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Abstract—We perform theoretical analysis for a previously
proposed method of enhancing performance of an evolutionary
algorithm with reinforcement learning. The method adaptively
chooses between auxiliary objectives in a single-objective evo-
lutionary algorithm using reinforcement learning. We consider
the Q-learning algorithm with ε-greedy strategy (ε > 0), using
a benchmark problem based on ONEMAX. For the evolutionary
algorithm, we consider the Random Local Search. In our setting,
ONEMAX problem should be solved in the presence of the
obstructive ZEROMAX objective. This benchmark tests the ability
of the reinforcement learning algorithm to ignore such an
inefficient objective. It was previously shown that in the case of
the greedy strategy (ε = 0), the considered algorithm performs
on the described benchmark problem in the best possible time
for a conventional evolutionary algorithm. However, the ε-greedy
strategy appears to perform in exponential time. Furthermore,
every selection algorithm which selects an inefficient auxiliary ob-
jective with probability of at least δ is shown to be asymptotically
inefficient when δ > 0 is a constant.

I. INTRODUCTION

In this paper we analyze a previously proposed method
of selecting between auxiliary objectives in an evolutionary
algorithm (EA). The selection is performed using reinforce-
ment learning (RL), so the method is called EA+RL. The
introduction starts with a brief overview of using auxiliary
objectives to enhance single-objective optimization. Then we
discuss the current state of the EA+RL research and give the
motivation for analyzing EA+RL with ε−greedy exploration
strategy. The rest of the paper is dedicated to the theoretical
analysis of EA+RL and to the discussion of its results.

A. Using Auxiliary Objectives in Single-Objective Optimiza-
tion

To compare the solutions generated at each population of a
conventional evolutionary algorithm, a fitness function is used.
The fitness function is usually correlated with the objective
being optimized [1]. Let us call the fitness function used in a
conventional single-objective evolutionary algorithm a target
one.

It is known that using some auxiliary objectives can enhance
single-objective optimization performance [1]–[5]. In existing

approaches termed as multiobjectivization, auxiliary objectives
are designed manually and optimized simultaneously using
a multi-objective evolutionary algorithm [6]–[8]. There also
exists a dynamic helper-objective approach [9], [10]. In this
approach a dynamically selected auxiliary objective, called
helper-objective, is optimized along with the target one. The
helper-objectives to be optimized at the current optimiza-
tion stage are selected randomly from the set of all helper-
objectives. In other papers, a problem dependent selection
order of helper-objectives for the Job-shop scheduling problem
is considered [11], [12]. Finally, there is an analysis of
selection order for benchmark problems [13].

B. EA+RL Method

The EA + RL method was proposed by the authors of this
paper for adaptive selection of auxiliary fitness functions in
single-objective evolutionary algorithms [14]. The selection
of auxiliary fitness functions is performed during the running
time of an evolutionary algorithm using reinforcement learn-
ing. The method is used to maximize the target fitness function
in less number of generations than the initial evolutionary algo-
rithm does. For each population of the evolutionary algorithm,
reinforcement learning agent selects the most efficient fitness
function from a set, which consists of the target fitness function
and some auxiliary ones. So we use the auxiliary fitness
functions to enhance optimization of the target fitness function
and do not aim to optimize the auxiliary fitness functions
themselves. Generally, there is no prior knowledge about these
functions. Some of them can be supporting, in other words,
selecting these functions speeds up the target fitness function
optimization. Others can be obstructive, which means that
selecting these functions slows down the target fitness function
optimization. The reinforcement learning mechanism aims to
select such auxiliary fitness functions, that provide speeding
up of the target fitness function optimization. In other words,
it should be able to select supporting fitness functions and to
ignore obstructive ones.

