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ABSTRACT

Genetic algorithms (GAs) are widely used in multi-objective
optimization for solving complex problems. There are two
distinct approaches for GA design: generational and steady-
state algorithms. Most of the current state-of-the-art GAs
are generational, although there is an increasing interest to
steady-state algorithms as well. However, for algorithms
based on non-dominated sorting, most of steady-state imple-
mentations have higher computation complexity than their
generational counterparts, which limits their applicability.

We present a fast implementation of a steady-state ver-
sion of the NSGA-II algorithm for two dimensions. This im-
plementation is based on a data structure which has O(N)
complexity for single solution insertion and deletion in the
worst case. The experimental results show that our imple-
mentation works noticeably faster than steady-state NSGA-
II implementations which use fast non-dominated sorting.

CCS Concepts

•Theory of computation → Mathematical optimiza-
tion; Data structures design and analysis;

Keywords

steady-state, multi-objective, NSGA-II, non-dominated sort-
ing, incremental updates

1. INTRODUCTION
In the K-dimensional space, a point A = (a1, . . . , aK)

is said to dominate a point B = (b1, . . . , bK) when for all
1 ≤ i ≤ K it holds that ai ≤ bi and there exists j such
that aj < bj . Non-dominated sorting of points in the K-
dimensional space is a procedure of marking all points which
are not dominated by any other point with the rank of 0,
all points which are dominated by at least one point of the
rank of 0 are marked with the rank of 1, all points which are
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dominated by at least one point of the rank i−1 are marked
with the rank of i.

Many well-known and widely used multi-objective evo-
lutionary algorithms use the procedure of non-dominated
sorting, or the procedure of determining the non-dominated
solutions, which can be reduced to non-dominated sorting.
These algorithms include NSGA-II [5], PESA [4], PESA-
II [3], SPEA2 [18], PAES [10], PDE [1], and many more.
The time complexity of a single iteration of these algorithms
is often dominated by the complexity of a non-dominated
sorting algorithm, so optimization of the latter makes such
multi-objective evolutionary algorithms faster.

In Kung et al [11], the algorithm for determining the non-
dominated solutions is proposed with the running time com-
plexity of O(N logK−1 N), where N is the number of points
and K is the dimension of the space. It is possible to use
this algorithm to perform non-dominated sorting: first, the
non-dominated solutions are found and assigned the rank of
0. Then, these solutions are removed, the non-dominated
solutions from the remaining ones are found and assigned
the rank of 1. The process repeats until all the solutions are
removed. This leads to the complexity of O(N2 logK−1 N)
in the worst case, if the maximum rank of a point in the
result is O(N).

Jensen [9] was the first to propose an algorithm for non-
dominated sorting with the complexity of O(N logK−1 N).
However, his algorithm was developed for the assumption
that no two points share a common value for any objective,
and the complexity was proven for the same assumption.
The first attempt to fix this issue belongs, to the best of
the authors’ knowledge, to Fortin et al [7]. The corrected
(or, as in [7], “generalized”) algorithm works in all cases, and
for the general case the performance is still O(N logK−1 N),
but the only upper bound that was proven for the worst case
is O(N2K). Finally, Buzdalov et al in [2] proposed several
modifications to the algorithm of Fortin et al to make the
O(N logK−1 N) bound provable as well.

Evolutionary algorithms have a big advantage due to their
great degree of parallelism, however, synchronous variants
(which wait for evaluation of all individuals, then recom-
pute their internal state) have only a limited applicability for
distributed systems. Even on multicore computers an algo-
rithm may have a poor performance if it spends big periods
of time between fitness evaluations without using most of
computer resources. To overcome these limitations, steady-
state algorithms are developed, often with an intention to
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become asynchronous. Particularly, a steady-state version
of the NSGA-II algorithm was developed [13] which showed
good convergence rate and high quality of Pareto front ap-
proximation. However, the running time of it is poor.

It is possible to perform incremental non-dominated sort-
ing by doing a complete non-dominated sorting from scratch
every time an element is added. However, running times be-
come very high: O(KN2) for a single insertion when the fast
non-dominated sorting [5] is used, or O(N logK−1 N) when
the sorting from [2] is used. Thus, it is needed to develop
new algorithms and data structures to handle incremental
non-dominated sorting efficiently.

However, almost no such algorithms and data structures
have been developed so far. To our best knowledge, the only
paper which addresses this issue is a technical report by Li
et al. [12]. In that report, a procedure called “Efficient Non-
domination Level Update” is introduced, which has the com-
plexity of O(NK

√
N) for a single insertion when solutions

are spread evenly over layers. This procedure was shown
experimentally to be quite efficient, however, the worst-case
complexity for a single insertion is still O(N2K).

This paper briefly describes the incremental non-dominated
sorting algorithm for the two-dimensional case (K = 2)
which has worst-case insertion and deletion complexity of
O(N) and worst-case query complexity of O(logN). It is
described in our previous paper [16] in more detail. We ad-
ditionally modified it to support evaluation of the crowding

distance, a density measure employed by the NSGA-II algo-
rithm. After that, the steady-state version of the NSGA-II
algorithm is presented. Various implementation details are
discussed, and results of experiments are presented.

2. INCREMENTAL NON-DOMINATED

SORTING ALGORITHM
In this section, we briefly describe the proposed incremen-

tal non-dominated sorting algorithm and the data structure
which supports it. They are described in detail in [16] along
with necessary proofs.

