
Formal Modeling of Testing Software for
Cyber-Physical Automation Systems

Igor Buzhinsky∗, Cheng Pang†, Valeriy Vyatkin†‡∗
∗ Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
† Department of Electrical Engineering and Automation, Aalto University, Finland

‡ Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Sweden
igor.buzhinsky@gmail.com, {cheng.pang.phd, vyatkin}@ieee.org

Abstract—The paper presents a framework which uses formal
models for testing control software for industrial automation
systems. The formalism called Net Condition/Event Systems
(NCES) is applied to model the program under test, along with
the system under control (plant) and the testing environment.
The benefits of using the framework include the opportunities
to test systems with time delays without the need to wait, to
test parameterized sets of systems with a single execution of a
test suite, and to check test suites for correctness. The use of
the framework is illustrated on a simple system consisting of a
lab-scale plant and a control application for it.

I. INTRODUCTION

Control software for industrial automation systems under-
goes thorough testing to ensure its correctness and safety.
Various automated testing methods are applied in order to
make this process more time and cost efficient. Still, testing
has many limitations in its ability to guarantee the fulfillment
of requirements in implemented systems.

Another verification technique that has been extensively
studied in the literature is called formal verification. It
promises much more comprehensive discovery of possible
errors in software, but has problems with applicability and
complexity. Formal verification implies that the model of a
software system is created using a formal language, which
requires specific knowledge from control engineers and suf-
fers from the state explosions problem if applied to realisti-
cally sized software systems. If Net Condition/Event Systems
(NCES) [1] are used as formal models, the problem of state
explosion arises only on the analysis stage, though, and not
during the composition stage. Testing is much faster and much
more popular in industry, although it cannot truly guarantee
the correctness of the tested system.

In this paper we attempt to combine these two techniques.
We adopt an earlier developed formal modeling framework [2],
which uses the modular place-transition formalism of NCES
to represent hierarchically organized automation systems and
to verify them with the model checking approach [3]. Us-
ing this framework, we model the software testing process,
partially applying model-based testing (MBT) [4], a testing
methodology in which formal models of specification (such
as state diagrams) facilitate test generation. We suggest using
NCES not only to represent the software and the plant, but
also to model test suites and specifications. The proposed

approach has several benefits, among which the possibility to
test systems with delays without waiting, to test parameterized
sets of systems in a single step, and to check test suites for
correctness.

As demonstrated in [5] and [6], NCES can be applied
to work with software conformant with modern industrial
standards such as IEC 61131-3 [7] and IEC 61499-1 [8].
The latter one supports distributed systems, which is one
of possible domains of applying the introduced framework.
The mentioned work [6] also presents a software package
capable of translating IEC 61499-1 applications into NCES
automatically.

The remainder of this paper is organized as follows. In
Section II we review the application of formal models in
testing and explain the formalism of NCES. The latter allows
us to present the NCES-based testing framework for industrial
automation systems, which is done in Section III. The frame-
work is illustrated with examples of its application for a simple
system in Section IV. The paper is concluded in Section V.

II. FORMAL MODELS AND TESTING

In this section we review several approaches focused on
testing, which employ various formal models. After that, we
examine the formalism of NCES and address their previous
applications.

A. The Use of Formal Models in Testing

The idea of using formal models in software testing is
far not novel. Multiple formal techniques of representing
implementations, specifications and test suites are known.
A popular approach is to use finite-state models, such as
deterministic finite-state machines (FSMs). For example, in [9]
both software specification and implementation are assumed to
be FSMs with equal input alphabets. The work [9] proposes a
method of generating test suites (as sets of traces of the speci-
fication) that are able to distinguish the correct implementation
from incorrect ones.

A more complex theory of labeled transition systems and
input-output transition systems is developed in [10]. The paper
also employs finite-state models and presents the ioco confor-
mance relation between implementations and specifications,
such that test suites generated in a specific way are able to
check whether a particular implementation conforms to the



specification. This approach is modified in [11], where similar
models (symbolic transition systems), which now explicitly
involve variables, are obtained from specifications represented
as sequential function charts (SFCs).

