
Can OneMax Help Optimizing LeadingOnes
using the EA+RL Method?

Maxim Buzdalov, Arina Buzdalova
ITMO University

49 Kronverkskiy av.
Saint-Petersburg, Russia, 197101

Email: {mbuzdalov, abuzdalova}@gmail.com

Abstract—There exist optimization problems with the target
objective, which is to be optimized, and several extra objectives,
which can be helpful in the optimization process. The EA+RL
method is designed to control optimization algorithms which solve
problems with extra objectives. The method is based on the use of
reinforcement learning for adaptive online selection of objectives.

In this paper we investigate whether ONEMAX helps to
optimize LEADINGONES when the EA+RL method is used. We
consider LEADINGONES+ONEMAX problem where the target
objective is LEADINGONES and the only extra objective is
ONEMAX.

The following theoretical results are proven for the expected
running times when optimization starts from a random vec-
tor in the case of randomized local search (RLS): n2/2 for
LEADINGONES, n2/3 for LEADINGONES+ONEMAX when rein-
forcement learning state is equal to the LEADINGONES fitness or
when random objective selection is performed, and n2/4+o(n2)
when there is one reinforcement learning state and the greedy
exploration strategy is used. The case of starting with all bits set
to zero is also considered.

So, ONEMAX helps, although not too much, to optimize
LEADINGONES when RLS is used. However, it is not true
when using the (1 + 1) evolutionary algorithm, which is shown
experimentally.

I. INTRODUCTION

Single-objective optimization can benefit from multiple
objectives [1]–[4]. Different approaches are known from the
literature. Some researchers introduce additional objectives to
escape from the plateaus [5]. Decomposition of the primary
objective into several objectives also helps in many prob-
lems [2], [3], [6]. Additional objectives may also arise from
the problem structure [7], [8].

Different approaches may be applied to a problem with the
“original” objective, which can be called the target objective,
and some extra objectives. The multi-objectivization approach
is to optimize all extra objectives at once using a multi-
objective optimization algorithm [3], [6]. The helper-objective
approach is to optimize simultaneously the target objective
and some (not necessarily all, in some cases, only one is
preferrable) extra objectives, switching between them from
time to time [9].

The approaches above are designed in the assumption that
extra objectives are crafted to help optimizing the target ob-
jective. However, this is not always true, especially when extra

objectives are generated automatically [10], or their properties
are unknown. In fact, extra objectives may support or obstruct
the process of optimizing the target objective. The EA+RL
method was developed to cope with such situations [11]. The
idea of this method is to use a single-objective optimization
algorithm and switch between the objectives (which include
the target one and the extra ones). To find the most suitable
objective for the optimization, reinforcement learning algo-
rithms are used [12]–[14]. The EA+RL method can also be
adapted to select the second objective for the helper-objective
approach [10].

Some initial theoretical explorations of the EA+RL method
are made for the case of an obstructive extra objective [15] and
a fine-grained version of the target objective as an extra ob-
jective [16]. In [17] an objective selection method is proposed
which delivers the running time proportional to the minimum
of running times for the objectives.

This paper deals with the case of a supporting extra objec-
tive. The functions LEADINGONES and ONEMAX are chosen
to be the object of research. The reason is that they are both
simple to optimize by evolutionary algorithms with one indi-
vidual, and they have only slightly differing computation com-
plexities for this class of optimization algorithms: Θ(n log n)
for ONEMAX [18] and Θ(n2) for LEADINGONES [19].

The main results of the paper are:
• when using randomized local search (RLS) as an op-

timizer, a single reinforcement learning state, and a
greedy Q-learning agent, the running time of EA+RL on
LEADINGONES+ONEMAX is n2/4 + o(n2);

• when reinforcement learning states are determined by
the value of LEADINGONES fitness, or when random
reinforcement learning agent is used, the running time
is n2/3 + o(n2);

• if the (1 + 1) evolutionary algorithm is used, the running
time is almost always asymptotically worse than the
running time of optimizing just LEADINGONES.

