

ISSN 0361-7688, Programming and Computer Software, 2007, Vol. 33, No. 5, pp. 283–292. © Pleiades Publishing, Ltd., 2007.
Original Russian Text © D.G. Shopyrin, A.A. Shalyto, 2007, published in Programmirovanie, 2007, Vol. 33, No. 5.

283

INTRODUCTION

Program systems can be divided into the following
three classes:

transforming, interactive

, and

reactive

systems [1].

Transforming

systems are systems that
stop after they transformed input data (e.g., archivers
and compilers).

Interactive

 systems interact with the
environment in a dialog mode (e.g., text editors).

Reac-
tive

 systems interact with the environment through
message exchange at the rate determined by the envi-
ronment. Specific features of the reactive systems are as
follows:

• response time is determined by the system envi-
ronment,

• system behavior is deterministic,

• system behavior is parallel by its nature,

• system failures are extremely undesirable.

Means of the traditional object-oriented program-
ming are often insufficient for designing and imple-
menting complex behavior of reactive systems. On the
other hand, automata-based programming suggests
powerful mechanism of description and implementa-
tion of complex behavior based on finite automata.

State-based object-oriented programming

 is a synthe-
sis of object-oriented and automata-based technologies.
It combines their basic advantages, such as flexibility,
extensibility, and powerful mechanism of complex
behavior description, which is based on finite automata.
The basic concept of the state-based object-oriented
programming is a state-based class. The

state-based
class

 is a class of objects the behavior of which depends
on the current, explicitly specified, control state. The

implementation of the state-based class relies on finite
automata [2, 3].

The disadvantage of the state-based object-oriented
programming is the lack of standard methods for
designing and implementing state-based classes. The
most popular approach to designing and implementing
state-based classes is the

State

 design pattern [4]. Some
derivative variants of the

State

 design pattern are
described in [5–8].

The Statecharts graphical language [9] is used as a
tool for the graphical design of behavior. Many modern
approaches to designing reactive systems are based, to
some extent, on this language. The Statecharts lan-
guage is an extension of the traditional automaton
model [10] supplemented by

hierarchy

 and

parallelism

description facilities [11, 12]. The

hierarchy

 is intro-
duced by means of

embedded states

, which semanti-
cally corresponds to the

XOR

 operation (exclusive

OR

).
The

parallelism

 is introduced by means of

orthogonal
states

, which semantically corresponds to the logical

AND

 operation. The automata-based means for system
design include also the SDL language [13] and the Syn-
cCharts synchronous programming language [14, 15].

One of the disadvantages of the above-listed graph-
ical languages for behavior design that are based on the
state-based classes is the lack of means for describing
object-oriented nature of state-based classes. This dis-
advantage is (partially) removed in the object-oriented
programming with explicit state emphasis [16], also
known as SWITCH-technology [17]. Transition graphs
used in the SWITCH-technology are combined with
the communication diagrams that describe in detail
their interface.

Graphical Inheritance Notation for State-Based Classes

D. G. Shopyrin and A. A. Shalyto

St. Petersburg State University of Information Technologies, Mechanics, and Optics,
Kronverkskii pr. 49, St. Petersburg, 197101 Russia

e-mail: danil.shopyrin@gmail.com

Received May 29, 2006

Abstract

—State-based object-oriented programming combines basic advantages of object-oriented and
automata-based programming technologies. Its basic features are flexibility, extensibility, and powerful mech-
anism of description of complex behavior, which is based on finite automata. The disadvantage of the state-
based object-oriented programming is the lack of standard methods for designing and implementing state-based
classes. In this work, graphical notation for designing state-based classes, which combines capabilities of the
class diagrams of the object-oriented programming and behavior diagrams of the automata-based program-
ming, is presented. The proposed graphical notation makes it possible to generalize, decompose, structure, and
incrementally extend logic of the state-based classes by means of the inheritance.

DOI:

10.1134/S0361768807050040

284

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 5

2007

SHOPYRIN, SHALYTO

Another disadvantage of the above-listed languages
is the absence of means for describing the

inheritance

relation for the state-based classes. Inheritance allows
derived class to receive properties or characteristics of
the base class, normally, as a result of some special
relationship between the base and derived classes [18].
There exist approaches that allow one to use the inher-
itance when implementing state-based classes [19, 20].
However, the question of whether it is possible to use
the inheritance in visual design of state-based classes is
still open.

