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ABSTRACT
Most evolutionary algorithms not only throw out insuffi-
ciently good solutions, but forget all information they ob-
tained from their evaluation, which reduces their speed from
the information theory point of view. An evolutionary al-
gorithm which does not do that, the (1 + (λ, λ)) EA was
recently proposed by Doerr, Doerr and Ebel.

We evaluate this algorithm on the problem of finding hard
tests for maximum flow algorithms. Experiments show that
the (1 + (λ, λ)) EA is never the best, but is quite stable.
However, its adaptive version, known for being superior for
the OneMax problem, is shown to be one of the worst.

CCS Concepts
•Theory of computation→ Evolutionary algorithms;
•Software and its engineering → Search-based software
engineering;

Keywords
Test generation, worst-case execution time, black-box com-
plexity, evolutionary algorithms

1. INTRODUCTION
Most evolutionary algorithms use only little information

from evaluation of inferior solutions. The simplest of them,
(1 + 1) evolutionary algorithm, completely ignores solutions
which are worse than the current best, which means that
the closer it is to the optimum, the more information from
fitness evaluation it loses. One of the old ways to overcome
this problem is to increase generation size, which, however,
is not a complete solution, as for smaller generation sizes the
running time may be even exponential [11], and for larger
sizes it is still worse than of the (1 + 1) EA.

A recently proposed evolutionary algorithm called (1 +
(λ, λ)) [6] solves this problem in another way. It gener-
ates λ offspring from the parent by mutation using a mu-
tation probability that is k times larger than the usual one.
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Larger mutation probability allows for faster exploration of
the search space, but the resulting offspring is often worse
than the parent. The further offspring is generated by using
uniform crossover operator on parent and the best individual
produced via mutation. The crossover operator takes bits
from the best individual with probability 1/k. As this algo-
rithm contains a phase which doesn’t lose individuals which
are worse than the best known individual, it uses more infor-
mation on average from fitness evaluations. As a corollary,
its running time on the OneMax problem is faster than the
running time of (µ + λ) or (µ, λ) evolutionary algorithms.
In particular, the adaptive version, which changes λ and
k according to fitness values, achieves linear running time
complexity on OneMax.

The authors of (1 + (λ, λ)) EA suggested to test this al-
gorithm on more practical problems to see if their idea is
robust enough. In this paper, we test it experimentally
on the problem of hard test generation for the maximum
flow algorithms, which attracted our attention earlier [3].
We compare the (1 + (λ, λ)) EA with the genetic algorithm
from [3] as well as the (1 + 1) EA for its simplicity and the
(1 + 2λ) EA for having the same number of evaluations per
generation as the (1+(λ, λ)) EA. We consider several values
of λ as well as the adaptive version of the (1 + (λ, λ)) EA.
Results of the experiments suggest that the (1 + (λ, λ)) EA
most often shows next-to-leading results in different condi-
tions for some λ, but the adaptive version is typically bad,
which suggests that the adaptation heuristic seems to be
overfitted for OneMax and similar problems.

The rest of the paper is structured as follows. Section 2
explains the maximum flow problem and gives an overview
for algorithms to solve it. Section 3 is dedicated to details of
evolutionary algorithms, including the individual encoding,
the mutation operator and the fitness function. Section 4
gives experimental setup and results. Section 5 concludes,
gives some insights on the results and suggests some direc-
tions for the future work.

2. MAXIMUM FLOW PROBLEM
Maximum flow problem is a well-known problem in graph

theory [4]. It is formulated as follows: given an oriented
graph G = (V,E) with two distinct vertices s and t called
the source and the sink and capacities ci ≥ 0 for each edge
ei ∈ E, one needs to find a maximum flow.

The maximum flow is a set of numbers fi such that:

• for all 1 ≤ i ≤ |E|, 0 ≤ fi ≤ ci;

• for each vertex except for s and t the sum of fi for
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the incoming edges is equal to the sum of fi for the
outgoing edges;

• for the vertex s the sum of fi for the outgoing edges
minus the sum of fi for the incoming edges is maximum
possible.