One of the main differences between the EA + RL method
and the multiobjectivization approach, as well as the helper-
objective approach, is that EA + RL can be implemented978-1-4799-7492-4/15/$31.00 c©2015 IEEE
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without using a multi-objective evolutionary algorithm. In
EA + RL, auxiliary objectives still help to improve the target
objective optimization performance, but it is not necessary
to optimize them simultaneously with the target objective
or with each other. They are used just to guide the search.
Also notice, that no prior knowledge about the properties of
auxiliary fitness functions is needed to apply EA + RL. Via
its reinforcement learning mechanism, EA + RL should be
able to select efficient (supporting) fitness functions and to
ignore inefficient (obstructive) ones. On the other hand, in
multiobjectivization approach auxiliary objectives are specially
designed to be efficient, which implies sophisticated intellec-
tual work [6].

C. Motivation and Comparison with Previous Papers

The EA + RL method was empirically shown to be efficient
in applying to a real-world problem of test generation [15],
as well as in solving a number of benchmark problems [14].
However, theoretical foundations are needed as well. Theoret-
ical results could give insights on the method and suggest on
the proper parameter and design settings for the experiments.

So far, we have proved some specific facts for the EA+RL
implementation that uses Q-learning with greedy exploration
strategy. According to this strategy, an action with the best
Q-value is always selected. For the XDIVK problem, we
showed that EA+RL with greedy strategy is able to select
the ONEMAX supporting objective [16]. As a result, EA+RL
asymptotically outperforms a conventional EA for this prob-
lem. We also considered the ONEMAX problem, which is a
well-known benchmark in evolutionary computation theory.
It was shown that EA+RL with greedy strategy is able to
ignore obstructive ZEROMAX objective [17]. For this problem,
EA+RL takes Θ(N logN) iterations to reach the optimum,
which is the best possible performance for solving ONEMAX
using a conventional EA.

The mentioned results relate to the Q-learning with greedy
exploration. In this paper we consider another popular explo-
ration strategy called ε-greedy [18], [19]. According to this
strategy, the most efficient action (in our case, fitness function)
is chosen with probability (1− ε), while with probability ε a
random action is chosen. This strategy should avoid stopping
in local optima [18]. We investigate whether it is efficient
for the ONEMAX problem with the ZEROMAX obstructive
objective.

II. BENCHMARK PROBLEM AND ALGORITHM

In this section we consider a benchmark problem and an
implementation of the EA + RL method used to solve it.

A. Description of Objectives

We consider two objectives: the obstructive objective ZERO-
MAX (f0) and the target objective ONEMAX (f1). The target
objective f1 is calculated as number of 1-bits in an individual
of length N , while the obstructive objective f0 is calculated as
number of 0-bits, so optimizing f0 decreases f1. Let us call the

described ONEMAX problem with the ZEROMAX obstructive
objective a modified ONEMAX problem.

As it was mentioned in the introduction, for these objec-
tives, EA + RL with greedy strategy performs as good as a
conventional algorithm without an obstructive fitness function.
In the next section we will investigate if ε−greedy strategy is
efficient here as well.

B. RLS + Q-learning Algorithm

For better understanding of the EA + RL mechanism,
consider some basics of reinforcement learning [18], [19].
Reinforcement learning algorithms are designed to find an
optimal behavioral strategy in an interactive environment. An
agent chooses an action, applies it to the environment and
receives the immediate reward for this action, as well as
some representation of the environment state. The goal is to
maximize the total reward. In the EA + RL we treat a single-
objective evolutionary algorithm as an environment.

Consider the following EA + RL implementation. We use
the Random Local Search (RLS) algorithm [6] for the EA
and the Q-learning algorithm [18] for the RL algorithm. The
scheme of the resulting algorithm is shown in Fig. 1

Fig. 1. RLS + Q-learning scheme

In this EA + RL implementation an environment state equals
the number of 1-bits in the current individual generated with
RLS. So there are N + 1 possible states from s0 to sN . The
immediate reward r equals the difference of the target fitness
function values calculated on the two individuals, which are
consequently generated with RLS. The Q-learning algorithm is
designed to maximize the total reward: E[

∑∞
t=0 γ

trt]→ max,
where γ is a real valued parameter [18]. The efficiency of
choosing some fitness function f in the state s is denoted by
Q(s, f).

