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ABSTRACT
Efficiency of evolutionary algorithms may be increased using
multi-objectivization. Multi-objectivization is performed by
adding some auxiliary objectives. We consider selection of
these objectives during a run of an evolutionary algorithm.

One of the selection methods is based on reinforcement
learning. There are several types of rewards previously used
in reinforcement learning for adjusting of evolutionary al-
gorithms. However, there is no superior reward. At the
same time, reinforcement learning itself may be enhanced by
multi-objectivization. So we propose a method for selection
of auxiliary objectives based on multi-objective reinforce-
ment learning, where the reward is composed of the previ-
ously used single rewards. Hence, we have double multi-
objectivization: several rewards are involved in selection of
several auxiliary objectives.

We run the proposed method on different benchmark prob-
lems and compare it with a conventional evolutionary algo-
rithm and a method based on single-objective reinforcement
learning. Multi-objective reinforcement shows competitive
behavior and is especially useful in the case when we do not
know in advance which of the single rewards is efficient.

CCS Concepts
•Computing methodologies → Genetic algorithms; Re-
inforcement learning;

Keywords
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1. INTRODUCTION
Efficiency of a single-objective evolutionary algorithm (EA)

can be increased by using auxiliary objectives [6,8]. Once we
have auxiliary objectives, we should decide how to use them
in EA. One way is to simultaneously optimize all auxiliary
objectives obtained by decomposing the target objective [8].
Another way was proposed in [6]: it was shown that it may
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be efficient to dynamically select an auxiliary objective from
the set of objectives and apply it in a number of EA gen-
erations, then select another objective and so on. The ob-
jectives were selected in a random order. Then a special
approach for selection of objectives in Job-Shop Scheduling
problem appeared [9]. Later it was proposed to select aux-
iliary objectives using reinforcement learning (RL) [4].

Basically, reinforcement learning is used in evolutionary
algorithms for the two main purposes: for parameter con-
trol and for selection of auxiliary objectives [7]. In reinforce-
ment learning, it is important to define a reward function. In
both mentioned cases, reward functions are used to evaluate
the growth of efficiency of an evolutionary algorithm after
applying a specific parameter setting or selecting a specific
auxiliary objective. In all the corresponding research works
just one reward function is used at a time. However, in rein-
forcement learning it may sometimes be of benefit to multi-
objectivize reward [2]. The goal of the present paper is to
investigate whether using multi-objective reward in EA+RL
is promising.

In the following sections, we propose a method to select
auxiliary objectives in evolutionary algorithms using multi-
objective reinforcement learning (MORL) called EA+MORL
and evaluate the proposed method on a number of bench-
mark problems of different difficulty.

2. RELATED WORK: EA+RL METHOD
We consider single-objective optimization of a target ob-

jective t. The optimization is performed using a single-
objective EA. There is a set A of predefined auxiliary ob-
jectives. We do not know properties of auxiliary objectives
in advance, although it is implied that optimizing some of
them instead of t may decrease the number of EA gener-
ations needed to find the optimum of t. An objective to
be optimized at the current EA generation is selected from
A ∪ {t} with reinforcement learning.

In reinforcement learning, an agent selects an action and
applies it to an environment. The environment returns a
numerical reward and some representation of its state. The
agent updates the quality estimation of the actions according
to the reward, makes a new selection and so on.

The general scheme of using reinforcement for selection of
auxiliary objectives was proposed in the EA+RL method [4].
In this method the environment corresponds to EA and the
actions correspond to the auxiliary objectives. To apply an
action a ∈ A∪{t} means to select an objective a to be used
as a fitness function in the current generation of EA.
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We consider optimization problems where all objectives,
including the target objective, are calculated during one pro-
cessing of an individual [3, 4]. Therefore, evaluation of re-
ward does not increase the number of objective evaluations.

3. EA+MORL APPROACH
Below we describe the rewards used in the proposed method

and then the method itself. We use the following notation:
the ith generation of EA is denoted as Gi; an individual is
x ∈ Gi; the number of individuals in a generation is consid-
ered to be the same for all generations, it is denoted as |G|.
The target objective is referred to as t.

3.1 Rewards
The Max reward reflects how the best target objective

value has changed. It is calculated using the following for-
mula, where i is the number of EA generation: Max(i) =
maxx∈Gi t(x) − maxx∈Gi−1 t(x). Similar rewards based on
the best fitness in a generation were previously used in both
EA+RL [4] and parameter control methods [5].