Timed automata and model checking are utilized in [12] to
generate test suites for IEC 61131-3 function block diagrams.
The paper shows how to perform this task if certain structural
coverage criteria are required to be fulfilled for the test suite.
The problem is solved by reducing it to a reachability property
expressed as a CTL temporal formula.

In this paper we attempt to develop new methods of
using formal models in testing that are based on closed-loop
representations of cyber-physical systems [13] with explicit
modeling of the physical system, also referred to as the plant.
Therefore, we require a formal language that is modular,
so that the entire testing framework could be conveniently
represented. We select Net Condition Event Systems (NCES)
for this role.

B. Net Condition/Event Systems

NCES is a formal language that extends Petri nets [14] in a
number of ways. An NCES has a set of places (denoted with
circles) and transitions (denoted with boxes) between them.
Each place can be either marked (in this case it has a so-
called token in it indicated by a dot) or not marked, and the
initial marking is a part of the NCES. Each transition has a
set of input and output places and is connected with them by
flow arcs (denoted with arrows). If all input places are marked,
then the transition can fire: that is, unmark the input places
and mark the output ones. In addition, transitions might have
condition arcs (indicated by arrows with bold dots at their
ends) coming from other places. Such arcs place additional
restrictions on transition firing: all places in which the condi-
tion arcs originate must be marked as well. Finally, transitions
can be either spontaneous or forced. Spontaneous transitions
simply fire when all their firing conditions are met. In contrast,
forced transitions have incoming event arcs (denoted with
arrows with broken centers) from other transitions, and their
activations are caused by the activations of event arc sources.
A formal and detailed definition of NCES is given in [1].

For convenience, NCES can be viewed as modularized
entities, such that each module has event and condition inputs
and outputs. An example of an NCES module is shown in
Fig. 1. It has two places p before and p after, and a
transition t1 between them. When the condition arc enabled

is active and when the switch event comes, t1 transports the
token from p before to p after and emits the switched

event. At the same time output condition arc after becomes
enabled while arc before stops being enabled.

Fig. 2 shows an example of a composite module. Inside this
module there are two instances of the module from Fig. 1 and
an instance of the module true, which provides an always
enabled condition output. When event init arrives, it first
triggers the execution of Module1 and then the execution of
Module2. In the end, the output arc done becomes enabled.

Fig. 1. An example of a basic NCES module, which models a one-way
switch

Fig. 2. An example of a composite NCES module

Modularization allows one to represent systems which can
be decomposed into parts. For example, they can be used
to represent IEC 61499-1 function blocks [15] (they can be
implemented as separate NCES modules) and modular plants,
thus being capable of representing cyber-physical systems
[13]. The top-level module usually does not have any inputs
and outputs and represents the interaction of the plant and
the controller. The importance of closed-loop modeling is
illustrated in [16].

C. Previous Applications of NCES

NCES were originally introduced in [17] in order to model
discrete event dynamic systems. In [1] they were suggested
to be used for modeling the behavior of software for pro-
grammable logic controllers (PLCs). In particular, the work
[1] described how to transform programs written in IL (“in-
struction language”) into NCES.

Following that, NCES were proposed to be used for ap-
plications conformant with international standards. In [5] it
was shown how to represent IEC 61131-3 function blocks
as NCES modules. Function blocks, entities which combine
behavior and state, appeared to be quite similar to their NCES
substitutes. Finally, in [6] distributed systems represented as
IEC 61499-1 function blocks networks were also shown to be
modeled as NCES.

After that, the work [2] presented a framework which
suggested several solutions concerning the development pro-
cess involving NCES. It suggested creating and editing these
models in a special NCES editor, which is shortly described
in [2]. This editor, which is adopted in this paper, employed
an XML format for representing NCES, which is similar to
the one of IEC 61499-1 function blocks. The framework also
proposed to use NCES to represent closed-loop systems com-
posed of the model of the plant and the model of the control
application. It is then possible to analyze the reachability
graph (or the reachability space) of the system. To construct



Test suite Controller 
under Test

Plant Specification

Test 
case 1

Test 
case 2

Fig. 3. The scheme of NCES models suggested in the framework

the graph, the modular model is first “flattened” by removing
all module boundaries, and then the graph is formed out of all
combinations of place markings possible in the system (nodes
of the graph) and transitions between them (arcs of the graph).
Such a graph can be visualized and verified with the model
checking approach. The described framework, however, did
not address testing. This paper deals with this issue and builds
a new framework on top of the one from [2].

