
ISSN 0005-1179, Automation and Remote Control, 2016, Vol. 77, No. 3, pp. 473–484. c© Pleiades Publishing, Ltd., 2016.

Original Russian Text c© D.S. Chivilikhin, V.I. Ulyantsev, A.A. Shalyto, 2016, published in Avtomatika i Telemekhanika, 2016, No. 3, pp. 137–151.

LOGICAL CONTROL

Modified Ant Colony Algorithm

for Constructing Finite State Machines

with Work Scenarios and Temporal Formulas

D. S. Chivilikhin, V. I. Ulyantsev, and A. A. Shalyto

IFMO University, St. Petersburg, Russia

e-mail: chivdan@rain.ifmo.ru, ulyantsev@rain.ifmo.ru, shalyto@mail.ifmo.ru

Received December 10, 2014

Abstract—We solve the problem of constructing controlling finite state machines with work
scenarios and temporal formulas. We propose a new algorithm pstMuACO that combines a
scenario filtering procedure, an exact finite state machine construction algorithm with work
scenarios efsmSAT based on a reduction to the satisfiability problem for a Boolean formula,
and a parallel ant colony algorithm pMuACO. Experiments show that by constructing several
initial solutions for the ant colony algorithm with reduced sets of scenarios significantly reduces
the total time needed to find optimal solutions. The proposed algorithm can be used for
automated construction of reliable control systems.
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1. INTRODUCTION

In certain cases, logical control systems are presented with increased reliability requirements.
This relates, for instance, to systems used in aviation, space industry, and power generation. In
these fields, errors in the control program may be unacceptable. One can reach a high level of
reliability for control programs with verification. One approach to program verification is model

checking [1], where one begins by constructing a model of the program being tested. Note that
in the general case the model is not eqiuvalent to the original program since it is constructed
either by hand or heuristically. Properties that a model of the tested program should satisfy are
written in the language of temporal logic. To test whether the model in question satisfies these
properties one uses special software, namely verifiers such as NuSMV (http://nusmv.fbk.eu/) or
SPIN (http://spinroot.com).

One approach to constructing logical control systems is programming with explicit state identi-
fication, or automata programming [2, 3]. The essence of this approach is to represent the logic of
a program’s operation with one or several interacting control finite state machines. One advantage
of automata programming over other approaches is the higher level of automation available for
verification of automata program with model checking [4]. This advantage is due to the fact that
an exact model of an automata program can be constructed automatically.

In some cases, automata programs can be constructed by hand, but this is a tedious process, and
programs constructed by humans are often suboptimal. This is not surprising since in some cases
problems of constructing finite state machines are NP-hard [5, 6]. Therefore, currently developed
methods for their automated construction use metaheuristic optimization algorithms [7–9], e.g.,
genetic [10] and ant colony [11] algorithms, and methods based on reducing these problems to
other NP-hard problems, e.g., the Boolean satisfiability problem SAT [12, 13] and the constraint
satisfaction problem CSP [14].
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Let us give an example where an automata program can be constructed automatically. Suppose
that we know certain examples of the necessary automata program’s behaviour and some of its
more general properties written in the language of temporal logic. The approach proposed in [10]
lets one use a genetic algorithm to automatically construct a controlling finite state machine that
satisfies these behaviour samples and temporal properties.

An important problem in all methods of automatic finite state machine construction is the fact
that in order to construct even small finite state machines (up to ten states) one may need up to
several hours of computation on a desktop computer. The work [15] proposes a parallel algorithm
based on an ant colony algorithm [11, 16]. This algorithm lets one use parallel computations to
reduce the time needed for constructing finite state machines by several times.

This work continues the work [15]. We solve the problem of constructing controlling finite
state machines (FSMs) with work scenarios and temporal formulas. We propose a new algorithm
pstMuACO that combines parallel ant colony algorithm pMuACO [15], exact algorithm for con-
structing controlling finite state machines with work scenarios efsmSAT [13], which is based on
solving SAT, and a scenario filtering procedure. It follows from [6] that the problem at hand is at
least NP-hard, which justifies our choice of algorithms to solve it. Our experiments have shown
that the new algorithm lets one construct FSMs significantly faster than other known algorithms.