The rest of the paper is structured as follows. In Section II,
we give some necessary definitions. In Section III, the run-
ning time of the randomized local search on LEADINGONES
is analyzed in the case of random initialization. In Sec-
tion IV, the same is done for the EA+RL method on
LEADINGONES+ONEMAX. Section V is dedicated to the
worst-case expected time analysis of both algorithms. Sec-978-1-4799-7492-4/15/$31.00 c©2015 IEEE
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tion VI contains comparison of the results for random and
worst-case initializations in the case of the randomized local
search, as well as the experimental evaluation of the (1 + 1)
evolutionary algorithm. The net result is that, in the case of sin-
gle bit mutations, ONEMAX helps optimizing LEADINGONES,
while in the case of independent bit mutations it does not help.
Section VII concludes.

II. DEFINITIONS

The ONEMAX problem is often used in theoretical research
on evolutionary algorithms [18]. The search space consists of
all bit vectors of length n. The fitness function of a bit vector
is the number of bits set to one. One needs to maximize the
fitness function.

The LEADINGONES problem is also defined on bit vec-
tors [19]. However, the fitness function is the length of the
maximal prefix consisting of bits set to one.

We consider two simplistic optimization algorithms. The
first one called “randomized local search”, or simply RLS. It
stores a bit vector x — the current candidate solution. In the
beginning of the algorithm, x is initialized in some way —
this paper assumes that the initial vector contains only zero
bits. An iteration of this algorithm works this way:
• y ← x with exactly one random bit flipped (mutation);
• if f(y) ≥ f(x) then x← y.
• if f(x) is the maximum, terminate.

Note that if f(x) = f(y), the previous solution is discarded.
The second algorithm is called the “(1 + 1) evolutionary

algorithm”, or the (1 + 1)-EA. The only difference between
RLS and this algorithm is that the mutation is performed the
following way: each bit is flipped with the probability of p.

Markov chains are often used in the proofs presented in this
paper. We will distinguish between the states in the context
of reinforcement learning, which we call RL states, and the
states of Markov chains, which we call Markov states.

III. AVERAGE CASE RLS ANALYSIS

This section is dedicated to running time analysis of RLS
on the LEADINGONES problem.

In the paper by Böttcher, Doerr and Neumann [19] the
exact running time of the (1 + 1) evolutionary algorithm for
LEADINGONES problem was computed. It was shown to be
equal to:

1

2p2
(
(1− p)1−n − (1− p)

)
, (1)

where p is the probability of mutating each bit. To prove the
results for RLS on LEADINGONES, we use the ideas of the
proof from this paper. This section is structured as follows:
first, we outline the proof from [19], and then we prove the
similar formula for the running time of RLS.

A. Outline of the Original Proof for the (1+1)-EA

The authors of [19] assume that the optimization process is
started from a random individual, i.e. every bit is set to one
with the probability of 1/2. Let us have the length of the bit
vector equal to n. A Markov chain with n + 1 states is used

to model the optimization process. A state Si of this Markov
chain is defined as follows: first (n− i) bits of the bit vector
are set to one, the next one is set to zero, and (i − 1) bits
in suffix are set to one independently with the probability of
1/2. Thus, the LEADINGONES fitness of state Si is (n− i).

Each mutation, which is flipping each bit with the prob-
ability of p, retains the (i − 1) last bits to be of the same
distribution, and may optionally flip other bits. If some of
the first (n − i) bits are flipped, the fitness is decreased, so
mutations of this sort are not accepted. If first (n−i+1) bits are
not flipped, the state is not changed. The probability of fitness
increase is (1− p)n−ip, and the expected time of waiting for
an improvement is Ai = 1

(1−p)n−ip . The probability that first
k bits in the (i − 1) last bits are set to one is 2−k for all
k < i− 1, so the expected running time starting from Markov
chain state Si until the optimization stops is

Ti = Ai +
i−1∑
j=1

2j−iTj ,

which is simplified down to

Ti = Ai +
1

2

i−1∑
j=1

Aj .

