
Upper and Lower Bounds on Unrestricted
Black-Box Complexity of Jumpn,`

Maxim Buzdalov1, Mikhail Kever1, and Benjamin Doerr2

1 ITMO University, 49 Kronverkskiy av.,
Saint-Petersburg, Russia, 197101

mbuzdalov@gmail.com, mikhail.kever@gmail.com
2 LIX, École polytechnique, 91128 Palaiseau Cedex

doerr@lix.polytechnique.fr

Abstract. We analyse the unrestricted black-box complexity of Jumpn,`
functions. For upper bounds, we present three algorithms for small,
medium and extreme values of `. We present a matrix lower bound
theorem which is capable of giving better lower bounds than a general
information theory approach if one is able to assign different types to
queries and define relationships between them. Using this theorem, we
prove lower bounds for Jump separately for odd and even values of n.
For several cases, notably for extreme Jump, the first terms of lower and
upper bounds coincide.

1 Introduction

To understand how evolutionary algorithms (and other black-box optimizers
as well) behave when optimizing certain functions, it is possible to construct
upper bounds (by constructing and studying various algorithms), as well as
lower bounds (by studying how fast an algorithm can be in principle), which
complement each other. Comparing these bounds allows to evaluate how good
today’s heuristics are and sometimes to construct better algorithms by learning
from black-box [1].

Black-box complexity studies how many function evaluations are needed in
expectation by an optimal black-box algorithm until it queries an optimum for
the first time. As randomized search heuristics are black-box optimizers, black-
box complexity of a problem gives a lower bound on the number of fitness eval-
uations of any search heuristic to solve this problem.

In this paper we consider optimization of functions mapping bit strings of
fixed length to integers — the pseudo-Boolean functions. A famous class of such
functions is OneMax — having a certain hidden bit string z of length n, for
a bit string x of length n the function OneMaxn,z(x) returns the number of
bits coinciding both in x and z. Jump, another popular class of functions, takes
another parameter ` and zeroes out the values of OneMax for every string
except z that are at the distance of at most ` from both z and its inverse.

A more formal definition of Jump is as follows:

Jumpn,`,z =

n if OneMaxn,z = n

OneMaxn,z if ` < OneMaxn,z < n− `
0 otherwise.

Most of times, when z does not matter, we write just OneMaxn and Jumpn,`.
The special case of ` =

⌊
n
2

⌋
− 1, which is the maximum possible ` that doesn’t

zero out the middle fitness values, is called extreme Jump.
In this paper, we consider unrestricted black-box complexity (which was in-

troduced in Droste et al [4]) of the Jumpn,` problem. Another kind of black-box
complexity, the unbiased black-box complexity, was considered for Jump in Do-
err et al [2].

The rest of the paper is structured as follows. Section 2 is dedicated to the
upper bounds on Jump which are proven by giving the corresponding algorithms
and discussing their complexity. In Section 3, the matrix lower bound theorem,
which is somewhat similar to Theorem 2 from [4] but is able to produce better
lower bounds, is described and proven. Section 4 describes lower bounds on Jump
which are constructed from the matrix theorem. Section 5 concludes.

2 Upper Bounds for Jumpn,`

Here, the upper bounds for Jump are considered. In Section 2.1 several useful
helper theorems are referenced or proven. Section 2.2 is dedicated to smaller `,
Section 2.3 is for larger `, and Section 2.4 considers the case of extreme Jump.

2.1 Helper Theorems

Theorem 1. For sufficiently large n, for t ≥
(
1 + 4 log2 log2 n

log2 n

)
2n

log2 n and for an

even d ∈ [2;n] it holds that
(
n
d

) ((
d

d/2

)
2−d

)t
≤ 2−3t/4.

Proof. This is proven in Doerr et al [3] as Statement 8. ut

Theorem 2. For sufficiently large n, for ` < n/2−
√
n log2 n and for x ∈ {0, 1}n

taken uniformly at random the probability for Jumpn,`(x) to be zero is at most
2e−2(log2 n)2 .

