
Hard Test Generation
for Augmenting Path Maximum Flow Algorithms

using Genetic Algorithms: Revisited
Maxim Buzdalov, Anatoly Shalyto

ITMO University
49 Kronverkskiy av.

Saint-Petersburg, Russia, 197101
Email: mbuzdalov@gmail.com, shalyto@mail.ifmo.ru

Abstract—To estimate performance of computer science al-
gorithms reliably, one has to create worst-case execution time
tests. For certain algorithms this task can be difficult. To reduce
the amount of human effort, authors attempt using search-based
optimization techniques, such as genetic algorithms.

Our previous paper addressed test generation for several
maximum flow algorithms. Genetic algorithms were applied for
test generation and showed promising results. However, one of the
aspects of maximum flow algorithm implementation was missing
in that paper: parallel edges (edges which share source and target
vertices) were not merged into one single edge (which is allowed
in solving maximum flow problems).

In this paper, parallel edge merging is implemented and new
results are reported. A surprising fact is shown that fitness
functions and choices of genetic operators which were the most
efficient in the previous paper are much less efficient in the
new setup and vice versa. What is more, the set of maximum
flow algorithms, for which significantly better tests are generated,
changed completely as well.

I. INTRODUCTION

Finding inputs which make a certain algorithm or program
work for the longest possible period of time, or the worst-case
execution time test generation, is an important concern. Some
problems in developing reliable software, such as finding the
maximum response time, reduce to this problem.

One of the main problems is that worst-case test generators
have to heavily depend not only on the problem that the
algorithm solves, but on the algorithm itself as well. In
addition, to design and implement such generators, a scientist
must have a deep insight of how exactly the algorithm works.
This leads to the situations when for certain algorithms the
worst-case tests are, in fact, unknown.

One of the possible solutions to the problem of worst-case
test data generation is to apply search-based techniques, like
in search-based software engineering [1], [2]. In this paper,
tests are generated using genetic algorithms.

The problem which is considered in this work is the
well-known maximum flow problem. This problem is chosen
because a number of different algorithms for its solving are
known, as well as several good test generation algorithms
exist. One of the properties of this problem is that performance

of most algorithms on randomly generated data is much faster
than one can expect from its running time estimation. For ex-
ample, the Edmonds-Karp algorithm [3] which has the running
time compexity of O(V · E2), has no trouble in terminating
under a second on a randomly generated graph with V = 500
and E = 10 000 when run on commodity hardware, although,
based on the upper bound, one can estimate an order of 1011

elementary operations to be done. This makes the maximum
flow problem a good benchmark for worst-case execution time
test generators.

We further refine our domain to augmenting path algo-
rithms [3], [4], including their capacity scaled versions [5].
Tests generated by the proposed approach are compared to
tests constructed by DIMACS data generators [6] and some
other known test generators [7], [8].

In our previous paper [9], we have already made an attempt
to generate worst-case execution time tests for maximum flow
algorithms using genetic algorithms. However, all maximum
flow algorithms implemented in that paper have a common
drawback. In maximum flow problems, if there are two “paral-
lel” edges which start from a vertex V1 and end in the vertex V2

and have corresponding capacities of C1 and C2, these edges
can be replaced by a single edge with a capacity of C1 +C2.
Every solution of the modified problem can be mapped back
to at least one solution of the initial problem, and every
solution of the initial problem can be transformed to a solution
of the modified problem. Both transformations preserve the
main quality measure, the total flow. To decrease the total
number of edges, one can simply merge all parallel edges.
This is commonly done in real maximum flow algorithm
implementations, but it was not done in [9].

In particular, one can “multiply” any flow network by an
integer K ≥ 2 by making K − 1 additional copies of each
edge. If parallel edge merging is not performed, most if not
all maximum flow algorithms belonging to augmenting path
family perform K times worse: they have to repeat each of
their actions K times. In contrast, if merging is performed,
most algorithms just multiply the amount of flow for each
augmenting path by K, which doesn’t influence their running
times. This motivated us to correct the considered maximum978-1-4799-7492-4/15/$31.00 c©2015 IEEE

2121

flow algorithms and reconsider the research.

