

978-1-4673-8383-7/16/$31.00 ©2016 IEEE

2016 International Siberian Conference on Control and Communications (SIBCON)

Formal modeling and verification of IEC 61499
function blocks on the basis of transition systems

Victor Dubinin
Penza State University,

Penza, Russian Federation
victor_n_dubinin@yahoo.com

Valeriy Vyatkin
Luleå University of Technology,
Luleå, Sweden, Aalto University,

Helsinki, Finland
vyatkin@ieee.org

Anatoly Shalyto
ITMO University,

St. Petersburg, Russian Federation
anatoly.shalyto@gmail.com

Abstract— The IEC 61499 standard has become one of the
key approaches to building distributed component-based control
systems in industrial automation. The problem of adoption of this
standard in industrial practice is often associated with
incompletely defined semantics of functional blocks (FB), which
are main design artifacts of the standard. In this paper we
propose formal (operational) semantics of IEC 61499 FB using
transition systems (by example of FB systems operating in
accordance with the cyclic execution model). The proposed FB
operational semantics is most convenient for the formal
verification of FB systems on the basis of model checking as it
describes the direct transitions between states. A limitation of this
approach is the need to map hierarchical FB systems to flat
models. Thetechnique of code generation used for transforming
FB transition systems to SMV models is briefly discussed
followed by a simple case study.

Keywords—function block; IEC 61499; formal semantics;
transition system; model checking; SMV

I. INTRODUCTION

The IEC 61499 standard has become one of the key
technologies for building distributed component-based control
systems in industrial automation [1,2]. The main design
artefacts in the IEC 61499 are function blocks (FBs).

The state of the art in the field of IEC 61499 FB semantics
is characterized by the following: 1) ambiguities in semantic
definitions ; 2) the presence of a number of FB execution
models; 3) the lack of a recognized formal FB semantics. As a
result, these factors lead to an increase of skepticism with
respect to the IEC 61499 and to a slowdown of its adoption in
industry.

The semantical complexity of FBs is determined by the
following: 1) the presence of nontrivial FB execution models;
2) the presence of data processing algorithms in basic FBs; 3)
event driven execution of FBs; 4) hierarchy and modularity of
FB systems; 5) the presence of typing and instantiation for the
most design artifacts (FBs, sub-applications, resources,
devices); 6) the presence of both software and hardware
modules properties in case of FBs; 7) FB language is a visual
language programming language. Such visual component-
based, event-oriented languages require special approaches to
the description of their semantics.

Let us briefly consider works associated with FB formal
semantics. Well-known models of FBs based on the NCES [2],
finite state machines, timed automata, and Petri nets cannot be
referred to FB formal semantics because of their abstraction.
For example, they do not quite adequately cover all the
elements of FB language. In [3] FB semantics is presented in
the form of an abstract machine, but not fully (without taking
into account the specific FB execution models) and sometimes
informally. In [4] FB structural operational semantics is
developed, but only for synchronous execution model. In [5,6]
it is proposed a formal framework for FB modeling in various
execution models and three FB execution models is considered.
In principle, this model can be considered as a FB formal
semantic model, but with some limitations: 1) Operational
State Machine (OSM) machine which plays a key role in
managing a basic FB execution and defined in IEC 61499 [1] is
not considered; 2) the proposed model is rather abstract in a
number of other points, for example, an algorithm is
considered as an abstract function, without detailing the steps
of its execution, that is important, for example, when FB
system implementing. In [7,8] FB formal semantics based on
abstract state machines (MAC) is proposed. The disadvantage
of this approach is the large time and space complexity of the
verification process of FB systems, designed in accordance
with this model.

An attractive method for FB formal semantics definition are
transition systems [9]. Historically, transition systems were the
first tool used to give the formal semantics of a programming
language [11]. Their big advantage is ease of mapping to
Kripke structures that plays an important role in the formal
verification based on model checking [10], which is supported
by some industrial verifiers (e.g., nuSMV [11]).

Transition systems are most suitable to define semantics
when the concept of a state is explicitly or implicitly presented
in the languages. Typically, these are languages for
specification of hardware, reactive, control and hybrid systems.
From this point of view, it can be assumed that transition
systems will be suitable for modeling FBs, since their base is
an automata model [13].