Proof. The value of OneMax(x) for a random x has a binomial distribution
with parameters n and p = 1/2. From Hoeffding’s inequality [5], for k ≤ np,
the distribution function for binomial distribution Fn,p(k) is bound from above

by e−2
(np−k)2

n . As a consequence, the probability for Jumpn,`(x) to be zero is at

most 2Fn,1/2(l) ≤ 2e−2
(n/2−l)2

n ≤ 2e−2
(
√

n log2 n)2

n = 2e−2(log2 n)2 . ut

Theorem 3. Assume that n is sufficiently large and ` < n/2 −
√
n log2 n. Let

z ∈ {0, 1}n, and X be a set of t ≥
(
1 + 4 log2 log2 n

log2 n

)
2n

log2 n elements from {0, 1}n

chosen randomly using uniform distribution and mutually independently. The
probability that there exists an y ∈ {0, 1}n such that y 6= z and Jumpn,`,z(x) =
Jumpn,`,y(x) for all x ∈ X, is at most 2−t/4.

Proof. Let’s define Ad as a set of points which differ from z in exactly d positions
where 0 ≤ d ≤ n.

We say that a point y ∈ {0, 1}n agrees with x ∈ X if Jumpn,`,z(x) =
Jumpn,`,y(x). This means that either Jumpn,`,z(x) = 0 or OneMaxn,y(x) =

OneMaxn,z(x). The probability of the former does not exceed 2e−2(log2 n)2 by
Theorem 2. The latter holds iff x and y (as well as x and z) differ in exactly
half of the d bits in which y and z differ. To sum up, if y ∈ Ad, the probability
for y to agree with a random x is at most 2e−2(log2 n)2 for an even d and at
most 2e−2(log2 n)2 +

(
d

d/2

)
2−d for an odd d. As for large enough n it holds that

2e−2(log2 n)2 ≤
(
21/4 − 1

) (
d

d/2

)
2−d, the latter is at most 21/4

(
d

d/2

)
2−d.

Let p be the probability that there exists an y ∈ {0, 1}n \ {z} such that y
agrees with all x ∈ X. Then the following holds:

p = Pr

 ⋃
y∈{0,1}n\{z}

⋂
x∈X

y agrees with x

≤

∑
y∈{0,1}n\{z}

Pr

(⋂
x∈X

y agrees with x

)

=

n∑
d=1

∑
y∈Ad

∏
x∈X

Pr(y agrees with x)

≤
∑

d even

(
n

d

)(
21/4

(
d

d/2

)
2−d

)t

+
∑
d odd

(
n

d

)(
2e−2(log2 n)2

)t
=
∑

d even

(
n

d

)(
21/4

(
d

d/2

)
2−d

)t

+ 2n−1
(
2e−2(log2 n)2

)
.

After applying Theorem 1, we get that:

p ≤ n+ 1

2
2t/42−3t/4 + 2n−1+te−2t(log2 n)2 ,

which is less than 2−t/4 for sufficiently large n. ut

2.2 Upper Bound for Smaller `

Theorem 4. If ` < n/2 −
√
n log2 n, the unrestricted black-box complexity of

Jumpn,` is at most (1 + o(1)) 2n
log2 n , where o(1) is measured relative to n.

Proof. We use the same algorithm which is used in [3] for proving the lower
bound for OneMax. We select randomly and independently t queries such that
t ≥

(
1 + 4 log2 log2 n

log2 n

)
2n

log2 n and check if there exists a single optimum z which
agrees with all these queries (a query q with an answer a agrees with an opti-
mum z if Jumpn,`,z(q) = a). The complexity of one iteration equals to t and the
probability of not finding an optimum is at most 2−t/4 by Theorem 3. Thus the
complexity of the algorithm is at most t

1−2−t/4 = (1 + o(1)) 2n
log2 n . ut

2.3 Upper Bound for Larger `

For bigger l, the Jumpn,` problem can be solved by reduction to smaller Jump
problems for which the algorithm for the previous section suffices.

Theorem 5. For n
2 −
√
n log2 n ≤ ` <

⌊
n
2

⌋
− 1 the unrestricted black-box com-

plexity of Jumpn,` is at most (1 + o(1)) n
log2(n−2`)

where o(1) is measured when
(n− 2`)→∞.

Proof. Assume that k =
⌊
n
2

⌋
−`−1 6= 0. We reduce our problem to Jumps, s2−k−1

where
√
s log2 s < k. The algorithm is outlined at Fig. 1

First the algorithm finds a maximum even s such that
√
s log2 s < k, which

would allow applying Theorem 4 for solving Jumps, s2−k−1. After that, the al-
gorithm finds a string x ∈ {0, 1}n with exactly

⌊
n
2

⌋
correct bits using random

queries. The probability that Jumpn,` is equal to
⌊
n
2

⌋
for a random query is

2−n
(

n
bn/2c

)
which is Θ

(
1√
n

)
by Stirling’s formula. This means that the string x

can be found in Θ(
√
n) queries.

