
A Portability Study of IEC 61499: Semantics and Tools

Cheng Pang1, Sandeep Patil1, Chen-Wei Yang1, Members IEEE, Valeriy Vyatkin1,2, Senior Member IEEE, and

Anatoly Shalyto 3
1Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden

2Department of Electrical Engineering and Automation, Aalto University, Finland
3 Computer Technologies Department, ITMO University, St. Petersburg, Russia

{cheng.pang.phd, vyatkin}@ieee.org, {sandeep.patil, chen-wei.yang}@ltu.se, shalyto@mail.ifmo.ru

Abstract—The second edition of the IEC 61499 standard

aims to clarify the interpretation ambiguities of function

block’s execution semantics. This resolves the pivotal issue of

realizing portable and interoperable implementations of the

IEC 61499 reference architecture. As the IEC 61499 standard

is about entering its technology takeoff phase, these

clarifications are timely and important. It is hence expected

that more innovators of automation software tools, runtime

environments, and control hardware will start adopting this

technology. To assist such adoption, this paper presents a study

of existing IEC 61499 tools’ portability issues. In particular,

the features of currently active IEC 61499 tools, such as FBDK,

ISaGRAF, 4DIAC, and nxtStudio are outlined. Their

incompatibility issues due to different execution semantics are

exemplified. Moreover, it is also illustrated in this paper how

these issues can be addressed by complying with the updated

norms.

Keywords—IEC 61499; FBDK; ISaGRAF; 4DIAC; nxtStudio

I. INTRODUCTION

In the field of industrial automation systems, the ever
increasing demands for decentralized control and the
exponential growth of control complexity have accelerated
the shift from monolithic and centralized design paradigms
towards more reconfigurable and distributed engineering
approaches. This trend has been reflected in the development
of the IEC 61499 standard [1] for distributed industrial-
process measurement and control systems. The IEC 61499
standard aims to establish an open, component-oriented, and
platform-independent development framework to improve
re-usability, re-configurability, interoperability, portability,
and distribution of control software for complex distributed
systems.

To achieve the above goal, the IEC 61499 standard first
extends the Function Block (FB) notion from the IEC 61131-
3 [2] standard with event-driven execution semantics. In IEC
61499, the basic design construct is FB. Each FB consists of
a graphical event-data interface and a set of executable
functional specifications. FBs can be interconnected into a
network using event and data connections to specify the
entire control system. Execution of an individual FB in the
network is triggered by the events it received. This well-
defined event-data interface and the encapsulation of local
data and control algorithms make each FB a reusable
functional unit of software. Secondly, in IEC 61499, an FB
network should be easily partitioned and then distributed to
control devices over various communication networks while

still preserving its original control logic’s execution
semantics. As a result, distributed control systems can be
designed and configured at system-level independent to
implementation platform and hardware architecture.

The shift from centralized control systems to distributed
control systems is one of the major evolution trends in
industrial automation [3, 4]. This trend was also reflected in
the development of the IEC 61499 standard, which
establishes an event-driven modular design framework for
distributed control systems. Over the past decade, the
applicability of the IEC 61499 standard in distributed control
systems has been extensively studied in many projects, such
as airport baggage handling systems [5], manufacturing
control [6], mechatronics [7], building automation systems
[8], machining [9], process control [10], and smart grid [11].
These case studies have confirmed many advantages of IEC
61499 over the mainstream PLC technology based on the
IEC 61131-3 standard in terms of design and re-design
efficiency, and better interoperability and reusability.
However, these studies also revealed many pitfalls of the
first edition, which are primarily due to the non-exhaustive
definition of FB’s execution semantics. This, on one hand,
gives software vendors sufficient freedom to adapt the IEC
61499 standard into their existing tool frameworks, such as
ISaGRAF Workbench [12]. However, on the other hand,
different IEC 61499 implementations may not be compatible
to one another. Such incompatibility directly results in
portability and inter-operability issues that are against the
standard’s original intention. As discussed in [13], the
industrial adoption of the IEC 61499 technology is about
entering its takeoff phase. It is therefore expected that more
innovators of automation software tools, runtime
environments, and control hardware will start adopting IEC
61499 technologies.

