
Change Request Management in Model-Driven
Engineering of Industrial Automation Software

Heng-You Lin1, Seppo Sierla1, Nikolaos Papakonstantinou2, Anatoly Shalyto4, Valeriy Vyatkin1,3
1Department of Electrical Engineering and Automation, Aalto University, Finland

heng-you.lin@aalto.fi, seppo.sierla@aalto.fi, vyatkin@ieee.org
2VTT Technical Research Centre of Finland, Espoo, Finland, nikolaos.papakonstantinou@vtt.fi

3Department of Computer Science, Electrical and Space Engineering, Lulea Tekniska Universitet, Sweden
4 ITMO University, St. Petersburg, Russia, shalyto@mail.ifmo.ru

Abstract—Change request management and Model Driven

Engineering (MDE) are two key concepts for industrial
automation software in today’s competitive and fast changing
environment. However, although there exist frameworks on
general change management, they do not exploit the capabilities of
MDE. This paper proposes a workflow to combine these two
technologies, enabling the engineer responsible for the change to
quickly and efficiently create analysis on the impact of the change,
as well as the feasibility of a proposed solution. This result of the
analysis is presented with concrete SysML model diagrams to
better support decision making for a change request. One
advantage of performing change management in SysML is the
possibility to automate parts of the change analysis process; one
step is automated as a proof-of-concept.

Keywords—Change request management; model-driven
engineering; SysML; Industrial automation software;

I. INTRODUCTION

One major motivation for model-driven engineering (MDE)
with System Modelling Language (SysML) is to increase
reusability of software components thus contributing to
flexibility of systems. This is achieved by storing each model
element and the relationships between them in a model
repository, so that they can be used in several models
representing different aspects of configurations of the system.
This approach ensures the consistency between models and
delivers integrity of data, giving SysML a fundamental
advantage as compared to document-based design approach
over the lifecycle of the system, which involves activities such
as change impact assessment, reuse and development of
variants. However, the majority of research on SysML is
focused on product development without specifically exploiting
the technology’s potential advantages to support various
lifecycle management activities, especially change
management. SysML-based MDE approaches that explicitly
aim at addressing some aspects of change management include
change tracking approaches that are specifically suited to MDE
[1], a modelling approach for analysing interdisciplinary change
influences [2] and management of variants in a software product
line [3]. One procedure for handling change requests in SysML-
based MDE is presented in [4], involving an iteration through all
development phases starting from requirements analysis; such
an approach is in contrast to industrially established change
request management procedures that are not widely accepted in
today’s Product Lifecycle Management (PLM) systems which
have proven their efficiency in industrial engineering change

management problems, e.g. [5]. However, there is still lack of
specific guidelines to help engineers in creation of engineering
change requests (ECR) exploiting the potential benefits brought
by SysML modelling. Thus the research goal of this paper is to
propose a change request management workflow for a system
developed using SysML-based MDE approach that enables
better decision making and impact analysis for a proposed
engineering change.

This paper is structured as follows. Section 2 reviews
research in SysML-based MDE and in change request
management. Section 3 proposes a procedure for change request
management that exploits the information available in a SysML
model. Section 4 demonstrates the procedure with a case study.
Section 5 presents a proof-of-concept that exploits the SysML
model to automate one step in the change analysis workflow.
Section 6 concludes the paper.

II. LITERATURE REVIEW

Several SysML based MDE approaches have the potential
to support the management of engineering changes during the
system lifecycle, if they are integrated to a MDE change
management process. Work towards automating the generation
of PLC software from SysML models [6-8] can significantly
reduce the engineering effort for the change after the SysML
model has been updated. Work on creating simulation models
from SysML models [9, 10] can support the development of an
early capability for detailed assessment of change impact
through simulation. The industrial applicability of SysML-based
MDE approaches for managing product safety certification [11,
12] would benefit from a systematic change management
capability to ensure that the safety certification is valid after the
changes.