There are many methods for solving the maximum flow
problem. Some of them are:

• the Ford-Fulkerson algorithm [8], with running time
O(V · E · Cmax), where Cmax = max

i
(ci);

• the Edmonds-Karp algorithm [7], O(V · E2);

• the Dinic algorithm [5] with running time O(V 2 · E)

which can be refined to O(Emin(E1/2, V 2/3)) for unit
capacities;

• the improved shortest path algorithm [2], O(V 2 · E);

• the push-relabel algorithm [9], O(V 2 · E).

In this paper we consider only the Dinic algorithm and
the improved shortest path algorithm. This choice is moti-
vated by the fact that in the previous paper [3] only algo-
rithms which find augmenting paths were considered, and
the two mentioned algorithms were found to be efficient,
while demonstrating different behavior in terms of finding
tests against them.

3. EVOLUTIONARY ALGORITHMS
In the paper we compare the following algorithms:

• (1+1) evolutionary algorithm. It produces one mutant
from single parent, and if the fitness of the mutant is
at least as good as the parent’s it replaces the parent.

• (1 + (λ, λ)) evolutionary algorithm. On each iteration
it produces λ individuals using mutation, then takes
the best individual according to the fitness function,
then produces λ individuals using crossover of the par-
ent and the best individual. The best of the resulting
individuals replaces the parent if it is at least as good.

• (1 + λ) evolutionary algorithm. It produces λ individ-
uals on each iteration using mutation, then the best
of these individuals replaces the parent if it is at least
as good. To maintain equal number of generations
for this algorithm and the (1 + (λ, λ)) EA, we use the
(1 + 2λ) version throughout the paper.

• the genetic algorithm (GA) from [3]. It is a rather
standard genetic algorithm which uses tournament se-
lection to choose individuals for reproduction, then
applies single-point crossover and mutation to the se-
lected individuals, and forms the new generation using
elitist selection.

The optimization problem we consider in this paper is
generation of tests (instances of input data) for the maxi-
mum flow algorithms. The aim is to maximize the running
time of an algorithm on a test. This problem is closely re-
lated to worst-case execution time test generation and to the
complexity analysis of algorithms. The use of evolutionary
algorithms for solving this problem is motivated by the fact

that it is typically hard to find such tests for maximum flow
algorithms because their performance is significantly input-
sensitive. Several ways to construct such tests are known
from the literature [13, 1, 10], but they all require deep
knowledge of the algorithms under test.

We use precisely the same individual encoding and evo-
lutionary operators as in [3]. An individual encodes a test
input for a maximum flow algorithm and represents a graph
with source, sink and capacities on edges. It is a list of edges,
where each edge is a triple consisting of a source vertex s,
a target vertex t and capacity c. The maximum number of
vertices V , the number of edges in each individual E and the
maximum capacity C are the parameters of the optimization
problem. The source of the graph is the vertex 1 and the
sink is the vertex V . Additionally we maintain a constraint
s < t for every edge of the graph, which was shown to be
efficient in [3].

Initial population for each algorithm consists of individu-
als with random edges for which the source and the target
are chosen uniformly at random in range [1;V ] (while source
is less than target) and capacity in range [1;E]. The muta-
tion operator replaces each edge with a randomly generated
one with a probability p. For the (1 + 1) EA, the (1 + 2λ)
EA and the GA this probability is equal to 1/E, while for
the (1 + (λ, λ)) EA it is equal to λ/E. Additionally, the
(1 + (λ, λ)) EA uses a uniform crossover with the exchange
probability of 1/λ, while the GA uses single-point crossover.

The fitness function is the number of edges visited during
finding of the maximum flow by the algorithm. This function
was shown to be roughly proportional to the running time of
the maximum flow algorithm and to the most efficient one in
terms of results of optimization during the fixed budget [3].

4. EXPERIMENTS AND RESULTS
We set the maximum number of vertices V , the maxi-

mum number of edges E and the maximum capacity C to
100, 5000 and 10 000 correspondingly as in [3]. We used the
computational budget of 500 000 fitness function evaluations
for all algorithms. The generation sizes λ for the (1 + 2λ)
EA and the (1 + (λ, λ)) EA were 8, 16 and 25. For each
maximum flow algorithm, each evolutionary algorithm and
each generation size (if applicable), 50 runs was performed.

The resulting minimum, maximum, mean and median fit-
ness values rounded to the nearest integer are presented in
Table 1 for the Dinic algorithm and in Table 2 for the im-
proved shortest path algorithm.