The pseudocode of the considered EA+RL implementation
is presented in Algorithm 1. Note that in the lines 11-18 an
action to be applied is chosen according to the ε−greedy
exploration strategy.

III. RLS + ε-GREEDY Q-LEARNING ANALYSIS

In this section we construct a lower bound on the running
time of the previously described algorithm, and show that it
grows at least exponentially in N as soon as ε > 0.
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Algorithm 1 RLS + Q-learning Algorithm
1: X ← current individual, vector of N zeros
2: Q ← transition quality matrix, N × 2, filled with zeros
3: f1 ← target function: number of ones in an individual
4: f0 ← obstructive function: number of zeros in an individ-

ual
5: Mutate(X) ← mutation operator: inverts random bit
6: α ∈ (0; 1), γ ∈ (0; 1) — Q-learning parameters
7: while f1(X) < N do
8: s ← f1(X)
9: Y ← Mutate(X)

10: f , I: chosen fitness function and its index
11: With probability of 1− ε
12: if Q(s, 0) > Q(s, 1) then
13: f ← f0, I ← 0
14: else if Q(s, 0) < Q(s, 1) then
15: f ← f1, I ← 1
16: end if
17: With probability of ε
18: I ← random(0,1), f ← fI
19: if f(Y ) ≥ f(X) then
20: X ← Y
21: end if
22: r ← f1(X)− s
23: s′ ← f1(X)
24: Q(s, f) ← (1− α)Q(s, f) + α(r+ γ ·maxj Q(s′, fj))
25: end while

A. The Case of “Ideal” ε-Greedy Algorithm

To estimate the lower bound, we assume that ε-greedy Q-
learning algorithm has learned the most efficient action in each
state before the algorithm starts. That is, the algorithm will
choose f1 with the probability of (1− δ), where δ = ε/2, and
f0 with the probability of δ.

Let, as above, Z(i) be the expected number of fitness
evaluations needed to get to the (i + 1)-th vertex from the
i-th one. For Z(0), every mutation flips 0 to 1 and increases
target fitness value. So we go from vertex 0 to vertex 1 with
the probability of (1 − δ) and remain in vertex 0 with the
probability of δ. Thus, Z(0) = (1− δ) + δ · (1 +Z(0)), from
which by solving an equation we get:

Z(0) =
1

1− δ
. (1)

In vertex i, i > 0, mutation flips 0 to 1 with the probability
of (N − i)/N and 1 to 0 with the probability of i/N .
Independently, we select f1 with the probability of (1 − δ)
and f0 with the probability of δ. So we have four cases:

1) 0 to 1, f0: the probability is δ(N − i)/N , we remain in
vertex i;

2) 0 to 1, f1: the probability is (1− δ)(N − i)/N , we go
from vertex i to vertex (i+ 1);

3) 1 to 0, f0: the probability is δi/N , we go from vertex i
to vertex (i− 1);

4) 1 to 0, f1: the probability is (1− δ)i/N , we remain in
vertex i.

In the third case, the fitness is decreased. However, we know
by induction that the expected number of steps from vertex
(i− 1) back to i is Z(i− 1). So the equation for Z(i) has the
following form:

Z(i) =
(1− δ)(N − i)

N
+
δ · i
N

(1 + Z(i− 1) + Z(i))

+

(
(1− δ) · i

N
+
δ · (N − i)

N

)
(1 + Z(i))

which is simplified to

Z(i) =
N + δ · i · Z(i− 1)

(1− δ) · (N − i)
(2)

The expected number of fitness evaluations for the algorithm,
when started at x bits set to 1, is:

TR+δQ(N, x) =
N−1∑
i=x

Z(i). (3)

In the particular case of starting with (N − 1) bits, this turns
to:

TR+δQ(N,N − 1) = Z(N − 1). (4)

In our previous work, we evaluated TR+δQ(N, 0) experi-
mentally on several values of N and δ [17]. The results are
shown in Table I together with the exact values for δ = 0.

