
Inferring Automata Logic From Manual Control Scenarios: Implementation in
Function Blocks

Daniil Chivilikhin∗, Anatoly Shalyto∗, and Valeriy Vyatkin†
∗Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia

Email: chivdan@rain.ifmo.ru, shalyto@mail.ifmo.ru
†Department of Electrical Engineering and Automation, Aalto University, Finland

Email: vyatkin@ieee.org

Abstract—This paper presents an automated technique for
inferring finite automata logic from behavior examples derived
from the interaction of the user and the controlled object
model. The technique is demonstrated for IEC 61499 function
blocks. We show how to automatically generate a manual con-
trol Human-Machine Interface (HMI) for Model-View-Control
applications and how to use the HMI to record behavior
examples. We also suggest a polynomial-time algorithm for
constructing Execution Control Charts (ECCs) of basic FBs
from behavior examples. The use of the proposed technique is
illustrated on an example.

I. INTRODUCTION

Automata are widely used in industrial automation, both
in legacy IEC 61131 programs and in function block appli-
cations in IEC 61499. The development of automata-based
controllers is a hard, time-consuming process, especially
when the problem requires automata with a large number
of states and complex logic.

In this paper we propose an automated approach that
can help engineers create automata for control applications
developed following the Model-View-Controller (MVC) de-
sign pattern. Assuming that the Model and View are im-
plemented, we present an automated technique for creating
an automaton representing the Controller. The proposed
approach is demonstrated on the example of IEC 614991,
which is a rather new standard in industrial automation that
defines an open architecture for developing distributed con-
trol and automation systems. The main structural elements
of IEC 61499 applications are function blocks (FBs), which
encapsulate both logic and data flows. FBs can be either
basic or composite. A basic FB is defined by an Execution
Control Chart (ECC), which is a special type of a Moore
finite-state machine. A composite FB is represented by a
network of other FBs, either basic or composite. Regardless
of the concrete type, any FB is characterized by an interface,
which defines input/output events and input/output vairables.

MVC is quite a common design pattern for IEC 61499 [1],
[2], [3]. For example, in [1] the following guideline for
IEC 61499 MVC application development is suggested.

1V. Vyatkin, IEC 61499 Function Blocks for Embedded and Distributed
Control Systems Design, 2nd Edition, ISA 2012

First, the View is created which implements a visualization
of the designed system. Second, one creates the Model
using the View for debugging it. Finally, the Model and
the View are used for (manually) developing and verifying
the Controller.

The new approach proposed in this paper allows to omit
the last part, delegating the creation of the Controller to
an automated procedure. At the first step of the proposed
approach the FB application is augmented with a Human-
Machine Interface (HMI) to allow the user to perform
manual control of the Model. Secondly, the FB application
is automatically modified to allow logging of user input
and model behavior. At the third step, the user acts as
a controller for the Model in a series of test cases. The
behavior of the user and the resulting actions of the model
are recorded and saved. Finally, at the fourth step we use
the proposed polynomial-time algorithm to automatically
construct an ECC that models the recorded behavior. The
constructed ECC is able to reproduce the control actions the
user performed when processing test cases. At the moment,
results are limited to constructing ECCs which have only
Boolean input and output variables.

II. RELATED WORK

Problems related to inferring various types of automata
from behavior examples attracted a substantial amount of
research over the years. Deterministic finite automata can
be efficiently inferred from labeled strings using SAT-
solvers [4], though the problem is known to be NP-hard [5].
Finite-state transducers can be inferred from examples using
evolutionary algorithms [6]. Extended finite-state machines
can be inferred from scenarios using SAT-solvers [7]. Meta-
heuristic algorithms have been used for inferring finite-state
machines for controlling an unmanned aircraft [8].

An approach has been proposed for reconstrucing basic
IEC 61499 function block logic from execution scenar-
ios [9]. The algorithm proposed in that paper is a metaheuris-
tic one, i.e. there are no theoretical bounds on its run time.
In the current paper we found that if each state algorithm
is used in exactly one state of the ECC, a polynomial-
time algorithm is sufficient to infer an ECC from execution

(a) Function block interface example

INIT

1

REQ

1

(b) Execution control chart example
Figure 1. Examples of a function block interface (left) and execution control chart (right)

scenarios.