The choice of the Cartesian tree as an underlying balanced
search tree is discussed in Section 2.1. The data structure
design is described in Section 2.2. The procedure of solu-
tion lookup (finding which layer a solution belongs to) is de-
scribed in Section 2.3. The procedure of solution insertion is
described in Section 2.4. The procedure of querying the k-th
solution (in some predefined order) together with its layer
number and crowding distance is described in Section 2.5.
The worst solution deletion is described in Section 2.6.

When discussing the runtime analysis, we denote byN the
total number of solutions stored in the data structure and
by M the current number of non-domination layers. For the
sake of brevity, non-domination layers are called just“layers”
in the rest of the paper.

2.1 Cartesian Trees
To implement the algorithm, we need to have a data struc-

ture for container of elements which performs the following
operations in O(logN):

• search of an element in the container;

• split of the container by key into two parts (the ele-
ments less than the key and the elements not less than
the key);

1: structure Solution

2: – a solution to the optimization problem
3: X : Real – the first objective
4: Y : Real – the second objective
5: end structure
6: structure LLNode

7: – a node of a low-level tree
8: L : LLNode – the left child
9: R : LLNode – the right child
10: V : Solution – the node key
11: P : LLNode – the previous-in-order node
12: N : LLNode – the next-in-order node
13: S : Integer – the subtree size
14: end structure
15: structure HLNode

16: – a node of a high-level tree
17: L : HLNode – the left child
18: R : HLNode – the right child
19: P : HLNode – the previous-in-order node
20: N : HLNode – the next-in-order node
21: V : LLNode – the node key
22: S : Integer – the subtree size
23: W : Integer – the sum of key sizes in the subtree
24: end structure

Figure 1: A pseudocode for the data structure

• merge of two containers C1 and C2 (every element from
C1 is not greater than every element from C2).

We will call data structures which fulfil these requirements
“split-merge balanced search trees”. There are several such
data structures, including Cartesian Tree [15] and Splay
Tree [14]. In the case of Cartesian Tree, the O(logN) bound
holds with high probability, while Splay Tree has amortized

O(logN) bounds. From the mentioned data structures, Carte-
sian Tree generally performs slightly better in practice, so
we use it in an implementation of our algorithm.

2.2 Data Structure
The idea of the data structure is to arrange layers in a

binary search tree (each tree node corresponds to a layer) in
the increasing order of their numbers. Each layer, in turn,
is represented by a binary search tree itself, where solutions
are sorted in the increasing order of their first objective.
Since for two different solutions a and b from the same layer
it holds that either aX > bX and aY < bY or aX < bX and
aY > bY , solutions in each layer are effectively sorted in the
decreasing order of their second objective as well.

For the sake of brevity, we denote the tree of layers as the
“high-level” tree and every tree containing layer elements as
a “low-level” tree. The pseudocode for the data structure is
given in Fig. 1. The resulting data structure is presented in
Fig. 2.

Note that the high-level tree can be an ordinary balanced
tree, while every low-level tree should be a split-merge tree.
However, to evaluate the number of a certain layer in O(logM),
one needs to store the number of tree elements in a subtree
in each node of the high-level tree. Additionally, to move be-
tween adjacent layers in O(1), nodes should be augmented
with pointers to the previous-in-order and the next-in-order
nodes (which can be done without affecting O(logN) per-
formance of basic operations).
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Figure 2: The data structure for the algorithm – the “tree of trees”. Nodes of the “high-level” tree correspond
to the layers. Each layer is, in turn, represented by a “low-level” tree, where nodes are sorted by the first
objective. Note that layer numbers are not stored in nodes explicitly, they are just shown for convenience.

2.3 Lookup
Given a low-level tree T and a solution s, it is possible

to find if s is dominated by at least one solution from T in
O(log |T |). To do it, one needs to find a solution u from
T such that uX ≤ sX and uX is maximum possible, which
can be done by traversing the tree T from its root. If u is
found and dominates s, then a dominating solution from T
is found, otherwise, no solution from T dominates s.

Using this algorithm, one can traverse the high-level tree
and find a layer with the minimum number which does not
dominate a certain solution s. The algorithm is presented
in Fig. 3.

A rough estimation of the running time is O(logM logN),
where O(logM) is an estimation of the height of the high-
level tree, and O(logN) is an estimation of heights of all
low-level trees.

However, one can perform a better estimation using the
following idea. There are k = O(logM) layers which were
tested for domination. Let their sizes be L1 . . . Lk, and L1+
. . . + Lk ≤ N . The running time for a layer of size Li can
be expressed as O(1 + logLi) (we add extra 1 to handle a
condition of logLi = o(1)). The total running time of a
single lookup is:

O

(

k +

k
∑

i=1

logLi

)

.

Due to Cauchy’s inequality,
∑k

i=1
logLi ≤ k log(N/k),

which finally gives the following complexity of a lookup op-
eration:

O

(

logM

(

1 + log
N

logM

))

,

which, due to the fact that M ≤ N and log(N/ logM) is
ω(1), can be simplified to:

O

(

logM log
N

logM

)

.

When N is fixed and M varies, this expression reaches its
maximum at M = Θ(N), yielding O((logN)2) worst-case
running time.

