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Abstract— The IEC 61499 standard has become one of the 
key approaches to building distributed component-based control 
systems in industrial automation. The problem of adoption of this 
standard in industrial practice is often associated with 
incompletely defined semantics of functional blocks (FB), which 
are main design artifacts of the standard. In this paper we 
propose formal (operational) semantics of IEC 61499 FB using 
transition systems (by example of FB systems operating in 
accordance with the cyclic execution model). The proposed FB 
operational semantics is most convenient for the formal 
verification of FB systems on the basis of model checking as it 
describes the direct transitions between states. A limitation of this 
approach is the need to map hierarchical FB systems to flat 
models. Thetechnique of code generation used for transforming 
FB transition systems to SMV models is briefly discussed 
followed by a simple case study. 

Keywords—function block; IEC 61499; formal semantics; 
transition system; model checking; SMV 

I.  INTRODUCTION 

The IEC 61499 standard has become one of the key 
technologies for building distributed component-based control 
systems in industrial automation [1,2]. The main design 
artefacts in the IEC 61499 are function blocks (FBs). 

The state of the art in the field of IEC 61499 FB semantics 
is characterized by the following: 1) ambiguities in semantic  
definitions ; 2) the presence of a number of FB execution 
models; 3) the lack of a recognized formal FB semantics. As a 
result, these factors lead to an increase of skepticism with 
respect to the IEC 61499 and to a slowdown of its adoption in 
industry. 

The semantical complexity of FBs is determined by the 
following: 1) the presence of nontrivial FB execution models; 
2) the presence of data processing algorithms in basic FBs; 3) 
event driven execution of FBs; 4) hierarchy and modularity of 
FB systems; 5) the presence of typing and instantiation for the 
most design artifacts (FBs, sub-applications, resources, 
devices); 6) the presence of both software and hardware 
modules properties in case of FBs; 7) FB language is a visual 
language programming language. Such visual component-
based, event-oriented languages require special approaches to 
the description of their semantics. 

Let us briefly consider works associated with FB formal 
semantics. Well-known models of FBs based on the NCES [2], 
finite state machines, timed automata, and Petri nets cannot be 
referred to FB formal semantics because of their abstraction. 
For example, they do not quite adequately cover all the 
elements of FB language. In [3] FB semantics is presented in 
the form of an abstract machine, but not fully (without taking 
into account the specific FB execution models) and sometimes 
informally. In [4] FB structural operational semantics is 
developed, but only for synchronous execution model. In [5,6] 
it is proposed a formal framework for FB modeling in various 
execution models and three FB execution models is considered. 
In principle, this model can be considered as a FB formal 
semantic model, but with some limitations: 1) Operational 
State Machine (OSM) machine which plays a key role in 
managing a basic FB execution and defined in IEC 61499 [1] is 
not considered; 2) the proposed model is rather abstract in a 
number of other points, for example, an algorithm is 
considered as an abstract function, without detailing the steps 
of its execution, that is important, for example, when FB 
system implementing. In [7,8] FB formal semantics based on 
abstract state machines (MAC) is proposed. The disadvantage 
of this approach is the large time and space complexity of the 
verification process of FB systems, designed in accordance 
with this model. 

An attractive method for FB formal semantics definition are 
transition systems [9]. Historically, transition systems were the 
first tool used to give the formal semantics of a programming 
language [11]. Their big advantage is ease of  mapping to 
Kripke structures that plays an important role in the formal 
verification based on model checking [10], which is supported 
by some industrial verifiers (e.g., nuSMV [11]). 

Transition systems are most suitable to define semantics 
when the concept of a state is explicitly or implicitly presented 
in the languages. Typically, these are languages for 
specification of hardware, reactive, control and hybrid systems. 
From this point of view, it can be assumed that transition 
systems will be suitable for modeling FBs, since their base is 
an automata model [13]. 

The paper is structured as follows. Section II provides FB 
formal semantics based on a transition system. In Section III, 
we propose a model checking-based approach to verification of 
FBs represented in the form of the transition system. Section 
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IV shows a simple case study of FB model checking in SMV. 
Finally, Section V gives the conclusion and future work. 

II. FORMAL MODEL OF FUNCTION BLOCKS IN THE FORM OF A 

TRANSITION SYSTEM 

Below a transition system is represented, whose main 
elements are (global) states of a FB system and (global) 
transitions between the states, which clearly define transition 
conditions and values of all variables after firing the 
transitions. In what follows, the syntactic FB model proposed 
in [8,9] will be used. It should be noted that for simplicity we 
consider only the FB systems functioning within the cyclic 
execution model that does not break generality of the approach. 