III. IEC 61499 STANDARD

Applications in the IEC 61499 are represented in the
form of a network of interconnected FBs. Each FB has
an interface, which defines possible input/output events
and input/output variables. Variables can be, for example,
Boolean, integer, or real, and can be associated with input
and output events.

Basic FBs are represented by ECCs, which are Moore
finite-state machines. An ECC is a set of states connected
with transitions. At any moment in time the ECC is in
a particular state. When an input event is received, the
ECC switches to another state if a guard condition (in this
work, a Boolean formula over input variables) on one of the
transitions is satisfied. Transitions are checked in the order
they are listed in the FB source file; the first transition for
which the guard condition is satisfied is triggered.

An ECC state can have a list of associated actions. Each
action can include an algorithm and/or an output event.
When the ECC makes a transition to a state, the list of
actions is executed. State algorithms are, most commonly,
implemented using the Structured Text language and used,
e.g., for setting output variables values. An example of an
FB interface is shown in Fig. 1a, associations of events with
variables are depicted by vertical lines. An example of an
ECC is shown in Fig. 1b.

In this work we consider ECCs that have only Boolean
input and output variables. We also assume that guard
conditions only depend on input variables. Under this as-
sumption, an execution control chart is defined as an eight-
tuple ⟨Y,EI,X,EO,Z, y0, ϕ, δ⟩, where Y is a finite set
of states, EI is a set of input events, X is a set of
Boolean input variables, EO is a set of output events,
Z is a set of Boolean output variables, y0 ∈ Y is the
initial state, ϕ : Y × EI × 2X → Y is the transitions
relation and δ : Y → ({0, 1}|Z| → {0, 1}|Z|) × EO is
the outputs relation. The outputs relation defines that each
state is associated with an action, which can include a so-
called algorithm and an output event. In our simplified case
algorithms are functions over output variables that transform

Figure 2. General scheme of the proposed approach

a Boolean string to another Boolean string. It is assumed that
the initial state y0 = 0.

IV. PROPOSED APPROACH

We make the following additional assumptions in our
approach.

• The FB application is designed following the Model-
View-Controller (MVC) pattern and the Model and
View implementations are available.

• The desired Controller is a basic FB with Boolean input
and output variables.

• M.O is the set of the Model’s output variables that
should be used for the Controller’s input.

• M.I is the set of the Model’s input variables that should
be derived from the Controller.

The proposed approach includes the following steps
shown on the scheme in Fig. 2.

1) Manual control HMI generation. Generate FBs im-
plementing manual control for selected output vari-
ables of the target FB.

2) Refactoring for enabling logging. Refactor the FB
application to support execution scenarios recording.

3) Execution scenarios recording. Record execution
scenarios from user input and model behavior.

4) Inferring ECC from scenarios. Attempt to infer an
ECC consistent with recorded execution scenarios.

Figure 3. An example of the generated HMI for the PnP system

A. Manual control HMI generation

The manual control is a separate HMI and is comprised
of a set of checkboxes (one per each variable from M.I)
and an “Execute” button. A checked box corresponds to the
output variable being true, an unchecked box means that
the corresponding variable is false. Given the set of output
variables, all FBs implementing the HMI are generated
automatically using a bash script and corresponding FB
source file templates. A total of six FBs are generated and
two more FBs are altered. An example of a generated manual
control HMI is shown in Fig. 3.

A dummy FB representing the Controller is generated.
Its set of input variables is M.I ∪ M.O, and its set of
output variables is M.I . Model outputs M.O are connected
with corresponding controller inputs. M.I variables are
also connected to the inputs of the controller. Controller
outputs are connected with corresponding Model inputs.
When the user presses the “Execute” button, the EXEC event
is generated, which is connected to the REQ input event of
the Controller.