After finding the x, the algorithm splits all bit indices into sets of size s
(except for probably one) in such a way that in each set exactly half of bits
coincide with those in the answer. This is done in lines 8–15 at Fig. 1, where bi
is the i-th such set. B, the set of yet undistributed bits, always contains indices
of which exactly |B|/2 indices correspond to correctly guessed bits.

To do that, the algorithm generates random subsets of size s and checks each
of them if it contains exactly s

2 correct bits, which is done by flipping the bits
from the chosen subset and checking whether the fitness function returns

⌊
n
2

⌋
.

If |B| = m, the probability of correct selection is:

p =

(
bm/2c
s/2

)(
dm/2e
s/2

)(
m

s

)−1
=

bm/2c! dm/2e!s!(m− s)!
b(m− s)/2c! d(m− s)/2e!(s/2)!

=

(
s

s/2

)(
m− s

b(m− s)/2c

)(
m

bm/2c

)−1
= Θ

 2s√
s

2m−s
√
m−s

2m√
m

= Θ

(√
m√

s
√
m− s

)
= Ω

(
1√
s

)
.

This gives an O(
√
s) bound for one subset selection and an O(n/

√
s) bound on

entire process of finding subsets.

1: function LargeJump(n, `, f ∈ Jumpn,`)
2: k ←

⌊
n
2

⌋
− `− 1

3: s← max{w|
√
w log2 w < k;w is even}

4: τ ← dn/se
5: repeat
6: x← Uniform()
7: until f(x) =

⌊
n
2

⌋
8: B ← [1;n]
9: for i ∈ [1; τ) do
10: repeat
11: bi ← ChooseSubsetRandomlyUniformly(B, s)
12: until f(FlipBits(x, bi)) =

⌊
n
2

⌋
13: B ← B \ bi
14: end for
15: bτ ← B
16: ω0 ← x
17: for i ∈ [1; τ] do
18: αi ← SmallJumpProjection(bi, x)
19: ωi ← SetAtPositions(bi, ωi−1, αi)
20: end for
21: return ωτ
22: end function

Fig. 1. Algorithm for Jumpn,` with n
2
−
√
n log2 n ≤ ` <

⌊
n
2

⌋
− 1

Next, the algorithm optimizes separately bits from each of the subsets bi
using the algorithm for small Jump from Theorem 4 (lines 17–20 at Fig. 1). If
every query for a subproblem on bits from bi is forwarded to the main function f
with all bits not from bi taken from x, the resulting subproblem becomes exactly
a Jump|bi|, |bi|2 −k−1

problem with the following corrections:

– from all nonzero answers, a value of
⌊
n−|bi|

2

⌋
needs to be subtracted;

– at the optimum of the subproblem, zero will be returned.

The latter correction, however, does not change the algorithm very much, be-
cause the algorithm from Theorem 4 doesn’t actually query the optimum point.
The line 19 from Fig. 1 collects the partial answers one by one: it sets the bits
of ai at the corresponding positions from bi to the previous partial answer ωi−1
and returns the updated value.

The complexity of the algorithm can be expressed as (here n = qs + r,
(0 < r ≤ s)):

O(
√
n) +O

(
n√
s

)
+ q(2 + os(1))

s

log2 s
+ (2 + or(1))

r

log2 r
=

(2 + os(1))n

log2 s
.

However, due to choice of s, it holds that log2 s = (2+ok(1)) log2 k, which finally
results in (1+on−2`(1))n

log2(n−2`)
. ut

2.4 Upper Bound for Extreme Jump

The algorithm from Theorem 5 cannot be applied to the case of extreme Jump,
because

⌊
n
2

⌋
− 1 − k = 0. In this case we have to use another algorithm, which

will be given in the proof of the following theorem.

Theorem 6. The unrestricted black-box complexity of the extreme Jump is at
most n+Θ(

√
n).