2. PROBLEM SETTING FOR CONSTRUCTING A CONTROLLING
FINITE STATE MACHINE

A controlling finite state machine [2] is a 7-tuple 〈X,E, Y, Z, y0, φ, δ〉, where X is the set of
Boolean input variables, E is the set of input events, Y is the set of states, y0 ∈ Y is the ini-
tial state, Z is the set of output influences, φ : Y × E × 2X → Y is the transition function, and
δ : Y × E × 2X → Z∗ is the output function. Thus, in this work we consider FSMs each of whose
transitions is labeled with an input event, a Boolean formula of input variables, and a sequence of
output influences. The semantics for the operation of finite state machines is as follows. Suppose
that the FSM is at state y. When the next input event e ∈ E arrives, the FSM checks whether
there exists a transition from state y labeled by event e. If such a transition exists, and the Boolean
formula that labels it is satisfiable under current values of input variables, then the FSM transi-
tions into the new state y′ and sends the sequence of output influences that labels this transition
as output.

A sample controlling finite state machine with three states is shown on Fig. 1. Each transition is
labeled with an input event from E = {e0, e1, e2}, a Boolean formula of a unique input variable x,
and a sequence of output influences from Z = {z0, z1, z2}. The initial state is marked with a bold
frame.

One of the possible types of input data in the problem of constructing finite state machines
by their specifications are sample behaviors that the user wants to observe in the program. Such
sample behaviors may include test examples, work scenarios, or negative scenarios [17]. The second
type of input data are temporal formulas that the program must satisfy. In this work we consider
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Fig. 1. A sample controlling finite state machine.
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work scenarios as sample behaviors, and temporal formulas are specified in the language of Linear
Time Logic (LTL).

A work scenario si is a sequence of triples
{

〈eji , ϕ
j
i , O

j
i 〉
}li−1

j=0
, called scenario elements, where li

is the number of elements in scenario si, e
j
i ∈ E is the input event, ϕj

i : 2
X → {0, 1} is a Boolean

formula of the input variables, and O
j
i ∈ Z∗ is a sequence of output influences. We say that an

FSM satisfies a work scenario 〈eji , ϕ
j
i , O

j
i 〉 in state y if in this state there exists a transition labeled

by event eji , a sequence of output influences Oj
i , and a formula equal to ϕ

j
i as a Boolean formula.

Let us describe how the FSM processes a work scenario. Scenario elements are processed one by
one. In processing a scenario element, we check whether the FSM has a transition from the current
state that satisfies this element. If such a transition exists, the FSM transitions to the new state
and sends the sequence of output influences written on the transition as output. Thus, processing
a scenario generates a path in the FSM which represents the sequence of visited states.

An FSM satisfies a work scenario if it satisfies all scenario elements in the correspond-
ing states of this path. For instance, the FSM depicted on Fig. 1 satisfies scenario
〈e2, 1, (z2)〉〈e1, x, (z0, z1)〉〈e0,¬x, (z1)〉, but does not satisfy scenario 〈e2, 1, (z2)〉〈e2,¬x, (z1)〉.

An LTL-formula includes propositional variables characteristic for the specific problem, logical
operators (∧,∨,¬), and temporal operators such as Globally (at any moment of time), neXt (at
the next moment of time), Future (some time in the future), Until , and Release. Formulas that
we consider in this work contain the following propositional variables:

—∀e ∈ E : wasEvent(e) means that there has been a transition labeled with input event e;

—∀z ∈ Z : wasAction(z) means that there has been a transition labeled with output influ-
ence z.

The FSM depicted on Fig. 1, satisfies LTL-formula G(¬wasEvent(e0) ∨ F (wasEvent(e2)∧
wasAction(z2))) that states that if there has been a transition labeled by event e0 then some
time in the future there will be a transition labeled by event e2 and output influence z2. Formula
G (¬wasEvent(e2) ∨X (wasEvent(e1))) does not hold for this FSM since after a transition with
event e2 there may be either a transition with event e1 or with event e0.