TABLE I
VALUES OF TR+δQ(N) FOR DIFFERENT N AND δ: EXACT FOR δ = 0,

LOWER BOUNDS FOR δ > 0

ε\N 4 16 64 256
0.0 1.58× 101 9.66× 101 5.49× 102 2.89× 103

0.1 1.12× 101 1.00× 102 1.05× 104 5.37× 1012

0.2 1.42× 101 2.75× 102 8.56× 106 3.27× 1025

0.3 1.89× 101 1.27× 103 2.84× 1010 1.52× 1040

0.4 2.71× 101 1.01× 104 4.04× 1014 1.56× 1057

0.5 4.37× 101 1.42× 105 3.75× 1019 2.32× 1077

0.6 8.34× 101 4.07× 106 4.95× 1025 1.25× 10102

It can be seen in the table that for δ > 0 the growth of lower
bounds with N is close to an exponent. By trial and error we
acquired an estimation TR+δQ(N) ≈ 4δ× eN logN/N which
holds with 10% of relative error for nearly all table entries.

In the current work, we theoretically estimate the lower
bound for TR+δQ(N, x) by prooving the following theorem:

Theorem 1. TR+δQ(N, x) = Ω

((
1 + 1

1−δ

)N)
.

Proof: First, we construct a simple lower bound for Z(i)
for 0 ≤ i < N :

Z(i) =
N + δ · i · Z(i− 1)

(1− δ) · (N − i)

>
N

(1− δ) · (N − i)
>

1

1− δ
. (5)
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Then, we define the boundary value L = 1+dN ·(1−δ/2)e.
Note that L > N · (1− δ/2), and so N − L < δ ·N/2. From
these we conclude that:

δ · L
(1− δ) · (N − L)

>
δ ·N · (1− δ/2)

(1− δ) · δ ·N/2
=

2− δ
1− δ

= 1 +
1

1− δ
> 1. (6)

Using Eq. 6, we can deduce another lower bound for Z(i),
where i ≥ L, which excludes another addend:

Z(i) =
N + δ · i · Z(i− 1)

(1− δ) · (N − i)
>

Z(i− 1) · δ · i
(1− δ) · (N − i)

≥ Z(i− 1) · δ · L
(1− δ) · (N − L)

> Z(i− 1) ·
(

1 +
1

1− δ

)
. (7)

Finally, combining Eq. 5 and 7, we get:

Z(N − 1) > Z(L− 1) ·
(

1 +
1

1− δ

)N−L
>

1

1− δ

(
1 +

1

1− δ

)N−L
. (8)

By definition of L, L ≥ 1+N ·(1−δ/2) and L < 2+N ·(1−
δ/2), from which follows δ ·N/2−2 < N −L ≤ δ ·N/2−1,
and we can conclude that N − L = Θ(N). From this and
Eq. 4, 8 it finally follows that:

TR+δQ(N,N−1) = Z(N−1) = Ω

((
1 +

1

1− δ

)N)
. (9)

If started with x bits set to 1, the algorithm never performs
better, because, as follows from Eq. 3, TR+δQ(N, x) ≥
TR+δQ(N,N − 1).

B. A Lower Bound for Any RL Algorithm with Positive Lower
Bound on the Probability of Selecting f0

In this section, we prove that any reinforcement learning
algorithm, which controls the RLS solving the modified ONE-
MAX problem with two fitness functions f1 and f0 and selects
f0 with the probability not less than δ, never performs better
than the previously described strategy and, because of this, its
running time is exponential. In other words, we prove that the
previously described strategy is optimal.