1: function LowLevelDominates(T , s)
2: – returns whether any solution from T dominates s
3: T : LLNode – the root node of the low-level tree
4: s : Solution – the solution to test for domination
5: B ← null – the best node so far
6: while T 6= null do
7: if T.V.X ≤ s.X then
8: B ← T
9: T ← T.R
10: else
11: T ← T.L
12: end if
13: end while
14: if B = null then
15: return false

16: end if
17: return B.Y < s.Y or B.Y = s.Y and B.X < s.X
18: end function
19: function SmallestNonDominatingLayer(H , s)
20: – returns the layer with the smallest index from H
21: – which does not dominate s
22: H : HLNode – the root node of the high-level tree
23: s : Solution – the solution to find a layer for
24: I ← 0 – the number of dominating layers so far
25: B ← null – the best node so far
26: while H 6= null do
27: if LowLevelDominates(H.V, s) then
28: I ← I +H.S
29: H ← H.R
30: if H 6= null then
31: I ← I −H.S
32: end if
33: else
34: B ← H
35: H ← H.L
36: end if
37: end while
38: return (B, I)
39: end function

Figure 3: A pseudocode for determining the smallest
layer which doesn’t dominate the given solution
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Figure 4: An example of the insertion process. So-
lutions which don’t change their layer nodes (not
numbers!) during the insertion process are white. A
solution which is being inserted is black. Two clus-
ters of solutions which together change their layer
node are dark-gray and light-gray, correspondingly.

2.4 Insertion
Given a high-level tree H and a solution s, the insertion

procedure updates H so that s is included in one of its low-
level trees.

A key idea of fast implementation of insertion procedure
is the fact that solutions who change their layers form con-
tiguous pieces in their original layers and remain contiguous
in their new layers as well. Fig. 4 illustrates an example of
the insertion process.

The algorithm for a solution insertion is given in Fig. 5.
It maintains a low-level tree which, at each stage, contains
the solutions which needs to be inserted to the next layer.
Initially it consists of the single solution which needs to
be inserted. The layer to insert is initially found using
the performing the SmallestNonDominatingLayer op-
eration from Fig. 3.

The insertion algorithm works in iterations, each iteration
pushes solutions to the layer that is immediately dominated
by the layer of the previous iteration. On each iteration, the
following operations are performed:

• The low-level tree of the current layer is split in three
parts using the current pushed set of solutions C in
the following way:

– the“left part”TL consists of all solutions from the
current layer whose X coordinates are less than
the smallest X coordinate of a solution from C;

– the“middle part”TM consists of all solutions from
the current layer which are dominated by at least
one solution from C;

– the “right part” TR consists of all solutions from
the current layer whose Y coordinates are less
than the smallest Y coordinate of a solution from
C.

• The current layer is built by merging the trees TL, C
and TR.

• If both TL and TR are empty, this means that the
entire level was dominated by solutions from C. In
turn, this means that a new layer consisting entirely
of TM should be inserted just after the current level.
All remaining layers will effectively have their index
increased by one. The insertion procedure stops here.

1: function SplitX(T , s)
2: – splits a tree T into two trees L, R
3: – such that for all l ∈ L holds l.X < s.X
4: – and for all r ∈ R holds r.X ≥ s.X
5: T : LLNode

6: s : Solution
7: end function
8: function SplitY(T , s)
9: – splits a tree T into two trees L, R
10: – such that for all l ∈ L holds l.Y ≥ s.Y
11: – and for all r ∈ R holds r.Y < s.Y
12: T : LLNode

13: s : Solution
14: end function
15: function Merge(L, R)
16: – merges two trees L and R into a single one
17: – given for any l ∈ L and r ∈ R holds l.X < r.X
18: L : LLNode

19: R : LLNode

20: end function
21: function Insert(H , s)
22: – inserts a solution s into a high-level tree H
23: H : HLNode

24: s : Solution
25: C ← new LLNode(s)
26: (G, i)← SmallestNonDominatingLayer(H, s)
27: while G 6= null do
28: Cmin ← a solution with minimum x from C
29: Cmax ← a solution with minimum y from C
30: (TL, Ti)← SplitX(G.V, Cmin)
31: (TM , TR)← SplitY(Ti, Cmax)
32: G.V ←Merge(TL,Merge(C, TR))
33: if TM = null then
34: return – no more solutions to push down
35: end if
36: if TL = null and TR = null then
37: – the current layer is dominated in whole
38: – just insert pushed solutions as a new layer
39: Insert new HLNode(TM ) after G
40: return
41: end if
42: C ← TM

43: G← G.N
44: end while
45: Insert new HLNode(C) after last node of H
46: end function

Figure 5: A pseudocode for insertion of a solution
into a high-level tree

• If TM is empty, the remaining layers should remain
unchanged. The insertion procedure stops here.

• Otherwise, C ← TM , and the insertion procedure con-
tinues with the next iteration.

If after the last iterations there are some solutions which
were not inserted, a new layer is formed from them and is
added as the last layer into the high-level tree.

We omit a long and rigorous proof of correctness of this
algorithm for the sake of brevity. The running time of
the insertion algorithm sums up from the running time of
the lookup algorithm (which is O(logM log(N/ logM))) and
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from the total time spent in iterations. Assume that P ≤M
iterations were performed. Without losing generality, as-
sume that the layers of sizes L1 . . . LP were split in these
iterations. Denote the sizes of their pairs after splits to
be LL

1 , L
M
1 , LR

1 , . . . , L
L
P , L

M
P , LR

P . The value LM
0 = 1 cor-

responds to the initial set C consisting of the solution which
is to be inserted. In i-th iteration, the following operations
with ω(1) complexity were performed:

• finding minimum and maximum of C inO(1+logLM
i−1);

• SplitX in O(1 + log(LL
i + LM

i + LR
i ));

• SplitY in O(1 + log(LM
i + LR

i ));

• inner Merge in O(1 + log(LM
i−1 + LR

i ));

• outer Merge in O(1 + log(LL
i + LM

i−1 + LR
i )).

