded in a way similar to

the automatization of technological processes.

Based on domain analysis, one defines the input action

sources, the control system and the control objects. Here a

control system is a system of interacting automata. The

control objects implement output actions and form feedback

to the control system.

All listed components are shown on a relation diagram,

which can also be an interaction diagram. For each input and

output action, the full name is shown as well as a short

identifier, that is used in transition diagrams (state

diagrams) and in the code. Short identifiers make transition

diagrams compact and comprehensible.

Control objects can be either real or virtual (implemented as

programs). In the first case, their logic is fixed, in the second

case the logic of the control objects can and should be

extracted into the automata in the control systems.

Paradigm of automata-based programming is representation

and implementation of programs as systems of automated

control objects.

4. MAIN THESES OF AUTOMATA-BASED

PROGRAMMING

The main concept in the automata-based programming is

state (see Shalyto [1998]). In automata-based programming

one can distinguish between two types of states – control and

computational. As in Turing machines, a few control states is

enough to control many computational states (see Shalyto,

Tukkel [2002a]). In the following text, only control states

will be mentioned.

Automata can be abstract (input and output actions are

formed consequently) or structure (actions formed

simultaneously). In automata-based programming the

structure automata are used.

Time is not used in automata. If needed, delay elements are

added as control objects. This way, the time elapse events are

received by the automata as input actions, so-called timed

automata (see Shalyto [1991] and Allur, Dill [1994]).

When designed manually, automata should possess cognitive

properties, which are reached when automata are represented

as transition graphs (transition diagrams). If generated

automatically, automata can be represented as a table, which

is less comprehensible.

5. ADVANTAGES OF AUTOMATA-BASED

PROGRAMMING

In the proposed approach it is supposed that the code

generation starts only after the program being designed. Note

that in engineering each project always ends with issuing

the project documentation. Unfortunately, in traditional

software engineering this is not the case. In automata-

based programming we propose that each project must

contain not only user manual (which is usual for software

projects), but the project documentation including relation

diagrams and transition graphs for each automaton.

The manually designed automata are formally and

isomorphically transformed into code (manually or

automatically) which either works right away or needs

only minimal debugging.

As the logic is represented in visual form instead of usual

text form, making fixes is simpler and it is much easier to

understand the logic for people other than the author, as

well as by the author after some time passes (which can be

a problem with traditional code).

The next advantage is the possibility of effective

verification of automata-based programs using Model

Checking (see Clarke et al. [1999]).

Finally, automata-based programs are naturally

parallelized which is important for multi-core processors.

6. TYPES OF AUTOMATA-BASED PROGRAMMING

Automata-based programming is developing in three main

directions: logical control, state-based programming and

state-based object-oriented programming.

Logical control tasks are those that have binary input and

output variables. Here automata replace logical schemes,

which is quite natural.

State-based programming concerns reactive systems, e. g.

majority of embedded systems. Reactive systems are more

complex than logical control systems, for the following

reasons:

• Input actions are not only input variables but also

events;

• Programs are executed on events, not in a cycle;

• Output actions can be not only binary, but more

complex (hybrid automata, see Alur et al.

[1995]);

• Automatons can contain not only nested states

(see Harel et al. [1990]) but also nested automata;

• Automata can interact not only via checking state

numbers (as in logical control systems, see

Shalyto [1998]), but also via nesting,

executability and event/message exchange.

Objected-oriented state-based programming allows

different solutions. First, automata can be used as class

methods or classes. A deeper interosculation between

object-oriented programming and automata is possible

thanks to the practice of using patterns, such as State

pattern and State Machine pattern. Other approaches for

combining object-oriented and automata-based paradigms

exist and are classified in Naumov et al. [2005].

7. VERIFICATION OF AUTOMATA-BASED

PROGRAMS

Automata-based programs are subject to verification by

Model Checking. The reason is that the behavior model of

the program and its description is either the same or can be

transformed to each other automatically, which is impossible

for traditional programs. There is no semantic gap between

program requirements and the model, thus the automata-

based programs are checkable by definition (see Velder,

Shalyto [2007], Kuzmin, Sokolov [2008], and Egorov,

Shalyto [2008]).