We can compute the expected running time for the random
initialization using the expression:

T =
1

2

n∑
j=1

Aj .

This works by assigning the probability of 1/2 to Tn, the
probability of 1/4 to Tn−1 and so on, finally getting the same
expression as for Tn+1 with An+1 set to zero. Finally, (1) is
constructed from the expression for T by substituting Aj =

1
(1−p)n−jp .

B. Proof Update for RLS
The proof above can be easily updated to work with RLS

instead of the (1+1)-EA. First, if each of the (i−1) last bits is
set to one independently with the probability of 1/2, a single-
bit mutation applied to these bits yields the same distribution,
as it just switches the probability p = 1/2 to 1 − p = 1/2.
So, the expression for the expected running time Ti actually
works in this case given Ai is computed correctly. However,
for a single bit mutation, Ai is simply equal to n.

Finally, the expected running time for a random start is

T = 1
2

n∑
j=1

n = n2

2 , and the running time for Tn is n(n+1)
2 .

IV. AVERAGE CASE EA+RL ANALYSIS

In this section we present the result of theoreti-
cal analysis for the EA+RL algorithm applied to the
LEADINGONES+ONEMAX problem and different configura-
tions of reinforcement learning.

In Section IV-A, the notation used in reinforcement learning
algorithms is described. In Sections IV-B and IV-C, the proofs
of the expressions for expected running time in different
configurations with random initialization are given.
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A. Reinforcement Learning

Reinforcement learning [12]–[14] uses the concepts of state,
action and reward. A reinforcement learning algorithm is often
thought to control an agent which interacts with a certain
environment. The agent receives the current state from the
environment as input. It should return an action to apply on the
environment. For that action, it receives a reward. The aim of
the reinforcement learning algorithm is to maximize the total
reward by choosing appropriate actions in different states. The
total reward can be treated as a sum of all rewards received
by the algorithm, or as a discounted reward, when a reward
for i-th step from the end is taken with a weight of γi, where
0 < γ < 1.

In the EA+RL method, actions are objectives to choose,
while states and rewards are defined depending on the prob-
lem. In this paper, the reward is always defined as the value of
the target objective after the selection of an objective minus
the value of the target objective before it. The sum of all
these rewards is roughly equal to the final value of the target
objective, so optimization of the reward leads to optimization
of the target objective.

In this paper we consider a random agent — a somewhat
degenerate reinforcement learning algorithm, which selects the
actions at random. In some situations, however, every unbiased
reinforcement learning algorithm (that is, an algorithm that
chooses actions at random when there is no information about
the expected rewards in the current state) behaves like the ran-
dom agent. We also consider another reinforcement learning
algorithm, the Q-learning algorithm with greedy exploration
strategy [13], which we call a greedy agent.

In the rest of the paper, we often distinguish between the
states in the context of reinforcement learning, which we call
reinforcement learning states, and the states of Markov chains,
which we call Markov states.

B. RLS, N+1 States

We consider the randomized local search (RLS) con-
trolled by reinforcement learning. The target objective is
LEADINGONES, and the extra objective is ONEMAX. There
are N + 1 reinforcement learning states which correspond to
the target objective values.

The reinforcement learning algorithm to use is not specified
above. This is because the following lemma holds for the
considered problem:

Lemma 1. The EA+RL algorithm never returns to any state
where some reward has been obtained.

Proof. Consider a certain reinforcement learning state Si,
which corresponds to the LEADINGONES fitness being equal
to i. There are only three possibilities for a single-bit mutation:
• Flip one of the first i bits. This decreases both the

LEADINGONES and the ONEMAX fitnesses, so such
mutation is always rejected. The reinforcement learning
state is not changed, no reward is obtained.

• Flip the (i+ 1)-th bit. This increases both fitnesses, so is
always accepted. The positive reward is obtained, so the

estimation of the reward in the current state is updated,
but the state is changed to Si+1.

• Flip one of the last (n− i−1) bits. This does not change
the LEADINGONES fitness and may alter the ONEMAX
fitness. The reinforcement learning state is not changed,
no reward is obtained.