In total, the sum of all numbers under logarithms does
not exceed 4

∑P

i=1
Li, and hence is O(N). By Cauchy’s

inequality, the sum of all running times for all iterations
is O(P (1 + log(N/P ))). For a fixed N , this function has
a maximum when P = Θ(N), which both gives us that
O(P (1+log(N/P ))) = O(M(1+log(N/M))) and the worst-
case running time of O(N). The layer insertion operations
which can happen at the end of the algorithm cost only
O(logM) and thus don’t change the estimations.

The total running time complexity for the insertion algo-
rithm is:

O

(

M

(

1 + log
N

M

)

+ logM log
N

logM

)

.

2.5 Querying the k-th Solution
The NSGA-II algorithm features a selection operator based

on binary tournament which considers every solution exactly
twice. It does this by maintaining a permutation of indices
1. . .N , whereN is the number of solutions in the population.
When a solution is to be taken from the population, it takes
an element E of this permutation which was not yet consid-
ered and takes a solution which is located at the position of
E. When all elements of the permutation are considered, a
new (random) permutation is generated instead.

To support this selection operator, we need to support an
operation of querying the k-th solution in some predefined
order (1 ≤ k ≤ N). Note that querying a random solution
can be implemented using this operation (k is chosen ran-
domly uniformly from the range [1;N ]). Each query must
return a solution, the number of layer it resides at, and the
crowding distance of this solution in its layer.

To achieve this aim, we utilize node fields containing sub-
tree sizes, and a field which stores the total size of all keys
in the subtree of a high-level tree node. We use the lexico-
graphical order on the solutions: first, the layer number is
used to order the solutions, second, the abscissa is used to
break ties.

Given k, the number of a solution in the lexicographical
order, the first part of the query algorithm finds the layer
in which this solution resides. This is done by traversing
the high-level tree from the root and tracking the total size
of keys in subtrees. The second part uses the same idea to
find the solution inside the layer. The third part evaluates
the crowding distance and constructs the query result. The
algorithm is outlined on Fig. 6. The running time of this
algorithm is straightforwardly O(logN).

1: structure QueryResult

2: – the result of a query
3: S : Solution – the solution
4: L : Integer – the layer number
5: C : Real – the crowding distance
6: end structure
7: function QueryLow(T, k,W,H,L)
8: – finds k-th solution in a low-level tree T
9: T : LLNode

10: k : Integer
11: W : Real – the abscissa difference
12: H : Real – the ordinate difference
13: L : Integer – the layer number
14: if T.L 6= null then
15: if k ≤ T.L.S then
16: return QueryLow(T.L, k,W,H,L)
17: else
18: k ← k − T.L.S
19: end if
20: end if
21: if k = 1 then
22: R← new QueryResult

23: R.S ← T.V , R.L← L
24: if T.P = null or T.N = null then
25: R.C ←∞
26: else
27: R.C ← |T.N.V.X−T.P.V.X|

W
+ |T.N.V.Y −T.P.V.Y |

H

28: end if
29: return R
30: else
31: k ← k − 1
32: end if
33: return QueryLow(T.R, k,W,H,L)
34: end function
35: function Query(T, k)
36: – returns the k-th solution in a high-level tree T
37: T : HLNode

38: k : Integer
39: L : Integer← 0 – the layer number
40: loop
41: if T.L 6= null then
42: if k ≤ T.L.W then
43: T ← T.L
44: continue
45: else
46: k ← k − T.L.W , L← L+ T.L.S
47: end if
48: end if
49: if k ≤ T.V.S then
50: LL← leftmost child of T.V
51: RR← rightmost child of T.V
52: W ← |RR.V.X − LL.V.X|
53: H ← |RR.V.Y − LL.V.Y |
54: return QueryLow(T.V, k,W,H,L)
55: end if
56: k ← k − T.V.S, L← L+ 1, T ← T.R
57: end loop
58: end function

Figure 6: A pseudocode for querying the k-th solu-
tion in lexicographical order
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2.6 Deletion of the Worst Solution
In the NSGA-II algorithm, when the number of solutions

exceeds the required population size, solutions are deleted
from the population starting from the last layer. When one
needs to retain some solutions in the last layer, they are
deleted in the decreasing order of their crowding distances.

We have not invented an efficient data structure which
locates the solution with the smallest crowding distance in a
layer. So, to delete a single solution with the worst crowding
distance from the last layer, we need to compute crowding
distances for every solution in the layer and then delete the
one with the smallest crowding distance. This can be done
in O(N).

3. EXPERIMENTS
To assess the performance of the proposed implementa-

tion, we performed experiments which are largely based on
the experiments from [13]. The following benchmark prob-
lems are considered: ZDT1–ZDT4 and ZDT6 [17], DTLZ1–
DTLZ7 [6], WFG1–WFG9 [8]. The parameters of these
problems are the same as in the corresponding papers, ex-
cept that we considered only two-dimensional versions of
these problems.