To detect statistically different configurations, the Wilcoxon
rank sum test implemented in R programming language [12]
was performed for each pair of configurations. The p-values
are presented in Table 3 for the Dinic algorithm and in Ta-
ble 4 for the improved shortest path algorithm. In both
tables, in a row A and column B the p-value is specified for
the alternative hypothesis that the median fitness value for
the algorithm A is greater than for the algorithm B. The
cells with p-value less than 0.05 are marked gray.

For the Dinic algorithm it can be clearly seen that the
genetic algorithm from [3] clearly outperforms all other al-
gorithms. All other algorithms can be divided into two
groups: the worst algorithms (adaptive (1 + (λ, λ)) EA,
(1 + 2 × 25) EA and (1 + 1) EA), which compare unfavor-
ably with all other algorithms, and the mediocre algorithms
(non-adaptive (1 + (λ, λ)) EA for all λ as well as (1 + 2× 8)
and (1 + 2× 16) EA).
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Table 1: Results for runs with fitness function based on Dinic algorithm
1+1 GA 1+(8,8) 1+(16,16) 1+(25,25) 1+2×8 1+2×16 1+2×25 Adaptive

MIN 67145 309133 130176 102692 101742 125849 102561 78926 109852
MEAN 272366 451416 320159 321387 310483 309129 299538 276648 266835

MEDIAN 272267 438240 317912 323329 312850 308554 298174 269960 245808
MAX 449293 590435 507201 590950 483404 534256 569870 464256 449322

Table 2: Results for runs with fitness function based on Improved Shortest Path algorithm
1+1 GA 1+(8,8) 1+(16,16) 1+(25,25) 1+2×8 1+2×16 1+2×25 Adaptive

MIN 193004 531235 350791 303683 221711 310632 189908 356823 447256
MEAN 714660 687082 725167 673033 720410 759805 703207 700440 682743

MEDIAN 754880 703218 743064 678694 724629 812251 755892 717721 682654
MAX 948941 805580 912274 898807 891737 937657 921802 904839 878755

Table 3: Wilcoxon tests for runs with fitness function based on Dinic algorithm

1+1 GA 1+(8,8) 1+(16,16) 1+(25,25) 1+2×8 1+2×16 1+2×25 Adaptive

1+1 – 1.0 9.9 · 10−1 9.8 · 10−1 9.6 · 10−1 9.5 · 10−1 8.7 · 10−1 5.8 · 10−1 3.8 · 10−1

GA 7.9 · 10−14 – 4.1 · 10−11 1.1 · 10−9 2.0 · 10−11 3.2 · 10−12 3.7 · 10−11 5.6 · 10−15 1.4 · 10−14

1+(8,8) 1.2 · 10−2 1.0 – 5.0 · 10−1 3.4 · 10−1 3.7 · 10−1 1.6 · 10−1 7.8 · 10−3 5.0 · 10−4

1+(16,16) 2.3 · 10−2 1.0 5.0 · 10−1 – 2.9 · 10−1 2.5 · 10−1 1.4 · 10−1 2.5 · 10−2 6.7 · 10−3

1+(25,25) 3.9 · 10−2 1.0 6.6 · 10−1 7.1 · 10−1 – 4.6 · 10−1 2.5 · 10−1 3.9 · 10−2 8.1 · 10−3

1+2×8 4.6 · 10−2 1.0 6.4 · 10−1 7.5 · 10−1 5.4 · 10−1 – 3.0 · 10−1 3.4 · 10−2 6.5 · 10−3

1+2×16 1.3 · 10−1 1.0 8.4 · 10−1 8.6 · 10−1 7.5 · 10−1 7.1 · 10−1 – 1.6 · 10−1 7.1 · 10−2

1+2×25 4.2 · 10−1 1.0 9.9 · 10−1 9.8 · 10−1 9.6 · 10−1 9.7 · 10−1 8.4 · 10−1 – 1.9 · 10−1

Adaptive 6.2 · 10−1 1.0 1.0 9.9 · 10−1 9.9 · 10−1 9.9 · 10−1 9.3 · 10−1 8.1 · 10−1 –

Table 4: Wilcoxon tests for runs with fitness function based on Improved Shortest Path algorithm