In order to resolve the semantic incompatibility, the
second edition of IEC 61499 has been published in 2012 to
provide more rigorous behavioral specifications of the FB
architecture. For new adopters’ reference, this paper presents
a survey of portability issues in existing IEC 61499 tools. In
particular, issues that can be addressed by complying with
the second edition are highlighted. Other potential problems
that may cause portability issues are discussed as well. This
work follows [14], where portability, configurability, and
interoperability of the IEC 61499 compliant tools were first
discussed.

The rest of this paper is structured as follows. Section II
presents a brief overview of IEC 61499 tools. Then, Section
III summarizes and exemplifies the portability issues in
existing tools. In Section IV, semantics amendments in the
second edition are outlined with illustration on existing tools’
compliance. Section V further discusses other potential
portability issues that must be considered when
implementing the IEC 61499 standard. Finally, this paper is
concluded in Section VI.

II. IEC 61499 ENGINEERING TOOLS

A variety of IEC 61499 tools has been developed for
both academic research and commercial purposes. The
Function Block Development Kit (FBDK) [15] is the first
IEC 61499 engineering tool, which has been used to
demonstrate the IEC 61499 technologies since its early
conception time. FBDK contains two parts: an editor and a
runtime (FBRT). FBRT implements a Non-Preemptive
Multi-Threading Resource (NPMTR) execution model [16],
which is based on a depth-first FB scheduling mechanism.
As FBDK is developed using Java, its hardware support is
limited (e.g. [17, 18]). The current FBDK 2.0 release is the
first tool supporting the second edition of IEC 61499.

Inspired by FBDK, a number of research projects have
been conducted to address the insufficiencies of FBDK or to
incorporate the IEC 61499 technologies in their existing tool
frameworks. This resulted in several IEC 61499 engineering
tools or platforms. For example, FBench [19] provided an
open-sourced version of FBDK for experimentation. The
CORFU engineering support system [20] attempted to
establish a framework for model-driven development of
control applications using IEC 61499 and Unified Modeling
Language. The TORERO engineering platform [21] further
covered the entire development life cycle of distributed
control systems using IEC 61499. At last, the 4DIAC
initiative [22, 23] is currently the only active open-sourced
research-based IEC 61499 compliant automation and control
environment. Similar to FBDK, the 4DIAC framework
consists of an editor based on the Eclipse platform [24] and a
C++ runtime, called FORTE, implementing a sequential FB
execution model with event dispatcher.

The first commercial engineering tool supporting IEC
61499 is called ISaGRAF Workbench [25]. Starting from
adapting the IEC 61499 FB notation and event-driven notion
into its existing PLC engineering framework, the ISaGRAF
Workbench is gradually becoming an IEC 61499 compliant
tool. However, due to the backwards compatibility issues,
ISaGRAF Workbench still uses a cyclic scan-based
execution model. In contrary, nxtStudio [26] is another
industrial-grade engineering environment which fully
implemented the IEC 61499 architecture. The nxtStudio’s
runtime, nxtRT61499F, is an extension to FORTE with
additional infrastructure for testing, debugging, and
deploying IEC 61499 applications. Both ISaGRAF
Workbench and nxtStudio support a wide range of control
hardware.

III. PORTABILITY ISSUES IN MAIN IEC 61499 TOOLS

This paper focuses on the four currently active tools:
FBDK, ISaGRAF Workbench, 4DIAC, and nxtStudio. In
this section, their portability issues are investigated.

A. Portability of Library Elements

In order to realize data exchange between different tools,
the IEC 61499 standard has specified the textual syntax for
storing library elements (e.g. data types, FB types, etc.) in
XML files. Both FBDK and 4DIAC strictly conform to the
normative syntax. This makes their library elements fully
portable to each other. nxtStudio further extends the
normative syntax to support additional design features. In
general, with limited modifications, it is possible to import
library elements from FBDK and 4DIAC to nxtStudio and
vice versa. In contrary, ISaGRAF Workbench uses its
proprietary file format and thus makes its library elements
completely non-portable to other tools.

Moreover, as nxtStudio pursuits the Model-View-
Controller design pattern, a concept called Composite
Automation Type (CAT) FB has been implemented to
combine control logic, visualization, and plant model into a
single FB. The visualization part is coded in C#. To allow
the data exchange between .Net runtime and nxtStudio’s FB
runtime (i.e. nxtRT61499F) a set of proprietary Service
Interface Function Blocks (SIFBs) are automatically
integrated in the CAT FBs. This prevents CAT FBs from
being ported to other tools. FBDK and 4DIAC allows the FB
algorithms to be programmed in Java or C++. This prevents
such FBs to be ported to nxtStudio which supports only ST
language. TABLE I. below summarizes the portability of
library elements between different tools.