The goal of this work is to develop graphical nota-
tion for designing state-based classes, which combines
capabilities of the object-oriented class diagrams and
automata-based behavior diagrams. The proposed
graphical notation makes it possible to generalize,
decompose, structure, and incrementally extend logic
of state-based classes by means of the inheritance.

1. TERMS AND DEFINITIONS

Before we proceed to description of the suggested
graphical notation, we introduce some terms and defi-
nitions.

A state-based class

A

 is defined by a triple

〈

I

,

S

,

J

〉

,
where

I

 is a set of methods of the state-based class inter-
face,

S

 is a set of control states of the state-based class,
and

J

 is a set of transitions between the states.

On the set of states

S

 of the state-based class, func-
tion

beg

(

S

)

∈

S

 returning the initial state is defined. For
each state

s

∈

S

, the following functions are defined:

•

den

(

s

), action upon entering the state;

•

dex

(

s

), action when exiting the state;

•

dact

(

s

), activity in the state.

A transition

j

∈

J

 is defined by the quinary

〈

from

,

to

,

ev

,

cond

,

do

〉

, where

from

(

j

)

∈

S

 is an initial state of the
transition,

to

(

j

)

∈

S

 is a terminal state of the transition,

ev

(

j

)

∈

I

 is a cause of the transition: a call of the inter-
face method in the case of which the transition can be
performed,

cond

(

j

)

∈

 {

true

,

false

} is the transition con-
dition, and

do

(

j

) is an action executed upon transition.

The transition

j

0

 can be done if the following condi-
tions are satisfied:

• the current state of the state-based class is the state

from

(

j

0

),

• the interface method

ev

(

j

0

) of the state-based class
is invoked, and

• the condition

cond

(

j

0

) is fulfilled.

In this case, the actions

dex

(

from

(

j

0

)) and

do

(

j

0

) are
performed; the state

to

(

j

0

) is set as the current state; and
the action

den

(

to

(

j

0

)) is performed. After this, the tran-
sition

j

0

 is considered performed.

1.1. Inheritance of State-Based Classes

The inheritance allows one to define new classes
based on the existing ones. When defining a new class,
only the properties that are different from those of the
base class are specified. The other properties are added
to the new class

implicitly

 and

automatically

[21].
In formal terms, the inheritance can be written as fol-
lows [22, 23]:

where

R

 is the new class;

P

1

, P2, …, Pn is a set of prop-
erties inherited from the base classes, ∆R are incremen-
tally added new properties differing the new class R
from the base classes; and ⊕ is the operation combing
the class properties.

Consider the mechanism of the state-based class
inheritance. All states and transitions of the base classes
are implicitly present in the derived class. The derived
class can extend and modify behavior of the base
classes. Behavior modification of the base classes relies
on state overriding. Some states of the base classes can
be overridden, and transitions from these overridden
states can be modified. The derived class can also be
supplemented by new states and transitions between
them.

A state-based class D is a descendant of a state-
based class B (B ≤ D) if

• Ib ⊆ Id; i.e., the set of interface methods Ib imple-
mented by the state-based class B belongs to the set of
interface methods Id implemented by the state-based
class D;

• Sb ⊆ Sd; i.e., the set of states Sb of the state-based
class B is a subset of the set of states Sd of the state-
based class D;

• beg(Sb) = beg(Sd), i.e., the initial states of the
classes B and D coincide;

• for any transition jb from the set of transitions Jb of
the automaton B, there exists a transition jd from the set
of transitions Jd of the automaton D such that

� from(jd) = from(jb) (initial states of transitions jd
and jb coincide),

� ev(jd) = ev(jb) (methods that are causes of transi-
tions jd and jbcoincide),

� cond(jd) = cond(jb) (conditions of transitions
(jd and jb coincide).