Proof. As described in previous theorems, one can find a point x, such that
f(x) =

⌊
n
2

⌋
, in Θ(

√
n) queries. After that, if one flips two bits, the value of f

remains the same iff one of these bits was correct and the other was not.
Once x is found, the algorithm tests f(x ⊕ 10i−110n−i−1) for all i ∈ [2;n],

and if it equals
⌊
n
2

⌋
, the value of bi is set to zero, otherwise to one. This results

in n−1 queries. After that, if the first bit is correct, then 0b2 . . . bn is the answer,
otherwise its inverse is the answer. One has to make a single query to f(0b2 . . . bn)
to find which one is true. The complexity of this algorithm is n+Θ(

√
n). ut

3 The Matrix Lower Bound Theorem

In this section we present a new theorem which is similar to Theorem 2 from [4]
except that the nodes corresponding to queries are required to be split in several
types.

Theorem 7. Let S be the search space of an optimization problem, and for each
s ∈ S there exists an instance such that s is a unique optimum. Let each query
has one of T types, such that for any query q of the i-th type the following holds:

– there is exactly one answer to the query q which means that q is an optimum;
– there are at most Ai,j answers such that the next query after such answer

belongs to the j-th type.

Define Bi,j, 1 ≤ i, j ≤ T + 2, to be a matrix such that:

– Bi,j = Aj,i for 1 ≤ i, j ≤ T (note the transposition);
– BT+1,j = 1 for 1 ≤ j ≤ T + 1;
– BT+2,j = 1 for 1 ≤ j ≤ T + 2;
– Bi,j = 0 otherwise.

Let the first ever query in the optimization process be of type 1. Define V (d) =
Bd · (1, 0, . . . , 0)T be a vector, C(d) = V (d)T+1, S(d) = V (d)T+2. Then the
following statements are true:

1. C(d) is the maximum total number of possible queries with depth in [1; d],
where depth of a root is equal to one.

2. The lower bound on average depth of N nodes is d+ 1− S(d)
N where d is an

integer such that C(d) ≤ N ≤ C(d+ 1).
3. The unrestricted black-box complexity of the considered optimization problem

is not less than the lower bound on average depth of |S| nodes.

Proof. According to Yao’s minimax principle [6], the expected runtime of a ran-
domized algorithm on any input is not less than the average runtime of the
best deterministic algorithm over all possible inputs. Thus we construct a lower
bound on complexity of a randomized algorithm by constructing a lower bound
on the average performance of any deterministic algorithm over all possible in-
puts. A deterministic algorithm can be represented as a (rooted) decision tree
with nodes corresponding to queries and arcs going downwards corresponding
to answers to these queries. A total lower bound on the average performance of
deterministic algorithms, just as in [4], is done by assigning |S| different queries
to different nodes of a tree such that their average depth is minimized, and then
by considering all such trees and taking a minimum over them.

It should be noted that, if a (fixed) set of queries is to be assigned to nodes of
a (fixed) rooted tree such that the average depth of these queries is minimized,
an optimal assignment can be constructed in a greedy way: each query should
be assigned to a free node with the minimum possible depth. Assume that an
optimal assignment does not use at least one node a with depth d while using at
least one node b with depth d′ > d. Then one can move a query from the node b
to the node a, which makes the average depth decrease, so the initial assignment
is, in fact, not optimal.

Next we show that, in order to minimize the average depth, one needs to
consider only the complete tree, that is, a tree where for any query of the i-th
type, for any j there are exactly Ai,j answers, each leading to a query of the j-th
type. Indeed, if an optimal assignment can be done for an incomplete tree, it can
be done for the complete tree as well, because all the nodes of any incomplete
tree are preserved in the complete tree.

For a complete tree with the constraints determined by the matrix A (as
specified in the theorem’s statement) and with the root vertex of type 1, the
number of vertices of type i and depth d (the root has the depth equal to 1)
is exactly

((
AT
)d−1 · (1, 0, . . . , 0)T)

i
. In the matrix B, the next-to-last row is

designed to collect the sum of all numbers of vertices at all previous depths
(which is exactly how C(d) is defined), and the last row, in a similar manner,
collects S(d) — the sum of C(i)’s for all 1 ≤ i ≤ d. In a more explicit way, S(d)
can be expressed as:

S(d) =
d∑

i=1

C(i) · (d+ 1− i),

so the expression C(d) · (d+1)−S(d) is actually the sum of depths of all vertices
up to the depth d:

C(d)(d+ 1)− S(d) =
d∑

i=1

C(i) · i,

and the expression d + 1 − S(d)
C(d) is thus exactly the average depth of all such

vertices.
If we consider arbitrary integer N , we can find an integer d such that C(d) ≤

N ≤ C(d+ 1). In this case, the total sum of depths of the first C(d) vertices is

C(d) · (d + 1) − S(d), and the next N − C(d) vertices have the depth of d + 1.
The average depth is thus:

davg(N) =
C(d) · (d+ 1)− S(d) + (d+ 1) · (N − C(d))

N
= d+ 1− S(d)

N
. ut

It is difficult to use this theorem straightaway, because the lower bound on
the average depth of N vertices is not defined only in terms of N and the matrix
A, but additionally requires to find which depth d fulfils C(d) ≤ N ≤ C(d+ 1).
However, for several common usages it is possible to make it more convenient.

Theorem 8. If there is only one type of queries in Theorem 7, and A1,1 = k
such that k ≥ 2, then for the search space S the lower bound on the average
depth is at least blogk(1 + |S|(k − 1))c − 1

k−1 .

Proof. The value of Bd · (1, 0, 0)T yields the following result (intermediate com-
putations omitted):k 0 0

1 1 0
1 1 1

d

·

1
0
0

 =

 kd

kd−1
k−1

kd+1−k−d(k−1)
(k−1)2

 .

One can see that C(d) = kd−1
k−1 and S(d) = kd+1−k−d(k−1)

(k−1)2 .

Consider an equality N = C(d) = kd−1
k−1 . It follows that:

d(N) = logk(1 +N(k − 1)).

As for a given N we need to find an integer d such that C(d) ≤ N < C(d+ 1),
we need to round it down: d = bd(N)c.

Note that, if d ≥ 1 and k ≥ 1, S(d) grows when d grows, as S(d)′ > 0.
The expression for a lower bound on the average depth of N queries is at

most:

davg(N) = bd(N)c+ 1− S(bd(N)c)
N

≥ bd(N)c+ 1− S(d(N))

N

≥ blogk(1 +N(k − 1))c − 1

k − 1
. ut

Note that the classical result from [4], the
⌊
logk+1N

⌋
− 1 lower bound, is

actually not greater than the given bound. Indeed, for k ≥ 2:

logk(1 +N(k − 1))− logk+1N > logk(N(k − 1))− logk+1N

= logkN − logk+1N + logk(k − 1) > logkN − logk+1N > 0.

For the case of k = 1, the lower bound is even stronger.

Theorem 9. If there is only one type of queries in Theorem 7, and A1,1 = 1,
then for the search space S the lower bound on the average depth is at least
(|S|+ 1)/2.

Proof. In this case one can show that C(d) = d and S(d) = d2+d
2 . The average

depth for N is N + 1− N2+N
2N = N + 1− (N + 1)/2 = (N + 1)/2. ut

4 Lower Bounds for Jumpn,`

First, let’s apply Theorem 8 immediately to the Jump problem.

Theorem 10. For any n and ` < n/2, the unrestricted black-box complexity of
Jumpn,` is at least

⌊
logn−2`(1 + 2n(n− 2`− 1))

⌋
− 1

n−2`−1 .

Proof. In Jumpn,`, the search space has a size of 2n. There are n−2`+1 possible
answers to a query, but one of them terminates the search process immediately,
so k = n− 2`. The result follows straightaway from Theorem 8.

Theorem 11. The unrestricted black-box complexity of extreme Jump for even
n is at least n− 1.

Proof. Follows from Theorem 10 by assuming n− 2` = 2.

The presented bounds are already an improvement over the currently known
bounds (say, n

log2 3 for extreme Jump and even n, as follows from [4]). However,
for odd n Theorem 10 reports

⌊
log3(1 + 2n+1)

⌋
−1/2, which is still quite far away

from the best known algorithms. Fortunately, the Jump problem possesses a par-
ticular property, which can be used to refine the lower bounds using Theorem 7
with two types of queries.

Theorem 12. For Jumpn,`, define an answer to the query to be non-trivial
if it is neither 0 nor n. After receiving the first non-trivial answer for every
subsequent query it is possible to determine a priori the parity of any non-trivial
answer.