1+1 GA 1+(8,8) 1+(16,16) 1+(25,25) 1+2×8 1+2×16 1+2×25 Adaptive

1+1 – 3.3 · 10−2 3.9 · 10−1 3.9 · 10−2 3.3 · 10−1 9.0 · 10−1 3.7 · 10−1 1.9 · 10−1 4.9 · 10−2

GA 9.7 · 10−1 – 1.0 5.8 · 10−1 9.8 · 10−1 1.0 9.7 · 10−1 8.6 · 10−1 3.6 · 10−1

1+(8,8) 6.1 · 10−1 3.5 · 10−3 – 2.9 · 10−2 4.2 · 10−1 9.8 · 10−1 5.0 · 10−1 2.4 · 10−1 1.7 · 10−2

1+(16,16) 9.6 · 10−1 4.3 · 10−1 9.7 · 10−1 – 9.5 · 10−1 1.0 9.3 · 10−1 8.3 · 10−1 4.8 · 10−1

1+(25,25) 6.8 · 10−1 2.2 · 10−2 5.8 · 10−1 4.9 · 10−2 – 9.8 · 10−1 5.1 · 10−1 2.4 · 10−1 4.0 · 10−2

1+2×8 1.0 · 10−1 2.6 · 10−5 1.9 · 10−2 2.5 · 10−4 2.0 · 10−2 – 3.8 · 10−2 7.7 · 10−3 2.9 · 10−4

1+2×16 6.3 · 10−1 3.3 · 10−2 5.0 · 10−1 7.3 · 10−2 5.0 · 10−1 9.6 · 10−1 – 3.2 · 10−1 8.8 · 10−2

1+2×25 8.2 · 10−1 1.4 · 10−1 7.6 · 10−1 1.7 · 10−1 7.6 · 10−1 9.9 · 10−1 6.8 · 10−1 – 1.9 · 10−1

Adaptive 9.5 · 10−1 6.4 · 10−1 9.8 · 10−1 5.2 · 10−1 9.6 · 10−1 1.0 9.1 · 10−1 8.2 · 10−1 –

A more detailed comparison (see plots of the best runs in
Figure 1 and of the median runs in Figure 2) reveals that
the (1 + (λ, λ)) EA family gains high fitness values very fast
in the beginning but then stagnates, while all other non-
genetic algorithms grow slower. In the same time, the ge-
netic algorithm does not seem to stagnate at the 500 000th
fitness evaluation. One of possible hypothetical explana-
tions is that the single-point crossover helps preserving and
evolving large consecutive groups of edges.

A similar situation appears for the improved shortest path
algorithm as well, but roles change. The (1 + 2 × 8) EA is
the clear overall winner which compares favorably with all
algorithms except for the (1 + 1) EA and is statistically
indistinguishable with the latter one. The genetic algorithm
from [3] is now among the losers, as well as the adaptive

(1 + (λ, λ)) EA and the (1 + (16, 16)) EA. Plots of best
(Figure 3) and median (Figure 4) runs show that the genetic
algorithm is not stagnated, but progresses slowly.

5. CONCLUSION
We presented the first (to the best of our knowledge) at-

tempt to apply the (1 + (λ, λ)) evolutionary algorithm to
a practical optimization problem – generation of hard tests
for maximum flow algorithms.

The experimental results augmented with basic statistical
analysis show that the (1 + (λ, λ)) EA is never the best,
but is not the worst as well – apart from the variant with
adaptive generation sizes and mutation probabilities. The
latter variant, while showing the proven O(N) running time
complexity for OneMax, is among the worst ones for both
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Figure 1: Best runs for the Dinic algorithm
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Figure 2: Median runs for the Dinic algorithm

considered maximum flow algorithms, which suggests that
the adaptation heuristic seems to be overfitted for OneMax
and is not promising for at least some other problems.

On the problem of maximum flow test generation, the
(1 + (λ, λ)) EA showed itself a rather good default choice
which is almost insensitive to the generation size. However,
there probably exist some ways to tailor this algorithm using
a suitable heuristic to the considered problem, which, in
turn, may serve as a starting point to more general methods
of improving the running time of the (1+(λ, λ)) EA for more
general classes of problems.

The source code for the experiments is published at GitHub1.
This work was financially supported by the Government of
Russian Federation, Grant 074-U01.
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