Transition jd of a state-based class D overrides tran-
sition jb of a state-based class B if

• from(jd) = from(jb); i.e., the initial states of transi-
tions jd and jb coincide;

• ev(jd) = ev(jb); i.e., the methods that are causes of
transitions jd and jb coincide;

R P1 P2 … Pn ∆R,⊕ ⊕ ⊕ ⊕=

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

GRAPHICAL INHERITANCE NOTATION 285

• cond(jd) = cond(jb); i.e., the conditions of transi-
tions jd and jb coincide;

• to(jd) ≠ to(jb) or do(jd) ≠ do(jb); i.e., the terminal
states or actions upon the transitions do not coincide.

1.2. Decomposition and Structuring
of the State-Based Class Logic

Decomposition and structuring of the state-based
class logic is implemented by means of state groups,
which are used in the Statecharts language [9] and
SWITCH-technology [24]. The state groups can be
embedded in each other forming a hierarchy of the state
groups.

The state groups can have group transitions, which
are also referred to as beams. A beam is similar to a
transition, except for the fact that the initial state is not
specified for the beam. A beam b ∈ B is defined by a
quadruple 〈to, ev, cond, do〉. For each state s ∈ S, a func-
tion beams(s) is defined, which returns the set of beams
corresponding to the given state. The set beams(s) is

equivalent to the subset of transitions that have state s
as the initial state:

beams(s) ≡ j ∈ J, from(j) = s.

A group g ∈ G is defined by the triple 〈gbeams,
msub, gsub〉, where gbeams(g) ⊆ B is the set of beams
corresponding to the group g, msub(g) ⊆ S is the set of
states belonging to the group g, and gsub(g) ⊂ G is the
set of groups embedded into the group g.

For each group g ∈ G, the following assertions are
valid:

• ∀s ∈ msub(g), gbeams(g) ⊆ beams(s); i.e., the set
of beams of the state s belonging to the group g is a super-
set of the set of beams corresponding to the group g;

• ∀g0 ∈ gsub(g), gbeams(g) ⊆ gbeams(g0); i.e., the
set of beams of the state group g0 belonging to the
group g is a superset of the set of beams corresponding
to the group g;

• ∀g0 ∈ gsub(g), ∀s ∈ msub(g0), s ∈ msub(g); i.e.,
if the state s is embedded into the group g0 that is, in
turn, embedded into the group g, then it is embedded
into the group g as well;

initial

MyMachine (IMyInterface) : MyMachineBase

Name Meaning

G

F

M

astate

myState

G(M)/WLT

F
F

enter: WLE
during: WLD
exit: WLX

WLD

WLE

WLT

WLX

IMyInterface.Goo

IMyInterface.Foo

day is Monday

WriteLine(“during”)

WriteLine(“enter”)

WriteLine(“transition”)

WriteLine(“eXit”)

a. Automaton
object
frame

b. Automaton
object class
name

c. Implemented
interface
name

d. Base class
name

e. State

f. State name

g. Actions in
the state

h. Activity in
the state

i. Transition

j. Transition
specification

k. Abbreviation
table

o. Text state
specification

n. Overridden
specification

m. Overridden
state

l. Initial
state

Fig. 1. Basic elements of the proposed graphical notation.

286

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

SHOPYRIN, SHALYTO

• ∀g0, g1 ∈ G, if g0 ∈ gsub(g1) and g ∈ gsub(g0), then
g ∈ gsub(g1); i.e., if the group g is embedded into the
group g0 that is embedded into the group g1, then the
group g is embedded into the group g1 as well.

2. GRAPHICAL NOTATION

To design state-based classes, we propose to use
behavior diagrams, which are an extended version of
the transition graphs used in the SWITCH-technology
[3, 16]. A specific feature of the behavior diagrams sug-
gested in this work is a capability to describe decompo-
sition and structuring of the state-based class logic by
means of the inheritance. Basic elements of the graphi-
cal notation used for constructing the behavior dia-
grams are shown in Fig. 1.

Text specification of transitions is written in the
form

E[(C)][/D],

where E is the transition cause ev(j0), C is the transition
condition cond(j0), and D is the transition action do(j0).

The transition condition and action are optional
parts of the specification and can be omitted. The tran-
sition cause and condition (if available) constitute the
permissive part of the transition specification.

For example, transition j in Fig. 1 has specification
G(M)/WLT, where, in accordance with the abbreviation
table,

• G is equivalent to the call of the IMyInter-
face.Goo method,

• M is equivalent to the condition "day is Mon-
day",

• WLT is equivalent to the call of the WriteLine
("transition") method.