A more recent application of NCES is a comprehen-
sive framework for closed-loop modeling and verification of
IEC 61131-3 software [18]. NCES are also chosen for reactive
system modelling in the book [19].

III. PROPOSED FRAMEWORK

The proposed framework suggests using formal models of
the controller, the test suite, the plant and the specification of
the system, and representing the mentioned models as NCES.
While the use of the models of the controller and the test suite
are inevitable, the models of the plant and the specification
are optional and mainly facilitate test suite validation. The
suggested arrangement of models is shown in Fig. 3, where
each NCES model is represented with a box, and data flows
between them are shown with arrows. Optional parts are
outlined in dashed lines. The purpose and contents of various
parts of the scheme are as follows:

• The model of the control application (controller under
test) is the one which is tested. It can be obtained
automatically from the application’s implementation [6],
[18], [19]. The model receives sensor inputs and outputs
actuator signals.

• The model of the test suite is connected to the controller.
It can send sensor inputs to the controller, receive its
outputs and compare them with expected ones. During
initialization, the test suite nondeterministically selects
a test case to be executed. This is done to make the
reachability graph of the composed system contain the
execution traces of all test cases in the test suite. In
turn, a test case is composed of a sequence of test
elements, where each element sets proper input values
for the controller and waits for expected outputs. A test
element is passed, if it receives the expected outputs
from the controller. If it never receives such outputs, then
subsequent elements are blocked and thus are not visited

in the reachability graph. The test case is passed, if and
only if all its elements are passed.

• The model of the plant can be connected to the controller
to receive actuator signals from it. This allows to monitor
the state of the plant during test execution. The diagram in
Fig. 3 also shows that the test suite can receive data from
the plant. This connection is relevant if one wishes to
ensure that the test suite only produces inputs which can
be generated by the plant. In this case, the test element not
only needs to receive correct outputs from the controller
to proceed, but also must ensure that the plant has been
able to produce the inputs sent to the controller. The
model of the plant is therefore a means of validating the
test suite in the described sense.

• The model of the specification is the second tool to
validate test suites: it monitors faults in the plant and
the controller and does not alter the behaviour of the rest
of the system.

Below we explain the use cases of the proposed framework.
1) Discrete time modeling: One of the properties of NCES

is their ability to model time in a discrete fashion: the cor-
responding dialect is called Timed NCES, or TNCES. When
the tested system includes delays, usual testing time will also
include them. During usual software testing it is possible to
skip such delays, but this solution is hard to implement when
delays occur due to timers which are set and checked in
different parts of the controller. In contrast, if time is modeled
in NCES, there is no need to wait.

2) Testing families of related controllers: If there is a series
of structurally similar controllers to be tested, it is possible to
test this series in a single reachability graph construction. For
example, if the controller has a Boolean parameter, it can be
selected nondeterministically prior to test case execution. A
more complex example is constructing the controller from a
set of modules: in this case, for each module type a concrete
module of this type will be selected prior to test case execution.
In particular, we may consider the problem of verifying
all products in a product line [20], where each product is
constructed from a set of commonalities and variabilities.

3) Test suite validation: This use case has already been
partially described while explaining the rationale behind con-
sidering the models of the plant and the specification. Test
suite validation is important when tests are not generated
automatically, like in MBT. Even when MBT is applied, it
might be reasonable to additionally ensure that the translation
of abstract test cases to executable ones is correct. To validate
a test suite, one needs to have the model of the plant and,
optionally, the model of the specification. The requirement that
the plant can output sensor signals equal to the ones encoded
in test cases may be checked with the help of the plant’s
model, as previously described. Another possible requirement,
which now requires the model of the specification to be
present, is to check whether neither the plant nor the controller
enters an invalid state. Such checks are possible if the fault
can be deduced from their outputs. Each requirement in the
specification is represented with two places: the initial one,



Fig. 4. The scheme of the cylinder

Fig. 5. The controller’s logic

signifying no violation of the requirement, and the faulty one.
If the state space of the entire system contains a state where
at least one of such faulty places is marked, then there is an
error either in the test case, in the controller or in the plant’s
model.