A significant number of publications in software engineering
address change requests e.g. [13-15], but in mechatronic
applications, interdisciplinary dependencies need to be taken
into account [2, 16, 17]. Comprehensive support for managing
change orders is available in PDM/PLM (Product
Data/Lifecycle Management) systems, which are able to cover
the full scope of change impacts including redesign, updating
documentation, procurement of new parts from the supply chain
and/or rescheduling manufacturing operations [5, 18-20].
However, each of these methods has a step such as “investigate
problem” or “assess impact” for which there is no more detailed

978-1-4799-6648-6/15/$31.00 ©2015 IEEE 1186

methodological support available. This is a shortcoming of PLM
systems [21], which are document based systems that use
metadata as opposed to being fully model-based [22], so they do
not have complete information of the dependencies between
different aspects of the product, such as the relationship between
structural and behavioural models of the product [23]. In order
to bridge the gap between MDE and PLM, a UML-based
approach is presented in [24] and more recently in [25], with
SysML identified as a topic of further research. The partially
model-based nature of PLM systems may be overcome by the
STEP standard, but the highly complex work on mapping these

standards to SysML has not reported progress since 2010 [26].

III. PROPOSED WORKFLOW

In this section, we present a change request management
workflow for a product that has been designed using MDE with
SysML. In particular, our work builds on previous work [5, 18,
19], with special focus on addressing the crucial steps of the
change request process. The proposed workflow achieves this
goal by providing a guideline for the change engineer to better
identify the impact of changes and to assess the feasibility of a
proposed solution with the goal of enabling the developer to
produce concrete and formal deliverables to the Change Review
Board (CRB). The latter uses this information to make
decisions on whether to accept and when to execute the change
request. Since the goal of this workflow is to generate the
necessary information to enable informed decision making, the
workload of this phase should not be heavy, and the internals of
the model elements may be incomplete and addressed later in
the change implementation phase. An additional benefit of this
proposed approach is that the proposed design in SysML can be
directly taken as a starting point for implementation after the
change request is approved. The proposed workflow has the
following two steps: Technical Review and Impact Analysis
(Fig. 1).

The first step in the proposed workflow, “Technical
Review”, has the following actions:

1. Based on the Problem Report, the change engineer identifies
the existing functional and non-functional SysML
requirements that need to be modified or created (e.g.
increase the throughput of product or material flow through
the automated production systems).

2. Based on these newly created/changed requirements, the
engineer, responsible for change implementation, identifies
the affected existing model elements that have a “satisfy” or
“trace” relationship with the said requirement and
determines the type and instances of the affected model
elements, thus pointing to where a potential solution is
likely to be found (structural elements correspond to new
hardware, behaviour elements suggest software fixes);

3. All other model elements that have either “allocate”,
“aggregation”, “Satisfy” and “trace” relationship with the
model elements, identified in the previous step, are also
marked for possible impact by the change;

4. The final action is to build/design the “Model for Proposed
Solution”, starting from the new requirements resulting

from the action one, then adding both structural and
behaviour model elements with their dependency (satisfy,
allocate, trace etc.). The output result of this “Technical
Review” step should include a complete model of the
proposed solution and the extract of the impacted model
elements from the existing model. These two models, shown
as the object nodes following the “Technical Step” in Fig.
1, are the input material for the next, “Impact Analysis”
step.

In the next step, “Impact Analysis” allows the change
engineer to determine the impact of the change after the model
of the proposed solution is integrated into the existing model.
The “change engineer” performs this integration manually,
replacing the model elements, as well as their roles in any
existing dependency relationships. This helps in analysing the
feasibility of the proposed solution, as well as in identifying any
conflicting requirements or other model elements. The “Impact
Analysis” activity has three actions:

1. Identify existing elements that are to be replaced, and for
each dependency relationship these elements have with
other elements in the existing model, reconnect them to the
corresponding elements in the proposed solution model;

2. Integrate the new model elements introduced in the
proposed solution and create necessary new relationships
between them and the existing elements (“Model for
Integrated Solution” in Fig. 1);

Figure 1 Proposed change management workflow

1187

3. Lastly create a list of dependency relationships and model
elements, including functional and non-functional
requirements that are affected by the change (i.e. elements
and dependencies that are to be replaced or deleted), which
will be included directly into the ECR (“List of impacted
elements” in Fig. 1).