To do that, we need to find a proper definition of any
reinforcement learning algorithm, or even any controlling
algorithm, which will be referred to as strategy. Such a
strategy may make use of virtually anything, including time
passed since the algorithm starts, external random number
generator, and any knowledge of the history collected during
the algorithm run. It cannot, however, access to the information
hidden under fitness functions, such as which bits exactly are
set to one in the individuals.

The scheme of the further analysis is as follows. We
start with definitions to the algorithm tree and consider a
strategy for a truncated algorithm tree, which is optimal
by construction. Then we specify a certain version of this
constructed strategy in Corollary 4 using a property from

Theorem 2. Finally, in Theorem 5 we show that as the
depth of the truncated tree approaches infinity, the considered
version of the constructed optimal strategy fully coincides
with the strategy from the previous section. Therefore, we
prove that the strategy from the previous section is indeed
the “ideal” strategy in the sense that the running time of the
RLS controlled by it is the lower bound on the running times
under the control of any RL algorithm with the probability for
f0 lower-bounded with δ.

Definition 1. An algorithm tree is a tree whose nodes
correspond to different sequences of decisions made during
the algorithm run, and whose edges correspond to different
decisions and have the probability of these decisions written
on them.

There are two types of decisions:
• selection of either f0 or f1 by the strategy;
• flipping of bit with the value of either 0 or 1 by the RLS.
For each algorithm iteration, these two events are indepen-

dent, so we may consider them in either order, and it is more
convenient for us to make the strategy to do the choice first,
and then the RLS to make the flip. So the algorithm tree will
have a layered structure with even layers corresponding to the
nodes where the strategy does the choice, and odd layers where
RLS does (the numeration of the layers starts with zero).

The even layers consist of the nodes of one type. Each of
the nodes n have an associated value v(n), 0 ≤ v(n) ≤ N
equal to the number of bits set to one in the individual of
RLS. These nodes have two children each, according to the
choice of the strategy, except for the nodes with v(n) = N ,
because the algorithm stops when reaching these nodes.

The odd layers consist of the nodes of two types: negative
nodes, which are the result of choosing f0, and positive nodes,
corresponding to the strategy choice of f1. For a positive node
n we define a value v(n) to be x+ if the individual has x bits
set to one, and for a negative node the value will be x−. These
nodes have two children each, the node x+ has the children
with v = x and v = x+ 1, the node x− has the children with
v = x− 1 and v = x, except for 0− and 0+, which have only
one child with v = 0 and v = 1, respectively.

The root of the algorithm tree is a vertex with the value of
x, equal to the number of bits set to one when the algorithm
starts. Some first layers of the tree with x = 1 are given in
Fig. 2.

Note that in the same layer there may be several nodes
with equal values, because these nodes correspond to different
sequences of decisions that lead to the same number of ones
in the individual, so the strategy may make different choices.

Definition 2. A probability decision strategy is a strategy
which for each node n selects the probability ∆(n) for
selecting the f0 for the RLS iteration (and (1 − ∆(n)) for
the f1) and then takes the decision randomly with the selected
probability.

Definition 3. A δ-bounded strategy is a probability decision
strategy in which for some δ > 0, for all n holds ∆(n) ≥ δ.
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Fig. 2. The algorithm tree

In the rest of this section, we limit ourselves to δ-bounded
strategies, although some of the statements may be extended
to a more general class of strategies.

Definition 4. The expected subtree depth E(n) for a node n
in the algorithm tree is the expected number of edges to visit
until a node with the value of N is visited.

It is clearly seen that for any node n with v(n) = N holds
E(n) = 0, and for any nonleaf node E(n) = 1 + pl · E(l) +
pr ·E(r), where l and r are left and right child nodes, pl and
pr are the probabilities of going to the left and the right child
node, respectively.

The running time of an algorithm is E(root)/2, because
each iteration of the algorithm corresponds to two edges in the
algorithm tree. So a strategy minimizing the value of E(root)
is optimal.