As noted in [3], an unfolded FB system can be represented 
as a tree of FB instances. The model of the FB system is 
defined as follows: MS= (SMB, SMC, VM), where 

1 2{ , ,..., }n
B B B BSM M M M=  is a set of basic function block 

modules (BFBM); 1 2{ , ,..., }m
C C C CSM M M M=  is a set of 

composite function block modules (CFBM); VM is a set of 
maps of module variables representing, in fact, relations of 
formal and actual arguments of parent/child modules. 

Since FB system model includes modules of different 
kinds, then we define their state separately. BFBM state is 
defined as 

,( , , , , , , , , , , )B EI EO VI VO VOB VV Q S NA NIS Z Z Z Z Z Z Z Z Z Z Z Zα β= , 

where symbols Z with indexes are functions of FB runtime 
variables values, and the indexes themselves refer to sets of 
corresponding variables. For example, EI and EO are sets of 
FB event input and output variables; VI, VV and VO are sets of 
FB input, internal and output variables; VOB is a set of data 
buffers; Q and S are state variables of Execution Control Chart 
(ECC) and Operation State Machine (OSM) [1], NA and NI are 
counters of EC-actions (in a list of EC-actions) and instructions 
(in an algorithm); α and  β –are flags of FB execution start and 
finish. 

BFBM state is defined as the following tuple: 

,( , , , , )C EI EO VI VOBS Z Z Z Z Z Zα β= . 

It should be noted that values of FB output variables are not 
included in state SC, since these variables are replaced by their 
representatives which are output buffers of component FBs. 

A state of an unfolded FB system is defined as follows: 

1 2 1 2( , ,..., , , ,..., ),n m
B B B C C CS S S S S S S=  

where i
BS  ( 1,i n= ) and j

CS  ( 1,i m= ) are states of i-th 

BFBM and j-th CFBM, included in the FB system, 
accordingly.  

Transitions of a FB system are defined as follows: 
B B B B B B B C C D D D

FB SD EX CA CS CF ES TC TO SF PF PSR T T T T T T T T T T T T T∅= ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪
where TFB

B is a set of transitions of type “Firing of EC-
transition”; TSD

B is a set of transitions of type “Simultaneous 
data sampling in basic FB”; TEX

B is a set of transitions of type 
“Execution of algorithms step”; TCA

B is a set of transitions of 

type “Completion of EC-action execution”; TCS
B is a transition 

“Completion of EC-state execution”; TCF
B is a transition 

“Completion of basic FB execution”; TES
B is a transition 

“Dummy launching of basic FB”; TTC
C is a set of transitions of 

type “Simultaneous data sampling in composite FB”; TTO
C is a 

transition “Transfer and issue of signals by composite FB”; 
TSF

D is a transition “Launching of component FB”; TPF
D is a 

transition “Completion of composite FB execution”; TPS
D is a 

transition “Reset of composite FB execution start flag”; T∅ is 
the empty transition introduced for the case when a state s∈S 
has no followers. This ensures that the transition relation in 
Kripke structure will always be total. 

There is the following correspondence between transitions’ 
superscripts and modeling objects: "B" to a basic FB, "C" to a 
composite FB; "D" to a dispatcher. In what follows, to unify 
the presentation we will represent the transitions in the form of 
production rules as they have been used for FB formal model 
definition on the basis of Abstract State Machines (ASM) 
[9,10]. But in contrast to ASM rules the transition system rules 
can include a lot of operations executed in parallel. Symbol ";" 
is used for separation of operations in the right hand side of a 
rule. To represent a group of similar parallel operations sign 
Ξ  is used. The general view of the rule is the following: 

1 2: ; ;...m
id np c a a a , where c is a rule application condition; 

a1,a2,…,an are operations to change variables; id is an transition 
type identifier; m is a modifier describing the denotation of FB 
kind and the number of the rule. 

It should be noted that the use of the concept of global 
states and transitions brings some difficulties to describe a 
hierarchical FB system, even if it is unfolded and brought into 
the one-level representation. The designation of the used 
variables must correspond to a global identification. This can 
be done, for example, by appropriate indexes. In order not to 
overload the formal model by over-indexing in a subsequent 
we will use the local designation of variables adopted from 
ASM-based FB model [8,9]. This is possible because changes 
of variables are mostly performed only in local areas and 
especially within FB instance. The local area of variables 
changes will be pre-specified. 

