
Reconstruction of Function Block Logic using
Metaheuristic Algorithm: Initial Explorations

Daniil Chivilikhin∗, Anatoly Shalyto∗, Sandeep Patil‡, and Valeriy Vyatkin∗†‡
∗Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia

Email: chivdan@rain.ifmo.ru, shalyto@mail.ifmo.ru
†Department of Electrical Engineering and Automation, Aalto University, Finland

Email: vyatkin@ieee.org
‡Department of Computer Science, Computer and Space Engineering, Lulea Tekniska Universitet, Sweden

Email: sandeep.patil@ltu.se

Abstract—This paper presents an approach for automatic
reconstruction of automation logic from execution scenarios using
a metaheuristic algorithm. The IEC 61499 basic function blocks
is chosen as implementation language and reconstruction of
Execution Control Charts for basic function blocks is addressed.
The synthesis method is based on a metaheuristic algorithm
most closely related to ant colony optimization and evolutionary
computation. Execution scenarios can be recorded from testing
legacy software solutions. At this stage results are only limited
to generation of basic function blocks having only Boolean
input/output variables.

I. INTRODUCTION

The IEC 61499 standard1 is a recent standard that defines
an open architecture for distributed control and automation
systems. The elementary component of IEC 61499 is a function
block (FB). All FBs are characterized by an interface, which
defines used input/output events and input/output variables.
Basic FBs are represented by event-driven Execution Control
Charts (ECCs), which are Moore finite-state machines (FSMs).
Composite FBs include a network of other FBs, either basic
or composite.

Migration from legacy automation systems based on Pro-
grammable Logic Controllers (PLCs) to the new generation
IEC 61499 systems has been actively addressed by the research
community. In addition to the widely claimed flexibility and
distributability of IEC 61499 applications, the state machine
based programming of IEC 61499 FBs offers much better
readability and maintainability of software. However, most
of the works on migration assume that the PLC code is
available and propose methods of generating an equivalent
FB application in IEC 61499. This would not help in often
situations when the source code is no longer available, or
there are no engineers who could quickly understand it. An
ideal solution would be to put the legacy system into a test
environment and record traces of its behavior, after which
reconstruct the code automatically.

This paper attempts to make a first step to automating
the development process of IEC 61499 applications. The
contribution of this paper is an approach that, under several
simplifications, is able to infer an ECC of a basic FB from
examples of its behavior – sequences of input/output variable

1International Standard IEC61499-1: Function Blocks – Part 1 Architecture,
First ed. Geneva: International Electrotechnical Commission 2005.

values sets called execution scenarios. The approach is able to
infer both the transition diagram and the algorithms associated
with ECC states.

II. RELATED WORK

There has been a substantial body of publications on
migration from PLCs to IEC 61499, for example [1], [2], [3],
but all such methods assume availability of source code. In
this paper we do not require this. This work is based on the
recent progress in inferring FSM models. The most closely
related works are devoted to inferring FSMs for controlling an
unmanned aircraft [4], [5]. FSMs are inferred from execution
scenarios recorded by a human pilot using a flight simulator.
The inferred FSM is able to reproduce a maneuver the pilot
recorded in scenarios. A scenario element consists of real
values: a set of flight parameters (e.g. altitude, airspeed) and a
set of aircraft control parameters (e.g. elevator, ailerons). This
method is not directly applicable to the problem solved in
this paper since it (1) does not support general form Boolean
formulas on FSM transitions and (2) uses a different state
machine execution semantics than the one used in IEC 61499.

III. PROBLEM STATEMENT

A. IEC 61499 Standard

In the IEC 61499 standard applications are designed in
the form of a network of interconnected FBs. Each FB has
an interface, which defines possible input/output events and
input/output variables. Variables can be, for example, Boolean,
integer, or real, and can be associated with input and output
events.

Basic FBs contain Moore finite-state machines called Exe-
cution Control Charts (ECCs). An ECC is comprised of a set
of states connected with transitions. In the beginning, the ECC
is in the initial state. When an input event is received, the ECC
switches to another state if one of the transitions is triggered.
This happens if the guard condition (Boolean formula over
input variables) of a transition is satisfied. Transitions are
checked in the order they are recorded in the source file of
the FB; the first transition for which the guard condition is
satisfied is triggered.

States can have a number of associated algorithms and
output events. Algorithms are commonly implemented using

(a) FB interface example

INIT

1

REQ

1

(b) ECC example

Fig. 1. Examples of an FB interface (left) and an ECC (right)

the Structured Text language and used, for example, for setting
output variables values. An example of a FB interface is shown
in Fig. 1a, an example of an ECC is shown in Fig. 1b.