II. MAXIMUM FLOW PROBLEM

The problem of finding a maximum flow is a classic
problem in graph theory [10]. It is formulated as follows:

• the input is an oriented graph with V vertices and E
edges;

• there are two distinct vertices called the source s and the
sink t;

• each edge has a unique number i (1 ≤ i ≤ E), and for
each edge with a number i a capacity ci ≥ 0 is given;

• one needs to find a maximum flow – a set of numbers fi
(1 ≤ i ≤ E) such that:

– for each edge, 0 ≤ fi ≤ ci;
– for each vertex except for s and t, the sum of fs for

the incoming edges is equal to the sum of fs for the
outgoing edges;

– for s, the sum of fs for the outgoing edges minus
the sum of fs for the incoming edges is maximum
possible.

III. ALGORITHMS FOR FINDING MAXIMUM FLOWS

There are many known algorithms for solving the maximum
flow problem. Some of the best known algorithms are [10]:

• the Ford-Fulkerson algorithm [11], the running time is
O(V · E · Cmax), where Cmax is the maximum capacity
of an edge in the graph;

• the Edmonds-Karp algorithm [3], the running time is
O(V · E2);

• the Dinic algorithm [4], the running time is O(V 2 · E)
and O(E ·min(E1/2, V 2/3)) for unit capacities;

• the improved shortest path algorithm [12], the running
time is O(V 2 · E);

• the push-relabel algorithm [13], the running time is
O(V 2 · E);

• the push-relabel algorithm with the relabel-to-front rule,
the running time is O(V 3).

These algorithms are often modified using the capacity scaling
approach [5], [12].

We limit ourselves to algorithms from augmenting path fam-
ily, as they all have a similar structure and similar performance
measures. We consider the following algorithms:

• the Ford-Fulkerson algorithm with capacity scaling;
• the Edmonds-Karp algorithm;
• the Edmonds-Karp algorithm with capacity scaling;
• the Dinic algorithm;
• an unoptimal implementation of the Dinic algorithm

which does not delete zero-capacity edges from shortest
path networks, and thus has a worse runtime complexity
of O(V · E2);

• the improved shortest path algorithm.

IV. MAXIMUM FLOW TEST GENERATORS

Finding maximum flow is a well-studied problem, so the
problem of finding a hard test for a particular maximum

flow algorithm was studied for a long time as well. In this
section several test generation algorithms known from the
literature [6]–[8] are outlined.

An outcome of a test generator would be a graph with a
source, a sink and capacities assigned to edges. In the rest of
the paper, we use terms “test” and “graph” interchangeably.
Most often, the input parameters to a test generator are V , the
maximum number of vertices in a graph, E, the maximum
number of edges, and C, the maximum capacity of an edge
in a graph. Only integer capacities are considered.

In this work we compare our approach with the following
test generators:

• random graph generation (including graphs without par-
allel edges);

• random acyclic graph generation [6];
• transit grids [6];
• random frames [6], [7];
• Cherkassky and Goldberg generator [6];
• “washington” generators [6];
• Zadeh tests [8].
The detailed descriptions of these generators are available

in Appendix.

V. GENETIC ALGORITHM

In this section, the genetic algorithm, which was used to
generate tests for maximum flow algorithms, is described. It
basically shares ideas with the algorithm described in [9],
however, more genetic operators are explored, and fitness
functions are treated differently.

We assume that the maximum number of vertices V , the
maximum number of edges E and the maximum capacity of
an edge C are given. The individual is basically a list of edges.
Each edge is denoted by its source vertex si, target vertex ti
and capacity ci. The source vertex of the graph is the vertex
with the index of 1 and the target vertex is the vertex with the
index of V .

Based on an idea that acyclic graphs may be harder [6], it
was decided to support acyclic graph generation along with
arbitrary graphs. More precisely, in arbitrary graph generation
no restrictions are put on the graph edges, either initially
generated or introduced by genetic operators. In acyclic graph
generation, for each edge an index of the source vertex must
be strictly less than an index of the target vertex. Both op-
tions (arbitrary and acyclic) are explored in the experimental
evaluation.

A. Genetic Algorithm Scheme

A standard genetic algorithm scheme is used. A population
size G is fixed to be 100. A single iteration of the genetic
algorithm is performed as follows:

1) The reproduction selection operator is used to select G
individuals from the population. These individuals are
then used to create offspring.

2) The selected individuals are grouped in pairs and the
crossover operator is applied to each pair. For each

2122

pair, the crossover operator generates a new pair of
individuals.

3) The mutation operator is applied to each individual
which underwent crossover.

4) Each mutated individual is evaluated using the fitness
function.

5) The new population is formed from the old population
and newly generated individuals using the survival se-
lection operator.