The Avg reward is the difference between the averaged
target fitness of the current generation and the previous gen-

eration [3]: Avg(i) =
(∑

x∈Gi
t(x)−

∑
x∈Gi−1

t(x)
)
/|G|.

The Sgn reward corresponds to the sign of difference be-
tween the best target values in two subsequent generations:
Sgn(i) = sgn(Max(i)). Similar reward was used for parame-
ter control in evolution strategies [10].

We also propose the Div reward, which may be interpreted
as difference of fitness diversity in subsequent generations:
Div(i) = minx6=y∈Gi |t(x)− t(y)|−minx6=y∈Gi−1 |t(x)− t(y)|.

3.2 EA+MORL method description
The pseudocode of the proposed method is presented in

Algorithm 1. We call it EA+MORL, because it is based
on reinforcement learning with multi-objective reward, or
multi-objective reinforcement learning (MORL) [2].

Algorithm 1 The EA+MORL method

Require: t — target obj.; A — aux. objectives; ε — ex-
ploration pr.; α — learning rate; γ — discount factor.

1: Initialize Q(a)i for each a ∈ A ∪ {t} and reward type ri
2: while target optimum is not found by EA do
3: p← random number ∈ [0, 1]
4: if (p < ε) then
5: a← random objective a ∈ A ∪ {t}
6: else
7: NonDominatedSet← {a|∀a′((∀i Q(a)i ≥ Q(a′)i)
8: or (∃i Q(a)i > Q(a′)i))}
9: a← random element of NonDominatedSet

10: Pass objective a to EA as fitness function
11: Evolve the next generation of EA
12: Calculate rewards r0, r1...rn
13: for i = 0 to n do
14: Q(a)i ← Q(a)i + α(ri + γmaxa′ Q(a′)i −Q(a)i)

For the sake of simplicity, we use a single state in rein-
forcement learning, i.e. the environment is considered as
stateless. The efficiency of an action a is estimated using
a vector Q(a) ∈ Rn, where n is the number of rewards. In
experiments we use up to four different rewards described in
the previous section. For example, Q(a)0 may be estimated
using the Max reward, Q(a)1 using Avg and so on.

Table 1: Parameters for different target objectives
Parameter Leading

Ones
One
Max

H-IFF H-IFF,
obstr.

individual length 300 300 64 64
mutation pr. 0.007 0.007 0.01 0.01
learning rate α 0.6 0.6 0.75 0.75
discount factor γ 0.1 0.1 0.1 0.05
exploration pr. ε 0.05 0.01 0.01 0.01

The main difference between the proposed method and the
EA+RL method is that several rewards are used and, con-
sequently, selection of an action (lines 7–9 in Algorithm 1)
and updating of Q-values (lines 12–14) are more sophisti-
cated than in EA+RL.

4. DESCRIPTION OF EXPERIMENTS
We consider several benchmark problems of different diffi-

culty and with different types of auxiliary objectives. Since
properties of auxiliary objectives are typically not known in
advance, we should consider benchmark problems not only
with efficient auxiliary objectives, but also with obstructive
ones. When a target objective is being maximized, an aux-
iliary objective is considered to be obstructive if optimizing
of this objective leads to decrease of the target objective.

In the next sections, problems with both efficient and ob-
structive objectives are considered. The difficulty of the
target objective optimization varies from the simple linear
OneMax function and a more difficult LeadingOnes to a
highly multi-modal H-IFF function with both efficient ob-
jectives and an obstructive one.

Each of the considered problems were solved using a con-
ventional EA, EA+RL and EA+MORL. In EA+RL, each
of the rewards described in Section 3.1 was used in its own
series of runs. In EA+MORL, different combinations of re-
wards were used. Each algorithm variation was run 45 times
until the optimal value of the target criterion was found or
the limit of 300000 generations was reached. We calculated
the number of generations needed to reach the optimum in
each run and then averaged the results. In each generation
an equal number of fitness function evaluations was made.
This number equals generation size of 100.

The results were tested for statistical significance when
applicable. We used Wilcoxon rank sum test. As the input
for the test, the numbers of generations needed to reach the
optimum in each of the performed runs were used. The test
was performed with the stats::wilcox.test() procedure
from the R language [12]. We applied Holm correction to
compare each algorithm with the rest of algorithms. For the
level of statistical significance, we used p0 = 0.05.