IV. EXAMPLES

In this section, the proposed framework is applied to a
simple example: the model of a linear drive implemented using
a pneumatic cylinder, and a control application for it. The
cylinder, shown in Fig. 4, has two sensors (Start and End)
and two control signals (FWD and BACK). The NCES model of
the cylinder consists of its moving status (back, forward and
stopped), its position (start, end and intermediate) and two
Boolean variables for its sensors. Initially, the cylinder is in
its end position and is stopped. The model of the controller,
in turn, is composed of the controller’s logic and two Boolean
variables for its control signals. The controller’s logic, shown
in Fig. 5, is a loop which emits output signals to change
the controller’s outputs FWD and BACK and waits for input
signals Start and End in proper moments. The plant and the
controller are interconnected, forming a closed-loop system.

A. Test Case

Fig. 6 shows an NCES model of a test case (a trivial
case of a test suite) consisting of three elements, which is
connected to the controller. The left column of the network
shows the initializer of the system (needed to generate the
initial event), test elements and the final signal receiver, which
reports (by marking a certain place) that the test was passed,
when it receives an event. The second column of the network is

Fig. 6. The NCES model of a test case consisting of three elements

TABLE I
INPUTS AND OUTPUTS OF THE TEST CASE SHOWN IN FIG. 6

Index PosStart PosEnd ExpectedFwd ExpectedRetr

1 0 1 0 1
2 1 0 1 0
3 0 1 0 1

devoted to variables: the ones representing the values expected
by the test (ExpectedFwd and ExpectedRetr) and the ones
encoding the input parts of test elements (PosStart and
PosEnd). Input and output values of this test case are also
shown in Table I for clarity. Lastly, the third column contains
the tested model of the controller and the comparator used to
compare the outputs of the plant to the expected outputs.

After the initialization, the test case executes element by
element in the following way. At the first step, the element
prepares expected variable values. At the second step, it sets
sensor inputs of the controller, and the controller reacts to
these changes and possibly updates its outputs. Both the
expected outputs and the controller’s outputs are connected
to the comparator, which allows the test sequence to proceed
once the expected inputs are equal to the produced ones. If the
controller does not produce correct outputs, then the system
reaches a deadlock state and the test case is failed. Otherwise,
if the controller always responds with the expected values,
the TestPassed module is activated, and the final state of the
system (also a deadlock one) signifies that the test was passed.

B. Testing a Controller with Delays

This example illustrates the first use case of the framework.
Imagine that the controller’s logic has been enhanced with



Fig. 7. The controller’s logic with delays in the place MOVELEFT (places
that follow LEFT are omitted)

debouncing: when the controller waits for a Start signal, it
ensures that this signal was present for the entire last second.
Such a situation can be modeled in NCES with timed arcs.
Fig. 7 shows a part of the controller’s logic from Fig. 5, in
which delays were inserted. Timed arcs are inscribed in the
form [t,∞], where t is the number of time units to wait.
More formally, the input place of a timed arc has a clock
which increases its value when this place has a token and
when there are no other enabled transitions without incoming
timed arcs. The transition from place MOVELEFT to place LEFT

is activated only if the input signal posSTART was enabled for
a time unit. Otherwise, another transition leading to the same
place MOVELEFT resets the clock in MOVELEFT. If the test case
from the previous subsection is applied to such a modified
controller, then the results of its execution do not change: it
is passed.

C. Testing a Parameterized Controller

This example is the demonstration of the second use case
of the framework. Imagine that the controller has a Boolean
parameter infinite, which denotes whether the controller
has to perform only one cycle of the cylinder movement (the
signal is off), or it should move it backward and forward
eternally (the signal is on), as assumed before. The test case
from Fig. 6 should pass for the controller with the enabled
signal and fail for the controller with the disabled signal.