The paper is structured as follows. Section II provides FB
formal semantics based on a transition system. In Section III,
we propose a model checking-based approach to verification of
FBs represented in the form of the transition system. Section

2016 International Siberian Conference on Control and Communications (SIBCON)

IV shows a simple case study of FB model checking in SMV.
Finally, Section V gives the conclusion and future work.

II. FORMAL MODEL OF FUNCTION BLOCKS IN THE FORM OF A

TRANSITION SYSTEM

Below a transition system is represented, whose main
elements are (global) states of a FB system and (global)
transitions between the states, which clearly define transition
conditions and values of all variables after firing the
transitions. In what follows, the syntactic FB model proposed
in [8,9] will be used. It should be noted that for simplicity we
consider only the FB systems functioning within the cyclic
execution model that does not break generality of the approach.

As noted in [3], an unfolded FB system can be represented
as a tree of FB instances. The model of the FB system is
defined as follows: MS= (SMB, SMC, VM), where

1 2{ , ,..., }n
B B B BSM M M M= is a set of basic function block

modules (BFBM); 1 2{ , ,..., }m
C C C CSM M M M= is a set of

composite function block modules (CFBM); VM is a set of
maps of module variables representing, in fact, relations of
formal and actual arguments of parent/child modules.

Since FB system model includes modules of different
kinds, then we define their state separately. BFBM state is
defined as

,(, , , , , , , , , ,)B EI EO VI VO VOB VV Q S NA NIS Z Z Z Z Z Z Z Z Z Z Z Zα β= ,

where symbols Z with indexes are functions of FB runtime
variables values, and the indexes themselves refer to sets of
corresponding variables. For example, EI and EO are sets of
FB event input and output variables; VI, VV and VO are sets of
FB input, internal and output variables; VOB is a set of data
buffers; Q and S are state variables of Execution Control Chart
(ECC) and Operation State Machine (OSM) [1], NA and NI are
counters of EC-actions (in a list of EC-actions) and instructions
(in an algorithm); α and β –are flags of FB execution start and
finish.

BFBM state is defined as the following tuple:

,(, , , ,)C EI EO VI VOBS Z Z Z Z Z Zα β= .

It should be noted that values of FB output variables are not
included in state SC, since these variables are replaced by their
representatives which are output buffers of component FBs.

A state of an unfolded FB system is defined as follows:

1 2 1 2(, ,..., , , ,...,),n m
B B B C C CS S S S S S S=

where i
BS (1,i n=) and j

CS (1,i m=) are states of i-th

BFBM and j-th CFBM, included in the FB system,
accordingly.

Transitions of a FB system are defined as follows:
B B B B B B B C C D D D

FB SD EX CA CS CF ES TC TO SF PF PSR T T T T T T T T T T T T T∅= ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪
where TFB

B is a set of transitions of type “Firing of EC-
transition”; TSD

B is a set of transitions of type “Simultaneous
data sampling in basic FB”; TEX

B is a set of transitions of type
“Execution of algorithms step”; TCA

B is a set of transitions of

type “Completion of EC-action execution”; TCS
B is a transition

“Completion of EC-state execution”; TCF
B is a transition

“Completion of basic FB execution”; TES
B is a transition

“Dummy launching of basic FB”; TTC
C is a set of transitions of

type “Simultaneous data sampling in composite FB”; TTO
C is a

transition “Transfer and issue of signals by composite FB”;
TSF

D is a transition “Launching of component FB”; TPF
D is a

transition “Completion of composite FB execution”; TPS
D is a

transition “Reset of composite FB execution start flag”; T∅ is
the empty transition introduced for the case when a state s∈S
has no followers. This ensures that the transition relation in
Kripke structure will always be total.

There is the following correspondence between transitions’
superscripts and modeling objects: "B" to a basic FB, "C" to a
composite FB; "D" to a dispatcher. In what follows, to unify
the presentation we will represent the transitions in the form of
production rules as they have been used for FB formal model
definition on the basis of Abstract State Machines (ASM)
[9,10]. But in contrast to ASM rules the transition system rules
can include a lot of operations executed in parallel. Symbol ";"
is used for separation of operations in the right hand side of a
rule. To represent a group of similar parallel operations sign
Ξ is used. The general view of the rule is the following:

1 2: ; ;...m
id np c a a a , where c is a rule application condition;

a1,a2,…,an are operations to change variables; id is an transition
type identifier; m is a modifier describing the denotation of FB
kind and the number of the rule.