To sum up, in the only case when some nonzero reward is
gained, the state is changed to a previously unvisited one, so
at any time the reinforcement learning agent must decide from
no experience.

If a reinforcement learning algorithm chooses actions at
random when there is no reward obtained in the current state,
it is equivalent to a random agent for this problem. We assume
further in this section that the LEADINGONES fitness function
is selected with the probability of q, and the ONEMAX fitness
function is selected with the probability of (1− q).

In this section we try to follow the ideas of the proof
from [19]. To do that, we need to invent some distribution of
the tail of unknown bits which will be kept during mutations
of the selected type and selection based on both target and
auxiliary objectives. Fortunately, it is possible to do it in this
case in a simple manner.

Lemma 2. Assume that an individual has the form of
1t0?n−t−1, where a symbol ? refers to unknown bits which are
set to one independently with the probability of p = 1/(1+q).
After flipping a random bit and applying LEADINGONES with
the probability of q and ONEMAX with the probability of 1−q
the resulting individual will have a form of either 1u0?n−u−1

or 1n, where bits denoted by ? have the same probability of
being set to one as above.

Proof. Consider a bit flip. If a bit from the first group of ones
is flipped, the mutation will be discarded. Otherwise, there are
three possible situations:

• The bit was equal to one (so after mutation it is equal to
zero) and LEADINGONES is selected. The result is zero,
the probability is pq.

• The bit was equal to one and ONEMAX is selected.
Then the mutation is discarded, the result is one, and
the probability is p(1− q).

• The bit was equal to zero (so flipped to one). The result
is one, the probability is (1− p).

In the latter case, the flipped bit could be the first zero bit.
In this case, the first group of ones is extended until a first
zero bit is found (then the remaining bits retain their original
probability of being set to one), or until all bits are found to
be one.

In all other cases, all unknown bits except for the flipped bit
retain their probability of being equal to one, and the flipped
bit is set to one with the probability p(1−q)+(1−p) = 1−pq,
which is equal to p.

By repeating the proof from [19] for this new probability,
we get the following result:
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Theorem 1. If LEADINGONES is selected with the probability
of q and ONEMAX with the probability of (1−q), and if each
bit is initially set to one independently with the probability of
p = 1/(1 + q), then the expected running time starting with
the LEADINGONES fitness equal to (n− i) is Ti = n+n ·(i−
1) · q

1+q , and the average expected running time is n2 q
1+q .

Proof. For a sequence of t random bits set to one indepen-
dently with the probability of p, the probability of first u < t
bits being equal to one and the next one being equal to zero is
pu(1− p). So we have the following expression for Ti, i > 0:

Ti = Ai +
i−1∑
j=0

(1− p)pj−i−1Tj .

By induction, we show that:

Ti = Ai + (1− p)
i−1∑
j=1

Aj .

The base for i = 1 is:

T1 = A1 + (1− p)
0∑

j=1

Aj = A1.

Assume that, if i > 1, the induction statement holds for
Ti−1. Then the induction statement can be proven for Ti the
following way:

Ti = Ai +
i−1∑
j=0

(1− p)pj−i−1Tj =

= Ai + (1− p)Ti−1 + p
i−2∑
j=0

(1− p)pj−i−2Tj =

= Ai + (1− p)Ti−1 + p (Ti−1 −Ai−1) =

= Ai + Ti−1 − pAi−1 =

= Ai +

Ai−1 + (1− p)
i−2∑
j=1

Aj

− pAi−1 =

= Ai + (1− p)
i−1∑
j=1

Aj .

By substituting Ai = n and p = 1/(1 + q), we get:

Ti = n+ n(i− 1)
q

1 + q
.

The average running time is computed as explained in the
end of Section III-A: in the expression for Tn+1 the value of
An+1 is substituted by zero.