Let us consider settings used in the experiments. An evo-
lutionary algorithm from the framework [1] was used with
elite count of 5. The code which can be used to reproduce
the experiments is published at GitHub1. The parameters
of the evolutionary algorithm and reinforcement learning are
given in Table 1. They were set during preliminary experi-
ments. For all the problems, a homogeneous mutation were
applied, i.e. each bit were inverted with a certain proba-
bility given in the table. Crossover was used only in the
LeadingOnes problem. More precisely, we applied a single
point crossover with probability of 0.1 in this problem.

1https://github.com/anna2912/MultiEARL
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Table 2: Number of generations to optimize
LeadingOnes with the OneMax auxiliary obj. Med –
median, Mean – average, Std – standard deviation
Alg Reward type Med Mean Std
EA No reward 2949 2950.13 272.89
EA+RL Max 2501 2689.47 600.02
EA+RL Avg 1676 1743.53 465.01
EA+RL Sgn 2768 2804.49 649.44
EA+RL Div 1045 1087.36 198.67
EA+MORL Max, Avg, Sgn, Div 796 810.67 215.54
EA+MORL Max, Sgn, Div 1056 1032.60 253.78
EA+MORL Max, Avg 1137 1179.71 282.18
EA+MORL Max, Sgn 2378 2463.22 533.86
EA+MORL Max, Div 1122 1146.16 250.42
EA+MORL Max, Avg, Sgn 1150 1191.78 347.80
EA+MORL Max, Avg, Div 800 848.47 224.73
EA+MORL Avg, Div 929 890.91 213.46
EA+MORL Sgn, Div 976 988.20 229.69
EA+MORL Avg, Sgn 1897 1921.73 305.95

5. RESULTS OF EXPERIMENTS

5.1 LeadingOnes with OneMax
The first problem we consider is LeadingOnes with One-

Max auxiliary objective. In LeadingOnes the number of
one bits from the beginning of an individual to the first
zero-bit is calculated [11]. OneMax has the same opti-
mum as LeadingOnes and is easier to optimize, so it is
expected that using of OneMax would lead to optimizing
of LeadingOnes in less number of generations.

The results are presented in Table 2. The best (second
best) performing algorithms are highlighted with grey (light
grey) background. It can be seen from the results that us-
ing several rewards simultaneously may lead to less number
of generations needed to reach the optimum in the consid-
ered problem. The best combinations (Max, Avg, Sgn, Div)
and (Max, Avg, Div) show statistically equal performance
and significantly differ from the rest of algorithms, exclud-
ing (Avg, Div).

5.2 OneMax with ZeroMax
OneMax is a well known benchmark function which is

easily optimized by various EAs [11]. We add an obstructive
objective ZeroMax in order to show that RL is able to
ignore such objectives. Since OneMax counts the number
of ones in a bit string and ZeroMax is just the opposite and
counts the number of zeros, this is an extreme example of a
problem with an obstructive objective. It was theoretically
shown for randomized local search that EA+RL is able to
solve the OneMax with ZeroMax problem asymptotically
as fast as a conventional EA without ZeroMax.

As it was expected, OneMax without an obstructive ob-
jective is maximized with EA within the minimal number of
generations comparing to the rest of approaches, since they
use the obstructive objective. The question is how close the
other approaches are to this baseline. It may be seen that in
this problem the single reward Avg is the best one. Accord-
ing to the statistical test, it is significantly distinguishable
from all the other approaches. Multiple rewards are not so
efficient, though the (Max, Avg), (Avg, Sgn), (Avg, Div) and
(Max, Avg, Sgn) combinations show competitive behavior.

Table 3: Number of generations to optimize One-
Max with the ZeroMax obstructive objective
Alg Reward type Med Mean Std
EA No reward 423 434.80 48.99
EA+RL Max 944 960.53 398.04
EA+RL Avg 470 471.93 55.39
EA+RL Sgn 925 909.13 280.42
EA+RL Div 1076 1028.29 258.53
EA+MORL Max, Avg, Sgn, Div 1009 1019.00 444.27
EA+MORL Max, Sgn, Div 1150 1087.29 319.55
EA+MORL Max, Avg 657 748.89 261.32
EA+MORL Max, Sgn 896 911.04 349.49
EA+MORL Max, Div 1046 1082.96 351.68
EA+MORL Max, Avg, Sgn 836 857.60 281.74
EA+MORL Max, Avg, Div 1077 1067.76 347.23
EA+MORL Avg, Div 830 850.20 250.43
EA+MORL Sgn, Div 1056 1008.16 342.87
EA+MORL Avg, Sgn 749 787.27 289.14

Table 4: Number of generations to optimize H-IFF
with efficient auxiliary objectives, % – percent of
runs when the optimum was found