B. Initial Population Creation

The initial population is created by generating G random
individuals. A random individual is generated from a list of
E randomly generated edges. When arbitrary option is used,
each edge is generated by selecting source and target vertices
uniformly at random from the range [1;V] and capacity is
selected uniformly at random from the range [1;C]. When
acyclic option is used, the source-target pair of vertices is
selected uniformly at random from all pairs (s, t) such that
1 ≤ s < t ≤ V .

C. Reproduction Selection Operator

The reproduction selection operator is a variant of tourna-
ment selection which appeared to be efficient in a number
of our previous works [14], [15] for different problems. To
select a single individual, eight individuals are selected from
the population uniformly at random with replacement. They
are grouped in pairs. From each pair, an individual with better
value of fitness function is selected with the probability of
0.9, and with worse value of fitness function otherwise. The
selected individuals are grouped in pairs again and the process
repeats until only one individual is left.

This operator is basically an “olympic system” tournament
and imposes higher selection pressure than the most commonly
used tournament selection operator.

D. Crossover Operator

Two different crossover operators are used. The first one is
a standard single-point crossover operator. The second one is
a two-point crossover operator with shift, which was used in
our previous maximum flow test generation paper [9]. Both
options (single-point and two-point with shift) are explored in
experimental evaluation.

E. Mutation Operator

A mutation operator is used that is a standard one for
evolution strategies. Each edge is replaced with the probability
of 1/E by a randomly generated edge. The edge is generated
as in initial population creation, which depends on the selected
genetic algorithm option (arbitrary or acyclic).

F. Survival Selection Operator

A 10% elitism operator is used as survival selection: 10% of
the best individuals from the old population are promoted to
the new population, the rest of the new population is formed
by the best of the newly generated individuals.

G. Fitness Functions

When an algorithm’s running time should be maximized, a
natural fitness function is the running time itself. In multitask-
ing operating systems there are at least two different ways to
measure time:

• Wall-clock time. This is equal to astronomic time which
passed from the moment the algorithm starts running to
the moment the algorithm finishes its work. This quantity
can be measured with a good precision (if measured from
the process which is used to run the algorithm itself), but
it is very noisy due to the presence of other tasks running
on the same computer.

• Processor time. This is the amount of time allocated by
the operating system to the execution thread which was
used to run the algorithm. For single-threaded algorithms
this could be a preferred way to measure running time, but
due to operating system’s limitation this value is reported
as a multiple of a certain time interval which is quite big.
For example, in most Linux kernels processor times are
multiples of 10 milliseconds, while under Windows the
time quant is close to 13 milliseconds. This essentially
prevents this method of measurement for being used when
running times are small.

In our previous works [14], [15] it was proposed to use more
algorithm-specific performance measures which are noiseless
and typically have high resolution. The considered maximum
flow algorithms spend most of their time in graph traversals,
so they have several common performance measures:

• The total number of visited edges (each edge is counted
as many times as it was visited).

• The total number of visited vertices.
• The total number of graph traversals.

The latter number is equal to the number of depth-
first searches for the Ford-Fulkerson algorithm with capacity
scaling and for implementations of the Dinic algorithm; to
the number of breadth-first searches for variations of the
Edmonds-Karp algorithm; and the the number of retreats
for the improved shortest path algorithm. Additionally, for
implementations of the Dinic algorithm the number of phases
can be tracked.

We perform evaluation of all algorithm-dependent fitness
functions inside the corresponding algorithms: for example, a
counter which stores the number of visited edges is immedi-
ately increased when an edge is visited. As every event which
is counted takes more time than incrementing a single integer
variable, evaluation of fitness functions has no significant
impact on performance of algorithms. Wall-clock time and
processor time are computed as a difference between two
measures – before the algorithm starts working and after it
finishes.

It is very hard to determine the best fitness function a priori.
In the experimental evaluation, each of these fitness functions
was used to generate tests for the appropriate maximum flow
algorithm.

2123

VI. EXPERIMENTAL EVALUATION

In this section, experimental evaluation of test generation
methods for maximum flow algorithms is described.

A. Experiment Setup

The maximum number of vertices was chosen to be V =
100, the maximum number of edges was E = 5000 to
accomodate methods which generate dense graphs only, and
the maximum edge capacity was C = 10 000.