This gives the same results as in [19] if q = 1, i.e. if we
do not select ONEMAX at all. For the most common case,
the probability of selecting LEADINGONES q = 1/2, so the
probability of each bit from the tail to equal one is p = 2/3.
In this case, the running time of the EA+RL algorithm using
RLS on LEADINGONES+ONEMAX is n2/3 in average and

n + n(n − 1)/3 from zero LEADINGONES fitness, which is
asymptotically 1.5 times faster than RLS on LEADINGONES.

However, the results for RLS on LEADINGONES are given
in the assumption that the unknown bits in the tail are equal
to one with the probability of 1/2, and the result for EA+RL
using RLS on LEADINGONES+ONEMAX are given in the
assumption of the same probability equal to 2/3. Fortunately,
further experiments show that the same ratio between the
results is true in the case of the worst-case start for n being
sufficiently large.

In the next sections we focus on the particular probability
of random selection for LEADINGONES equal to 1/2.

C. RLS, One State

In this section we consider the same setup as in the previous
section, but with only one reinforcement learning state.

1) Random Agent: It is clear that for the reinforcement
learning agent that selects the actions at random the behavior
does not depend on the number of states, so the results will
be the same: n2/3 in average, n+n(n− 1)/3 for the case of
the initialization with zero LEADINGONES fitness. However,
the probability of 2/3 for each bit to equal one is implied.

2) Greedy Agent: Consider the greedy agent, whose defini-
tion is given in Section IV-A. In this situation, the reinforce-
ment learning agent will select fitness functions at random
until the first increase of the LEADINGONES function happens.
The expected number of steps until this happens is n. Note that
there will never be a decrease of the LEADINGONES function,
because when the single-bit mutation is used, such a decrease
will also result in the decrease of ONEMAX.

After the first increase of LEADINGONES, the fitness func-
tion that has just been selected will be used for the entire
optimization process. That is, with the probability of 1/2
LEADINGONES will be used, and the total optimization time
will be at most n+n(n−1)/2. With the probability of another
1/2 ONEMAX will be used. This happens because, due to the
single-bit mutation, no choice of the fitness function yields
negative reward, so whatever is the initial choice, it will be
reinforced.

Assuming the probability of 1/2 for each bit to be one, the
upper bound on the expectation number of steps is:

T ≤ n+
1

2

(
n(n− 1)

2
+

n−1∑
i=1

n

i

)
≈ n2

4
+ o(n2). (2)

This approaches n2/4 as n grows. It can be said that this
algorithm is roughly twice as fast as RLS on LEADINGONES.
However, due to the fact that with the probability of 1/2
it works the same way as RLS on LEADINGONES, the
distribution of the number of steps has two peaks, one centered
at roughly n2/2 and one at n log n.

V. WORST CASE RUNNING TIME

The proofs in the previous sections share a single draw-
back — they show the expected running time in the average
case, not in the worst case. The expression for the state Sn,
which corresponds to the minimum fitness value, show the
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expected running time for the initialization which has the first
bit set to zero and other bits initialized at random. However,
the worst case is initialization with all zeros. In this case, last
n− 1 bits are not initialized at random, so the proofs cannot
be applied.

The property that the proof from [19] relies on the random
distribution of the tail also makes it difficult to adapt the proof
to more general cases like the one in this paper, where, due to
the presence of extra fitness functions, the distribution of bits
in the tail may significantly differ from the random one.

In this section, we explain the method of computation of
the worst-case expected running time for RLS optimizing
LEADINGONES and for EA+RL with random agent optimizing
LEADINGONES+ONEMAX. This method, however, can be
extended by certain modifications to work with some other
optimizers.

The idea to use a two-dimensional Markov chain: Sj
i is the

state which corresponds to the bit vectors where the first n− i
bits are set to one, the next bit is set to zero, and from the last
i− 1 bits there are j bits set to one. All bit vectors matching
this description have the same probability and belong to the
same Markov state. For each state, we define the probabilities
of moving to certain other states, and finally compute T j

i —
the expected number of steps needed to reach the terminal
state.

Theorem 2. Consider all possible bit vectors of length m with
k < m bits set to one, each taken with equal probability. The
probability that the first i ≤ k bits are set to one and the next
one is set to zero is: (

m−i−1
m−k−1

)(
m
k

) .