Hence, the transition to the state myState is possi-
ble only by Mondays (day is Monday) if method
Goo() is invoked and the automaton is in the state
astate. In this case, before changing the state, the
string "transition" is printed to the standard
stream.

2.1. Graphical Representation
of the State-Based Inheritance

Let us consider representation of the inheritance
relation by means of the suggested graphical notation.
The base state-based class (if exists) is indicated in the
heading of the state-based class frame after the colon.
All states and transitions of the base class are implicitly
inherited by the derived state-based class.

Overriding of the states and transitions of the base
class are permitted. The overridden state is marked by
the bold dot. In the case of multiple n-ary inheritance,
one numbered dot for each base class is depicted in the
order they appeared in the heading. The dot with num-
ber i corresponds to the base class with number i. The
state marked by more than one dot is a union and exten-
sion of the states with the same name that are present in
several base classes (Fig. 2). Note that, if multiple
inheritance is used, various contradictions inherent in
multiple inheritance may appear. The detailed formal
analysis of possible contradictions is beyond the scope
of this work and is a subject of future studies.

The transition overriding is implemented in accor-
dance with the permissive part of the transition specifi-
cation. As a result of the overriding, the transition
action can be modified. The overridden transition
begins at the bold dot depicting the corresponding base
class. For example, in Fig. 2, the class Derived over-
rides the transition by the cause C from the state sec-

Base0(lFoo)

initial

second

Derived(lFoo) : Base0, Base1

Base1(lFoo)

initial

second

secondsecond

initial

1

0 1

0

CA BC

C

C

Fig. 2. Multiple inheritance of state-based classes.

IFoo
Base0

Derived

Base1
IFoo

IFoo

Fig. 3. Static diagram of state-based classes.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

GRAPHICAL INHERITANCE NOTATION 287

ond of the base class Base0 and indicates state sec-
ond of the base class Base1 as a terminal state.

Note that the inheritance relations for the state-
based classes can be represented by means of the class
diagrams of the UML language [25]. The class dia-
grams make it possible to represent static aspect of the
state-based class inheritance; however, they do not pro-
vide graphical syntax for detailed representation of the

dynamic aspect of inheritance. An example of the class
diagram is shown in Fig. 3.

2.2. Graphical Representation of Structuring
of the State-Based Class Logic

Consider the behavior diagram of the state-based
class DirectObj depicted in Fig. 4a. In class
DirectObj, structuring is not used; therefore, its dia-
gram contains redundant transitions.

Structuring of the state-based class logic is per-
formed by means of the state groups, which are
depicted as dashed rectangles (e.g., state groups
active and effective in Fig. 4b). State groups
make it possible to generalize behavior common for
several states. As a result, duplication of transitions can
be reduced.

State groups may contain group transitions. The
group transition can be performed when the state-based
class is in one of the states belonging to this group.

DirectObj(lFoo) Obj(lFoo)

exit

main wait

compute

save

abort

a b

c

exit

exit

abort

d
main wait

save

compute

exit

a b

cd

abort

active effective

 (a) Without logic structuring (b) With logic structuring

Fig. 4. Example of using state-based class logic structuring.

State

ActiveState

EffectiveState

compute save

wait

main

Fig. 5. Hierarchy of states.

DerivedObj(lFoo) :Obj DirectDerivedObj(lFoo)

passive active
terminated

exit

effective

save

backup

f e

active effective

save

backup
exit

terminated
f e

main

abort

wait

a
b

cd

compute

(a) Combined use of inheritance (b) Without combined use of inheritance
and structuring and structuring

Fig. 6. Example of combined use of state-based class inheritance and logic structuring.

288

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

SHOPYRIN, SHALYTO

States belonging to one group are descendants of
one base class of states. State groups can be embedded
one into another forming hierarchy. The diagram of
state classes corresponding to the state-based class
shown in Fig. 4 is depicted in Fig. 5 [26].

Logic structuring can be used together with the
inheritance of state-based classes. All state groups
defined in the base class are implicitly inherited by the
derived class. The state groups of the base class men-
tioned in the derived class are marked by the bold dot,
like the states of the base class. The derived state-based
class can override behavior in the groups of its base
class.