The next step can be to construct an optimal δ-bounded
strategy using the algorithm tree by setting the probabilities for
each node n in the even layers that minimize E(n). We can do
it using induction by the algorithm tree, but only if the tree had
a finite depth (this is not to be confused with E(root), which
is the expected depth in the space of all possible decisions),
which is typically not true.

The approach that will be used is to consider a truncated
algorithm tree for a certain depth D, construct the optimal
strategy for that tree, and then see what happens if D →∞.

Definition 5. The truncated algorithm tree with the depth D
is the algorithm tree in which all nodes in the layers with the
depth exceeding D are removed.

Definition 6. The expected subtree depth E(n) for a node
n in the truncated algorithm tree with the depth D is the
expected number of edges to visit until a node with either the
value of N or the depth D is visited.

The algorithm to construct an optimal δ-bounded strategy
for a truncated algorithm tree with the depth D can be outlined
as follows:
• start with the deepest layer and proceed with the higher

ones;
• for odd layers, simply compute E(n) for each node n;
• for even layers, we first need to determine the optimal

∆(n) for each node n. As E(n) is linear in ∆(n), we
can consider the boundary values only: ∆(n) = 1 and
∆(n) = δ. Let E+ be the expected subtree depth for the
positive children node of n, and E− for the negative one.
Then:

– if E− > E+, then ∆(n) = δ;
– if E− < E+, then ∆(n) = 1.
– if E− = E+, then set any ∆(n) ∈ [δ, 1].

Note that in the case of E− = E+, ∆(n) can be set to
any value.

It is important to note that the above strategy is optimal by the
construction. Actually, it is sufficient to always set ∆(n) = δ,
because of the property formulated in the following theorem.

Theorem 2. In any optimal δ-bounded strategy for a truncated
algorithm tree with the depth of D, it is always true that E− ≥
E+.

Proof: Instead of the theorem, we will prove a stronger
lemma:

Lemma 3. The following statements hold for any optimal δ-
bounded strategy for a truncated algorithm tree:

1) In each even layer, for any two nodes from that layer a
and b it holds that if v(a) ≤ v(b), then E(a) ≥ E(b).
This implies that if v(a) = v(b) then E(a) = E(b).

2) In each odd layer, for any two nodes from that layer a
and b it holds that:

a) if v(a) = v(b), then E(a) = E(b);
b) if v(a) = x− and v(b) = x+, then E(a) ≥ E(b);
c) if v(a) = x− and v(b) = (x + 1)−, then E(a) ≥

E(b);
d) if v(a) = x+ and v(b) = (x + 1)+, then E(a) ≥

E(b).

Proof:
The proof uses the induction by the tree, starting with the

deepest layer.
The base. Consider two cases:
1) D is even. Then the deepest layer is the even layer.

For every node n in that layer E(n) = 0, so the
first induction statement holds. The second induction
statement is not applicable for this case, and so is
considered to be true.

2) D is odd. The deepest layer is the odd layer. For every
node n in that layer E(n) = 0, so the second induction
statement holds. The first induction statement is not
applicable, and so is considered to be true.

The induction. Consider two cases:
1) The level is even. We need to prove the first induction

statement, and we know by induction that the second
induction statement holds for the next level.

a) Consider a node n with the value of x < N .
Its children are nodes n− with the value of x−

and n+ with the value of x+. By induction, we
know that E(n−) ≥ E(n+). Due to the construc-
tion algorithm, ∆(n) = δ should be selected if
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E(n−) > E(n+), or any value may be selected if
the equality holds.

b) Consider two nodes n and m with the values less
than N and their children n+, n−, m+ and m−. If
v(n) = v(m), then v(n+) = v(m+) and v(n−) =
v(m−), so by induction E(n+) = E(m+) and
E(n−) = E(m−). Because the same formula is
used for both n and m, thus E(n) = E(m).