In this work, we solve the problem of constructing a controlling FSM with a given number of
states that satisfies a given set of work scenarios S and a set of LTL-formulas. The considered
algorithms for constructing finite state machines perform directed enumeration of possibilities. To
evaluate how well a solution candidate satisfies given set of scenarios and LTL-formulas, we use the
corresponding fitness function.

3. THE FITNESS FUNCTION

To evaluate how well finite state machines satisfy a given set of scenarios S and LTL-formulas,
we use a fitness function (FF) proposed in [17]. This FF is based on the edit distance [18], an
automata program verifier [17], and has the form

F = Ftests + FLTL +
M − ntransitions

100M
,

where ntransitions is the number of all transitions of the FSM, and M is a number that is guaranteed
to exceed ntransitions. In the experiments, we used M =100.

The first component of the FF Ftests estimates how well the FSM satisfies a given set of
work scenarios S. In computing the FF value on the FSM, each scenario si is processed as
follows. The FSM receives as input pairs of input events and Boolean formulas of the sce-
nario si: 〈e0i , ϕ

0
i 〉, 〈e

1
i , ϕ

1
i 〉, . . . , 〈e

li−1

i , ϕli−1

i 〉. After processing each such pair, the FSM outputs
some sequence of output influences. As a result, for the ith scenario we get a sequence of
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sequences Ai = A0
i , . . . , A

li−1

i . With the resulting output sequence Ai and reference sequence

Oi = O0
i , . . . , O

li−1

i written in the scenario, we compute Levenstein’s edit distance ED(Oi, Ai),
whose original version for binary strings was proposed in [18]. The expression for Ftests looks like

Ftests =
1

|S|

|S|−1
∑

i=0

(

1−
ED(Oi, Ai)

max (len (Oi) , len (Ai))

)

,

where |S| is the number of work scenarios, len(p) is the length of sequence p, and ED (p1, p2) is the
Levenstein’s edit distance between sequences p1 and p2.

The second component of FF FLTL evaluates how well the FSM corresponds to given temporal
formulas. Verifier developed in [17] lets us single out FSM transitions that definitely do not occur
in the counterexample. We call such transitions verified. The contribution of the ith LTL-formula
is computed as the number of verified transitions tichecked divided by the number of transitions
tireachable reachable from the original state. FLTL is computed as the average of this value over all
LTL-formulas:

FLTL =
1

k

k−1
∑

i=0

tichecked
treachable

,

where k is the number of LTL-formulas. Note that if an FSM satisfies a formula then the number
of verified transitions equals the number of reachable transitions, and consequently, the maximal
value of FLTL equals one.

The presence of the third FF component is determined by the fact that FSMs with few transitions
are considered preferable to FSMs with more transitions.

4. ANT COLONY ALGORITHM BASED ON THE MUTATION GRAPH

In this section, we show a brief description of the algorithm MuACO whose complete version can
be found in [11]. MuACO (Mutation-based Ant Colony Optimization) is a metaheuristic search op-
timization algorithm desined to construct finite state machines. The operation of MuACO is based
on the so-called mutation graph whose vertices correspond to finite FSMs and edges correspond to
mutations of finite state machines. A mutation is a small change in the FSM structure caused by
an application of the mutation operator. When solving the problem of constructing a controlling
finite state machines with work scenarios and temporal formulas, MuACO employs two mutation
operators. The first chooses a random transition in the FSM and changes the state y where this
transition is leading to. The new state is chosen uniformly at random among all states except y.
The second operator sequentially considers all FSM states and with a certain probability adds a
new transition or deletes an existing transition in each state.

A sample mutation graph is shown on Fig. 2. The label (3, e1[¬x1]) → 2 on an edge means that
the corresponding mutation has changed the state where transition from state 3 along event e1 and
formula ¬x1 leads to state 2.