The NSGA-II algorithm was implemented in as much com-
patible way to [13] as possible. Specifically, their implemen-
tation of the selection operator uses dominance compari-
son in the first step, unlike classical definition [5], which
uses layer number comparison instead. A significant differ-
ence is that WFG problems in [13] were implemented us-
ing single-precision floating-point numbers, while we used
double-precision numbers consistently.

We tested both generational and steady-state variants of
the NSGA-II algorithm. Each of these variants was run us-
ing the proposed implementation, the ENLU approach [12]
and the fast non-dominated sorting from [5]. For each com-
bination, 100 runs were performed, each run had the compu-
tational budget of 25 000 evaluations as in [13]. In each run,
the random seed for all operations related to evolutionary
operators and to individual selection was derived from the
number of the run. For other operations which require a ran-
dom number generator, such as operations with Cartesian
trees, a separate random number generator was used.

To assess quality of the results, we evaluated the hyper-
volume indicator [19] at the end of each run. To assess
performance, we evaluated the wall-clock running time and
the number of objective comparisons. Notably, each crowd-
ing distance evaluation was thought to use four objective
comparisons. As the wall-clock time includes not only the
time of non-dominated sorting, but the time of evolution-
ary operators and fitness function evaluations as well, we
estimate the latter time by separately running evolutionary
operators and fitness functions on randomly generated data
and subtracting this time from the wall-clock time. For each
mentioned measure we track the median and the interquar-
tile range (IQR).

The source code for experiment reproduction is available
both as supplementary materials to the paper and at GitHub1.
We ran this code on a server with two IntelR©XeonR©E5606
CPUs clocked at 2.13 GHz, having eight cores in total.

1https://github.com/mbuzdalov/papers/tree/master/2015-
gecco-nsga-ii-ss

For each problem, medians and interquartile ranges for hy-
pervolumes were correspondingly equal for all generational
algorithms, and the same was true for all steady-state al-
gorithms, so we are not presenting the results for hyper-
volumes. All other results of experiments are presented in
Table 1.

One can see that the running times and the numbers of
comparisons differ significantly. In all cases except one the
proposed implementation (called INDS in the tables and fur-
ther on) performs noticeably faster (in terms of wall-clock
time) both with generational and with steady-state versions.

As the running time of Deb’s fast non-dominated sort-
ing is not input-sensitive, as follows from the algorithm,
the number of comparisons as well as wall-clock times are
almost equal for all problems, considering separately gen-
erational and steady-state NSGA-II variants. Two other
approaches are clearly input-sensitive (for the steady-state
case, the biggest time (0.12) is almost three times higher
than the smallest time (0.042) in the case of ENLU).

The average operation complexity for INDS is expected to
be higher than of the ENLU (due to usage of the tree-based
data structure), and ENLU seems to be more complex than
the fast non-dominated sorting as well. This made us in-
terested in estimating the overhead imposed by using this
or that algorithm, measured as the average wall-clock time
per objective comparison. From the data presented in
Table 1, we computed this ratio for all three algorithms sep-
arately for generational and steady-state variants. It ap-
peared to be almost problem-independent. We give medi-
ans and interquartile ranges for these values (notation is the
same as in Table 1):

• INDS(gen): median 4.07 · 10−8, IQR 8.40 · 10−10;

• ENLU(gen): median 1.39 · 10−8, IQR 1.90 · 10−10;

• debNDS(gen): median 8.97 · 10−9, IQR 2.31 · 10−11;

• INDS(ss): median 1.36 · 10−8, IQR 1.87 · 10−10;

• ENLU(ss): median 1.08 · 10−8, IQR 2.00 · 10−11;

• debNDS(ss): median 5.88 · 10−9, IQR 1.58 · 10−11.

We account the difference between generational and steady-
state variants for different individual removal patterns (bulk
removal in the first case and single element removal in the
second case). According to the median values of average
overhead, INDS is indeed the most expensive (approximately
five times more work per single comparison than in fast non-
dominated sorting), but it is not significantly worse than
ENLU in this aspect. All differences are much smaller for
the steady-state variant.

Finally, running times for the same algorithm on the same
problem, but for two different NSGA-II variants (genera-
tional and steady-state) are very similar in the case of INDS
and of ENLU (steady-state times never exceed generational
times multiplied by two), but fast non-dominated sorting is
slower by more than 10 times in the steady-state case. This
removes a big complication of using steady-state multiobjec-
tive evolutionary algorithms in practice: while often being
superior in terms of quality of results, they are no more
slower in terms of running times – at least for biobjective
problems.
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Table 1: Results of experiments. Notation: “time” stands for the running time (in seconds), “cmp” for the
number of comparisons, “med” for the median, “IQR” for the interquartile range. “INDS” is the proposed
implementation, “ENLU” is the ENLU-based implementation, “debNDS” is the standard implementation
which uses the Deb’s fast non-dominated sorting, “gen” corresponds to the generational variant of the NSGA-
II algorithm and “ss” to the steady-state variant. Gray cells denote minima of the running time and of the
number of comparisons (for generational and steady-state variants separately).
Type INDS(gen) ENLU(gen) debNDS(gen) INDS(ss) ENLU(ss) debNDS(ss)

med IQR med IQR med IQR med IQR med IQR med IQR
ZDT1

time 5.42 · 10−2 1.12 · 10−2 1.01 · 10−1 4.47 · 10−3 1.42 · 10−1 2.40 · 10−3 7.49 · 10−2 2.44 · 10−2 9.46 · 10−2 6.11 · 10−3 1.66 · 100 2.47 · 10−2

cmp 1.13 · 106 2.68 · 104 6.53 · 106 2.98 · 104 1.08 · 107 2.17 · 103 3.70 · 106 7.74 · 104 7.64 · 106 1.21 · 105 2.58 · 108 8.06 · 104