B. Refactoring for enabling logging

An execution scenario s is a list of execution scenario
elements si, where each element consists of an input event
ein ∈ EI , a set of input variable values in ∈ {0, 1}|X|, a set
of output variable values out ∈ {0, 1}|Z|, and, optionally,
an output event eout ∈ EO. For example, if the FB interface
defines one input event REQ, three input variables, two
output variables, and one output event CNF , then

⟨REQ, 000, 00, CNF ⟩,
⟨REQ, 001, 01, CNF ⟩,

⟨REQ, 101, 11, CNF ⟩

is an execution scenario.
In order to record execution scenarios from the user’s

interaction with the manual control HMI, a refactoring of
the FB application is automatically performed. The dummy
Controller FB generated on the previous step is replaced
with a composite ProxyLogger FB; all input and output con-
nections are copied. The ProxyLogger FB network includes
three FBs: InputLogger, the Controller FB, and OutputLog-
ger. When an input event is received by ProxyLogger, it
is passed on to InputLogger, which logs the input event
and the current values of input variables. The event and
input variable values are passed on to the Controller FB.
The OutputLogger FB does the same with output variable

Figure 4. An example of a ProxyLogger function block

values and output events. An example of the FB network of
a ProxyLogger FB is shown in Fig. 4.

C. Execution scenarios recording

At this step the generated HMI is used to perform manual
control of the system. When the user wants to change the
values of output variables, he ticks corresponding check-
boxes on the HMI and presses the “Execute” button. Here
we assume that after the button has been pressed, the model
uses a limited amount of time to perform actions triggered
by changed variables values. After all actions have been
performed and the system has converged to some steady
state, the manual control HMI can be used again.

D. Inferring an ECC from scenarios

In this section we describe the proposed polynomial-time
algorithm for constructing an ECC from execution scenarios.
The algorithm works correctly under the assumption that
each state algorithm is used in exactly one state of the
resulting ECC. Examining existing IEC 61499 applications
revealed that a large class of basic FBs satisfy this assump-
tion. The main idea is that under the taken assumption it is
possible to automatically determine the minimal possible set
of Boolean algorithms that are sufficient to describe given
execution scenarios. This set of algorithms defines the states
of the sought ECC. The algorithm includes the following
main steps:

1) determine the minimal set of state algorithms;
2) construct an ECC from scenarios labeled by found

algorithms;
3) simplify the constructed ECC.
1) Algorithm representation: Algorithms are represented

in the form of strings of length |Z| over the alphabet
{“0”, “1”, “x”}. Let ai be the algorithm associated with
state yi. The j-th character of the algorithm is associated
with the j-th output variable. Algorithms have the following
semantics:

• aji = “0”: set zj ← 0;
• aji = “1”: set zj ← 1;
• aji = “x”: preserve current value of zj .

To calculate the result of applying an algorithm a to a set of
variable values z we will use the function applyAlg(z, a).

2) Determining the minimal set of state algorithms: Let
A be a set of algorithms. Initially, A is empty. Firstly, for
each scenario s and each two consequent scenario elements
si and si+1 we add to A an algorithm that transforms
si. out to si+1. out. Such an algorithm is calculated using
the calcAlg function. Secondly, we try to minimize A by
merging each pair of algorithms, if possible.

Before merging algorithms a and b we first check if they
are consistent. Algorithms a and b are inconsistent if at some
position they have contradicting elements, i.e. ∃i : ai =
0, bi = 1 or ai = 1, bi = 0. For example, algorithms x01 and
10x are not inconsistent, but algorithms a = x00 and b =
x10 are, since a1 = 0 and b1 = 1. Inconsistent algorithms
cannot be merged.

To calculate the merge mab of two algorithms a and b we
use the function merge(a, b) which works according to the
following formula:

mab
i =

{
ai, if ai = bi;
“x”, if ai = “x” or bi = “x”.

(1)

Next, we remove a and b from A and add to A the merged
algorithm mab. Then we run through all scenarios and check
if the merged algorithm mab can be used instead of both a
and b. We check all pairs of scenario elements si and si+1

such that the algorithm that transforms si. out to si+1. out
is either a or b. If the usage of mab results in the same
output variable values as when using algorithm a (b) for all
such pairs of scenario elements, then the merge is retained.
Otherwise the merge is rejected, mab is removed from A, a
and b are added back to A.