Proof. Consider the optimum and a query. We introduce the following values:

– q00: number of positions with zeros in both the optimum and the query;
– q01: number of positions with zeros in the optimum and ones in the query;
– q10: number of positions with ones in the optimum and zeros in the query;
– q11: number of positions with ones in both the optimum and the query.

The number of zeros in the optimum modulo 2, which is q00 ⊕ q01, is fixed. The
number of ones in the query modulo 2 is q01 ⊕ q11, and the answer to the query
modulo 2 is q00 ⊕ q11. The following equality holds:

(q01 ⊕ q11)⊕ (q00 ⊕ q11) = q00 ⊕ q01,

which means that the parity of the non-trivial answer is uniquely determined by
the parity of the number of ones in the query.

As a result, if an algorithm receives the first non-trivial answer, all subsequent
queries will provably have fewer possible answers. ut

Using Theorem 12, we can define two types of queries to use with Theorem 7,
namely, the queries happened before and after a non-trivial answer.

Theorem 13. The unrestricted black-box complexity of Jumpn,` for odd n is at
least: ⌊

log n−2`+1
2

(
2n−2(n− 2`− 1) + 1

)⌋
− 2

n− 2`− 1
.

Proof. For odd n there are n − 2` + 1 = 2k + 2 possible answers: one answer
equal to 0, one answer equal to n and k pairs of non-trivial answers. For the
Theorem 7, the first type of queries has 2k + 1 non-terminating answers, and
the second type of queries, which occurs after one of 2k non-trivial answers is
received from a query of the first type, has only k+ 1 non-terminating answers.
The value of Bd · (1, 0, 0, 0)T is thus:

Bd ·

1
0
0
0

 =

1 0 0 0
2k k + 1 0 0
1 1 1 0
1 1 1 1

d

·

1
0
0
0

 =

1

2
(
(k + 1)d − 1

)
2(k+1)d−dk−2

k

2(k+1)d+1− (dk+2)2+dk2+4k
2

k2

 .

A problem of defining d in terms of N is more difficult this time: as C(d) =
2(k+1)d−dk−2

k , the equality N = C(d) cannot be easily solved in terms of d.
Instead, we introduce a function d(N) such that the following equality holds:

N =
2(k + 1)d(N) − d(N)k − 2

k
.

We find the lower bound on the average depth davg(N), keeping in mind that
S(d) grows as d grows and that d(N) ≥ 1 for N ≥ 1:

davg(N) = bd(N)c+ 1− S(bd(N)c)
N

≥ bd(N)c+ 1− S(d(N))

N

= bd(N)c+ 1−
2(k+1)1+d(N)− (d(N)k+2)2+d(N)k2+4k

2

k2

2(k+1)d(N)−d(N)k−2
k

= bd(N)c+ 1−
2(k+1)1+d(N)−d(N)k2−d(N)k−2k−2− d(N)k2(d(N)−1)

2

k
2(k+1)1+d(N)−d(N)k2−d(N)k−2k−2

k+1

≥ bd(N)c+ 1− k + 1

k
= bd(N)c − 1

k
.

We can also obtain a good lower bound on d(N) by throwing out the d(N)k
part in the definition of d(N) above, which leads to d(N) > logk+1

(
Nk
2 + 1

)
.

Together, davg(N) ≥
⌊
logk+1

(
Nk
2 + 1

)⌋
− 1

k . For Jumpn,`, it holds that N = 2n

and 2k + 2 = n− 2`+ 1, which constitutes:⌊
log n−2`+1

2

(
2n−2(n− 2`− 1) + 1

)⌋
− 2

n− 2`− 1
. ut

Theorem 14. The unrestricted black-box complexity of extreme Jump for odd
n is at least n− 2.

Proof. For extreme Jump and odd n, n− 2`+ 1 = 4. Then from Theorem 13 it
follows that the lower bound is at least:⌊

log2
(
2n−2 · 2 + 1

)⌋
− 2

2
=
⌊
log2

(
2n−1 + 1

)⌋
− 1 ≥ n− 2.

Theorem 15. The unrestricted black-box complexity of Jumpn,` for even n is
at least: ⌊

log n−2`+2
2

(
1 + 2n−1

(n− 2`)2

n− 2`− 1

)⌋
− 2

n− 2`
.