Alg Reward type Med Mean Std %
EA No reward – – 0 0
EA+RL Max 2094 – – 73
EA+RL Avg 562 765.07 785.49 100
EA+RL Sgn 1353 – – 67
EA+RL Div – – – 33
EA+MORL Max, Avg, Sgn, Div 4766 4709.44 1799.42 100
EA+MORL Max, Sgn, Div – – – 55
EA+MORL Max, Avg 4518 4404.07 2193.69 100
EA+MORL Max, Sgn 2645 – – 71
EA+MORL Max, Div 3630 – – 73
EA+MORL Max, Avg, Sgn 3879 4396.93 1791.25 100
EA+MORL Max, Avg, Div 2754 4463.62 2011.34 100
EA+MORL Avg, Div 2530 2776.38 717.5 100
EA+MORL Sgn, Div – – – 55
EA+MORL Avg, Sgn 4252 4385.89 2003.79 100

5.3 H-IFF
Consider the problem of maximizing the Hierarchical-if-

and-only-if function, H-IFF [8]. The H-IFF target objective
may be represented as a sum of functions f0 and f1. To
obtain these functions, consider k = 0 and k = 1 in Eq. 1,
where B is a bit string individual, BL and BR are its left
and right halves respectively. The functions f0 and f1 are
used as auxiliary objectives, it was shown that they allow to
escape from local optima of H-IFF [8].

fk(B) =


0 if |B| = 1 and b1 6= k,

1 if |B| = 1 and b1 = k,

|B|+ fk(BL) + fk(BR) if ∀i{bi = k},
fk(BL) + fk(BR) otherwise.

(1)
The results of optimizing H-IFF with auxiliary objectives

are presented in Table 4. The “–” sign means that the cor-
responding value is greater than 10000. The results of the
best (second best) algorithm are highlighted with grey (light
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Table 5: Number of generations to optimize H-IFF
with an obstructive objective

Alg Reward type Med Mean Std %
EA No reward – – 0 0
EA+RL Max 1179 – – 64
EA+RL Avg 542 715.93 610.41 100
EA+RL Sgn – – – 60
EA+RL Div – – – 40
EA+MORL Max, Avg, Sgn, Div 6149 5919.67 2172.51 100
EA+MORL Max, Sgn, Div 4806 – – 53
EA+MORL Max, Avg 4238 4505.27 1860.75 100
EA+MORL Max, Sgn 3928 – – 60
EA+MORL Max, Div – – – 47
EA+MORL Max, Avg, Sgn 4118 4718.67 2062.41 100
EA+MORL Max, Avg, Div 5161 5121.49 1953.41 100
EA+MORL Avg, Div 3006 3186.11 609.09 100
EA+MORL Sgn, Div – – – 38
EA+MORL Avg, Sgn 4433 4704.49 2359.51 100

grey) background. According to the statistical test, they sig-
nificantly differ from all other algorithms with 100% success.

Evolutionary algorithm without auxiliary functions is un-
able to find the optimum during the given number of gen-
erations. The optimum may be found using the EA+RL
method with different single rewards. The Avg reward is
the most efficient with 100% success. While multi-objective
rewards yield higher number of generations to find an op-
timum, they still provide a good compromise when we do
not want to test every single reward, but rather run a multi-
objective combination to get an optimum with 100% success.
For this purpose, the (Avg, Div) combination is the most
useful.

5.4 H-IFF with obstructive objective
This problem is similar to the one described in Section 5.3.

Here we add an obstructive objective, namely the number
of overlaps with the string of alternating ones and zeros:
101010... Such an objective tends to destroy building blocks
needed for H-IFF, so it is obstructive.

The results (Table 5) are similar to the results for the
analogous problem without the obstructive objective, so the
obstructive objective is efficiently ignored as intended. The
first and second best rewards are Avg and Avg, Div corre-
spondingly.

6. CONCLUSION
We proposed a method of using reinforcement learning

with multi-objective reward for selection of auxiliary objec-
tives in evolutionary algorithms. This method was com-
pared with a conventional evolutionary algorithm and pre-
viously used reinforcement learning with various single re-
wards. Auxiliary objectives of both efficient and obstructive
types were considered.

For the most of the considered problems, the average fit-
ness difference Avg turned to be the most efficient single
reward. The multi-objective reward comprised of Avg and
the fitness diversity difference also showed high efficiency in
the most cases and outperformed all single rewards in the
LeadingOnes problem. Therefore, using of multi-objective
reinforcement learning for selection of auxiliary objectives is
promising.
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