Each edge uv of the mutation graph (u and v are graph vertices corresponding to solution can-
didates) is assigned with heuristic information values ηuv and pheromone values τuv. Heuristic in-
formation on an edge uv is computed as ηuv = max(ηmin, F (v) − F (u)), where ηmin = const =10−3.
The pheromone values τuv initially equal τmin = const = 10−3 and change during the algorithm’s
operation.

We will consider the maximization problem for the FF. The algorithm begins from a unique
initial solution that can be either randomly generated or served as input. This solution becomes
the first vertex of the mutation graph. The algorithm looks for solutions with a colony of Nants

ants. On each iteration of the colony, ants move along the mutation graph. At the beginning of
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Fig. 2. A sample mutation graph.

every step, an ant is located at a certain vertex u and chooses which vertex v to move to. For this
purpose, the ant does one of the following:

• with the roulette method [19], the ant chooses the next vertex v among the set of vertices Nu

incident to u. The probability puv to choose vertex v is computed with the following formula,
classical in ant colony algorithms [20]:

puv =
ταuv × ηβuv

∑

w∈Nu

ταuw × η
β
uw

,

where v ∈ Nu, and α, β ∈ [0, 1] reflect the importance of pheromone values and heuristic in-
formation respectively;

• by applying mutation operators, create Nmut new finite state machines. All new FSMs are
added to the graph as children of vertex v. The ant moves to the vertex corresponding to an
FSM with the largest value of FF.

Each ant stores a counter and the FF value fmax
ant of the best FSM it has found. If at the present

step the ant has found a solution whose FF value is larger than fmax
ant , the value f

max
ant is updated and

the counter remains unchanged; otherwise the counter is incremented by one. When the counter
value becomes equal to nstag, the ant is forced to stop.

A similar procedure is performed for the ant colony: one stores a counter and the maximal FF
value of an FSM found by the ants. If at the present iteration of the colony this FF value does not
increase, the counter is incremented by one. If the counter’s value reaches Nstag, we assume that
the algorithm has come to stagnation, and the algorithm is restarted.

At the end of each ant colony iteration, we update the pheromone values on all edges of the
mutation graph. Apart from heuristic information and pheromone values, for each edge we store
the value Fmax

uv corresponding to the largest value of FF FSM found by an ant that visited this
edge.

Consider the paths of all ants on a given iteration. The FF value for an any is the FF value of
the best FSM found by this ant. For each ant’s path, we find a segment from the beginning to the
vertex corresponding to the best FSM along this path. For all edges in this segment, we update
the values Fmax

uv , then update the pheromone values:

τuv = max(τmin, (1 − ρ)τuv + Fmax

uv ),

where ρ ∈ [0, 1] is the pheromone’s evaporation rate.
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5. PARALLEL ANT COLONY ALGORITHM PMUACO

In this section, we show a parallel ant colony algorithm proposed in [15]. This algorithm is
intended to be used on multicore computers with shared memory but can also be extended to run
on a cluster. We call this algorithm pMuACO (parallel MuACO).

Suppose that the parallel algorithm has access to m execution threads. In each thread, we run
the MuACO algorithm, generating a separate initial solution randomly for each thread. It has been
shown in [15] that interaction between individual threads in an algorithm significantly improves
its efficiency. We have implemented two interaction mechanisms based on an archive of K best
solutions for all threads. At every time moment, the Ki cell stores the best solution found by the
ith algorithm.

The first interaction algorithm is activated when the ith MuACO algorithm reaches stagnation
and is restarted. The starting solution is no longer randomly generated but chosen from the archive
of best solutions K \ {Ki}.

The second mechanism works on each ant colony iteration of everyMuACO algorithm; it uses the
genetic crossover operator for controlling finite state machines. The crossover operator receives two
FSMs (parents) as input and returns two FSMs (children). Each child contains transition chosen
from both parents. The work [15] uses a crossover operator for finite state machines proposed
in [10] that takes into account which transitions in the parents have been used to compute the FF
value.