TABLE I. LIBRARY ELEMENT PORTABILITY

 FBDK 4DIAC nxtStudio ISaGRAF

FBDK - Full Partial N/A

4DIAC Full - Partial N/A

nxtStudio Partial Partial - N/A

ISaGRAF N/A N/A N/A Full

B. Portability Issues due to Semantic Ambiguities

Another cause of portability issues is the incomplete or
ambiguous specifications of FB execution semantics. The
portability of an FB application A between platforms that
comply with execution semantics s1 and s2 can be defined as
the equivalence of behavior B(A, s1)=B(A, s2). However,
brute-force check of the equivalence can be prohibitively
complex. Instead, one can check the A’s model under
semantics s, i.e. M(A, s), against the comprehensive set of
requirements R (functional and non-functional, including
safety and liveness). Denoting the set of model-checking
results as C(M(A, s), R), we define the application A to be
portable between semantics s1 and s2 if the model-checking
gives equivalent results, i.e.:

 () (()) (())

The rest of this section will delve into the illustration of
some practical semantic issues.

1) Event Clearance Rule and EC Transition Evaluation

The sequence of algorithm invocations of a basic FB is
defined in its Execution Control Chart (ECC). The
operations of ECC, as per the first edition of IEC 61499, are
specified in the ECC Operation State Machine (OSM)
shown in Fig. 1:

Fig. 1. ECC Operation State Machine [27].

As pointed out in many papers [28, 29], the problem here
is the undefined event clearance rule: what is the lifetime of
an event input in ECC. As a result, software vendors must
implement their own event clearance rules. This led to
different execution results. For example, in nxtStudio an FB
run will only terminate until:

a. A guard condition is evaluated false; or,

b. The same EC state has been visited twice.

As illustrated in Fig. 2, at START state, upon the arrival
of INIT event with QI=true (and assuming QI is not set to
FALSE in the INIT Algorithm), the INIT event will be
cleared after the second visit to the START state. Note that
in nxtStudio events can be manually cleared by setting their
values to FALSE in algorithms. For instance, by setting
INIT:=FALSE in the INIT algorithm, the aforementioned FB
run will stop at STATE1 state now. However, this trick is not
portable and is specific to nxtStudio only.

Fig. 2. nxStudio Event Clearance Example: (a) ECC and (b) FB Interface.

Both FBDK and 4DIAC behave the same for the above
scenario. As shown in Fig. 3, under the same setting the FB
run will stop at STATE1 state. This indicates that in FBDK
and 4DIAC event input is only used once in a single FB run.

The problem arises when QI is FALSE when in START state
and INIT event is triggered. In FBDK the control is stuck in
the INIT state forever. The transition condition for OSM t1
in the first standard is “invoke ECC” with a further comment
stating that this “transition is activated by the presence of an
event in an event input”. In other words, the arrival of either
INIT or REQ event input shall trigger the INITSTATE1
EC transition. Therefore, the FBDK’s implementation is
incorrect. Contrarily, in nxtStudio and 4DIAC, the arrival of
any input will trigger the INITSTATE1 EC transition.

Fig. 3. FBDK Event Clearance Example: (a) ECC and (b) Execution

Result.

At last, Fig. 4 presents the equivalent FB example
implemented in ISaGRAF Workbench. In particular, the
functions of ECC are realized in a Sequential Function Chart
(SFC). As the execution model of ISaGRAF Workbench is
based on cyclic scan, the event clearance rule is completely
different from others. In the latest ISaGRAF Workbench 6.1,
during each scan cycle all EC transitions will be evaluated.
Events will not be cleared until the end of a scan. It can be
expected that the execution results will differ much from
other tools. A more comprehensive comparison between
ISaGRAF and FBDK can be found in [30].

Fig. 4. ISaGRAF Workbench Event Clearance Example: (a) SFC and (b)

FB Interface.