For the genetic algorithm, the following options were ex-
plored, resulting in 128 different configurations:

• the maximum flow algorithm against which tests are
generated (six choices);

• the fitness function (six choices for two implementations
of the Dinic algorithm, five choices for all other algo-
rithms);

• the crossover operators (two choices: single-point
crossover and two-point crossover with shift);

• the graph type (two choices: arbitrary or acyclic).
From the known test generators, the “washington” gener-

ators 9 and 10, the Cherkassky and Goldberg generator and
tests by N. Zadeh don’t use random number generators. Other
generators, however, depend on random number generators, so
they have to be put into equal conditions with the genetic algo-
rithm. Thus, a configuration was formed for each combination
of a test generator, a maximum flow algorithm and a fitness
function. There were six test generators of this type: random
graphs, random acyclic graphs, random graphs without parallel
edges, random graphs without edges connecting same pairs of
vertices, random frames and transit grids. In total, there were
192 configurations of this sort.

Each of configurations, corresponding both for genetic
algorithms and random-dependent test generators, was run
for 25 times. The computational budget was set to 500 000
fitness function evaluations. The best test according to the
fitness function was taken as a result of the run. In total,
there were 8004 tests generated, corresponding to four tests for
non-random generators and (192+128) · 25 tests for random-
dependent test generators.

The experiments were run on a computer with four AMD
OpteronTM 6378 processors, each of which has 16 cores. The
operation system was Ubuntu 14.04.1 LTS with 64-bit Linux
kernel 3.13.0-39-generic. Task-grained concurrency was used.
The computation took almost a week to finish.

After test generation was finished, every maximum flow
algorithm was run on every generated test.

B. Choice of Performance Measure

The experiment results showed that reported processor times
are 0, 10 or 20 milliseconds most of time, so these values
are largely unusable. Wall-clock times are more diverse but
are still prone to context switches, Java garbage collection
and similar things. To reliably compare different tests, one
needs to select a non-noisy measure that has enough range to
distinguish hard tests from easy ones. It was done by selecting

TABLE I
PEARSON’S CORRELATION QUOTIENTS BETWEEN WALL-CLOCK TIME AND

OTHER FITNESS FUNCTIONS. NOTATION: D – THE DINIC ALGORITHM,
DS – AN UNOPTIMAL IMPLEMENTATION OF THE DINIC ALGORITHM, EC –

THE EDMONDS-KARP ALGORITHM, ECS – THE EDMONDS-KARP
ALGORITHM WITH CAPACITY SCALING, FFS – THE FORD-FULKERSON

ALGORITHM WITH CAPACITY SCALING, ISP – THE IMPROVED SHORTEST
PATH ALGORITHM; PROCTIME – PROCESSOR TIME, EDGECOUNT – TOTAL

NUMBER OF VISITED EDGES, VERTEXCOUNT – TOTAL NUMBER OF
VISITED VERTICES, DFSCOUNT – TOTAL NUMBER OF DEPTH-FIRST

SEARCH RUNS, BFSCOUNT – TOTAL NUMBER OF BREADTH-FIRST SEARCH
RUNS, RETREATCOUNT – TOTAL NUMBER OF RETREATS (FOR ISP),

PHASECOUNT — TOTAL NUMBER OF PHASES (FOR THE DINIC
ALGORITHM).

D DS EC ECS FFS ISP
procTime 0.21297 0.23298 0.54402 0.47434 0.89681 0.18645
edgeCount 0.94119 0.96107 0.97425 0.97688 0.98778 0.91901

vertexCount 0.84388 0.86782 0.87892 0.86379 0.91403 0.70379
dfsCount 0.71523 0.76746 — — 0.90319 —
bfsCount — — 0.86080 0.81960 — —

retreatCount — — — — — 0.72674
phaseCount 0.74970 0.72177 — — — —

TABLE II
BEST TESTS FOR DIFFERENT MAXIMUM FLOW ALGORITHMS

Algorithm Generator Edge count
D GA(edgeCount, DS, SPC, ac) 594 662

DS GA(edgeCount, DS, SPC, ac) 671 867
EC GA(edgeCount, EC, SPC, ac) 4 613 284

ECS Zadeh 4 524 126
FFS random acyclic(edgeCount, FFS) 4 691 777
ISP GA(edgeCount, ISP, SPC, ac) 820 538

a fitness function based which correlates best with wall-clock
time measurements.

Table I presents Pearson’s correlation coefficients between
wall-clock time and all other fitness functions. For every
maximum flow algorithm, the total number of visited edges
(edgeCount in the table) served best correlation coefficients.
This measure will be used in the remaining parts of the paper
as a measure of test quality.