c) If v(n) = v(m) + 1, then v(n+) = v(m+) + 1
and v(n−) = v(m−) + 1. By induction, E(n+) ≥
E(m+) and E(n−) ≥ E(m−). Because the same
formula is used for both n and m, but for n both
components are not smaller than for m, so E(n) ≥
E(m).

d) If v(n) < v(m), then E(n) ≥ E(m) can be proved
by repeatedly applying the statement from (c).

e) For any node n with v(n) = N E(n) = 0, while
for any node m with v(m) < N E(m) > 0. So any
two nodes with v = N have equal expected depths,
and any node with v = N has smaller expected
depth than any node with v < N .

The first induction statement follows from the statements
proved above.

2) The level is odd. We need to prove the second induction
statement, and we know by induction that the first
induction statement holds for the next level.

a) There are the separate cases for vertices with the
values of 0− and 0+. For any node n for which
v(n) = 0−, there is only one child n+ with
v(n+) = 0, so E(n) = 1+E(n+). For any node m
for which v(m) = 0+, there is only one child m+

with v(m+) = 1, so E(m) = 1 + E(m+), and
because by induction v(m+) > v(n+), E(n) ≥
E(m). Note that, by induction, the expected depths
for all 0+ nodes are the same and for all 0− nodes
are the same.

b) Consider any two nodes n and m where v(n) =
v(m) = x+ where 0 < x < N . The node n has
the children n− with v(n−) = x and n+ with
v(n+) = x+ 1. The node m has the children m−

with v(m−) = x and m+ with v(m+) = x + 1.
By induction, E(n−) = E(m−) and E(n+) =
E(m+). As E(n) and E(m) are computed using
the same formula, so E(n) = E(m).

c) For nodes n and m where v(n) = v(m) = x−,
where 0 < x < N , the proof of E(n) = E(m)
follows the same idea as in (b).

d) Consider any two nodes n and m where v(n) = x+

and v(m) = x−. The node n has the children n−

with v(n−) = x and n+ with v(n+) = x+ 1. The
node m has the children m− with v(m−) = x− 1
and m+ with v(m+) = x. As E(n) and E(m) are
computed using the same formula, but E(n−) ≤
E(m−) and E(n+) ≤ E(m+) by induction, so
E(n) ≤ E(m).

e) Consider any two nodes n and m where v(n) = 0+

and v(m) = 1+. The node n has the child n+

with v(n+) = 1. The node m has the children
m− with v(m−) = 1 and m+ with v(m+) = 2.
By induction, E(n+) = E(m−) and E(m+) ≤
E(m−). As E(n) = 1 +E(n+) and E(m) = 1 +
E(m−) · 1/N +E(m+) · (N − 1)/N , so E(n) ≥
E(m).

f) For nodes n and m where v(n) = 0− and v(m) =
1− the proof follows the same idea as in (e).

The second induction statement follows from the state-
ments proved above.

So both the base and the induction step are proved, thus
proving the lemma.

The theorem itself follows from the second component of
the second part of the lemma.

Corollary 4. The δ-bounded strategy for a truncated algo-
rithm tree with the depth of D, where for any n ∆(n) = δ, is
optimal.

Proof: It was proved that for any node in an even layer,
in the terms of the construction algorithm, E− ≥ E+. So
we must choose ∆(n) = δ if E− > E+ and we may safely
choose the same value if E− = E+.

Theorem 5. A reinforcement learning algorithm described
in Section III-A is an optimal δ-bounded strategy for an
algorithm tree.

Proof: Let us define the E(root) for the optimal δ-
bounded strategy for a truncated algorithm tree of depth D
as Elow(D). One can see that Elow(D) is a monotonically
increasing function over its argument D.