As an example, let us consider a few transitions. There are 
some modifications of transitions of type "Firing EC-
transition" depending on the following conditions: a) whether 
the EC-transition is event-triggered or not; b) whether the 
target EC-state contains EC-actions or not. In the case of event-
triggered EC-transitions whose target EC-states have EC-
actions, the corresponding subset of transitions from B

FTT  is 

represented by the following set of rules: 

,1
1

( , , )

( , , ) ,
( , , ) ( , , )

2

{ [ , , ] : ( )

( ( ) ( , , , , )

( , , , , )) ( ) ;

( ) ; ( ) ;

V
i k j

i m

i m i k j

j

B
FT S

Q i i k j EI V
q ei q ECTran

i m EI V Q j
q y q ECTran
q y q q ei q

S EI j
ei EI

T i k j Z S s

Z Q q EnabledECTran q ei q Z Z

EnabledECTran q y q Z Z Z Q q

Z S s Z ei false Z

∈

∈

∈

= ∧
∧ = ∧ ∧

∧  ←  

← ←  Ξ

Λ


( ) 1; ( ) 1|

| ( , , ) , , },

NA NI

A
j k j j k

NA Z NI

q ei q ECTran q Q ei EI

← ←

∈  ∈  ∈
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where AQ DomQ⊆  is a set of EC-states having attached EC-
actions; EnabledECTran is a predicate defining EC-transition 
condition. The above transition includes the following 
simultaneous operations: 1) changing EC-state qi to qj; 2) 
changing OSM-state s1 to s2; 3) setting the EC-action counter to 
“1”; 4) setting the instruction counter NI to “1”; 5) resetting all 
event input variables. 

Transitions of type “Transfer and issue of signals by 
composite FB” can be represented by the following set of 
generalized rules: 

,1

( , ) ( , )

( , )

{ [ , ] : ( ) ( ) ;

( ) ; ( ( ) ;

( ) ( ( ))) |

| 1, , }.

x x

y
x y x
k m k j

j m

C x x
TO k kEO EO

y
m EO jEI

eo ei EvConn eo eo EvConn

VOB m VO VO m
eo vob OW

x x
FB k

T x k Z eo Z eo false

Z ei true Z eo true

Z vob Z repr vob

x N eo EO

∈ ∈

∈

 ←  

← ←

 ←

∈  ∈

Ξ Ξ

Ξ
 

Transition of this type processes one of the active sources 
of signals, which is here the event output of component FB. 
When activating this rule, the following simultaneous 
operations are fulfilled: 1) transferring the signals to the target 
event inputs of component FBs and the target event outputs of 
FB shell; 2) issuing data via information connections which are 
WITH-associated with the active event outputs; 3) resetting the 
source of the signal. From the above rule one can derive more 
specific rules depending on the topology of connections. In 
particular, the rule can have no relation to data sampling. 

III. VERIFICATION OF FB SYSTEMS ON THE BASIS OF MODEL 

CHECKING 

It is well-known that SMV-based verifiers are some of the 
best for verification on the basis of Model checking [11]. 
Transforming a transition system-based FB model to SMV 
does not require overcoming any semantic difficulties. Each 
transition of the formal FB model corresponds to one transition 
defined in SMV by TRANS statement. However, due to using 
the concept of global states and lack of modularity there are 
some problems of a "constructive" nature. As noted above, this 
approach requires unfolding the system, and as a consequence, 
the use of global names. At that, the structured name space 
consisting of local name spaces for modules is transformed to a 
general (linear) name space of the system as whole. Various 
methods of forming global names can be used. One of the quite 
acceptable options is to use hierarchical names, reflecting the 
path from the root to the desired FB instance in FB hierarchy 
tree. An example of a variables global name is ei1_ 
fa2_fb7_fc3. As it can be seen, a global FB instances name is 
used as a suffix of the of ei1 variable. 

The section of transitions description consists of a single 
statement TRANS which contains a description of all 
transitions of a system. This description actually is in the form 
of a formula containing conjuncts, separated by the disjunction 
sign "|". Each conjunct describes a transition. All terms of a 
conjunct is linked by the conjunction sign "&". Functionally, 
each conjunct is divided into two parts: a conditional part 
("head"), which defines a transition’s enabling condition, and 
an executive part ("body"), containing operations on variables, 
which will be performed simultaneously at firing the transition. 

Logically, for the convenience we will divide the transition 
description on into three parts: the above mentioned and 
preservation part, additionally. 