Proof. There are
(
m
k

)
equiprobable bit vectors. We want to

count such vectors that the first i bits are set to one and the
next bit is set to zero. After these bits, there are m− i−1 bits
in the tail, from which there are m−k−1 zeros. So there are(
m−i−1
m−k−1

)
vectors of this type.

When using the single-bit mutation, there is no chance for
the LEADINGONES fitness to decrease. The probability of this
fitness to increase is 1/n, which is the probability of flipping
the first zero bit. After this happens, there may be some other
bits set to one after the flipped bit. The probability of t extra
bits set to one follows from Theorem 2.

Let’s define the probability of going from Sj
i to Sj+1

i as
P+
i,j , and the probability of going from Sj

i to Sj−1
i as P−i,j .

Then the expected running time from the state Sj
i , j < i− 1,

can be written as follows:

T j
i =

1 + P+
i,jT

j+1
i + P−i,jT

j−1
i + 1

n

i−1∑
x=i−j+1

Vi,j,x

P+
i,j + P−i,j + 1

n

, (3)

where:

Vi,j,x =

(
x−1

i−j−2
)(

i−1
j

) T j−i+x+1
x , (4)

and for Si−1
i :

T i−1
i =

1 + P−i,jT
i−2
i

P−i,j + 1
n

. (5)

For RLS solving the LEADINGONES problem, P+
i,j = (i−

j − 1)/n and P−i,j = j/n, because in the first case we need
to flip one of the (i − j − 1) zero-bits in the tail, and in the
second case we need to flip one of the j one-bits.

For EA+RL using RLS with the random agent solving the
LEADINGONES+ONEMAX problem, P+

i,j = (i− j − 1)/n as
before, and P−i,j = j/(2n), because the ONEMAX fitness is
selected with the probability of 1/2, which in turn does not
allow the one-to-zero bit flips to be accepted.

For EA+RL using RLS with the greedy agent and one
reinforcement learning state, the probabilities are the same
as in the case of plain RLS. However, in the case of T j

n,
we need to change Vn,j,x, because with the probability of
1/2 ONEMAX is used. The expression for the changed Vn,j,x,
which we define as V ′n,j,x, is as follows:

V ′n,j,x = 0.5Vn,j,x + 0.5

j∑
i=1

n

i
.

As all T j
i depend on their neighbors for the same i, we

need to solve a system of linear equations to compute T j
i for

the fixed i, given the values for T j
k , k > i have been already

computed. We cannot give the closed expressions for T j
i for

both LEADINGONES and LEADINGONES+ONEMAX cases.
Instead, we compute these values numerically.

To compute the expected running time for all zero initial-
ization, we just need to compute the value of T 0

n . Note that
we do not count the fitness evaluation of the initial vector.

VI. EXPERIMENTAL EVALUATION

In this section, we present the results of experimental
evaluation for each n from the set {2, 5, 10, 20, 30, 40, 50}.

This section is dedicated to two questions. First, we show
that, in the case of RLS being used as an optimization
algorithm, theoretical results for the average case approximate
theoretical results for the worst case quite well. Second, we
consider the case of the (1 + 1)-EA as an optimization algo-
rithm, for which we don’t yet have theoretical results about
EA+RL, and show experimentally that, in general, ONEMAX
does not help optimizing LEADINGONES in this case.

A. Results for RLS

First, we compute the “simple” expectation value (using an
expression for Tn, which corresponds to random initialization
with zero LEADINGONES fitness), the “exact” expectation
value (computed using (3) and (5)) and the experimental re-
sults averaged over 1000 runs. The results for RLS optimizing
the LEADINGONES problem are given in Table I. The results
for EA+RL using RLS and the random agent are given in
Table II, and for the greedy agent with one reinforcement
learning state the results are given in Table III.

1766



TABLE I
EXPERIMENTAL EVALUATION, RLS ON LEADINGONES FROM ALL ZEROS.