Before the beginning of an iteration of the ith algorithm, we choose a solutionKj, j 6= i randomly
from the archive of best solutions. The crossover operator is applied to Ki and Kj ; it returns two
FSMs A1 and A2. Then, we choose the finite state machine whose FF value is larger, say Abest.
The Abest FSM is added to the mutation graph of the ith MuACO algorithm as a child of the
vertex associated with Ki. In the subsequent iteration of the ith algorithm, one ant will start from
the vertex associated with Abest, and the other ants, as before, from the vertex associated with the
currently best solution found by the ith algorithm Ki.

6. PROPOSED MODIFICATION OF THE PARALLEL ANT COLONY ALGORITHM

In this work, we propose to get initial solutions for the parallel algorithm pMuACO from reduced
sets of work scenarios. This modification is an extension of the approach proposed in [14], where
to get an initial approximation we use the exact method of constructing controlling finite state
machines with work scenarios. Exact methods are based on reducing the problem of constructing
controlling finite state machines with work scenarios to the satisfiability problem for a Boolean
formula (SAT) and a constraint satisfaction problem (CSP). To solve the SAT and CSP problems,
we use third party software such as cryptominisat (https://github.com/msoos/cryptominisat) and
Choco (http://choco-solver.org/). It has been shown in [14] that a join application of the exact
algorithm and ant colony algorithm [11] significantly reduces the time needed to construct finite
state machines.

An obvious development of this approach is to use it to get an initial approximation in parallel
algorithms. We call this algorithm psMuACO (parallel SAT MuACO). First, with an exact algo-
rithm we construct a finite state machine satisfying all scenarios. Then we use this FSM as an initial
solution for the pMuACO algorithm. However, we note that parallel combinatorial optimization
algorithms reach maximal efficiency if the search in different threads starts from different initial
solutions. This is caused by the fact that for different initial solutions the search space covered by
the algorithm per unit of time increases significantly. If we use exact software solutions for SAT
and CSP, the algorithms are usually deterministic: the same set of scenarios always leads to the
same FSM. To use this approach together with a parallel ant colony algorithm, we have to use
algorithms based on SAT or CSP to get several different finite state machines.
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Fig. 3. Flowchart of the proposed pstMuACO algorithm.

We propose to solve this problem by constructing initial solutions with reduced sets of scenarios
obtained from the original set with a filtering procedure. The algorithm consists of three stages.

1. Scenario filtering procedure. With a set of scenarios T , generate nstart different finite state
machines. For this purpose, we first construct nstart reduced sets of scenarios T ′

0, . . . , T
′
nstart−1.

Each such set is obtained from the original set T by filtering: removing each scenario with
probability pthin.

2. Constructing initial solutions with the efsmSAT method. Each ith FSM is constructed with
a reduced set of scenarios T ′

i with the efsmSAT method based on a reduction to the SAT
problem [13]. The FSMs are constructed independently by running cryptominisat in parallel
to solve SAT problems. This approach does not guarantee different finite state machines, but
in experiments the share of identical finite state machines has proven to be near zero.

3. Constructing the FSM with the pMuACO algorithm. In case when nstart = m, the ith FSM
constructed with the reduced set of scenarios T ′

i is used as an initial solution for the ith thread
of the algorithm. If nstart < m, the initial solution in each thread is chosen randomly out of
the set of generated initial solutions.

The number of finite state machines nstart generated with SAT and the probability of deleting a
scenario pthin are parameters of the algorithm. The flowchart of the proposed algorithm pstMuACO

(parallel SAT thinned out MuACO) is shown on Fig. 3.

7. EXPERIMENTAL STUDY

In this section, we present computational experiments, the process of data preparation, and the
choice of values for algorithm parameters. To tune the values of parameters, we have used a server
with a 24-core AMD Opteron(TM) processor 6234@1.4 GHz, and all computational experiments
have been performed on a server with 64-core AMD Opteron(TM) processor 6378@2.4 GHz.