ZDT2

time 5.68 · 10−2 7.50 · 10−3 9.16 · 10−2 9.13 · 10−3 1.08 · 10−1 1.78 · 10−2 7.09 · 10−2 2.53 · 10−3 9.44 · 10−2 4.04 · 10−3 1.65 · 100 4.88 · 10−2

cmp 1.15 · 106 2.14 · 104 6.10 · 106 3.95 · 104 1.07 · 107 4.56 · 103 3.30 · 106 1.14 · 105 6.90 · 106 1.61 · 105 2.57 · 108 1.20 · 105

ZDT3

time 5.46 · 10−2 8.72 · 10−4 9.63 · 10−2 5.89 · 10−3 9.80 · 10−2 1.92 · 10−3 7.07 · 10−2 1.80 · 10−3 9.28 · 10−2 5.16 · 10−3 1.56 · 100 1.31 · 10−2

cmp 1.12 · 106 2.31 · 104 6.32 · 106 2.63 · 104 1.08 · 107 1.76 · 103 3.38 · 106 6.21 · 104 7.14 · 106 8.97 · 104 2.57 · 108 6.77 · 104

ZDT4

time 4.44 · 10−2 2.89 · 10−3 5.07 · 10−2 3.73 · 10−3 1.13 · 10−1 3.28 · 10−3 5.13 · 10−2 3.11 · 10−3 4.18 · 10−2 4.48 · 10−3 1.78 · 100 5.24 · 10−2

cmp 1.07 · 106 2.97 · 104 3.41 · 106 3.81 · 104 1.07 · 107 8.86 · 103 2.05 · 106 1.01 · 105 3.68 · 106 1.60 · 105 2.56 · 108 1.20 · 105

ZDT6

time 5.61 · 10−2 2.12 · 10−3 6.80 · 10−2 6.43 · 10−4 1.20 · 10−1 2.51 · 10−3 6.65 · 10−2 2.35 · 10−3 7.19 · 10−2 2.91 · 10−3 1.71 · 100 3.26 · 10−2

cmp 1.12 · 106 1.11 · 104 4.52 · 106 3.89 · 104 1.07 · 107 4.40 · 103 2.64 · 106 9.39 · 104 5.29 · 106 1.13 · 105 2.56 · 108 9.17 · 104

DTLZ1

time 4.67 · 10−2 5.04 · 10−3 5.66 · 10−2 3.19 · 10−3 1.13 · 10−1 2.86 · 10−3 4.88 · 10−2 3.08 · 10−3 5.21 · 10−2 5.21 · 10−3 1.69 · 100 2.83 · 10−2

cmp 1.02 · 106 2.27 · 104 3.73 · 106 5.80 · 104 1.07 · 107 7.87 · 103 2.21 · 106 2.02 · 105 4.17 · 106 2.42 · 105 2.56 · 108 2.19 · 105

DTLZ2

time 5.41 · 10−2 4.08 · 10−3 9.51 · 10−2 4.11 · 10−3 9.71 · 10−2 3.78 · 10−3 6.75 · 10−2 3.92 · 10−3 9.35 · 10−2 5.37 · 10−3 1.53 · 100 2.15 · 10−2

cmp 1.09 · 106 2.81 · 104 6.24 · 106 2.29 · 104 1.08 · 107 1.24 · 103 4.19 · 106 5.00 · 104 7.91 · 106 1.77 · 105 2.58 · 108 4.97 · 104

DTLZ3

time 4.30 · 10−2 1.83 · 10−3 5.37 · 10−2 4.27 · 10−3 1.13 · 10−1 9.16 · 10−4 4.18 · 10−2 2.07 · 10−3 4.78 · 10−2 4.52 · 10−3 1.94 · 100 5.69 · 10−2

cmp 1.08 · 106 3.78 · 104 3.81 · 106 1.11 · 105 1.06 · 107 8.25 · 103 1.31 · 106 1.06 · 105 3.19 · 106 1.02 · 105 2.55 · 108 1.07 · 105

DTLZ4

time 5.60 · 10−2 2.81 · 10−3 9.47 · 10−2 3.34 · 10−3 1.02 · 10−1 9.92 · 10−3 6.87 · 10−2 6.93 · 10−3 9.30 · 10−2 4.99 · 10−3 1.58 · 100 5.08 · 10−2

cmp 1.08 · 106 3.32 · 104 6.21 · 106 3.57 · 104 1.08 · 107 4.89 · 103 3.95 · 106 8.01 · 104 7.67 · 106 2.31 · 105 2.58 · 108 8.87 · 104

DTLZ5

time 5.36 · 10−2 2.49 · 10−4 9.30 · 10−2 1.24 · 10−3 9.66 · 10−2 3.03 · 10−3 6.76 · 10−2 4.36 · 10−3 9.40 · 10−2 4.35 · 10−3 1.54 · 100 2.02 · 10−2

cmp 1.09 · 106 3.29 · 104 6.24 · 106 2.29 · 104 1.08 · 107 1.24 · 103 4.19 · 106 5.26 · 104 7.91 · 106 1.77 · 105 2.58 · 108 4.97 · 104