2) Arrival of Event Inputs

Event inputs can arrive in different ways in different
execution models. As discussed in [31], there could be three
problematic situations regarding arrival of event inputs as

shown in Fig. 5. The situation of simultaneous event arrival
can only occur in ISaGRAF Workbench. Considering IEC
61499 applications running on ISaGRAF Workbench are, in
general, non-portable to other three tools, this situation can
be omitted here. The second situation states that an FB
receives a new event while it is busy processing the previous
event. In case of 4DIAC and nxtStudio this event will be
buffered while in FBDK this event will be lost. If the lost
event is critical, then the execution result will be completely
different. For the last situation, as explained in the previous
section, it will still trigger the evaluation of EC transition
with guard condition only in nxtStudio and 4DIAC but not in
FBDK.

Fig. 5. Arrival of Event Inputs: (a) Simultaneous, (b) Arrival in Busy State,

and (c) Arrival in Irrelevant State [30].

3) Data Sampling and Data Latching

Another portability issue is caused by the data sampling
rule and data latching mechanism. As specified in the first
edition, on the arrival of an event input all the associated data
inputs will be sampled. Similarly, prior to emission of event
output, the associated data outputs will be updated first. In
nxtStudio, whenever an event input arrives or an event
output is to be emitted all the data inputs/outputs, no matter
associated or not, will be sampled/updated. Similarly, as
ISaGRAF Workbench uses a cyclic execution model, all the
data inputs/outputs are sampled/updated in each scan cycle.
The ignorance of data association may cause potential issues
due to the use of inconsistent data in algorithms.

Furthermore, in nxtStudio, all composite FBs are treated
as flattened FB network without latching the corresponding
data inputs/outputs. As discussed in [28] and illustrated in
Fig. 6, incorrect flattening will omit the corresponding data
sampling. Therefore, the identical application will behave
differently in, for example, 4DIAC which ensures strict event
and data associations. To illustrate this, a testing FB network
has been set up as shown in Fig. 7. The main FB of interest
in this testing FB network is the composite FB called
TestAlgoComp, whose detailed interface and internal
composition are presented in Fig. 8.

Fig. 6. Incorrect Flattening of Composite FBs [28].

Fig. 7. Testing FB Network.

Fig. 8. TestAlgoComp FB: Interface and Internal Composition.

The TestAlgoComp FB consists of a single basic FB
called TestAlgo, whose ECC and interface are further shown
in Fig. 9. When TestAlgo receives E_IN1 event, the value of
IN2 data input is copied to OUT1 data output. On E_IN2
event, the value of IN3 is copied to OUT2. Similarly, on
E_IN3 event the value of IN1 is copied to OUT3. In 4DIAC,
consider the case when there is connection to
TestAlgoComp.E_IN2 (Fig. 7) and no connection from
TestAlgoComp.E_IN2 to TestAlgo.E_IN2. Since IN2 is
associated with E_IN2 of TestAlgo, the value of TestAlgo.
IN2 will never be updated. The same is not true in case of
nxtStudio. It is not applicable to ISaGRAF as it does not
have event and data associations.

Fig. 9. The Interface and ECC of TestAlgo Basic FB.

IV. SEMANTIC AMENDAMENTS IN 2ND
 EDITION

Most of the portability issues discussed in the previous
section are caused by the non-exhaustive definition of FB
execution semantics. Thus, significant amount of refinement
work has been done in the second edition to remove or
clarify the semantic ambiguities. The second edition aims to
establish a well-defined model of FB execution semantics for
device vendors and application developers. The second
edition primarily addressed the following issues causing
ambiguities:

 Event semantics issue;

 Concurrency issue; and,

 Data consistency issue.

A. Event Semantic Issue

Within an ECC, an event input now can only be used
once during the evaluation of EC transitions. After the new
state has been reached, only EC transitions with pure guard
conditions may be further evaluated. Moreover, evaluations
of EC transitions with pure guard conditions may be
triggered by irrelevant events. Considering the ECC
Operation State Machine (OSM) shown in Fig. 1, the second
edition mentioned that if s1 state is reached due to t1 then the
guard conditions associated with the sampled event or any
transitions that without any events will be evaluated and
when s1 state is reached due to t3 then only transitions that
contains purely non-event based guard conditions will be
evaluated. Referring to the nxtStudio example illustrated in
Fig. 2, under the second edition, OSM is initially in s1, the
INIT event is sampled, OSM moves to s2 and evaluates the
transitions and since there is a valid transition the OSM
moves to s3. It executes the INIT algorithm and emits the
INITO event and this completes the action. The OSM now
moves back to state s2 and evaluates for any non-event
associated guard conditions and it finds QI and executes that
transition by again changing the OSM state to s3 and hence
emits S2 event (Fig. 3) and again moves back to OSM s1
state. Since there is no more non-event based guard
condition, the OSM moves back to start state, s0, and waits
for sampling any new input events. In case at INIT state and
QI is FALSE, then arrival of either INIT or REQ event will
trigger the evaluation of INITSTATE1 EC transition. If in
any of the evaluations, QI is TRUE, then STATE1 will be
reached.