C. Best Tests

For the sake of brevity, in the rest of the paper we de-
fine configurations of the genetic algorithm as GA(fitness,
algorithm, crossover, graph type). Here, fitness is from the
set {wcTime, procTime, edgeCount, vertexCount, dfsCount,
bfsCount, retreatCount, phaseCount} (the notation is as in
Table I, additionally, wcTime is for wall-clock time). For
algorithm, the possible values are {D, DS, EC, ECS, FFS,
ISP} (the notation is as in Table I). The values for crossover
are {SPC, TPCS} for single-point crossover and two-point
crossover with shifts, respectively. Finally, the values of graph
type are {any, ac} for arbitrary and acyclic graphs respectively.
The similar notation will be used for other generators as well.

Table II represent best tests for different maximum flow
algorithms. One can see that for all considered algorithms
which don’t use capacity scaling the best tests are generated by
genetic algorithms. One notable thing is that all winning con-
figurations of the genetic algorithm use single-point crossover
and acyclic graph generation.

2124

TABLE III
BEST TEST GENERATORS FOR DIFFERENT MAXIMUM FLOW ALGORITHMS

Algorithm Generator Edge count
D GA(edgeCount, DS, SPC, ac) 476 035

DS GA(edgeCount, DS, SPC, ac) 584 427
EC Zadeh 4 609 566

ECS Zadeh 4 524 126
FFS random acyclic(edgeCount, FFS) 4 511 830
ISP GA(edgeCount, ISP, SPC, ac) 591 438

D. Best Test Generators

To measure efficiencies of test generators for particular algo-
rithms, for each generator we compute the median of numbers
of visited edges for all tests generated by this generator. The
best generators for different maximum flow algorithms are
presented in Table III.

The only change in winners happened for the Edmonds-
Karp algorithm. One can see that the best test (edge count
4 613 284) is sligtly better than Zadeh’s test (edge count
4 609 566). An unusual thing is that, both for the best and the
median test quality measures, the hardest tests for the Dinic
algorithm were generated against its unoptimal implementa-
tion.

E. Average Test Generator Efficiencies

To measure efficiencies of test generators averaged over
considered maximum flow algorithms, we consider the fol-
lowing approach. For every maximum flow algorithm, all tests
are sorted by non-increasing number of visited edges. Then,
ranks (the indices in the sorted sequence, from 1 to 8004) are
assigned to tests. If several tests have the same numbers of
visited edges, they receive an equal rank equal to an average of
indices of all these tests. For each test, all ranks which this test
received are averaged. After that, each test generator receives
a rank which is an average of ranks of all tests generated by
this generator.

The best ten generators, according to ranks, are given below
(the smaller the rank, the better the efficiency):

1) 247.9: GA(edgeCount, DS, SPC, ac).
2) 283.4: GA(edgeCount, EC, SPC, ac).
3) 347.8: GA(edgeCount, ISP, SPC, ac).
4) 405.8: GA(edgeCount, D, SPC, ac).
5) 640.1: random acyclic(edgeCount, ISP).
6) 648.7: random acyclic(edgeCount, DS).
7) 692.6: GA(edgeCount, ISP, SPC, any).
8) 716.3: random acyclic(phaseCount, DS).
9) 718.4: random acyclic(edgeCount, D).

10) 729.2: random acyclic(vertexCount, D).
One can see that there is a large gap between the first four

generators and all subsequent ones. There is only a single
generator in top 10 which has no heuristic knowledge about
the power of acyclic graphs. Among all generators based on
genetic algorithms, no generator from top 10 uses the two-
point crossover with shift.

The non-random test generators have the following ranks:
• Zadeh: 1 987.3;

TABLE IV
RESULTS OF OPTIMIZATION BY TIME

Algorithm Wall-clock time Processor time Best test
D 235 601 189 839 594 662

DS 280 710 210 524 671 867
EC 2 086 433 1 967 031 4 613 284

ECS 1 744 677 1 787 049 4 524 126
FFS 4 108 867 3 971 258 4 691 777
ISP 352 309 262 657 820 538

• “washington” No. 9: 6 237.2;
• Cherkassky and Goldberg: 6 975.3;
• “washington” No. 10: 7 003.8.
Best non-acyclic random graph generators have the follow-

ing ranks:
• without parallel edges: 2 239.4;
• without edges connecting the same pair of vertices:

2 403.6;
• arbitrary: 4 280.7.