As an example, we consider class DerivedObj,
which is a descendant of class Obj (Fig. 4b). The
behavior diagram for class DerivedObj is depicted in
Fig. 6a.

In the state-based class DerivedObj, state groups
active and effective of the base class Obj are
overridden. Class DerivedObj adds the new state
group passive. In addition, the state-based class
DerivedObj (i) overrides transition from group
active in state main setting state terminated
defined in class DerivedObj as the terminal state and
(ii) adds state backup to the state group effective
and connects it by transitions with state save.

The behavior diagram for the state-based class
DirectDerivedObj that is similar to class DerivedObj
(Fig. 6a) but is constructed without combined use of struc-
turing and inheritance of the state-based class logic is pre-
sented in Fig. 6b.

Structuring of the state-based class logic by group-
ing states allows us to considerably reduce duplication
and improve readability both at the stage of designing
state-based classes and at the stage of their implemen-
tation.

ReadFile (lFile)

Name Meaning
...

OFR lsO/RF

C

RlsO/RT

reading main

...
Name MeaninglsO/RF OFR

main

C lsO/RT

reading main

Name Meaning
... ...

... ...

R

R

lsO/RT

lsO/RT

lsO/RT

OFR

C
C C

W

writing

WriteFile (lFile)

ReadWriteFile (lFile)

lsO/RF OFW

OFRW

readwriting

W

W

writing

(a) Access for reading (b) Access for writing

(c) Access for reading/writing

Fig. 7. Behavior diagrams for a family of file access classes without using inheritance.

Access for reading Access for writing

Access for reading/writing

Access to file

Fig. 8. Hierarchy of file access classes.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

GRAPHICAL INHERITANCE NOTATION 289

3. APPLICATION EXAMPLE

Let us consider an example illustrating the proposed
graphical notation. Suppose that there exists a family of
classes providing access to a file:

• access for reading (state-based class ReadFile),

• access for writing (state-based class WriteFile),

• access for reading, writing, and reading/writing
(state-based class ReadWriteFile).

These classes are of automaton nature (with states
“Closed,” “Open for reading,” etc.). The behavior dia-
grams for these state-based classes are presented in Fig. 7.

The behavior of these classes can be generalized
(similar components are distinguished) and structured

by means of the inheritance. These classes form the
hierarchy shown in Fig. 8.

The root of the suggested hierarchy is the abstract
class generalizing some aspects of access to a file. The
behavior diagram for these classes constructed by
means of the inheritance is depicted in Fig. 9.

The behavior of any state-based class can be
extended by means of the inheritance. Figure 10 shows
the behavior diagram for the state-based class Append-
File, which extends logic of the state-based class
ReadWriteFile by adding one more state (append-
ing) to it. The extension proceeds incrementally, with-
out modifications of the already exiting classes.

main

OFRW

opened

readwriting

W

Name Meaning

R
OFRW

readwriting

ReadWriteFile (lFile) : ReadFile, WriteFile

File (lFile)

Name Meaning

R
OFR

reading
lFile.Read()
lFile.Open (fname,"r")

"File is open for reading"

Name Meaning

closed
C

IsO
group "File is closed"
lFile.Cloise()

lFileIsOpened()

(b) Access for reading (c) Access for writing

(d) Access for reading/writing

(a) Abstract access to file

main

opened

opened

main reading

closed

C
IsO/RT

IsO/RF

main
opened
RF
RT

"Initial mode"
group "File is open"
return false
return true

R

OFR

ReadFile (IFile) : File

Name Meaning

W
OFW

writing
lFile.Write()
lFile.Open (fname,"w")

"File is open for writing"

opened

main writing

W

OFW

WriteFile (IFile) : File

0 1

R

W

lFile.Read()
lFile.Open (fname,"rw")

"File is open for reading/writing"
lFile.Write()

Fig. 9. Behavior diagrams for file access classes with the use of inheritance.

290

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

SHOPYRIN, SHALYTO

The behavior diagram for class AppendFile shown
in Fig. 10 is equivalent to the behavior diagram for class
AppendFile (Fig. 11) but constructed without use of
the inheritance. Note that the use of the inheritance con-

siderably reduced duplication of the states and transi-
tions.