After these three actions, if a relationship cannot be
reconnected, for example a new block cannot be aggregated
into an existing block, standing higher up in the structural
hierarchy, or if there are conflicting requirements, the proposed
solution is considered to be infeasible. The solution and the list
of dependencies that could not be reconnected are sent back to
the previous step “Technical Review”. If all dependency
relationships can be successfully connected and all new
elements can be integrated to the system model successfully,
the proposed solution is considered to be feasible. The
integrated model for the proposed new product model and the
list of affected model elements are then passed on to
complement the ECR document.

After these deliverables and the ECR are sent to the CRB, if
the CRB identifies that the impact of the change is potentially
major and that it wants more detailed information on the
implementation of the proposed solution, it can request a new
iteration of technical review and impact analysis to obtain a
more detailed proposed design.

IV. CASE STUDY

In this section, we present a case study of the proposed workflow
in a change scenario applied to the well-studied FESTO MPS
workstations [12, 27-29] consisting of the Distribution, Testing,
Processing and the Handling stations forming a laboratory scale
production line (Fig. 2). A SysML model for the current
configuration of the production line was built. In this
configuration, the system exhibits sequential behaviour,
meaning that each station can only work with one workpiece at

one time. We now assume a new problem report has been
approved indicating a solution is needed to increase the
throughput of the processing station, which has been observed
to be a bottleneck in the system throughput of the production
line.

A. Technical Review

The actions 1-4 listed in section III will be performed.
1. We first identify that the relevant existing non-functional

requirement that needs to be addressed is
“ThroughputProcessingLow” (Fig. 3).

2. The model element that has the “satisfy” dependency
relationship with it is the activity “ProcessingSequential”
(Fig. 3) which describes the sequential behaviour that the
processing station currently exhibits. This suggests that a
proposed solution may be found in modifying the control
software of the system.

3. We identify all the functional and non-functional

requirements that have a “satisfy” or “trace” dependency to
this activity, since these requirements set the basic criteria in
determining the feasibility of the proposed solution later in
the Impact Analysis step. In Fig. 3, we therefore include the
functional requirement “ProcessingOfMaterial” and its
aggregated sub-requirements, which specify the
functionality the proposed solution must satisfy. We also
include the “PLCPlatform” requirement, which indicates
that this requirement may no longer be needed in the new
model based on the being the client in a “trace” relationship
with the “ProcessingSequential” activity. The “allocate”
relationships help us to also identify the “PS_PLC_Code”
block representing the software that implements the current
sequential behaviour and the PLC block “S7-300PLC” the
software is deployed to. These two elements, as well as the
Platform (electrical) dimension and the “ProcessingStation”
block itself are also potential impacted model element and
thus needs to be included in the impacted model, so when
determine the feasibility of the proposed solution, they are
also considered.

4. The final action in the Technical Review step is to propose a

solution to address the problem and build a SysML model
for this solution for further analysis. The obvious first step is
to create a new non-functional requirement representing the
higher throughput “ThroughputProcessingHigh” and refined
it further if necessary. In action 1, we have identified the
throughput requirement to be satisfied by an activity in the
existing model. Therefore, a proposal is investigated in
which the throughput is increased by changing the behaviour
(captured by the activity) of the processing station. We
therefore include an additional requirement that is refined
from “ThroughputProcessingHigh”, demanding the new
system to exhibit parallel, pipeline behaviour. The new
requirement is named “ParallelBehaviour”. The next step in
building the proposed solution model is to construct a new
activity, which satisfies both the new throughput

Figure 2 FESTO MPS workstations

1188

requirement and also the parallel behaviour requirement. The
activity should also satisfy the functional requirements as
listed in the previous step, in preparation for validation in the
next step’s Impact Analysis. Once the new activity has been
created, we identify that the new activity can be implemented
by exploiting an existing software component written in
IEC61499 language and thus we then allocate the activity to
a “PS_61499_Code” block, which in turn is allocated to an
IEC61499 compliant “nxtMini_Controller”. At this stage,
we do not yet develop the actual implementation or create a
complete detailed model for the proposed solution - keeping
to the goal of enabling quick ECR decision making, the
granularity and the completeness of this model for the
proposed solution is only developed to a level which enables
us to perform analysis on the feasibility of this solution in the
next step.