COLUMN NAMES: “SIMPLE” IS THE SIMPLIFIED EXPECTED VALUE FOR
RANDOM TAIL BITS, “EXACT” IS THE EXACT EXPECTED VALUE,

“EXPERIMENT” IS THE AVERAGE OF THE EXPERIMENTAL VALUES.

n simple exact experiment
2 3.000 3.333 3.204
5 15.000 16.547 17.094

10 55.000 58.427 59.496
20 210.000 216.930 215.397
30 465.000 475.397 472.594
40 820.000 833.863 816.506
50 1275.000 1292.329 1293.045

TABLE II
EXPERIMENTAL EVALUATION, EA+RL USING RLS ON

LEADINGONES+ONEMAX FROM ALL ZEROS USING N + 1 STATES.
COLUMN NAMES HAVE THE SAME MEANING AS IN TABLE I.

n simple exact experiment
2 2.667 3.200 3.204
5 11.667 14.497 14.210

10 40.000 46.906 47.939
20 146.667 161.242 163.648
30 320.000 341.961 341.308
40 560.000 589.295 587.090
50 866.667 903.287 905.810

The results given in tables show that the experimental results
correspond well with the exact theoretical values. Moreover,
one can see that the “simple” values approximate the exact
values quite well. They are only slightly smaller in the cases
of RLS and of the random agent, which shows that random
initialization of the tail helps the optimization process. In the
case of the greedy agent and one reinforcement learning state,
the “simple” values are slightly larger. This can be explained
that, after first LEADINGONES increase, there are quite many
bits in the tail that are equal to one, while the expression for
the ONEMAX assumes they are all zeros.

The overall impression is that, although the “simple” ex-
pressions are derived under some strange assumptions, they
approximate the worst-case behavior quite good in all cases.

B. Results for the (1+1)-EA

It is possible to construct the exact expectation values using
the ideas from Section V for the case of the (1 + 1)-EA used
as an optimization algorithm. However, for all cases except
for the (1 + 1)-EA solving the LEADINGONES problem, the
LEADINGONES fitness may actually decrease when ONEMAX
fitness increases. So the expressions for T j

i are not as simple
as in (3–5). Due to this fact, we present only the experimental
results.

In Table IV, the results averaged over 1000 runs are
presented for the following configurations: the (1 + 1)-EA
optimizing LEADINGONES as “no EA+RL”, the EA+RL algo-
rithm using the (1+1)-EA and random agent as “random”, the
same algorithm with the greedy agent and N+1 reinforcement
learning states as “N + 1 states”, the same configuration with
one reinforcement learning state as “one state”.

TABLE III
EXPERIMENTAL EVALUATION, EA+RL USING RLS ON

LEADINGONES+ONEMAX FROM ALL ZEROS USING ONE STATE. COLUMN
NAMES HAVE THE SAME MEANING AS IN TABLE I.

n simple exact experiment
2 3.500 3.200 3.237
5 15.208 14.194 14.094

10 46.645 44.493 43.978
20 150.477 146.109 145.868
30 306.925 300.369 302.389
40 515.071 506.330 494.827
50 774.480 763.554 764.321

TABLE IV
EXPERIMENTAL EVALUATION WITH THE (1 + 1)-EA FROM ALL ZEROS.

COLUMN NAMES: “NO EA+RL” IS FOR LEADINGONES, “RANDOM” IS FOR
EA+RL ON LEADINGONES+ONEMAX WITH RANDOM AGENT, “N + 1

STATES” AND “ONE STATE” ARE FOR EA+RL WITH GREEDY AGENT.

n no EA+RL random N + 1 states one state
2 3.859 3.906 3.869 3.942
5 24.325 23.123 23.011 24.845

10 93.607 98.028 93.877 92.571
20 364.358 614.730 494.653 345.059
30 787.643 4609.222 1794.575 775.359
40 1400.548 47724.651 5154.533 1345.653
50 2189.721 701151.808 12507.594 2118.676

One can see in Table IV that the complexity of optimization
with extra objectives is typically worse than the complexity of
optimization of LEADINGONES. It can be explained by the
fact that, in the case of multiple bit mutation, if ONEMAX is
selected, the LEADINGONES fitness may decrease, and vice
versa. When the random agent is used, optimization seems to
take at least exponential time. When the greedy agent is used,
it looks like the complexity is polynomial, but still higher than
Θ(n2).