7.1. Data Preparation

For our computational experiments, we have prepared two input datasets: a training set and a
test set. Each of them is a set of examples, and each example consists of a number of work scenarios
and a set of LTL-formulas. To generate such an example, we first randomly generate an FSM with
the following parameters: number of states N , number of input events |E| = 2, number of input
variables |X| = 1, number of output influences |Z| = 2, and sequences of output influences on the
transitions contain zero to two influences.

Using this FSM, we construct a set of work scenarios. Each scenario corresponds to a random
path in the FSM. The beginning of each scenario coincides with the FSM’s initial state. The length
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of the scenario equals the number of transitions occurring in the path. In total, we generate 5N sce-
narios of total length 100N .

Construction of the LTL-formulas that FSM A satisfies was done as follows. The formula
construction algorithm receives as input the FSM A for which the formulas are to be constructed
and the desired number of formulas nLTL (here nLTL = 2). First, with the randltl software [21]
we generate 100nLTL random LTL-formulas, where the number of vertices in each formula tree
does not exceed 15. Next, with a verifier [17] we find only formulas that A satisfies. For further
testing of each such formula, we generate 50 random finite state machines and test for each machine
whether the formula holds for it. The formula is added to the final set of formulas if it holds for
at most half of those finite state machines. The formula generation process halts when we get the
necessary number of formulas.

7.2. Tuning Algorithm Parameters

Keeping in mind that computational experiments should produce fair results, we chose the
parameters of the algorithms under comparison not by hand but with an automated procedure
called parameter tuning. For this purpose, we used the irace software [22]. The parameter tuning
procedure consists of the following. Suppose we have to find good values of parameters for an
algorithm intended to solve problem P . The tuning program (irace) receives as input:

• a description of the parameters for the tuned algorithm: name, type, range of admissible
values;

• a set of examples I for problem P ;
• a time constraint on the operation of the tuning program.

Sets of algorithm parameter values are called configurations. At first, irace generates a set of
random configurations. On each iteration, inefficient configurations are discarded with the following
mechanism. The tuned algorithm is parameterized with a configuration and sequentially run on
several examples from I, computing the problem’s objective function value P on every run. A
configuration is considered inefficient and is discarded if the set of objective function values for this
configuration is statistically worse than for some other configuration.

7.3. Studying the Properties of the Proposed Modified Algorithm

Here we describe the first set of experiments; its purpose was to study the properties of the
proposed pstMuACO algorithm. We did not tune the algorithm’s parameters separately, using the
same values as in [15]: Nants = 4, Nstag = 28, nstag = 45, Nmut = 44, ρ = 0.52. We have used
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a set of 100 examples each of which was generated from an FSM with ten states. The algorithm
had 16 execution thread at its disposal. In the first experiment, the probability of filtering out a
scenario pthin varied from zero to 0.9 with step 0.1, the number of finite state machines generated
with SAT nstart varied from zero to 16. Graphs that show how the median algorithm execution
time depends on pthin for different values of nstart are shown on Fig. 4.

All values of nstart led to similar behaviour: the median execution time first decreases as pthin
increases, and then, as we come closer to the maximal value of pthin, begins to increase again.
Experimental results indicate that the values of pthin = 0.7 and nstart = 16 are optimal for our
values of algorithm parameters.

7.4. Comparison with Previous Solutions

Likewise, the purpose of the second set of experiments was to compare the algorithm pstMuACO

proposed in this work with algorithm psMuACO and algorithm pMuACO that have been proposed
earlier in [15]. Parameter values for the algorithms were tuned with irace, with 24 hours of machine
time allocated for tuning each algorithm. The training set for the tuning consisted of 200 examples
constructed with FSMs with 10–20 states. The resulting values of algorithm parameters are shown
in Table 1. In all algorithms, values of parameters α and β were equal to one.