B. Impact Analysis

In this step, we take the two models created in the previous step
and try to integrate the proposed solution into the existing model
to determine its feasibility. We achieve this goal by making sure
that all the existing dependency relationships held by the model
element targeted by the change, as presented in the “Extract of
the Existing Model”, can be reconnected to the corresponding
elements in the proposed solution model. By the end of this step,
the output material should include a model of the integrated
solution model representing the updated Processing Station with
pipeline/parallel behaviour, and also a list of affected model
elements with additional information for each of them whether
they are added, removed or replaced.
The actions A-C listed in section III are performed.

A. In the first action of Impact Analysis, we identify the old
throughput requirement “ThroughputProcessingLow” as to
be replaced by the new requirement
“ThroughputProcessingHigh”. The activity
“ProcessingSequential” is to be replaced by
“ProcessingParallel” (Fig. 3 and 4). Also the existing non-
functional requirement PLCPlatform will be removed. We
then try to reconnect all the “satisfy” relationships the
obsolete activity “ProcessingSequential” held to the
replacing activity “ProcessingParallel”, in the process
checking that the new activity does indeed satisfy these
relationships.

B. The next action is to integrate the remaining model elements
from the proposed solution model, including
the”PS_61499_Code”, “nxtMini Controller” and “nxtStudio
License” by adding them to the existing model. We also
realize that there is no activity that is allocated to
“PS_PLC_Code” and “S7-300PLC” obsolete they are
removed from the model. In the process we reconnect the
aggregation relationship “PLC” between the old “S7-300”
and the Platform (electrical) dimension block to the new
“nxtMini Controller” indicating a replacement of the
controller. The completed integrated model is shown in Fig.
5 and we have observed that all the existing “satisfy”,
“allocate” and “aggregate” relationships have been
reconnected, suggesting that the proposed change to the
existing system model is feasible and is an adequate solution
to the new throughput requirement.

C. The last task of building a list of model elements to be added,
removed or replaced is then easily carried by simply
observing the difference between the integrated model and
the existing model of the current system.

Figure 3 Affected elements of the existing model

Figure 4 Model for Proposed Solution

1189

V. PROOF OF CONCEPT

One major benefit of performing change management in the
SysML environment is the possibility to exploit the machine
readable model representation to partially automate the change
analysis workflow. As a proof of concept, the step 3 of the
technical review is automated with a Java tool that has been
developed for this purpose. The tool parses the XMI XML file
of the SysML model of the system in Fig. 2, which includes the
excerpt in Fig. 3. The tool identifies the abstractions linked to
the element to be modified, which is the
“ProcessingSequential” activity in Fig. 3, filters them and keeps
only the <<satisfy>> and <<trace>> relationships. It then
locates the model elements at the other end of these
relationships and presents them to the user; a screenshot is
presented in Fig. 6.

Java XML processing technology was chosen instead of
some OMG technologies. For example, the MOF Model-To-
Text Transformation Language (MOFM2T) is a standardized
method for extracting relevant information from a SysML
model and presenting it in a human readable form, but it does
not fully support modification of the SysML model [30]. Model
to model transformation languages such as ATL and QVT [31]
were not used since the change management workflow defined
in this paper performs model updates rather than model
transformations.

VI. CONCLUSION

This paper presents a proposed workflow to exploit design
information that is created by MDE process in the context of

change order management. We have also illustrated a case
study showing how the workflow is applied to a change
scenario for a laboratory scale production line.

Several of the actions listed in section III can be automated
by tools that read the XMI representation of the model; as a
proof-of-concept, step 2 of the technical review was automated,
and the outputs are both in human-readable forms (Fig. 6) as
well as in the tool memory to support further work to automate
the rest of the process, resulting in a partially automated change
order process that is currently not possible in change order
management approaches that do not exploit MDE.