B. Simplifications

In this work we will consider a simplified model of the
ECC in which events are not taken into account and all
variables are Boolean. Events can be in a straightforward way,
dealing with non-Boolean variables is more complex.

An ECC in this paper is a six-tuple ⟨Y,X,Z, y0, ϕ, δ⟩,
where Y is a finite set of states, X is a set of Boolean input
variables, Z is a set of Boolean output variables, y0 ∈ Y is
the initial state, ϕ : Y ×2X → Y is the transitions relation and
δ : Y → {0, 1}|Z| is the outputs relation. The outputs relation
defines that each state is associated with a so-called algorithm,
which in our simplified case is a function over output variables
that transforms a Boolean string to another Boolean string. It
is assumed that the initial state y0 is always state 0.

An execution scenario s is a series of execution scenario
elements si, where each element consists of a set of input
variable values ini and a set of output variable values outi.
For example, if there are three input and two output variables,
⟨000, 00⟩, ⟨001, 01⟩, ⟨101, 11⟩ is an execution scenario.

This paper is devoted to designing a method that, given a
basic FB with known interface but unknown ECC, produces
an ECC that complies with supplied execution scenarios.

IV. PROPOSED APPROACH

The input FB is first refactored in order to allow execution
scenarios recording. A human designer supplies test cases.
The FB application with the refactored FB is run on test
cases, execution scenarios are recorded. Finally, the solution
is generated using the proposed ECC inference algorithm.

The model inference algorithm we use is based on the
pMuACO algorithm [6]. This algorithm is metaheuristic; such
algorithms can be used for finding good solutions of hard
optimization problems in reasonable time. In general, all
metaheuristics perform a guided search in the search space
(set of all feasible solutions) of the considered optimization
problem. The solution considered by the algorithm at any point
in time is called a candidate solution or an individual.

A. Recording Execution Scenarios

In order to record execution scenarios, a refactoring of the
FB system is performed. The input FB is replaced with a

0

x1 & x2

1
x0

x1 & ¬x2

¬x1 & x2

Fig. 2. An example of an ECC model and the representation of state 0.
The “-1” entries mean that the corresponding transition is not present in the
transition group.

composite ProxyLogger FB; all input and output connections
are copied. The ProxyLogger FB consists of an InputLogger
FB, the input FB, and an OutputLogger FB. The InputLogger
takes the input variable values, prints them, and passes the
values unchanged to the input FB. The OutputLogger does the
same with the output variable values of the input FB. Execution
scenarios are recorded by running the FB application on a
specially designed set of test cases.

B. Execution Control Chart Model

Our ECC model is represented as a set of states Y , where
each state yi has a set of transition groups Ti. Each transition
group t ∈ Ti has an associated Boolean array called the input
variable significance mask mt. If for some state mi = true,
then the input variable xi is significant in this state. Each
transition group also has a transition table Φt of 1 × 2Σmt

elements, where Σmt is the number of elements in mt that
are true.

Each j-th element of Φt stores the new state for that
transition. For example, if there are four significant input
variables x0–x3, Φ5

t stores the new state that the ECC has to
change to when (x0, x1, x2, x3) = (0, 1, 0, 1) since 0101 = 25.
Examples of an ECC model and its representation are shown
in Fig. 2: the ECC model is the state diagram on top and the
representation of its state 0 is at the bottom.

The state algorithms are deduced from execution scenarios
using a state labeling algorithm. Our state labeling algorithm is
based on the same idea as the original state labeling proposed
in [7] for learning Deterministic Finite Automata from labeled
strings.

C. ECC Inference Algorithm

For ECC model inference we use the pMuACO algo-
rithm [6]. The algorithm starts with a randomly generated
initial solution and explores the search space using mutation
operators, which usually make rather small changes to the
ECC. The degree to which a candidate solution complies
with execution scenarios is evaluated using a so-called fitness
function (FF). Before computing the FF value of a candidate
solution, the algorithms for each state are determined using
state labeling.

D. Mutation Operators

The following four mutation operators were used.

Change transition end state. For a randomly selected
transition, the state y it leads to is changed to another state,
which is selected uniformly at random from Y \ {y}.

Add or delete transitions. Transition groups of each state
are modified with a fixed probability. A transition group is
selected uniformly at random from the set of all transition
groups of a state. It is randomly decided whether to add or
delete a transition. Adding a transition. A guard condition
is selected from the set of all guard conditions for which a
transition is not defined. A transition is added that is marked
with the selected guard condition and leads to a state selected
uniformly at random from the set of all states. Deleting a
transition. A randomly selected transition is deleted from one
of the transition groups of the selected state.