This makes the proposed approach applicable for responsible

systems. We hope that in future technical requirements for

software in such areas will require using automata-based

programming.

8. AUTOMATIC GENERATION OF AUTOMATA-

BASED PROGRAMS.

The main effort in creating an automata-based program is

designing the automata. There exist problems which can be

solved using automata, but the desired automata are hard to

design manually and heuristically. There are formalized

methods for designing automata. Dynamic programming is

used in Orshanskiy, Shalyto [2007], but its use is very

limited. An approach that turns out to be more universal is

genetic programming (see Lobanov, Shalyto [2007] and

Davydov et al. [2008]).

9. AUTOMATA-BASED PROGRAMMNG

TECHNOLOGY

A programming technology (including all lifecycle phases)

was developed for the automata-based programs. The

technology is described in Shalyto [1998, 2000a, 2000b,

2001] and Shalyto, Tukkel [2001], and expounded for the

general public in Naumov, Shalyto [2003].

10. APPARATUS FOR AUTOMATA-BASED

PROGRAMMING

It is possible to generate code that is isomorphic to a

transition graph of an automaton. In Goloveshin [2002] a tool

is described that allows generating the code automatically. It

uses switch operator of the C programming language. This

process was generalized in Kanzhelev, Shalyto [2006] where

it is shown that a similar approach can be used for an

arbitrary programming language. The tool that implements

this approach is MetaAuto.

A powerful tool is UniMod (see Gurov et al. [2005, 2007]),

that automatizes the process of designing object-oriented

automata-based programs. In this tool, the structure of the

program is represented as class diagrams, which are shown

not in the traditional way, but as relation diagrams of

automata with event sources and control objects. Program

dynamics is described in UML which allows not only nested

states but also nested automata. Input and output actions are

manually coded Java programs that contain practically no

logic. The entire system can be compiled into working

code or can be run in the interpretation mode. The tool is

an open source project

(http://unimod.sourceforge.net/intro.html), downloaded

more than 40 000 times. It supports the concept of

executable UML.

11. DIFFERENCE FROM OTHER APPROACHES

Automata are used in software more and more often. Tools

for programming using automata are developed, such as

Stateflow (http://www.mathworks.com/products/stateflow/),

extension of MatLab package, and Windows Workflow

Foundation (http://itc.ua/node/23217) by Microsoft, in

which state machines are used as nothing but the

programming language.

The proposed method is different because it suggests using

automata not sometimes, but for all objects with

complex behavior. Its application doesn’t depend on used

software or hardware. Whereas other approaches either

suggest using specific tools or give solution only to

specific problems.

The proposed approach (practically) eliminates the need to

debug the resulting programs. Use of the proposed

approach doesn’t always decrease the time of program

development, compared to the traditional approach.

However, the resulting programs have lots of virtues

described above. It is reasonable to suppose that for

responsible objects (the ones that require verification) use

of automata-based programming can become imminent.

The research in this direction is actively pursued (see

Regan, Hamilton [2004] and Egorov, Shalyto [2008]).

12. FOUNDATION FOR OPEN PROJECT

DOCUMENTATION

In systems of information control in manufacturing, it is

extremely important for programs to have project

documentation. A whole foundation was created in 2002

by A. Shalyto to achieve this goal (see Shalyto [2004]). As

a part of this foundation, more than 110 projects made by

students of Computer Technologies Department of SPbSU

ITMO are published at http://is.ifmo.ru/.

13. APPLYING AUTOMATA-BASED

PROGRAMMING WHEN DESIGNING

INFORMATION CONTROL SYSTEMS IN

MANUFACTURING

Automata-based programming is used when developing

large number of information control systems in

manufacturing. E. g. control system for ship diesel

generator (see Shalyto, Tukkel [2002b]) and cryogen-

vacuum plant (using LabVIEW package, see Vavilov

[2005a]), drives (see Vavilov [2005b]) and backflush (see

Vavilov [2005c]).

14. AUTOMATA-BASED CONTROL

As the highest emphasis in placed on the control, we can talk

about control paradigm that was called “automata-based

control” in Shalyto [1998]. This paradigm was approved in

practice multiple times, including implementation of

software for complex behavior systems, e. g. in Shalyto,

Tukkel [2002b].