The process is repeated until no more merges can be per-
formed. The resulting set of algorithms is, by construction,
the minimal possible set of algorithms that can be used
to represent given execution scenarios. This step runs in
O(N + N · Â3) = O(N · Â3), where N = |S| is the total
number of scenario elements and Â is the initial number of
elements in A. Since, in the worst case, Â = 3|Z|, we get
a final time complexity of O(N · 3|Z|3). The algorithm is
summarized in Algorithm 1. Note that since the initial set
of Boolean algorithms is finite and each merge reduces the
size of the set, this algorithm eventually terminates.

3) Constructing an ECC: Having determined the minimal
set of state algorithms A, we can now use this set to
construct an ECC from given execution scenarios. Let Aused
be the list of used algorithms (initially, it is empty) and
{τi}|A|−1

i=0 be a list of lists of transitions. First, we determine
the algorithm a0 ∈ A that is consistent with the first ele-
ment of all scenarios meaning that applyAlg(s0. out, a0) =
s1. out for all s ∈ S. The algorithm a0 is added to Aused.

Then, we iterate over all scenarios. For each scenario,
the current state ycurrent is initially 0. We iterate over sce-
nario elements and at each step consider elements si and
si+1. If si. out equals si+1. out, we increment i and move

Algorithm 1 Minimal Boolean algorithm set construction
1: A = new Set()
2: for all scenarios s ∈ S do
3: for i = 0 to |s| − 1 do
4: A← A ∪ {calcAlg(si. out, si+1. out)}
5: end for
6: end for
7: while true do
8: changed ← false
9:

10: for all a ∈ A do
11: for all b ∈ A, b ̸= a do
12: mab ← merge(a, b)
13: if merge is valid then
14: A← A \ {a, b}
15: A← A ∪ {mab}
16: changed ← true
17: goto line 21
18: end if
19: end for
20: end for
21: if ¬ changed then
22: break
23: end if
24: end while
25: return A

on. If not, we select an algorithm a from A such that
applyAlg(si. out, a) equals si+1. out.

If a ∈ Aused then the new state ynew is the position of a in
Aused. Otherwise, a is added to Aused and ynew is |Aused|−1.
Then we add to τycurrent a new transition labeled with the
input event si+1.e

in, set of input variable values si+1. in,
and the destination state ynew. Here we also check that if
τycurrent already contains a transition labeled with si+1.e

in

and si+1. in, then the destination state has to be equal to
ynew. If the destination state of the old transition is different
from ynew, then the algorithm prints a message that scenarios
contain a nondeterministic behavior and aborts. Finally, the
current state is updated: ycurrent ← ynew. After all scenarios
have been processed, the ECC states are assigned the cor-
responding algorithms and output events. This step runs in
O(N). The ECC construction algorithm is summarized in
Algorithm 2.

4) Simplifying the constructed ECC: In order to simplify
and generalize the ECC constructed in the previous step,
we will use the same representation of ECCs as in [9]. An
ECC is represented as a set of states Y , where each state yi
has a set of transition groups Ti per each input event, and
an associated action, which consists of an algorithm and an
output event. Each transition group t ∈ Ti has an associated
Boolean array called the input variable significance mask
mt and a transition table Φt of 1 × 2Σmt elements, where

Algorithm 2 ECC construction
Require: A – minimal set of Boolean algorithms
τ – list of lists of transitions
Aused – list of used algorithms
Aused ← {a ∈ A : ∀s ∈ S applyAlg(s0. out, a) =
s1. out}
for all s ∈ S do

for i = 0 to |s| − 1 do
ycurrent ← 0
if si. out = si+1. out then

continue
end if
a← getBestMatch(si. out, si+1. out, A)
ynew ← −1
if a ∈ Aused then
ynew ← A.indexof(a)

else
Aused ← Aused ∪ {a}
ynew ← |Aused| − 1

end if
t = new Transition(si+1.e

in, si+1. in, ynew)
if t /∈ τycurrent then
τycurrent ← τycurrent ∪ {t}

end if
if nondeterministic behavior then

print ”Nondeterministic behavior”
exit

end if
ycurrent ← ynew

end for
end for

Σmt is the number of elements in mt that are true. If mi
t =

true variable xi is called significant, otherwise, it is called
insignificant. Each j-th element of Φt stores the new state
for that transition. For example, if there are four significant
input variables x0–x3, Φ5

t stores the new state that the ECC
has to change to when (x0, x1, x2, x3) = (0, 1, 0, 1) since
0101 = 25.