Change significance mask of a transition group. This
mutation operator works with a randomly selected transition
group and makes one variable insignificant while making an-
other significant. First we select a transition group t uniformly
at random from the set of all transition groups that have at least
one transition. Then we select i, j : mi = true∧mj = false.
The mutation operator swaps significance mask values at
selected positions: mi ← false, mj ← true.

Change significant variables set of a transition group.
This mutation operator changes the number of significant vari-
ables in a randomly selected transition group. It is randomly
decided whether to add or delete a variable.

Adding a significant variable. First, a randomly selected
insignificant variable is made significant: mi ← true. The
size of the transition table is doubled. For each old transition
pointing to some state y, we add two transitions to the new
transition table: with xi = false and with xi = true.
Both new transitions point to the same state y. Deleting a
significant variable. First, the randomly selected variable is
made insignificant mi ← false. The size of the transition
table is halved. When a variable is made insignificant, we have
to choose which of the two transitions to preserve – the one
with xi = true or with xi = false. We count the number
of added transitions and, if it is divisible by two, we keep the
transition with xi = false, otherwise the one with xi = true.

E. State Labeling

Before computing the FF value we have to determine the
algorithms associated with each state. Since all output variables
are Boolean, it is sufficient to have one algorithm per state. We
represent algorithms as strings of length |Z| over the alphabet
{“0”, “1”, “x”}. Let ai be the algorithm associated with state
yi. The j-th character of the algorithm is associated with the
j-th output variable. Algorithms have the following semantics:
if aji = 0 or aji = 1, set zj ← aij ; if aji = “x”, preserve current
value of zj .

Below the state labeling algorithm is described. For each
state we store a list of pairs of strings P . The algorithm con-
secutively processes all execution scenarios. Before processing
each scenario the ECC is in its initial state. Input variable sets
of the scenario elements are fed to the ECC one by one.

Suppose we are processing the k-th scenario element (k >
0) and the current state is y. First, the ECC makes the transition
induced by the set of input variables ink, changing the current
state y to a new value. Second, if the k-th output variable set
outk is different from outk−1, then the pair ⟨outk−1, outk⟩ is
added to list Py .

After all scenarios have been processed, algorithms for all
states are determined according to the following algorithm.
Labels (algorithms) for each state y are determined separately.
We iterate over all characters in the algorithm string, each such
character is also determined separately. A a 2×2 integer table
M is used, initially it is filled with zeroes. We scan the list
of pairs Py and count how many times a “0” was replaced
by “1”, “1” replaced by “0” and so on. The value in M1,0 is
the number of times a “1” was replaced by zero, M0,1 is the
number of times a “0” was replaced by “1”, and M0,0 +M1,1

is the number of times the value of the i-th output variable
has not changed. Then we use the following decision relation:

C = {⟨“0”,M1,0⟩; ⟨“1”,M0,1⟩; “x”,M0,0 +M1,1⟩}

The i-th character of the algorithm string is selected as the
argument of the maximum value of C.

F. Fitness Function

The FF we used consists of three components:

F = 0.9Fed + 0.1Ffe + 0.0001Fsc.

The Fed component is based on string edit distance and mea-
sures the similarity of the output variables values’ sequences
that are recorded in the execution and scenarios and the ones
acquired using the candidate solution. Ffe is based on the
position of the first error the candidate ECC model makes,
and Fsc is the number of state changes. The maximum possible
value of the FF is 1.0001.

V. EXPERIMENTS

Experiments were performed for one of the basic FBs of
the Pick-and-Place (PnP) manipulator project [8]. The FBDK2

development environment was used for recording execution
scenarios and post-experiment simulation. A screenshot of the
PnP system is shown in Fig. 3. The system has two horizontal

2http://www.holobloc.com/doc/fbdk

I II

III

IV

1 2 3V 1

*

Fig. 3. Screenshot of one the Pick-and-Place manipulator system implemen-
tations

REQ & NOT vac

REQ & vcHome & NOT vac

Fig. 4. One of inferred ECC models

pneumatic cylinders (I and II), one vertical cylinder (III), and
a suction unit (IV) for picking up work pieces. When sensors
determine that a new work piece (*) appeared in one of the
input trays (1, 2, 3), the PnP system retrieves the work piece
and puts it on the output slider (V).