It should be noted that the use of the concept of global
states and transitions brings some difficulties to describe a
hierarchical FB system, even if it is unfolded and brought into
the one-level representation. The designation of the used
variables must correspond to a global identification. This can
be done, for example, by appropriate indexes. In order not to
overload the formal model by over-indexing in a subsequent
we will use the local designation of variables adopted from
ASM-based FB model [8,9]. This is possible because changes
of variables are mostly performed only in local areas and
especially within FB instance. The local area of variables
changes will be pre-specified.

As an example, let us consider a few transitions. There are
some modifications of transitions of type "Firing EC-
transition" depending on the following conditions: a) whether
the EC-transition is event-triggered or not; b) whether the
target EC-state contains EC-actions or not. In the case of event-
triggered EC-transitions whose target EC-states have EC-
actions, the corresponding subset of transitions from B

FTT is

represented by the following set of rules:

,1
1

(, ,)

(, ,) ,
(, ,) (, ,)

2

{ [, ,] : ()

(() (, , , ,)

(, , , ,)) () ;

() ; () ;

V
i k j

i m

i m i k j

j

B
FT S

Q i i k j EI V
q ei q ECTran

i m EI V Q j
q y q ECTran
q y q q ei q

S EI j
ei EI

T i k j Z S s

Z Q q EnabledECTran q ei q Z Z

EnabledECTran q y q Z Z Z Q q

Z S s Z ei false Z

∈

∈

∈

= ∧
∧ = ∧ ∧

∧ ←

← ← Ξ

Λ

() 1; () 1|

| (, ,) , , },

NA NI

A
j k j j k

NA Z NI

q ei q ECTran q Q ei EI

← ←

∈ ∈ ∈

2016 International Siberian Conference on Control and Communications (SIBCON)

where AQ DomQ⊆ is a set of EC-states having attached EC-
actions; EnabledECTran is a predicate defining EC-transition
condition. The above transition includes the following
simultaneous operations: 1) changing EC-state qi to qj; 2)
changing OSM-state s1 to s2; 3) setting the EC-action counter to
“1”; 4) setting the instruction counter NI to “1”; 5) resetting all
event input variables.

Transitions of type “Transfer and issue of signals by
composite FB” can be represented by the following set of
generalized rules:

,1

(,) (,)

(,)

{ [,] : () () ;

() ; (() ;

() (())) |

| 1, , }.

x x

y
x y x
k m k j

j m

C x x
TO k kEO EO

y
m EO jEI

eo ei EvConn eo eo EvConn

VOB m VO VO m
eo vob OW

x x
FB k

T x k Z eo Z eo false

Z ei true Z eo true

Z vob Z repr vob

x N eo EO

∈ ∈

∈

 ←

← ←

 ←

∈ ∈

Ξ Ξ

Ξ

Transition of this type processes one of the active sources
of signals, which is here the event output of component FB.
When activating this rule, the following simultaneous
operations are fulfilled: 1) transferring the signals to the target
event inputs of component FBs and the target event outputs of
FB shell; 2) issuing data via information connections which are
WITH-associated with the active event outputs; 3) resetting the
source of the signal. From the above rule one can derive more
specific rules depending on the topology of connections. In
particular, the rule can have no relation to data sampling.

III. VERIFICATION OF FB SYSTEMS ON THE BASIS OF MODEL

CHECKING

It is well-known that SMV-based verifiers are some of the
best for verification on the basis of Model checking [11].
Transforming a transition system-based FB model to SMV
does not require overcoming any semantic difficulties. Each
transition of the formal FB model corresponds to one transition
defined in SMV by TRANS statement. However, due to using
the concept of global states and lack of modularity there are
some problems of a "constructive" nature. As noted above, this
approach requires unfolding the system, and as a consequence,
the use of global names. At that, the structured name space
consisting of local name spaces for modules is transformed to a
general (linear) name space of the system as whole. Various
methods of forming global names can be used. One of the quite
acceptable options is to use hierarchical names, reflecting the
path from the root to the desired FB instance in FB hierarchy
tree. An example of a variables global name is ei1_
fa2_fb7_fc3. As it can be seen, a global FB instances name is
used as a suffix of the of ei1 variable.