Consider a globally optimal δ-bounded strategy for a com-
plete algorithm tree. Let us define as Eopt(D) the expected
depth for this globally optimal δ-bounded strategy when
running it on the truncated algorithm tree of depth D. Clearly,
Eopt(D) ≥ Elow(D). So the expression

Elow = lim
D→∞

Elow(D) (10)

is a lower bound on Eopt, which is the expected depth for the
globally optimal strategy on the (not truncated) algorithm tree.

However, the expected depth for the strategy from Sec-
tion III-A is equal to Elow, because for all truncated algorithm
trees it makes the same decisions as the optimal δ-bounded
strategy from Corollary 4 for that tree in all its nodes. So from
Elow ≤ Eopt, which comes from the definition of optimality,
and from Elow ≥ Eopt, which follows from the fact that Elow
is taken from an existing strategy, follows Elow = Eopt, which
proves the theorem.

Therefore, there is no δ-bounded strategy which performs
better than the strategy described in Section III-A, so any
selection algorithm with δ-bounded strategy solves the con-
sidered problem in exponential time.
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IV. DISCUSSION

In the previous section, it is proven that using ε-greedy
exploration strategy, it takes exponential time to find the opti-
mum of the ONEMAX problem with an obstructive objective.
At the same time, it was previously shown that this problem
can be solved in Θ(N logN) time using greedy exploration
strategy, i. e. strategy with ε = 0. So the greedy strategy is
proven to be significantly better than the ε-greedy strategy for
the considered problem.

A. Fixed Budget Perspective May Differ

For a number of benchmark problems, the previously ob-
tained experimental results are consistent with the fact that
using Q-learning with greedy strategy (ε = 0) is more efficient
than using some fixed nonzero ε [14]. At the same time,
according to the experimental results for a harder problem
of test case generation, ε-greedy strategy may outperform the
greedy one [15]. This can be explained in the following way.
In the test case generation problem, the aim of the optimization
was not to find the real optimum, but to find a solution with
the fitness better than some fixed value. So the optimization
process was not run until the end. It appears that in the
considered early stages of optimization ε-greedy strategy was
efficient.

In the ONEMAX problem, the most difficult part of the
optimization begins near the optimum, when it is hard to
find the proper bit to be inverted, since nearly all the bits are
already of value one. The same is true for the most previously
considered problems. The exponential part in the running time
appears from those late stages of optimization.

Therefore, despite of its asymptotically exponential be-
haviour, ε-strategy may outperform the greedy one in the early
optimization stages, as the experiment results for the MH-IFF
problem with an obstructive auxiliary objective suggest [14].
Thus, theoretical analysis from the fixed budget perspective is
needed [20], as it would soundly show the performance of the
ε-strategy at the different stages of optimization.

B. What if ε Depends on n?

The proofs in Sections III-A and III-B give a strong ev-
idence that any algorithm, not necessarily a reinforcement
learning one, that controls the RLS and leaves at least the
fixed probability to select the fitness function f0, performs
exponentially bad.

However, looking at the structure of the proof from Sec-
tion III-A, we can see that if ε = O(1/N), then the proof
stops working. It may be the case that there exists a function
F (N), such that if ε = O(F ), then the ε-greedy algorithm
starts working in polynomial time.

V. CONCLUSION

In this paper, the following results are proved:
• Random Local Search, controlled with Q-learning algo-

rithm with ε-greedy exploration strategy for which all
states are already learned, solves modified ONEMAX

problem using the following expected number of fitness
function calls:

TR+εQ(N,N − 1) = Ω

((
1 +

1

1− ε/2

)N)
,

starting from exactly one bit set to zero.
• The previous result is a lower bound for all possible

randomized strategies (not necessary ε-greedy reinforce-
ment learning), which select the f0 function with the
probability of at least ε/2.

However, despite its asymptotically exponential performance,
ε-greedy strategy may be efficient in the early stages of
optimization process, as the previously seen experimental
results suggest. What is more, some adaptive scheme of setting
ε as a function of the problem size N may be tried in order
to solve the considered problem in a polynomial time.
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