F. Best Genetic vs Best Non-Genetic

For the Dinic algorithm, the best test generated not by the
genetic algorithm has the number of visited edges equal to
180 589, which is more than three times smaller than the
value of the best test (594 662). The similar picture holds for
the improved shortest path algorithm: 441 289 and 820 538,
respectively.

For the unoptimal implementation of the Dinic algorithm,
the best test has the number of visited edges equal to 671 867,
the Zadeh test has the value of 558 337, and the best test not
belonging to these classes has the value of 201 038. Note that
the Zadeh test is hard only for the unoptimal implementation,
but not for the complete one.

For the Edmonds-Karp algorithm the best test is generated
by the genetic algorithm (4 613 284), the second one is the
Zadeh test (4 609 566), and the best test not belonging to these
two classes is weaker at least twice (2 269 179).

The situation is different for capacity scaling algorithms.
For the Edmonds-Karp algorithm with capacity scaling, the
best test is the Zadeh test (4 524 126), and the next best test
is almost twice as weak (2 302 245). For the Ford-Fulkerson
algorithm with capacity scaling the best tests are random
acyclic graphs (the best test has the number of visited edges
equal to 4 691 777), however, the genetic algorithm is not
very much worse (the best test is 4 276 511). One possible
explanation to this kind of behavior is that capacity scaling
algorithms induce very bad fitness landscapes when the genetic
operators considered in this paper are used.

G. Optimization by Time is Inefficient

Table IV presents the best numbers of visited edges for
optimization by wall-clock time and by processor time. These
results show that optimization by time is highly inefficient
in all cases (except for the Ford-Fulkerson algorithm with
capacity scaling, where this statement holds to much smaller
degree).

2125

VII. CONCLUSION

In our previous paper dedicated to worst-case execution time
test generation for maximum flow algorithms [9], merging
parallel edges was not performed in our implementations of
the maximum flow algorithms. This paper corrects this issue
and reconsiders the research. More crossover operators, more
fitness functions and more maximum flow algorithms were
considered in this paper. The results appear to be very different
from the results of [9]:

• genetic algorithm based approach is shown to be efficient
for algorithms that don’t use capacity scaling, while in [9]
the best performance was shown for capacity scaling
algorithms;

• the single-point crossover is shown to be significantly
better than two-point crossover with shift, while in [9]
the latter was several orders better.

• the best-performing fitness function, in terms of quality
of the final results, is the number of visited edges, while
in [9] the number of graph traversals was the best.

These differences can be explained using the idea mentioned
in the introduction. To construct a hard test in conditions of [9],
one can find a relatively hard test with a small number of edges
and copy it over itself as much times as possible. In particular,
the two-point crossover with shift is especially good at copying
and pasting parts of individuals. In more realistic conditions
of this paper, this operation doesn’t increase hardness of a test.

From the results of this work it follows that there is a single
configuration of the genetic algorithm that is the best for all
considered maximum flow algorithms: optimizing the number
of visited edges using the single-point crossover and acyclic
graphs. This reduces the effort needed to generate hard tests
with different upper limits and chooses a good default setting
for further research.

VIII. FUTURE WORK

As a future work, apart from the obvious directions of taking
more maximum flow algorithms into account, construction of
test generators rather than tests should be undertaken. The
biggest problem of the current approach is that we cannot
learn how to build large hard tests from successfully building
small hard tests. In other words, to build a test for another
combination of limits, e.g. V = 500, E = 20 000, one
should run the genetic algorithm from scratch (even if a good
configuration is known). We think that evolving parameterized
programs which construct tests for maximum flow algorithms
should yield results that scale better.

IX. LINKS AND ACKNOWLEDGMENTS

The code which can be used to reproduce the experiments
is published at GitHub1.

This work was financially supported by the Government of
Russian Federation, Grant 074-U01.

1https://github.com/mbuzdalov/papers/tree/master/2015-cec-flows

REFERENCES

[1] M. Harman, S. A. Mansouri, and Y. Zhang, “Search based software
engineering: A comprehensive analysis and review of trends, technolo-
gies and applications,” Department of Computer Science, King’s College
London, Tech. Rep., 2009.

[2] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and
J. A. Clark, “The GISMOE challenge: constructing the Pareto program
surface using genetic programming to find better programs (keynote pa-
per),” in International Conference on Automated Software Engineering,
2012, pp. 1–14.