Figure 5 Integrated Model and model elements to be removed/replaced

Figure 6 Screenshot of Java tool that automates step 3 of the technical

review process

1190

Several directions of further work are possible and planned.
Firstly, a more comprehensive automation of the change
analysis process, with user-friendly interfaces, is pursued. With
SysML, it is also possible to quantify the impact of the change
by recording the number and type of model elements that are
affected. Another important direction of research is definition
of model design patterns for industrial automation applications
engineering, among which the change pattern, describing online
or offline change of software and hardware and their mutual
impacts, which can be represented in form of rules. We also
plan to investigate mathematical formulation of the change
feasibility check and application of the proposed method on a
large-scale industrial grade case study.

REFERENCES

[1] M. Koegel, M. Herrmannsdoerfer, L. Yang, J. Helming, and J.
David, "Comparing State- and Operation-Based Change Tracking
on Models," in Enterprise Distributed Object Computing
Conference (EDOC), 2010 14th IEEE International, 2010, pp. 163-
172.

[2] K. Kernschmidt and B. Vogel-Heuser, "An interdisciplinary SysML
based modeling approach for analyzing change influences in
production plants to support the engineering," in Automation
Science and Engineering (CASE), 2013 IEEE International
Conference on, 2013, pp. 1113-1118.

[3] N. Papakonstantinou and S. Sierla, "Generating an Object Oriented
IEC 61131-3 software product line architecture from SysML," in
Emerging Technologies & Factory Automation (ETFA), 2013 IEEE
18th Conference on, 2013, pp. 1-8.

[4] H. Hoffmann, "Streamlining the development of complex systems
through model-based systems engineering," in Digital Avionics
Systems Conference (DASC), 2012 IEEE/AIAA 31st, 2012, pp. 6E6-
1-6E6-8.

[5] W.-H. Wu, L.-C. Fang, T.-H. Lin, S.-C. Yeh, and C.-F. Ho, "A
Novel CMII-Based Engineering Change Management Framework:
An Example in Taiwan's Motorcycle Industry," IEEE Transactions
on Engineering Management, vol. 59(3), pp. 494-505, 2012.

[6] M. Obermeier, S. Braun, and B. Vogel-Heuser, "A Model Driven
Approach on Object Oriented PLC Programming for Manufacturing
Systems with regard to Usability," IEEE Transactions on Industrial
Informatics vol. PP(99), pp. 1-1, 2014.

[7] K. Thramboulidis and G. Frey, "An MDD process for IEC 61131-
based industrial automation systems," in Emerging Technologies &
Factory Automation (ETFA), 2011 IEEE 16th Conference on, 2011,
pp. 1-8.

[8] B. Vogel-Heuser, D. Schütz, T. Frank, and C. Legat, "Model-driven
engineering of Manufacturing Automation Software Projects – A
SysML-based approach," Mechatronics, vol. 24(7), pp. 883-897,
2014.

[9] S. Berrani, A. Hammad, and H. Mountassir, "Mapping SysML to
modelica to validate wireless sensor networks non-functional
requirements," in Programming and Systems (ISPS), 2013 11th
International Symposium on, 2013, pp. 177-186.

[10] G. D. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, and D.
Anagnostopoulos, "Model-based system engineering using SysML:
Deriving executable simulation models with QVT," in Systems
Conference (SysCon), 2014 8th Annual IEEE, 2014, pp. 531-538.

[11] M. Sabetzadeh, S. Nejati, L. Briand, and A. E. Mills, "Using SysML
for Modeling of Safety-Critical Software-Hardware Interfaces:
Guidelines and Industry Experience," in High-Assurance Systems
Engineering (HASE), 2011 IEEE 13th International Symposium on,
2011, pp. 193-201.

[12] K. Thramboulidis and A. Buda, "3+1 SysML view model for
IEC61499 Function Block control systems," in Industrial
Informatics (INDIN), 2010 8th IEEE International Conference on,
2010, pp. 175-180.

[13] M. Linares-Vasquez, K. Hossen, D. Hoang, H. Kagdi, M. Gethers,
and D. Poshyvanyk, "Triaging incoming change requests: Bug or
commit history, or code authorship?," in Software Maintenance

(ICSM), 2012 28th IEEE International Conference on, 2012, pp.
451-460.