To apply this test case for the described set of two con-
trollers simultaneously, we need to introduce the parameter
into our NCES model. Since both values of infinite must be
checked and these values do not change during the cylinder’s
operation, the parameter’s value can be chosen nondeter-
ministically during the system’s initialization. This choice is
modeled with a simple module nondet bool shown in Fig. 8
together with the controller and the initializer.

After the system is modified, the reachability graph of the
system will split into two paths, corresponding to different
values of the parameter. The final state of the path where
infinite is off reports that the test case is failed, and the
other path reports success. In a more general situation, when
there are much more parameter values or combinations of
parameter values to check, there is no need to examine the
reachability graph manually. If one needs to check whether

Fig. 8. A system with a Boolean parameter, the value of which is chosen in
the beginning of the system’s operation (only a part of the system is shown)

the test case is passed for all versions of the controller, then it
is sufficient to model check the graph using the CTL formula
EF(TestPassed.passed), where TestPassed.passed signi-
fies the presence of a token in the place inside the TestPassed
module (see Fig. 6) which is activated when all test elements
are properly executed. This formula just checks that for every
path of the model’s execution (including every choice of
parameters) the test case is eventually passed.

The classical alternative to the framework is separate testing
of every controller in the family. The simple approach to fix
parameter values prior to test case execution does not provide
any benefits in comparison with this alternative, but we believe
that it is possible to reduce the time of testing a family of
controllers by applying some ideas of the work [21], which
presents techniques to verify programs with variabilities.

D. Test Case Validation

This example will illustrate the third way of using the
framework. We first modify the controller in the following
way: it will now send both actuator signals independently,
each one according to the value of a sensor signal. That is,
the output signal FWD is on if and only if the input signal Start
is received, and the output signal BACK is on if and only if the
input signal End is on. This controller is not equivalent to the
initial one: it will produce both outputs if both its inputs are
on and none of the outputs if all its inputs are off.

Now imagine a test case which at some point sends both
Start and End and expects both FWD and BACK. This test
case is obviously incorrect, though the corresponding test
element will pass for the described controller. At this stage
we introduce an observing specification into the system. It
monitors the state of the plant and triggers a requirement
violation due to the simultaneous values of FWD and BACK

received by the plant. The scheme of the described NCES
model is visualized in Fig. 9. The controller’s outputs are
not only connected to the comparator (these connections go
upwards and end outside the figure), but also to the plant, and
the plant’s output input error is received by the Observer

module, which represents the specification.



Fig. 9. A system with a plant and a specification, which monitors that the
plant is in a valid state (only a part of the system is shown)

The presented type of specification can identify errors not
only in the test suite, but also in the controller and in the
plant’s model. There is another solution, which focuses only
on the test suite. The scheme from Fig. 9 can be extended
with a second comparator (similar to the one shown in Fig. 6),
which will compare input values of test elements with the ones
emitted by the plant, and the test case will fail if either of the
comparators does not emit compared at some stage (i.e. there
is a failed comparison). If there is no observing specification,
such an extension is sufficient to identify the error in the
considered test case. On the other hand, if there is an observing
specification which reports an error and the test case is passed
in the presence of the second comparator, this means that the
test case is correct (it produces inputs possible for the plant
and requires outputs matching the controller’s behaviour), but
the error is rather caused by either the controller or the plant.

V. CONCLUSION

In this paper a framework has been proposed which uses
NCES to support testing of industrial automation software. The
framework has appeared to be useful for several tasks. Among
them there are ones unachievable by usual testing: immediate
testing of systems with delays, testing multiple related systems
in a single step, checking the correctness of test suites. It also
allows a deeper analysis of existing tests without the need to
prepare temporal specifications for formal verification.

The mentioned potential benefits of the framework should
be shown to be practically applicable, though. This is the main
direction of the future work. First, we can apply the framework
to more complex examples, including purely distributed ones.
Next, we wish to show how to test families of controllers
and to find means of doing this faster than testing all the
controllers separately. It is also possible to investigate more on
representing specifications as NCES. Finally, we believe that
the framework can be applied for the problem of coverage
test generation by formulating this problem in terms of the
reachability graph.

ACKNOWLEDGEMENTS

This work was financially supported, in part, by the S-Step
project (granted by FIMECC, Finland, Aalto University p/n

2115492) and by the Government of Russian Federation, Grant
074-U01.