DTLZ6

time 4.96 · 10−2 6.55 · 10−3 7.09 · 10−2 1.94 · 10−3 1.03 · 10−1 1.79 · 10−3 5.88 · 10−2 2.52 · 10−3 7.18 · 10−2 5.43 · 10−3 1.70 · 100 1.96 · 10−2

cmp 1.16 · 106 2.38 · 104 5.17 · 106 4.81 · 104 1.07 · 107 4.27 · 103 2.90 · 106 2.13 · 105 5.95 · 106 2.46 · 105 2.57 · 108 2.13 · 105

DTLZ7

time 5.64 · 10−2 4.39 · 10−3 9.43 · 10−2 3.82 · 10−3 1.02 · 10−1 1.80 · 10−3 7.06 · 10−2 2.16 · 10−3 9.07 · 10−2 2.93 · 10−3 1.59 · 100 1.65 · 10−2

cmp 1.13 · 106 2.07 · 104 6.12 · 106 2.86 · 104 1.08 · 107 1.85 · 103 3.55 · 106 6.15 · 104 7.21 · 106 1.32 · 105 2.57 · 108 6.50 · 104

WFG1

time 4.90 · 10−2 1.48 · 10−3 7.91 · 10−2 1.87 · 10−3 1.00 · 10−1 1.12 · 10−3 6.11 · 10−2 4.02 · 10−3 8.15 · 10−2 1.15 · 10−2 1.57 · 100 2.80 · 10−2

cmp 1.07 · 106 1.99 · 104 5.48 · 106 1.62 · 105 1.07 · 107 1.14 · 104 2.94 · 106 4.30 · 105 6.27 · 106 4.71 · 105 2.57 · 108 5.18 · 105

WFG2

time 5.94 · 10−2 2.67 · 10−3 1.04 · 10−1 5.11 · 10−3 1.02 · 10−1 1.87 · 10−3 9.73 · 10−2 4.72 · 10−3 1.23 · 10−1 8.75 · 10−3 1.54 · 100 1.98 · 10−2

cmp 1.07 · 106 3.65 · 104 6.97 · 106 6.68 · 104 1.08 · 107 2.14 · 103 7.05 · 106 1.25 · 105 1.13 · 107 1.64 · 105 2.61 · 108 8.74 · 104

WFG3

time 5.63 · 10−2 3.37 · 10−3 9.40 · 10−2 5.75 · 10−4 9.83 · 10−2 2.29 · 10−3 7.59 · 10−2 5.90 · 10−3 9.56 · 10−2 6.60 · 10−3 1.53 · 100 1.72 · 10−2

cmp 1.07 · 106 2.69 · 104 6.16 · 106 2.88 · 104 1.08 · 107 1.42 · 103 4.98 · 106 7.89 · 104 8.69 · 106 1.94 · 105 2.59 · 108 7.67 · 104

WFG4

time 5.34 · 10−2 1.46 · 10−3 9.22 · 10−2 2.35 · 10−3 9.90 · 10−2 1.19 · 10−3 7.51 · 10−2 4.20 · 10−3 9.78 · 10−2 3.68 · 10−3 1.53 · 100 2.04 · 10−2

cmp 1.07 · 106 2.11 · 104 6.07 · 106 5.90 · 104 1.08 · 107 2.56 · 103 4.76 · 106 1.92 · 105 8.43 · 106 2.49 · 105 2.59 · 108 1.85 · 105

WFG5

time 5.62 · 10−2 4.48 · 10−3 1.03 · 10−1 2.08 · 10−3 9.73 · 10−2 5.45 · 10−3 9.01 · 10−2 3.21 · 10−3 1.20 · 10−1 3.73 · 10−3 1.54 · 100 1.60 · 10−2

cmp 1.08 · 106 4.42 · 104 7.10 · 106 1.80 · 105 1.08 · 107 7.08 · 103 6.71 · 106 4.86 · 105 1.11 · 107 7.35 · 105 2.61 · 108 4.73 · 105

WFG6

time 5.46 · 10−2 3.50 · 10−3 9.19 · 10−2 6.80 · 10−3 1.01 · 10−1 3.19 · 10−3 6.92 · 10−2 2.74 · 10−3 9.29 · 10−2 7.66 · 10−3 1.53 · 100 1.88 · 10−2

cmp 1.07 · 106 1.97 · 104 5.96 · 106 7.38 · 104 1.08 · 107 4.13 · 103 4.48 · 106 3.28 · 105 8.10 · 106 4.59 · 105 2.58 · 108 3.29 · 105

WFG7

time 5.58 · 10−2 1.64 · 10−3 9.80 · 10−2 2.45 · 10−3 9.96 · 10−2 4.25 · 10−3 7.81 · 10−2 1.67 · 10−3 1.02 · 10−1 2.84 · 10−3 1.52 · 100 1.63 · 10−2

cmp 1.06 · 106 2.98 · 104 6.38 · 106 2.43 · 104 1.08 · 107 1.11 · 103 5.53 · 106 7.61 · 104 9.47 · 106 1.35 · 105 2.59 · 108 7.71 · 104