[14] Z. Stojanov, "Discovering automation level of software change
request process from qualitative empirical data," in Applied
Computational Intelligence and Informatics (SACI), 2011 6th IEEE
International Symposium on, 2011, pp. 51-56.

[15] M. Gethers, H. Kagdi, B. Dit, and D. Poshyvanyk, "An adaptive
approach to impact analysis from change requests to source code,"
in Automated Software Engineering (ASE), 2011 26th IEEE/ACM
International Conference on, 2011, pp. 540-543.

[16] Y.-M. Chen, W.-S. Shir, and C.-Y. Shen, "Distributed engineering
change management for allied concurrent engineering,"
International Journal of Computer Integrated Manufacturing, vol.
15(2), pp. 127-151, 2002/01/01 2002.

[17] C.-H. Yang, V. Vyatkin, and C. Pang, "Model-Driven Development
of Control Software for Distributed Automation: A Survey and an
Approach," IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 44(3), pp. 292-305, 2014.

[18] M. H. El-Jamal, "Requirements Change using Product Lifecycle
Management for Manufacturing Processes in a Systems Engineering
Context," in Information and Communication Technologies: From
Theory to Applications, 2008. ICTTA 2008. 3rd International
Conference on, 2008, pp. 1-5.

[19] J.-Y. Shiau and X. Li, "Product configuration for engineering
change decision," in Networking, Sensing and Control, 2009.
ICNSC '09. International Conference on, 2009, pp. 691-696.

[20] A. Shaout, M. Arora, and S. Awad, "Automotive software
development and management," in Computer Engineering
Conference (ICENCO), 2010 International, 2010, pp. 9-15.

[21] D. Habhouba, S. Cherkaoui, and A. Desrochers, "Decision-Making
Assistance in Engineering-Change Management Process," Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 41(3), pp. 344-349, 2011.

[22] H. Abid, P. Pernelle, C. Benamar, and D. Noterman, "A modelling
approach of mechatronic products in PLM Systems," in Control,
Decision and Information Technologies (CoDIT), 2013
International Conference on, 2013, pp. 714-718.

[23] L. Horvath and I. J. Rudas, "An Approach to Processing Product
Changes During Product Model Based Engineering," in System of
Systems Engineering, 2007. SoSE '07. IEEE International
Conference on, 2007, pp. 1-6.

[24] Z. Wang, L. Wang, Y. Rui, and C. Li, "Research on PLM
multidimensional data model," in Technology and Innovation
Conference, 2006. ITIC 2006. International, 2006, pp. 1499-1504.

[25] A. Houssem, P. Philippe, N. Didier, C. J. Pierre, and B. Chokri,
"Integration approach of mechatronics system in PLM systems," in
Automation and Computing (ICAC), 2013 19th International
Conference on, 2013, pp. 1-6.

[26] O. M. G. Inc. (2010). SysML and AP233 Mapping Activity.
Available:
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-
ap233:mapping_between_sysml_and_ap233

[27] M. Hirsch, "Systematic Design of Distributed Industrial
Manufacturing Control Systems," PhD dissertation, Martin-Luther-
Universität Halle-Wittenberg, 2010.

[28] M. Hirsch, C. Gerber, H. M. Hanisch, and V. Vyatkin, "Design and
Implementation of Heterogeneous Distributed Controllers
According to the IEC 61499 Standard - A Case Study," in Industrial
Informatics, 2007 5th IEEE International Conference on, 2007, pp.
829-834.

[29] K. Thramboulidis, "Challenges in the development of Mechatronic
systems: The Mechatronic Component," in Emerging Technologies
and Factory Automation, 2008. ETFA 2008. IEEE International
Conference on, 2008, pp. 624-631.

[30] L. M. Rose, N. Matragkas, D. S. Kolovos, and R. F. Paige, "A
feature model for model-to-text transformation languages," in
Modeling in Software Engineering (MISE), 2012 ICSE Workshop
on, 2012, pp. 57-63.

[31] K. Lano and S. Kolahdouz-Rahimi, "Model-Transformation Design
Patterns," IEEE Transactions on Software Engineering, vol. 40(12),
pp. 1224-1259, 2014.

1191

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