The table shows results of calculation of the number
of the states, state groups, and transitions used in
designing behavior of state-based classes with the use
of decomposition and structuring their logic by means
of the inheritance (Figs. 9 and 10) and without it (Figs. 7
and 11).

As can be seen from the table, the proposed method
of decomposition and structuring of the state-based
class logic allows us to considerably reduce the number
of the transitions used by removing duplication. In this
case, the diagram is supplemented by new entities, such
as overridden states and state groups.

main

OFA

opened

appending

W

Name Meaning

appending
OFA

W
"File is open for writing to the end"
lFile. Open (fname, "a")

lFile. Write()

AppendFile (lFile) : ReadWriteFile

Fig. 10. Behavior diagram for the AppendFile class with the use of inheritance.

AppendFile (lFile)

Name Meaning
...

lsO / RT W

appending

C OFA
OFR lsO / RF OFW

reading main writing

...

lsO / RT R
OFRW

C
C C

R WlsO / RT

WlsO / RT

readwriting

Fig. 11. Behavior diagram for the AppendFile class without using inheritance.

Comparison of the design methods

Without using
inheritance and
logic structuring

With the use of
inheritance and
logic structuring

States 13 5
Overridden states – 4
State groups – 2
Overridden state
groups

– 4

Transitions 42 12

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

GRAPHICAL INHERITANCE NOTATION 291

4. CONCLUSIONS

In conclusion, we note that, for the graphical nota-
tion described, two methods of implementation of the
state-based classes have been suggested:

• one based on virtual methods [27],

• the other based on virtual embedded classes [28].

These methods completely agree with the basic
principles of object-oriented programming and allow
us, as required in the automata-based programming, to
isomorphically map the proposed graphical notation
when implementing state-based classes.

The practical importance of the suggested graphical
notation and of the related methods of implementation
of state-based classes is substantiated by the results of
their application to programming practice at Transas
Technologies Co. In particular, it was used in the design
and implementation of the editing manipulators in the
Iris reusable framework. The latter is designed for con-
structing spatial data visual editing subsystems and is
used for developing navigation, coastal, and training
systems.

The graphical notation discussed makes it possible
to generalize, decompose, structure, and extend logic of
the state-based classes by means of the inheritance.
Decomposition and structuring of the state-based class
logic considerably reduces duplication in designing and
implementing systems whose behavior is described by
finite automata.

REFERENCES
1. Harel, D. and Pnueli, A., On the Development of Reac-

tive Systems, Logic and Models of Concurrent Systems.
Nato Advanced Study Institute on Logic and Models for
Verification and Specification of Concurrent Systems,
Springer, 1985, pp. 477–498.

2. Shalyto, A.A. and Tukkel’, N.I., From Turing Program-
ming to Automaton Programming, Mir PK, 2002, no. 2,
pp. 144–149, http://is.ifmo.ru/works/turing/.

3. Shalyto, A.A. and Tukkel’, N.I., SWITCH-technology:
An Automated Approach to Developing Software for
Reactive Systems, Programmirovanie, 2001, no. 5,
pp. 45–62 [Programming Comput. Software (Engl.
Transl.), 2001, vol. 27, no. 5, pp. 260–276].

4. Gamma, E., Khelm, R., Johnson, R., and Vlissides, J.,
Methods of Objective-Oriented Projection. Design Pat-
terns, St. Petersburg: Piter, 2001, p. 368.

5. Adamczyk, P., The Anthology of the Finite State
Machine Design Patterns, The 10th Conf. on Pattern
Languages of Programs, 2003, http://hillside.net/plop
/plop2003/Papers/Adamczyk-State-Machine.pdf.

6. Shalyto, A.A. and Naumov, L.A., Methods of Objective-
Oriented Implementation of Reactive Agents on the
Basis of the Finte Automata, Iskusstvennyi intellect,
2004, no. 4, pp. 756–762, http://is.ifmo.ru/works
/_aut_oop.pdf.

7. Adamczyk, P., Selected Patterns for Implementing Finite
State Machines, The 11th Conf. on Pattern Languages of
Programs, 2004, http://pinky.cs.uiuc.edu/~padam-
czy/docs/fsm_updated.pdf.

8. Odrowski, J. and Sogaard, P., Pattern Integration—Vari-
ations of State, Proc. of PLoP96, http://www.cs.wustl.
edu/~schmidt/PLoP-96/od-rowski.ps.gz.