In the section of predefined conditions it is advisable to 
define reusable conditions of a FB model using DEFINE-
statements. In general, they can be divided into two classes: 1) 
the conditions that determine the logic of the FB model 
functioning; 2) conditions that preserve values of groups of 
variables. The first class includes, for example, the following: 

 GuardCond are guard conditions of EC-transitions; 

EnabledECTran are enabling conditions of ЕС-transitions; 

ExistsEnabledECTran is a condition of the existence of 
enabled EC-transitions; 

AbsentsEnabledECTran is a condition of the lack of 
enabled EC-transitions. 

The convenience of conditions of the second class follows 
the fact that rules for constructing a global transition in SMV 
require the determination of values of all variables in the global 
state. Since only a very limited part of the variables are 
changed at transitions firing and the rest of the variables remain 
unchanged, it makes sense to move the corresponding 
immutable part in a separate section. In the section of the 
specification it can be determined FB system properties 
(invariants) to be verified using temporal logic LTL and CTL. 

IV. CASE STUDY OF FB SYSTEM MODEL CHECKING 

As an example, let us consider a system that consists of 
two arithmetic-logic unit (ALU) FBs (Fig. 1)[7].  

 
Fig. 1.  “Two ALU” FB system 

This example is very simple and used for illustrative 
purposes only. Following the firing of the initt input of alu1, 
the system enters an infinite sequence of computations 
consisting of alternating arithmetic operations addition and 
subtraction. In Fig. 1 res1Buf and res2Buf are data buffers 
(denotes as circles). They are not included in the syntactical 
part of FB system description, but they play an important role 
at functioning. The basic FB ALU in Fig. 2 is designed to 
perform arithmetic operations of addition and subtraction, 
depending on its input events. 
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Fig. 2. The basic FB ALU: interface (left), ECC diagram (right) 

Let us consider in more detail the SMV coding of the FB 
system shown in Fig. 1 and 2 and operating according to the 
cyclic execution model, using the metamodel of FBs based on 
the transition system. Since the FB system of two ALU is quite 
simple, it is not difficult to "unfold" the system and build a 
proper system of FB instances manually. As an example, below 
definitions of transitions of various types are given in SMV. 

Transition "Firing EC-transition q0→q1 in FB instance 

alu1" of 
,1B

FTT
type of the formal model is represented by the 

following fragment of SMV: 

S_alu1=s1 & Q_alu1=q0 & EnabledECTran_q0q1_alu1 &   -- 
Enabling transition condition 

next(Q_alu1)=q1 & next(S_alu1)=s2 & next(initt_alu1)=0 & 
next(add_alu1)=0 & next(sub_alu1)=0 & next(NA_alu1)=1 & 
next(NI_alu1)=1 &    -- Transition operations 

u_var_alu1 & u_EO_var_alu1 & u_disp_var_alu1 & u_obj_alu2  
-- Variables values preservation 

The preservation condition for event output variables of FB 
instance alu1 is as follows: 

DEFINE u_EO_var_alu1:= next(inito_alu1)= inito_alu1 & 
next(cnf_alu1)=cnf_alu1; 

The preservation condition for event variables of FB 
instance alu1 is: 

DEFINE u_event_var_alu1:= u_EI_var_alu1 & u_EO_var_alu1; 

The guard condition of EC-transition q0→q2 of FB 
instance alu1 is as follows: 

DEFINE GuardCond_q0q2_alu1:= (n_alu1=13) & (res_alu1>0); 

The enabling condition of EC-transition q0→q3 of FB 
instance alu2 is: 

DEFINE EnabledECTran_q0q3_alu2:= select_sub_alu2 & 
GuardCond_q0q3_alu2; 

For the analysis of the FB model, CTL temporal logic has 
been used in SMV. A sample request on liveliness (template 
Possibility [12]) is: SPEC AG (EF (alu1.Q = q2)) - "Whether 
EC-state q2 of alu1 is repeated infinitely often, in other words, 
whether EC-state q2 of alu1 is alive?" (Answer: true). An 
example of another type of requests (template Eventual 
Response [12]) is: SPEC AG (alpha2 -> AF alpha1) - 
"Whether the launch of the first FB involves inevitably the 
launch of the second FB” (Answer: true). 

V. CONCLUSION 

A transition systems-based approach to the formal 
definition of operational semantics of FB systems, in 
particular, functioning in the cyclic execution model, was 
proposed. A method of coding FB systems in SMV, built on 
the basis of the transition system, was developed. The 
applicability of this method on a simple example of FB system 
was shown. Model checking of this FB model with proving 
some invariants was performed in SMV verifier. The direction 
of future research is software implementation of the proposed 
method. 
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