[3] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” Journal of the ACM, vol. 19,
no. 2, pp. 248–262, 1972.

[4] E. A. Dinic, “Algorithm for solution of a problem of maximum flow in
networks with power estimation,” Soviet Math. Dokl., vol. 11, no. 5, pp.
1277–1280, 1970.

[5] R. K. Ahuja and J. B. Orlin, “A capacity scaling algorithm for the
constrained maximum flow problem,” Networks, vol. 25, no. 2, pp. 89–
98, 1995.

[6] DIMACS. Test generators for the maximum flow
problem. [Online]. Available: http://www.informatik.uni-
trier.de/˜naeher/Professur/research/generators/maxflow/

[7] D. Goldfarb and M. D. Grigoriadis, “A computational comparison of
the Dinic and network simplex methods for maximum flow,” Annals of
Operations Research, vol. 13, no. 1, pp. 81–123, 1988.

[8] N. Zadeh, “Theoretical efficiency of the Edmonds-Karp algorithm for
computing maximal flows,” Journal of the ACM, vol. 19, no. 1, pp.
184–192, 1972.

[9] V. Arkhipov, M. Buzdalov, and A. Shalyto, “Worst-Case Execution Time
Test Generation for Augmenting Path Maximum Flow Algorithms using
Genetic Algorithms,” in Proceedings of the International Conference on
Machine Learning and Applications, vol. 2. IEEE Computer Society,
2013, pp. 108–111.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd Ed. Cambridge, Massachusetts: MIT Press, 2001.

[11] L. R. Ford Jr. and D. R. Fulkerson, “Maximal flow through a network,”
Canadian Journal of Mathematics, vol. 8, pp. 399–404, 1956.

[12] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1993.

[13] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum flow
problem,” in Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing. New York, NY, USA: ACM, 1986, pp. 136–146.

[14] M. Buzdalov, “Generation of Tests for Programming Challenge Tasks
Using Evolution Algorithms,” in Proceedings of Genetic and Evolution-
ary Computation Conference Companion. ACM, 2011, pp. 763–766.

[15] A. Buzdalova, M. Buzdalov, and V. Parfenov, “Generation of Tests
for Programming Challenge Tasks Using Helper-Objectives,” in 5th
International Symposium on Search-Based Software Engineering, ser.
Lecture Notes in Computer Science. Springer, 2013, no. 8084, pp.
300–305.

APPENDIX

A. Random Graphs

A trivial way to generate a graph with V vertices, E
edges and a maximum capacity of C is to generate E edges
with source and target vertices selected uniformly at random
from the range of [1;V], while (integer) capacity is selected
uniformly at random from the range of [1;C]. The source and
the sink, which are the only remaining things to be generated,
can be set to the vertices with indices 1 and V correspondingly
without loss of generality.

As noted in the introduction, all edges that have the same
source vertex V1 and the same target vertex V2 can be merged
into one edge. In a randomly generated graph, there will be
several “parallel” edges with high probability. This makes
it reasonable to consider also generation of graphs with no
“parallel” edges (i.e. each time an edge is generated in such

2126

a way that it doesn’t connect the same pair of vertices in
the same order as already generated edges). Generation of
graphs such that no two edges connect the same pair of vertices
regardless of their order will also be considered.

B. Random Acyclic Graphs

One of the heuristic ways to improve random graph gen-
eration is to ensure that there are no loops in the graph. To
do that, one may fix the vertex 1 as the source, the vertex V
as the target and generate only the edges which go from a
smaller vertex to a larger one (i.e. from a vertex with index
V1 to a vertex with index V2 where V1 < V2).

A generator of such tests is presented at the website [6]
under the identifier of ac by G. Waissi and J. Setubal.
This generator builds complete acyclic graphs without loops
and multiple edges: for V vertices it generates V (V − 1)/2
edges. The program can generate two types of graphs: the
descriptions of edges going out of a certain vertex can present
in either increasing or decreasing order regarding the number
of the target vertex. These types define the same graph, but
due to implementation details of maximum flow algorithms
only one of these types can be hard for some algorithms.

C. Transit Grids

A generator of transit grids is presented at the website [6]
under the identifier of tg by G. Waissi and J. Setubal. This
generator builds a rectangular grid of size a×b (where a and b
are parameters). In nodes of this grid there are vertices of the
graph. Any two adjacent vertices (vertically or horizontally)
are connected by a pair of edges going in different directions
with capacities chosen uniformly at random. The source and
the sink do not belong to this grid; they are connected with
pairs of edges going in different directions with left and right
sides of the grid correspondingly.