9. Harel, D., Statecharts: A Visual Formalism for Complex
Systems, Sci. Comput. Program, 1987, vol. 8, pp. 231–
274.

10. Automata Studies, Princeton: Princeton Univ. Press,
1956.

11. Harel, D. and Naamad, A., The Statemate Semantics of
Statecharts, ACM Trans. Softw. Eng. Methodology, 1996,
vol. 5, pp. 293–333.

12. Mikk, E., Lakhnech, Y., Petersohn, C., and Siegel, M.,
On Formal Semantics of Statecharts as Supported by
STATEMATE, Proc. of the 2nd BCS-FACS Northern
Formal Methods Workshop, Ilkley, 1997.

13. Specification and Description Language (SDL), Int.
Engineering Consortium, http://www.iec.org/acrobat.
asp?filecode=125.

14. Benveniste, A., The Synchronous Languages 12 Years
Later, Proc. of the IEEE, 2003, vol. 91, no. 1, pp. 64–83.
http://www-sop.inria.fr/aoste/benveniste2003synchro no-
us.pdf.

15. André, C., SyncCharts: A Visual Representation of
Reactive Behaviors, Tech. Report RR 95-52. I3S, Sophia-
Antipolis, 1995.

16. Shalyto, A.A. and Tukkel’, N.I., Tanks and Automata,
BYTE, Russia, 2003, no. 2, pp. 69–73, http://is.ifmo.ru
/works/tanks_new/.

17. Shalyto, A.A., SWITCH-technology, Algoritmizatsiya i
programmirovanie zadach logicheskogo upravleniya
(Algorithmization and Programming of Logic Control
Problems), St. Petersburg: Nauka, 1998, no. 1, p. 628.

18. Danforth, S. and Tomlinson, C., Type Theories and
Object-Oriented Programming, ACM Comput. Surv.,
1988, no. 1, pp. 29–72.

19. Sane, A. and Campbell, R., Object-Oriented State
Machines: Subclassing, Composition, Delegation, and
Genericity, OOPSLA'95, http://choices.cs.uiuc.edu/sane
/home.html.

20. Lee, J., Xue, N., and Kuei, T., A Note on State Modeling
Through Inheritance, SIGSOFT Softw. Eng. Notes, 1998,
no. 1, pp. 104–110.

21. Taivalsaari, A., On the Notion of Inheritance, ACM Com-
put. Surv., 1996, no. 3, pp. 438–479.

22. Bracha, G. and Cook, W., Mixin-based Inheritance,
OOPSLA/ECOOP'90, Conf. Proc., ACM SIGPLAN Not.,
1990, no. 10, pp. 303–311.

23. Wegner, P. and Zdonik, S., Inheritance As an Incremental
Modification Mechanism or What Like Is and Isn’t Like,
ECOOP'88 Conf. Proc., Springer, 1988, pp. 55–77.

24. Shalyto, A.A. and Tukkel’, N.I., Implementation of
Automata in Programming of Event Systems, Program-

292

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 5 2007

SHOPYRIN, SHALYTO

mist, 2002, no. 4, pp. 74–80, http://is.ifmo.ru/works
/evsys/.

25. Buch, G., Rambo, J., and Jacobson, A., UML. Rukovod-
stvo pol’zovatelya (UML. Guidance for a User), Mos-
cow: DMK, 2000, p. 432.

26. Zayakin, E.A. and Shalyto, A.A., Method of Elimination
of Repeated Code Fragments in Implementation of
Finite Automata, Mir PK (CD), 2005, no. 8,
http://is.ifmo.ru/projects/life_app/.

27. Shopyrin, D.G., Objective-Oriented Implementation of
Finite Automata on the Basis of Virtual Methods, Infor-
matsionno-upravlyayushchie sistemy, 2005, no. 3,
pp. 36–40, http://is.ifmo.ru/works/runewstate/.

28. Shopyrin, D.G., A Method of Design and Implementa-
tion of Finite Automata on the Basis of Virtual Embed-
ded Classes, Informatsionnye tekhnologii modeliro-
vaniya i upravleniya, 2005, no. 1, pp. 87–97, http://is.
ifmo.ru/works/ruvstate/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