The result of the previous step is an ECC represented
by {τi}|A|−1

i=0 , in which the number of transition groups in
each state equals the number of transitions in this state,
and in each transition group all variables are significant.
Such a solution can be extremely large (in the worst case,
the number of transitions equals the number of scenario
elements) and redundant. Therefore, we apply the same
simplification procedure as the one used in [9].

We attempt to delete each significant input variable of
each transition group according to the following algorithm.
The selected input variable is made insignificant mi ←
false, the size of the transition table is halved. We randomly
select which of the two old transitions to preserve (the one
with xi = true or xi = false). If the changed model is still

I II

III

IV

1 2 3V 1

*

Figure 5. Screenshot of one the Pick-and-Place manipulator system
implementations

0 a_xxxx0xx CNF

1 extendc1 CNF

1

4 a_01xxxxx CNF

8 a_xx01xxx CNF

!c1Home & vcHome & vac

10 retractAll CNF

vcHome & vac
7 extendc2 CNF

pp2 & !vac

9 extend1and2 CNF

pp3 & !vac

2 extendVc CNF

c1End

3 turnOnVac CNF

vcEnd & !vac

5 turnOffVac CNF

vcEnd

vac

c1Home

6 a_x0x00x0 CNF

!vac

pp2

pp3

pp1

c2Endc2Home

c2End

c2Home

pp1&!vac

!c2End & vcHome & vac

Figure 6. Inferred ECC model

able to correctly process all execution scenarios, the change
is retained, otherwise it is rejected. The process is repeated
until no more changes can be made. This step takes O(N)
time.

V. USAGE EXAMPLE

In this section we describe an example of how the
proposed technique can be used to infer FB logic. The
example is based on the Pick-and-Place (PnP) manipulator
project [10]. The project is implemented in the MVC frame-
work and the Controller is a basic FB with Boolean input
and output variables. The FBDK2 development environment
has been used for recording execution scenarios and post-
experiment simulation.

A. Pick-and-Place manipulator system

A screenshot of the PnP system is shown in Fig. 5. We
considered an implementation with a suction unit (IV) for
picking up work pieces and three pneumatic cylinders: two
horizontal cylinders (I, II) and one vertical cylinder (III).
The system also has three sensors for determining whether
a new work piece appeared in one of the three input trays
(1, 2, 3). Cylinders are used to move the suction unit in
position of the new work piece, pick it up and move to the
output slider (V).

2http://www.holobloc.com/doc/fbdk

In this implementation of the PnP manipulator, logic
control is performed by a single basic FB CentralizedCon-
trol. It receives signals when work pieces appear in the
input trays and sends commands to other FBs that control
the movement of the cylinders and the suction unit. The
interface of the CentralizedControl FB is shown in the
center of Fig. 4. It defines ten Boolean input variables:
c1Home/c1End (cylinder I is in the leftmost/rightmost posi-
tion), c2Home/c2End (cylinder II is in the leftmost/rightmost
position), vcHome/vcEnd (cylinder III is in the top/bottom
position), pp1/pp2/pp3 (a work piece is present in input
tray 1/2/3), vac (the suction unit is on). Seven output vari-
ables are used: c1Extend/c1Retract (extend/retract cylinder
I), c2Extend/c2Retract (extend/retract cylinder II), vcExtend
(extend cylinder III), vacuum on/vacuum off (turn suction
unit on/off).

B. Technique usage example

In order to test our approach, we manually removed
the Controller FB from the application, making the system
control-free. First, we fixed the desired controller’s interface,
which included input events INIT and REQ, output events
INITO and CNF, input variables M.O={c1Home, c1End,
c2Home, c2End, vcHome, vcEnd, pp1, pp2, pp3, vac},
and output variables M.I={c1Extend, c1Retract, c2Extend,
c2Retract, vcExtend, vacuum on, vacuum off}.

Second, we applied the developed scripts to generate the
manual control HMI for output variables M.I (see Fig. 3)
and to enable user and system behavior logging.