Table 1. Values of algorithm parameters obtained with irace

Parameter pMuACO psMuACO pstMuACO

Maximal number of ant steps before increasing the FF value nstag 34 41 22
Maximal number of ant colony iterations before increasing the FF
value Nstag

33 35 17

Number of mutations Nmut 44 27 44
Number of ants Nants 4 4 17
Pheromone evaporation rate ρ 0.2 0.6 0.21
Number of solutions generated with SAT nstart – – 7
Probability of filtering out a scenario pthin – – 0.48

Yet the resulting values of new parameters pthin = 0.48 and nstart = 7 differ from the values
considered optimal in the previous experiment. This is because in this experiment we tuned the
parallel algorithm pstMuACO, while in the previous one we took some values of parameters for the
MuACO algorithm and found optimal values of new parameters for it.

Testing was performed with three sets of 50 examples each constructed with FSMs with 10, 15,
and 20 states respectively. Figures 5a and 5b show how the median execution time for the algorithms
depends on the number of states. The graphs show that execution time of algorithm psMuACO is
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Table 2. Median execution time of the pstMuACO algorithm on data with increased dimension,
seconds; TL indicates that the run did not finish in time allotted.

Number of states 5 6 7 8 9 10

|X | = 1, |Z| = |E| = 2 3.2 4.2 5.5 5.4 6.5 13.3
|X | = |Z| = |E| = 3 47.0 38.6 74.9 176.1 (19 TL) TL TL

significantly less than the median execution time for algorithm pMuACO. Algorithm pstMuACO,
in turn, runs faster than psMuACO. For instance, for finite state machines with 20 states the
median execution time of algorithm pstMuACO was 2.5 times less than the median execution time
of algorithm psMuACO and 17 times less than the median execution time of algorithm pMuACO.
We also note that for finite state machines with 20 states in six out of 50 cases algorithms pMuACO

and psMuACO did not finish in 24 hours and were interrupted. However, even if they did finish in
some longer time, it would not change the median execution time value, and the graphs on Figs. 5a
and 5b would remain the same.

On the other hand, we also computed the average execution time for examples on which all algo-
rithms finished successfully within 24 hours. For instance, for finite state machines with 20 states
this value for the pMuACO algorithm was 20 588 seconds; for algorithm psMuACO, 5421 s; for
algorithm pstMuACO, 491 s. Thus, the proposed algorithm pstMuACO is, on average, more than
40 times faster than algorithm pMuACO and more than 11 times faster than algorithm psMuACO.

To test statistical significance of the differences in algorithms, we have used the Wilcoxon
test [23]. The test was run separately for each number of states and each pair of algorithms. The null
hypothesis was that the median of the samples’ difference was zero. The alternative hypotheses was
that it was less than zero. The confidence level was set to 0.05. For the pair of algorithms pMuACO

and psMuACO we obtained the following p-values: 2.07× 10−6 (10 states), 7.14 × 10−5 (15 states)
and 1.25 × 10−3 (20 states). For the pair of algorithms psMuACO and pstMuACO we obtained the
following p-values: 0.03 (10 states), 5.44 × 10−7 (15 states), and 1.95 × 10−5 (20 states). These re-
sults indicate that for the considered data the psMuACO algorithm is in all cases statistically faster
than algorithm pMuACO, and the pstMuACO algorithm is statistically faster than the psMuACO

algorithm.

Finally, we performed an experimental study on data of increased dimension. We considered
FSMs with five to ten states, three input events, three output variables, and three output influences.
Sequences of output influences on the transitions contained zero to three influences. We set a time
limit on each experiment of 300 seconds. Results of these experiments are shown in Table 2.
Judging by the data, we can conclude that increased input data dimension leads to a significant
increase in the time needed to construct the optimal solution. For instance, for N equal to five, six,
and seven the median execution time of algorithm pstMuACO for data with increased dimension is
approximately 10 times larger than the execution time on small dimension data. For large values
of N , most runs did not finish in time allotted.

8. CONCLUSION

In this work, we propose a new parallel algorithm for constructing controlling finite state ma-
chines pstMuACO. Our experiments have shown that the new algorithm is faster than all previously
used approaches. For instance, for the considered finite state machines with 20 states the new al-
gorithm is, on average, 40 times faster than a simple parallel ant colony algorithm. The proposed
algorithm can be used for automated construction of reliable control systems given that the finite
state machines in question have relatively small dimension.
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