WFG8

time 5.50 · 10−2 4.76 · 10−3 8.04 · 10−2 1.46 · 10−3 1.08 · 10−1 1.40 · 10−3 4.79 · 10−2 3.04 · 10−3 6.28 · 10−2 6.48 · 10−3 1.52 · 100 2.64 · 10−2

cmp 1.05 · 106 4.14 · 104 4.59 · 106 1.25 · 105 1.07 · 107 8.61 · 103 1.66 · 106 1.32 · 105 4.12 · 106 1.61 · 105 2.56 · 108 1.23 · 105

WFG9

time 5.67 · 10−2 2.99 · 10−3 9.68 · 10−2 3.83 · 10−3 1.01 · 10−1 5.63 · 10−3 7.46 · 10−2 3.45 · 10−3 1.04 · 10−1 3.93 · 10−3 1.53 · 100 1.56 · 10−2

cmp 1.06 · 106 2.69 · 104 6.23 · 106 1.05 · 105 1.08 · 107 4.66 · 103 4.91 · 106 4.58 · 105 8.56 · 106 6.21 · 105 2.59 · 108 4.31 · 105
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4. CONCLUSION
We proposed a new approach to implementation of steady-

state multiobjective evolutionary algorithms for two dimen-
sions. This approach is based on a data structure which
is able to perform fast incremental non-dominated sorting
and track other valuable data such as crowding distance.
Experiments with the NSGA-II algorithm showed that the
new approach offers running times similar to or better than
those of generational versions while retaining the quality of
steady-state versions.
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of Russian Federation, Grant 074-U01.

5. REFERENCES
[1] H. A. Abbass, R. Sarker, and C. Newton. PDE: A

Pareto Frontier Differential Evolution Approach for
Multiobjective Optimization Problems. In Proceedings

of the Congress on Evolutionary Computation, pages
971–978. IEEE Press, 2001.

[2] M. Buzdalov and A. Shalyto. A provably
asymptotically fast version of the generalized Jensen
algorithm for non-dominated sorting. In International

Conference on Parallel Problem Solving from Nature,
number 8672 in Lecture Notes in Computer Science,
pages 528–537. 2014.

[3] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J.
Oates. PESA-II: Region-based Selection in
Evolutionary Multiobjective Optimization. In
Proceedings of Genetic and Evolutionary Computation

Conference, pages 283–290. Morgan Kaufmann
Publishers, 2001.

[4] D. W. Corne, J. D. Knowles, and M. J. Oates. The
Pareto Envelope-based Selection Algorithm for
Multiobjective Optimization. In Parallel Problem

Solving from Nature Parallel Problem Solving from

Nature VI, number 1917 in Lecture Notes in
Computer Science, pages 839–848. Springer, 2000.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
Fast Elitist Multi-Objective Genetic Algorithm:
NSGA-II. Transactions on Evolutionary Computation,
6:182–197, 2000.

[6] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler.
Scalable Test Problems for Evolutionary Multiobjective

Optimization, pages 105–145. Springer, 2005.

[7] F.-A. Fortin, S. Grenier, and M. Parizeau.
Generalizing the Improved Run-time Complexity
Algorithm for Non-dominated Sorting. In Proceeding

of the Fifteenth Annual Conference on Genetic and

Evolutionary Computation Conference, GECCO ’13,
pages 615–622. ACM, 2013.

[8] S. Huband, P. Hingston, L. Barone, and R. L. While.
A review of multiobjective test problems and a
scalable test problem toolkit. IEEE Transactions on

Evolutionary Computation, 10(5):477–506, 2006.

[9] M. T. Jensen. Reducing the Run-time Complexity of
Multiobjective EAs: The NSGA-II and Other
Algorithms. Transactions on Evolutionary

Computation, 7(5):503–515, 2003.

[10] J. D. Knowles and D. W. Corne. Approximating the
Nondominated Front Using the Pareto Archived
Evolution Strategy. Evolutionary Computation,
8(2):149–172, 2000.

[11] H. T. Kung, F. Luccio, and F. P. Preparata. On
finding the maxima of a set of vectors. Journal of
ACM, 22(4):469–476, 1975.

[12] K. Li, K. Deb, Q. Zhang, and S. Kwong. Efficient
non-domination level update approach for steady-state
evolutionary multiobjective optimization. Technical
report, 2014.

[13] A. J. Nebro and J. J. Durillo. On the effect of
applying a steady-state selection scheme in the
multi-objective genetic algorithm NSGA-II. In
Nature-Inspired Algorithms for Optimisation, number
193 in Studies in Computational Intelligence, pages
435–456. Springer Berlin Heidelberg, 2009.

[14] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. Journal of ACM, 32(3):652–686, 1985.

[15] J. Vuillemin. A unifying look at data structures.
Communications of ACM, 23(4):229–239, 1980.

[16] I. Yakupov and M. Buzdalov. Incremental
non-dominated sorting with O(N) insertion for the
two-dimensional case. In Proceedings of IEEE

Congress on Evolutionary Computation, 2015 (to
appear).

[17] E. Zitzler, K. Deb, and L. Thiele. Comparison of
multiobjective evolutionary algorithms: Empirical
results. Evolutionary Computation, 8(2):173–195, 2000.

[18] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the Strength Pareto Evolutionary
Algorithm for Multiobjective Optimization. In
Proceedings of the EUROGEN’2001 Conference, pages
95–100, 2001.

[19] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: A comparative case study and the
Strength Pareto approach. IEEE Transactions on

Evolutionary Computation, 3(4):257–271, 1999.

654