Given the number of vertices V , the tests of this type will
be generated as follows. First, the number a will be selected
uniformly at random from an interval of [1;V − 2]. Second,
the number b will be chosen as b = bV/ac. Finally, a test with
parameters of a and b is generated as described above.

D. Random Frames

A random frame generator is described by D. Goldfarb
and M. Grigoriadis [7]. The source code of this generator is
available at the website [6] under the identifier of genrmf.

This generator creates a three-dimensional structure of b
frames, each of them has a size of a×a vertices, where a and
b are parameters. The structure of each frame resembles the
structure created by the transit grid generator. The capacities
of all edges in a frame are equal to c2 × a2, where c2
is a parameter. The neighboring frames are connected by
unidirectional edges: i-th vertex of the t-th frame is connected
by Pt(i)-th vertex of the (t+1)-th frame, where Pt is a random
permutation of numbers from 1 to a2. Capacities of these edges
are chosen from an interval of [c1; c2], where c1 is a parameter

and c1 ≤ c2. The source of the graph is the topmost leftmost
vertex of the first frame, the sink is the bottommost rightmost
vertex of the last frame.

Given the maximum number of vertices V , the maximum
number of edges E and the maximum capacity C, the tests
of this type will be generated as follows. First, the parameter
b will be chosen uniformly at random from an interval of
[1;min(V,E)]. Second, the parameter a will be chosen as a
maximum integer value such that a2b ≤ V and 3a2b− a(a+
2b) ≤ E. If a < 1, parameter selection will be started from
scratch. Next, c2 = bC/a2c and c1 = 1. If c2 < 1, parameter
selection will be started from scratch. Otherwise, the test will
be generated as described above with the parameters a, b, c1,
c2.

E. Cherkassky and Goldberg Generator

The generator by B. Cherkassky and A. Goldberg is avail-
able at the website [6] under the identifier of ak. This
generator creates a test consisting of two different subgraphs.
A notable difference from the other generators is that the
number of edges is linear in the number of vertices, so the
generated graphs are sparse.

F. Washington Generators

The “washington” generator which contains several test
generators written by the students of the University of Wash-
ington under supervision of R. Anderson. It is available at
the website [6] under the identifier of wash. There are 11
supported types of generators. In the context of this research,
only two of them are of interest: generator 9 creates a test
difficult for the Dinic algorithm, while generator 10 creates a
test difficult for the Goldberg’s algorithm.

Generator 9 builds a graph which is a chain of V vertices,
the first of them is the source and the last one is the sink. The
neighboring vertices are connected with an edge of capacity V .
Additionally, each vertex except two last ones is connected to
the sink with an edge of capacity 1. This test makes the Dinic
algorithm perform the maximum possible number of phases.

Generator 10 builds a graph with N parallel chains of two
vertices, which are then followed by a sequential chain of
N vertices. The capacities of all edges is N except for edges
which connects pairs of vertices in parallel chains (Fig. 1). The
total number of vertices is 3N + 3, while the total number of
edges is 4N + 1.

G. Zadeh Tests

N. Zadeh [8] proposed an algorithm to construct hard tests
for the Edmonds-Karp algorithm. Tests of this type have 6N
vertices from which 4N vertices form a complete bipartite
graph and the remaining vertices form a chain from the source
to the sink, which connects by edges to the vertices of the first
group. An example of such test with 18 vertices (N = 3) is
given on Fig. 2.

2127

S T

N N

N

Fig. 1. An illustration of a test generated by the “washington” test
generator 10. The graph consists of N parallel chains of two vertices,
which are then followed by a sequential chain of N vertices. The
capacities of all edges is N except for edges which connects pairs of
vertices in parallel chains. The total number of vertices is 3N +3, while
the total number of edges is 4N + 1.

S T

N N2N 2N

Fig. 2. An illustration of a Zadeh test based on the original illustration
from [8]. The test consists of 6N vertices (on the figure, N = 3). The
central group is formed by two columns of vertices, consisting of 2N
vertices each. Each vertex of the left column is connected to each vertex of
the right column by a pair of edges going in different directions (dashed
connections on the figure). The left group of N vertices connects the
source (the leftmost vertex) to the central group, the right group of N
vertices connects the sink (the rightmost vertex) to the central group.

2128