Logic control is performed in a centralized way by a
single basic FB CentralizedControl. It receives signals when
work pieces appear in the input trays and sends commands to
other FBs that control the movement of the cylinders and the
suction unit. The FB has the following Boolean input variables:
c1Home/c1End (cylinder I is in the leftmost/rightmost posi-
tion), c2Home/c2End (cylinder II is in the leftmost/rightmost
position), vcHome/vcEnd (cylinder III is in the top/bottom
position), pp1/pp2/pp3 (a work piece is present in input tray
1/2/3), vac (the suction unit is on). The following Boolean
output variables are used: c1Extend/c1Retract (extend/retract
horizontal cylinder I), c2Extend/c2Retract (extend/retract hor-
izontal cylinder II), vcExtend (extend vertical cylinder III),
vacuum on/vacuum off (turn suction unit on/off).

For comparison we confront the generated ECC with the
manually created one, further referred to as original. We shall
note, however, that the original ECC is not anyhow used in
the reconstruction process.

A. Inferring ECC Models

The experiment plan was as follows: (1) record execution
scenarios, (2) use the proposed approach to infer a ECC
model compliant with all scenarios, (3) test all inferred ECC
models in simulation using FBDK. We recorded ten execution
scenarios, each scenario is defined by a test case, which is the
order of work pieces the PnP manipulator has to process. For
example, ‘1-2-3’ is a scenario where first the manipulator is
given piece number one, then piece number two, and, finally,

piece number three. The ten test cases are as follows: ‘1’, ‘1-2’,
‘1-2-3’, ‘2’, ‘2-1’, ‘2-3’, ‘3’, ‘3-2’, ‘3-2-1’, and also ‘123’ (all
work pieces are placed simultaneously). We used a machine
with a 64-core AMD Opteron(TM) 6378 @ 2.4 Ghz. processor
the pMuACO algorithm was run on 16 cores.

The experiment was repeated 20 times. It took our al-
gorithm an average of about 4.5 hours to find a perfectly
fit solution. Afterwards, all constructed solutions were tested
in simulation using FBDK. The ECC model is automatically
converted to a IEC 61499 FB format file. In simulation testing
we verified that all constructed solutions can correctly handle
all test cases. One of the constructed ECC models is shown
in Fig. 4. Algorithms that are identical to the ones used in the
original ECC are called by their names.

VI. CONCLUSION

We have presented an approach for reconstructing ECCs of
basic IEC 61499 FBs with Boolean input/output variables. The
feasibility of this approach was demonstrated on one basic FB
designed for performing centralized control of the Pick-and-
Place manipulator system.

For future work we plan do add support for integer and
real input/output variables, and modify the proposed approach
for inferring simple FBs from expert data. Such data can be
acquired by implementing a user interface so that the expert
can control the plant manually.

ACKNOWLEDGMENT

This work was financially supported by the Government
of Russian Federation, Grant 074-U01, and also partially by
RFBR, research project No. 14-01-00551 a.

REFERENCES

[1] W. Dai, V. Dubinin, and V. Vyatkin, “Migration from plc to iec 61499
using semantic web technologies,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 44, no. 3, pp. 277–291, March 2014.

[2] C. Gerber, H.-M. Hanisch, and S. Ebbinghaus, “From iec 61131 to iec
61499 for distributed systems: A case study,” EURASIP J. Embedded
Syst., vol. 2008, pp. 4:1–4:8, Apr. 2008.

[3] M. Wenger, A. Zoitl, C. Sunder, and H. Steininger, “Transformation of iec
61131-3 to iec 61499 based on a model driven development approach,”
in 7th IEEE International Conference on Industrial Informatics, 2009.
INDIN 2009., June 2009, pp. 715–720.

[4] A. Aleksandrov, S. Kazakov, A. Sergushichev, F. Tsarev, and A. Shalyto,
“The use of evolutionary programming based on training examples for the
generation of finite state machines for controlling objects with complex
behavior,” Journal of Computer and Systems Sciences International,
vol. 52, no. 3, pp. 410–425, 2013.

[5] I. P. Buzhinsky, V. I. Ulyantsev, D. S. Chivilikhin, and A. A. Shalyto,
“Inducing finite state machines from training samples using ant colony
optimization,” Journal of Computer and Systems Sciences International,
pp. 256–266, 2014.

[6] D. Chivilikhin and V. Ulyantsev, “Extended finite-state machine infer-
ence with parallel ant colony based algorithms,” in Proceedings of the
International Student Workshop on Bioinspired Optimization Methods
and their Applications (BIOMA’14), 2014, pp. 117–126.

[7] S. M. Lucas and T. J. Reynolds, “Learning deterministic finite automata
with a smart state labeling evolutionary algorithm,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 27, no. 7, pp. 1063–1074, Jul. 2005.

[8] S. Patil, V. Vyatkin, and M. Sorouri, “Formal verification of intelligent
mechatronic systems with decentralized control logic,” in 17th IEEE
Conference on Emerging Technologies Factory Automation (ETFA’12),

Sept 2012, pp. 1–7.