Third, we designed a set of nine test cases, where each
one defines the order of work pieces the PnP manipulator
has to process. For example, ‘1-2-3’ is a scenario where
first the manipulator is given piece number one, then piece
number two, and, finally, piece number three. The nine test
cases are as follows: ‘1’, ‘1-2’, ‘1-2-3’, ‘2’, ‘2-1’, ‘2-3’,
‘3’, ‘3-2’, ‘3-2-1’. Then the manual control HMI was used
to execute these test cases, while execution scenarios were
automatically recorded.

Fourth, we applied the proposed ECC construction algo-
rithm to build an ECC consistent with recorded scenarios.
The algorithm took less than a minute on a personal com-
puter to complete. For comparison, the algorithm from [9]
takes about 4.5 hours to find an ECC consistent with these
scenarios. Finally, we added the constructed ECC to the
original application and ran all the test cases to ensure that
the ECC works correctly. The constructed ECC is shown in
Fig. 6.

VI. CONCLUSION

In this paper we proposed an automated technique capable
of inferring automata logic for MVC applications. The
proposed approach has been implemented for IEC 61499
functions blocks. The feasibility of the approach has been
demonstrated on the example of the PnP manipulator system.

One limitation of the presented approach is that the user
bears all responsibility for the choices he makes during
manual control of the system; handling unsafe or faulty
choices of the user will be part of future work. Also,
the approach can prove helpful only if performing manual
control of the system is less difficult than designing the
controller.

ACKNOWLEDGMENT

This work was financially supported by the Government
of Russian Federation, Grant 074-U01.

REFERENCES

[1] J. Christensen, “IEC 61499 Architecture, Engineering
Methodologies and Software Tools,” in Knowledge and Tech-
nology Integration in Production and Services, ser. IFIP The
International Federation for Information Processing, V. Mak,
L. Camarinha-Matos, and H. Afsarmanesh, Eds. Springer
US, 2002, vol. 101, pp. 221–228.

[2] A. Zoitl and H. Prahofer, “Guidelines and Patterns for Build-
ing Hierarchical Automation Solutions in the IEC 61499
Modeling Language,” IEEE Transactions on Industrial Infor-
matics, vol. 9, no. 4, pp. 2387–2396, Nov 2013.

[3] C. Pang, V. Vyatkin, and W. Dai, “IEC 61499 based model-
driven process control engineering,” in Emerging Technology
and Factory Automation (ETFA), Sept 2014, pp. 1–8.

[4] M. Heule and S. Verwer, “Exact dfa identification using
sat solvers,” in Grammatical Inference: Theoretical Results
and Applications, ser. Lecture Notes in Computer Science,
J. Sempere and P. Garca, Eds. Springer Berlin Heidelberg,
2010, vol. 6339, pp. 66–79.

[5] M. Gold, “Complexity of automaton identification from given
data,” Information and Control, vol. 37, no. 3, pp. 302–320,
1978.

[6] S. M. Lucas and T. J. Reynolds, “Learning finite-state trans-
ducers: Evolution versus heuristic state merging,” Trans. Evol.
Comp, vol. 11, no. 3, pp. 308–325, Jun. 2007.

[7] V. Ulyantsev and F. Tsarev, “Extended finite-state machine
induction using sat-solver,” in 14th IFAC Symposium on
Information Control Problems in Manufacturing, 2012, pp.
236–241.

[8] I. P. Buzhinsky, V. I. Ulyantsev, D. S. Chivilikhin, and A. A.
Shalyto, “Inducing finite state machines from training samples
using ant colony optimization,” Journal of Computer and
Systems Sciences International, pp. 256–266, 2014.

[9] D. Chivilkhin, A. Shalyto, S. Patil, and V. Vyatkin, “Recon-
struction of function block logic using metaheuristic algo-
rithm: Initial explorations,” in Proceedings of IEEE Interna-
tional Conference on Industrial Informatics, To appear, 2015.

[10] S. Patil, V. Vyatkin, and M. Sorouri, “Formal verification
of intelligent mechatronic systems with decentralized control
logic,” in 17th IEEE Conference on Emerging Technologies
Factory Automation (ETFA’12), Sept 2012, pp. 1–7.