Proof. For even n there are n − 2` + 1 = 2k + 3 possible answers (k ≥ 0): one
answer equal to 0, one answer equal to n, one answer equal to n/2 and k more
pairs of non-trivial answers. For Theorem 7, the first type of queries has 2k + 2
non-terminating answers, and the second type of queries can have either k+1 or
k non-terminating answers, depending on the parity of the number of ones in a
query. As we cannot predict the parity for all possible algorithms, the maximum
number of queries is limited to k + 1. The matrix B has the following form:

B =

1 0 0 0

2k + 1 k + 2 0 0
1 1 1 0
1 1 1 1

 .

We omit the intermediate computations and just state that:

C(d) =
(2k + 1)(k + 2)d − dk2 − dk − 2k − 1

(k + 1)2

S(d) =
(k + 2)d(2k2 + 5k + 2)− d2k3+dk3+2d2k2+6dk2+4k2+2d+d2k+7dk+10k+4

2

(k + 1)3
.

Following the same approach as in the proof of Theorem 13, we define d(N) such
that C(d(N)) = N and produce the following lower bound:

davg(N) ≥ bd(N)c − 1

k + 1
.

The lower bound on d(N) can be achieved from the value of C(d) by throwing
out the dk2 + dk part, which yields:

d(N) ≥ logk+2

(
1 +

(k + 1)2N

2k + 1

)
and, together:

davg(N) ≥
⌊
logk+2

(
1 +

(k + 1)2N

2k + 1

)⌋
− 1

k + 1
.

Substitution of N with 2n and 2k + 2 with n− 2` proves the theorem. ut
Note that Theorem 15 does not improve the bound for extreme Jump and

even n — it remains equal to n−1 when one sets k = 0 — because in this case the
number of possible answers does not change after receiving the first non-trivial
answer.

5 Conclusion

New black-box algorithms for solving Jumpn,` problem are presented, giving the
following upper bounds:

– for ` < n/2−
√
n log2 n:

2n(1+o(1))
log2 n , where o(1) is measured when n→∞;

– for n/2−
√
n log2 n ≤ ` <

⌊
n
2

⌋
− 1: n(1+o(1))

log2(n−2`)
, where o(1) is measured when

n− 2`→∞;
– for ` =

⌊
n
2

⌋
− 1: n+Θ(

√
n).

A new theorem for constructing lower bounds on unrestricted black-box com-
plexity of problems is proposed. The underlying idea is that influence of partic-
ular answers to queries to all subsequent queries can be formalized by assigning
a type to each query and writing the relations in a form of a matrix. Several
following steps for constructing the lower bounds are automated and can be per-
formed using tools like Wolfram Alpha. We hope that this theorem can be used
to obtain better lower bounds in other problems.

Using the proposed theorem, the lower bounds for Jumpn,` are updated:

– for even n:
⌊
log n−2`+2

2

(
1 + 2n−1 (n−2`)2

n−2`−1

)⌋
− 2

n−2` ≥
n

log2
n−2`+2

2

− 1;

– for odd n:
⌊
log n−2`+1

2

(
1 + 2n−2(n− 2`− 1)

)⌋
− 2

n−2`−1 ≥
n−1

log2
n−2`+1

2

− 1.

In particular, for extreme Jump the lower bounds become equal to n− 1 for
even n and n − 2 for odd n. This means that the quotients at the first term of
lower and upper bounds coincide. In the case of large, but not extreme `, these
quotients seem to coincide as well, however, the (1 + o(1)) multiple can hide as
much as

(
log2(n− 2`)/ log2

n−2`+1
2

)
, which makes it hard to see exactly.

This work was partially financially supported by the Government of Russian
Federation, Grant 074-U01.

References

1. Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: fast crossover-based
genetic algorithms. In: Proceedings of Genetic and Evolutionary Computation Con-
ference. pp. 781–788 (2014)

2. Doerr, B., Doerr, C., Kötzing, T.: Unbiased black-box complexities of jump func-
tions, http://arxiv.org/abs/1403.7806v2

3. Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster
black-box algorithms through higher arity operators. In: Proceedings of Foundations
of Genetic Algorithms. pp. 163–172 (2011)

4. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Theory of Computing Systems 39(4), 525–544
(2006)

5. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association 58(301), 13–30 (1963)

6. Yao, A.C.C.: Probabilistic computations: Toward a unified measure of complexity.
In: Foundations of Computer Science, 1977., 18th Annual Symposium on. pp. 222–
227 (1977)