The use of automata in control system design was (until

recently) considered in the context of hybrid automata (see

Alur et al. [1993]). Extra accent for using automata was

driven by the plenary lecture of R. Brokett at IFAC congress

(see Brokett [2008]) on simplification of complex control

systems design process.

15. CONCLUSION

The proposed approach helps improve the quality of

information control systems in manufacturing because of the

following reasons (Polikarpova, Shalyto [2010]):

• specification in visual form;

• formal and isomorphic transformation from the

specification to the code;

• creation of protocols in terms of automata;

• verification in terms of automata;

• possible automatic generation of automata;

• possibility of creation of multi-agent systems for

object with complex behavior (see Paraschenko et

al. [2006]);

• project documentation for programs.

Many works on automata-based programming can be found

at http://is.ifmo.ru/. This site also contains examples of

practical uses of the proposed approach.

REFERENCES

Alur R., Courcoubetis C., Henzinger A., Ho P., “Hybrid

automata: An algorithmic approach to the specification and

verification of hybrid systems,” Lecture notes in computer

science, vol. 736, 1993.

Alur R., Dill D., “A theory of timed automata,” Theoretical

Computer Science, 1994.

Alur R. et al., “The algorithmic analysis of hybrid systems,”

Theoretical Computer Science, vol. 138 (1), 1995.

Booch G., Rumbaugh J., Jacobson I., “Unified Modeling

Language User Guide, 2nd Edition,” Addison-Wesley, 2005.

Brokett R., “Reduced Complexity control systems,”

Proceedings of the 17-th World Congress The International

Federation of Automatic Control, Seoul, 2008.

Brooks F., “The Mythical Man-Month,” Addison-Wesley,

1995.

Clarke E., Grumberg O., Peled D., “Model Checking,” The

MIT Press, 1999.

Davydov A., Sokolov D., Tsarev F., “Application of Genetic

Algorithms for Construction of Moore Automaton and

Systems of Interacting Mealy Automata in “Artificial Ant”

Problem,” Proceedings of the Second Spring Young

Researchers’ Colloquium on Software Engineering,

SPbSU, vol. 1, 2008.

Dijkstra E., “The Humble Programmer,” Commun. ACM,

vol. 15(10), pp. 859–866 (1972).

Egorov K., Shalyto A., “The method of Automata

programs verification,” Information and Control Systems,

vol. 5, 2008 (in Russian).

Goloveshin A., “Converter Visio2Switch,” 2002.

http://is.ifmo.ru/progeny/visio2switch/

Gurov V., Mazin M., Narvsky A., Shalyto A., “Unimod:

Method and Tool for Development of Reactive Object-

Oriented Programs with Explicit States Emphasis,”

Proceedings of St. Petersburg IEEE Chapters.

International Conference “110 Anniversary of Radio

Invention,” SPb ETU “LETI,” vol. 2, 2005.

Gurov V., Mazin M., Narvsky A., Shalyto A., “Tools for

Support of Automata-Based Programming,” Programming

and Computer Software, vol. 33 (6), 2007.

Harel D., “Biting the Silver Bullet: Toward a Brighter

Future for System Development,” Computer, vol. 1, 1992.

Harel D. et al., “Statemate: A Working Environment for

the Development of Complex Reactive Systems,” IEEE

Trans. Software Eng., vol. 4, 1990.

Knuth D., “The Art of Computer Programming,” Addison-

Wesley, 1997.

Kuzmin E., Sokolov V., “Modeling, Specification, and

Verification of Automaton Programs,” Programming and

Computer Software, vol. 34 (1), 2008.

Naumov L., Shalyto A., “Automata Theory for Multi-

Agent Systems Implementation,” International Conference

on “Integration of Knowledge Intensive Multi-Agent

Systems: Modeling, Exploration and Engineering”,

KIMAS-03, Boston: IEEE Boston Section, 2003

Nepeyvoda N. N., “Styles and methods of programming,”

Moscow: Internet-university of information technologies,

2005 (in Russian).