REFERENCES

[1] H.-M. Hanisch, J. Thieme, A. Luder, and O. Wienhold, “Modeling
of PLC behavior by means of timed net condition/event systems,” in
6th International Conference on Emerging Technologies and Factory
Automation Proceedings (ETFA), 1997. IEEE, 1997, pp. 391–396.

[2] V. Vyatkin, H.-M. Hanisch, and T. Pfeiffer, “Object-oriented modular
place/transition formalism for systematic modeling and validation of
industrial automation systems,” in IEEE International Conference on
Industrial Informatics (INDIN), 2003. IEEE, 2003, pp. 224–232.

[3] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[4] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, Eds.,
Model-based testing of reactive systems: advanced lectures. Lecture
Notes in Computer Science. Springer, 2005, vol. 3472.

[5] J. Thieme and H.-M. Hanisch, “Model-based generation of modular
PLC code using IEC61131 function blocks,” in IEEE International
Symposium on Industrial Electronics (ISIE), 2002, vol. 1. IEEE, 2002,
pp. 199–204.

[6] V. Vyatkin and H.-M. Hanisch, “Formal modeling and verification in
the software engineering framework of IEC 61499: a way to self-
verifying systems,” in 8th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 2001, vol. 2. IEEE,
2001, pp. 113–118.

[7] International Standard IEC 61131-3: Programmable controllers –
Part 3: Programming languages, Second edition. Geneva: International
Electrotechnical Commission, 2003.

[8] International Standard IEC 61499-1: Function Blocks – Part 1: Ar-
chitecture, Second edition. Geneva: International Electrotechnical
Commission, 2012.

[9] A. Simão, A. Petrenko, and N. Yevtushenko, “Generating reduced tests
for FSMs with extra states,” in Testing of Software and Communication
Systems. Springer, 2009, pp. 129–145.

[10] J. Tretmans, “Model based testing with labelled transition systems,” in
Formal methods and testing. Springer, 2008, pp. 1–38.

[11] S. von Styp and L. Yu, “Symbolic model-based testing for industrial
automation software,” in Hardware and Software: Verification and
Testing. Springer, 2013, pp. 78–94.

[12] E. P. Enoiu, D. Sundmark, and P. Pettersson, “Model-based test suite
generation for function block diagrams using the UPPAAL model
checker,” in 6th IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), 2013. IEEE, 2013,
pp. 158–167.

[13] E. A. Lee, “Cyber physical systems: Design challenges,” in 11th IEEE
International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), 2008. IEEE, 2008, pp. 363–369.

[14] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[15] C. Pang and V. Vyatkin, “Automatic model generation of IEC 61499
function block using net condition/event systems,” in 6th IEEE Inter-
national Conference on Industrial Informatics (INDIN), 2008. IEEE,
2008, pp. 1133–1138.

[16] S. Preuße, H. Lapp, and H. Hanisch, “Closed-loop system modeling,
validation, and verification,” in 17th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE, 2012, pp. 1–8.

[17] M. Rausch and H.-M. Hanisch, “Net condition/event systems with
multiple condition outputs,” in INRIA/IEEE Symposium on Emerging
Technologies and Factory Automation (EFTA), 1995, vol. 1. IEEE,
1995, pp. 592–600.

[18] C. Gerber, S. Preuße, and H.-M. Hanisch, “A complete framework for
controller verification in manufacturing,” in Emerging Technologies and
Factory Automation (ETFA), 2010 IEEE Conference on. IEEE, 2010,
pp. 1–9.

[19] S. Preuße, Technologies for Engineering Manufacturing Systems Control
in Closed Loop. Logos Verlag Berlin GmbH, 2013, vol. 10.

[20] I. Schaefer, D. Gurov, and S. Soleimanifard, “Compositional algorithmic
verification of software product lines,” in Formal Methods for Compo-
nents and Objects. Springer, 2012, pp. 184–203.

[21] S. Soleimanifard and D. Gurov, “Algorithmic verification of procedural
programs in the presence of code variability,” in Formal Aspects of
Component Software. Springer, 2014, pp. 327–345.