The only exception is the use of the greedy agent and one
reinforcement learning state. In this case, the performance
of the EA+RL method on LEADINGONES+ONEMAX is just
slightly better than of the (1+1)-EA on LEADINGONES. This
differs from the case of RLS, where the quotient was roughly
1/2. The reason is that, while the probability of increasing the
LEADINGONES fitness if LEADINGONES was selected is still
1/n, the same probability for ONEMAX is smaller, because
there is a big chance that the number of bits flipping from one
to zero in the rest of the bit vector will be at least two.

VII. CONCLUSION

We have presented some theoretical estimations and exper-
imental evaluation for the expected running time of RLS and
the (1 + 1)-EA solving the LEADINGONES+ONEMAX and
LEADINGONES problems with or without the EA+RL method,
correspondingly. The main results are:
• the expected running time of RLS solving

LEADINGONES is n2

2 + o(n2);
• the expected running time of EA+RL using RLS with
N + 1 reinforcement learning states or with the random
agent solving LEADINGONES+ONEMAX is n2

3 + o(n2);
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• the expected running time of EA+RL using RLS with the
greedy agent and one reinforcement learning state solving
LEADINGONES+ONEMAX is n2

4 + o(n2);
• the expected running time of EA+RL using

the (1 + 1)-EA with the random agent solving
LEADINGONES+ONEMAX seems to be at least
exponential;

• the expected running time of EA+RL using the (1+1)-EA
with the greedy agent and N + 1 reinforcement learning
states solving LEADINGONES+ONEMAX seems to be
polynomial but worse than Θ(n2);

• the expected running time of EA+RL using the (1 + 1)-
EA with the greedy agent and one reinforcement learning
state solving LEADINGONES+ONEMAX seems to be
n2

2 + o(n2) and slightly better than just the (1 + 1)-EA.

The method for exact computation of the expected running
time for LEADINGONES-like problems is presented. It works
for algorithms using RLS as an optimizer and, with some
modifications, for algorithms using the (1 + 1)-EA. The
method is based on a two-dimensional Markov chain, the first
dimension is for the LEADINGONES fitness, the second one
for the number of bits set to one in the tail of the bit vector.

The approximations for the worst-case expected running
times derived from somewhat unrealistic assumptions appeared
to approximate the exact values quite closely, and the asymp-
totic behavior seems to be the same as of the exact values.
The advantage of these approximations is that the expressions
for them are very simple.

Even in the simple case of RLS as an optimizer, the exact
computation method depends on solving tridiagonal systems
of linear equations, which, at the current stage of the research,
prevented us from making closed expressions for running
times. However, we still believe that reasonably tight lower
and upper bounds on all T j

i are possible. This may not be
the case for the (1 + 1)-EA, because the linear equations stop
being tridiagonal and involve all Markov states instead of small
regular groups of them.

As for the answer to the paper title, we can see that, if single
bit mutation is used, ONEMAX can serve as a supporting
objective for LEADINGONES, but with the use of currently
available reinforcement learning methods, the “support” from
ONEMAX is merely a multiplicative constant. This is not
an improvement when compared with the method from [17]
which delivers the O(n log n) running time for the considered
problem. If a multiple bit mutation is used, ONEMAX and
LEADINGONES can interfere with each other, slowing down
the optimization progress. These results demonstrate existence
of problems in current implementations of the EA+RL method.
They also define several benchmark problems which should be
considered when developing new objective selection methods.
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[19] S. Böttcher, B. Doerr, and F. Neumann, “Optimal Fixed and Adaptive
Mutation Rates for the LeadingOnes Problem,” in Parallel Problem
Solving from Nature XI, ser. Lecture Notes in Computer Science.
Springer, 2010, no. 6238, pp. 1–10.

1768