Software Engineering, Germany: NATO Science

Committee, 1968.

http://www.europrog.ru/book/nato1968e.pdf

Software Engineering Techniques, Italy: NATO Science

Committee, 1969.

http://www.europrog.ru/book/nato1969e.pdf

Kai-Yuan C., Chen T. Y., Tse T. H., “Towards Research

on Software Cybernetics,” Proceedings of 7th IEEE

International on High-assurance Systems Engineering

(HASE 2002). Los Alamitos. IEEE Computer Society

Press, 2002.

Kanzhelev S., Shalyto A., “Automatic generation of

automata code,” Information and Control Systems, vol. 6,

2006 (in Russian).

Lobanov P., Shalyto A., “Application of Genetic

Algorithms for Automatic Construction of Finite-State

Automata in the Problem of Flibs,” Journal of Computer

and Systems Sciences International, vol. 46 (5), 2007.

Naumov L., Korneev G., Shalyto A., “Methods of Object-

Oriented Reactive Agents Implementation on the Basis of

Finite Automata,” 2005 International Conference on

”Integration of Knowledge Intensive Multi-Agent Systems:

Modeling, Exploration and Engineering” (KIMAS-05),

Boston: IEEE, 2005.

Orshanskiy S., Shalyto A., “Using dynamic programming in

solving problems with finite state machines,” Computer tools

in education, vol. 4, 2007 (in Russian).

Paraschenko D., Shalyto A., Tsarev F., “Modeling

Technology for One Class of Multi-Agent Systems with

Automata Based Programming,” IEEE International

Conference on Computational Intelligence for Measurement

Systems and Applications, 2006.

Regan P., Hamilton S., “NASA’s Mission Reliable,” IEEE

Computer, January 2004.

Shalyto A., “Software implementation of control automata,”

Ship-building industry. Series “Automata and remote

control”, vol. 13, 1991 (in Russian).

Shalyto A., “SWITCH-technology. Algorithmic and

programming methods in solution of the logic control

problems,” St. Petersburg: Nauka (Science), 1998. LC

Control Number: 98184413 (in Russian).

Shalyto A., “Software Automation Design: Algorithmization

and Programming of Problems of Logical Control,” Journal

of Computer and Systems Sciences International, vol. 39 (6),

2000.

Shalyto A., “Logic Control. Hardware and software

algorithm implementation,” St. Petersburg: Nauka (Science),

2000. LC Control Number: 2001425055 (in Russian).

Shalyto A., “Logic Control and “Reactive” Systems:

Algorithmization and Programming,” Automation and

Remote Control, vol. 62 (1), 2001.

Shalyto A., “New Initiative in Programming – Foundation

for Open Project Documentation”, 2004.

http://www.codeproject.com/KB/architecture/nifopd.aspx

Shalyto A., Tukkel N., “SWITCH-Technology: An

Automated Approach to Developing Software for Reactive

Systems,” Programming and Computer Software, vol. 27 (5),

2001.

Shalyto A., Tukkel N., “From Turing programming to

automata-based programming,” PC World, vol. 2, 2002

(in Russian).

Shalyto A., Tukkel N., “Control system for diesel generator

(fragment), Project Documentation,” 2002.

http://is.ifmo.ru/projects/dg/

Vavilov K., “LabVIEW and SWITCH-technology. Methods

of algorithmization and programming for problems of logic

control,” 2005. http://is.ifmo.ru/progeny/_vavilov2.pdf.zip

Vavilov K., “Programming logic controllers SIMATIC S7-

200 (SIEMENS). Methods of algorithmization and

programming for problems of logic control,” 2005.

http://is.ifmo.ru/progeny/_metod065.pdf

Vavilov K., “Programming logic controllers SIMATIC S7-

300 (SIEMENS). Organization of interaction of independent

local control systems using automata approach,” 2005.

http://is.ifmo.ru/progeny/_s7300.pdf

Velder S., Shalyto A., “Verification of simple automata-

based programs using the model checking method,”

Information and Control Systems, vol. 3, 2007 (in Russian).

Polikarpova N., Shalyto A., “Automata-Based

Programming,” St. Petersburg: Piter, 2010 (in Russian).

http://is.ifmo.ru/books/_book.pdf