The section of transitions description consists of a single
statement TRANS which contains a description of all
transitions of a system. This description actually is in the form
of a formula containing conjuncts, separated by the disjunction
sign "|". Each conjunct describes a transition. All terms of a
conjunct is linked by the conjunction sign "&". Functionally,
each conjunct is divided into two parts: a conditional part
("head"), which defines a transition’s enabling condition, and
an executive part ("body"), containing operations on variables,
which will be performed simultaneously at firing the transition.

Logically, for the convenience we will divide the transition
description on into three parts: the above mentioned and
preservation part, additionally.

In the section of predefined conditions it is advisable to
define reusable conditions of a FB model using DEFINE-
statements. In general, they can be divided into two classes: 1)
the conditions that determine the logic of the FB model
functioning; 2) conditions that preserve values of groups of
variables. The first class includes, for example, the following:

 GuardCond are guard conditions of EC-transitions;

EnabledECTran are enabling conditions of ЕС-transitions;

ExistsEnabledECTran is a condition of the existence of
enabled EC-transitions;

AbsentsEnabledECTran is a condition of the lack of
enabled EC-transitions.

The convenience of conditions of the second class follows
the fact that rules for constructing a global transition in SMV
require the determination of values of all variables in the global
state. Since only a very limited part of the variables are
changed at transitions firing and the rest of the variables remain
unchanged, it makes sense to move the corresponding
immutable part in a separate section. In the section of the
specification it can be determined FB system properties
(invariants) to be verified using temporal logic LTL and CTL.

IV. CASE STUDY OF FB SYSTEM MODEL CHECKING

As an example, let us consider a system that consists of
two arithmetic-logic unit (ALU) FBs (Fig. 1)[7].

Fig. 1. “Two ALU” FB system

This example is very simple and used for illustrative
purposes only. Following the firing of the initt input of alu1,
the system enters an infinite sequence of computations
consisting of alternating arithmetic operations addition and
subtraction. In Fig. 1 res1Buf and res2Buf are data buffers
(denotes as circles). They are not included in the syntactical
part of FB system description, but they play an important role
at functioning. The basic FB ALU in Fig. 2 is designed to
perform arithmetic operations of addition and subtraction,
depending on its input events.

2016 International Siberian Conference on Control and Communications (SIBCON)

Fig. 2. The basic FB ALU: interface (left), ECC diagram (right)

Let us consider in more detail the SMV coding of the FB
system shown in Fig. 1 and 2 and operating according to the
cyclic execution model, using the metamodel of FBs based on
the transition system. Since the FB system of two ALU is quite
simple, it is not difficult to "unfold" the system and build a
proper system of FB instances manually. As an example, below
definitions of transitions of various types are given in SMV.

Transition "Firing EC-transition q0→q1 in FB instance

alu1" of
,1B

FTT
type of the formal model is represented by the

following fragment of SMV:

S_alu1=s1 & Q_alu1=q0 & EnabledECTran_q0q1_alu1 & --
Enabling transition condition

next(Q_alu1)=q1 & next(S_alu1)=s2 & next(initt_alu1)=0 &
next(add_alu1)=0 & next(sub_alu1)=0 & next(NA_alu1)=1 &
next(NI_alu1)=1 & -- Transition operations

u_var_alu1 & u_EO_var_alu1 & u_disp_var_alu1 & u_obj_alu2
-- Variables values preservation

The preservation condition for event output variables of FB
instance alu1 is as follows:

DEFINE u_EO_var_alu1:= next(inito_alu1)= inito_alu1 &
next(cnf_alu1)=cnf_alu1;

The preservation condition for event variables of FB
instance alu1 is:

DEFINE u_event_var_alu1:= u_EI_var_alu1 & u_EO_var_alu1;

The guard condition of EC-transition q0→q2 of FB
instance alu1 is as follows:

DEFINE GuardCond_q0q2_alu1:= (n_alu1=13) & (res_alu1>0);

The enabling condition of EC-transition q0→q3 of FB
instance alu2 is:

DEFINE EnabledECTran_q0q3_alu2:= select_sub_alu2 &
GuardCond_q0q3_alu2;

For the analysis of the FB model, CTL temporal logic has
been used in SMV. A sample request on liveliness (template
Possibility [12]) is: SPEC AG (EF (alu1.Q = q2)) - "Whether
EC-state q2 of alu1 is repeated infinitely often, in other words,
whether EC-state q2 of alu1 is alive?" (Answer: true). An
example of another type of requests (template Eventual
Response [12]) is: SPEC AG (alpha2 -> AF alpha1) -
"Whether the launch of the first FB involves inevitably the
launch of the second FB” (Answer: true).

V. CONCLUSION

A transition systems-based approach to the formal
definition of operational semantics of FB systems, in
particular, functioning in the cyclic execution model, was
proposed. A method of coding FB systems in SMV, built on
the basis of the transition system, was developed. The
applicability of this method on a simple example of FB system
was shown. Model checking of this FB model with proving
some invariants was performed in SMV verifier. The direction
of future research is software implementation of the proposed
method.

ACKNOWLEDGMENT

This work was partially supported by the Russian Science
Foundation (project number 15-11-10010), by the SAUNA
project of SAFIR program (Finland), and by Vetenskapetsråd
(Sweden) project DIACPA D.nr. 2015-04675. The work was
conducted at the Penza State University (the transformation of
FB transition systems to SMV models), the Aalto University
and the Luleå University of Technology (the rest of results).

REFERENCES
[1] Function blocks — Part 1: Architecture, IEC Standard 61499-1, Second

ed., 2012.

[2] Vyatkin, V., Hanisch, H.-M. A modeling approach for verification of
IEC1499 function blocks using NetCondition/Event Systems, IEEE
conference on Emerging Technologies in Factory Automation
(ETFA'99), Barcelona, 1999, pp. 261–270.

[3] Dubinin, V., Vyatkin, V. On Definition of a Formal Model for IEC
61499 Function Blocks, EURASIP Journal on Embedded Systems,
2008, 10 p.

[4] Yoong, L. H., Roop, P., Vyatkin, V., Salcic, Z. A Synchronous
Approach for IEC 61499 Function Block Implementation, IEEE
Transactions on Computers. – 2009. – Vol. 58 (12). – P. 1599–1614.

[5] Čengic, G., Ǻkesson, K. On Formal Analysis of IEC 61499
Applications, Part A: Modeling, IEEE Transactions on Industrial
Informatics, 2010, Vol. 6, № 2, pp. 136–144.

[6] Čengic, G., Ǻkesson, K. On Formal Analysis of IEC 61499
Applications, Part B: Execution Semantics, IEEE Transactions on
Industrial Informatics, 2010, Vol. 6, № 2, pp. 145–154.

[7] Patil, S., Dubinin, V., Vyatkin, V. Formal Verification of IEC61499
Function Blocks with Abstract State Machines and SMV – Modelling,
IEEE Conf. Trustcom/BigDataSE/ISPA, 2015, Vol. 3, pp. 313 – 320.

[8] Patil, S., Dubinin, V., Vyatkin, V. Formal Verification of IEC61499
Function Blocks with Abstract State Machines and SMV – Execution
Semantics, 1st Int. Symp. on Dependable Software Engineering:
Theories, Tools and Applications (SETTA 2015), Nanjing, China, 2015.
LNCS, Vol. 9409. Springer, 2015, pp. 300-315.

[9] Arnold, A. Finite transition systems: semantics of communicating
systems, Prentice Hall Int., 1994, 177 p.

[10] Clarke, E.M., Glumberg, O., Peled, D. Model Checking, The MIT press,
1999, 330 p.

[11] NuSMV – New Symbolic Model Checker. – URL: http://
nusmv.irst.itc.it

[12] Campos, J. C., Machado, J. Pattern-based Analysis of Automated
Production Systems, 13th IFAC Symposium on Information Control
Problems in Manufacturing, Moscow, 2009, pp. 976–981.

[13] Velder, S.E., Lukin, M.A., Shalyto, A.A., Yaminov, B.R. Verification of
automata-based programs, ITMO University Publishing House, St.
Petersburg, 242 p. (in Russian)