B. Concurrency Issue

In the previous edition, the standard only specifies that
the invocation of an FB is atomic. However, this does not
guarantee that no multiple algorithms will be executed at the

same time within an FB. In the second edition, it is
prescribed in the ECC OSM descriptions that within a
resource at any instance of time only one event input of an
FB can occur. As a result, it is impossible to have multiple
algorithms executing at the same time, which makes the FB
execution more deterministic. For example, situation a) and
b) illustrated in Fig. 5 will not occur with the new execution
semantics.

C. Data Consistency Issue

At last, in the new edition, the data sampling rule is
enforced and further clarified. It further prescribes that
during the execution of algorithms the values of data
variables used must remain stable. This implies the
implementation of data latching mechanisms.

V. POTENTIAL PORTABILITY ISSUES

The second edition of IEC 61499 has addressed many
crucial semantic issues causing interpretation ambiguities.
However, the standard still leaves sufficient freedom for
implementing different execution models of resources. This
may also cause potential portability issues. For example,
although the standard states that “resources might need to
schedule the execution of algorithms in a multitasking
manner”, further details are not specified.

Moreover, the event scheduling mechanism implemented
by the resources would also affect the portability. As
discussed in [32], if only events are scheduled by, for
instance, sending all event outputs to an event queue; then
the events and associated data might be inconsistent.
Contrarily, if both events and associated data are buffered in
the queue, this might be too resource consuming. If one
runtime buffers event only while another runtime buffers
both event and data, there may be portability and
interoperability issues.

Thirdly, when real-time constraints must be considered
by the runtime, events must be prioritized to determine their
processing orders. It is undoubtedly that there will be
portability issues between real-time and non-real-time IEC
61499 runtimes.

VI. CONCLUSIONS

This paper presented a brief survey of portability issues
of existing engineering tools for the IEC 61499 standard.
Many of these portability issues are due to the incomplete
specifications of FB execution semantics. The release of IEC
61499’s second edition has clarified most of the semantic
ambiguities found in the first edition. 4DIAC and FBDK
already support the new edition. It is expected that this will
establish a more rigorous common understanding for vendors
of IEC 61499 software tools, runtime platforms, and control
hardware.

In this paper, some other potential issues that may still
cause portability problems were also discussed. In order to
achieve better interoperability and portability, additional
techniques should be applied. For example, by formally
modeling the IEC 61499 architecture and its execution
semantics, it is possible to formally analyze and validate its
portability against certain runtime platforms. Alternatively,

approaches based on semantics-robust design patterns [31]
can be applied for developing execution-model-independent
IEC 61499 applications. Despite of the effort made in [31],
there is an open research question on the existence of more
practical design rules and patterns, following which an FB
application would behave equivalently under different
execution models and under known restrictions.

ACKNOWLEDGMENT

The authors are grateful to the nxtControl GmbH, ICS
Triplex ISaGRAF, PROFACTOR GmbH, and HOLOBLOC
Inc. for providing the IEC 61499 tools for evaluation.

REFERENCES

[1] "Function blocks - Part 1: Architecture," IEC 61499-1: 2012, p.

245, 2012.

[2] "Programmable controllers - Part 3: Programming languages,"

IEC 61131-3: 2013, p. 226, 2013.

[3] V. Vyatkin, "IEC 61499 as Enabler of Distributed and

Intelligent Automation: State-of-the-Art Review," IEEE

Transactions on Industrial Informatics, vol. 7, pp. 768-781,

2011.

[4] V. Vyatkin, "Software Engineering in Industrial Automation:

State-of-the-Art Review," IEEE Transactions on Industrial

Informatics, vol. 9, pp. 1234-1249, 2013.

[5] J. Yan and V. V. Vyatkin, "Distributed Execution and Cyber-

Physical Design of Baggage Handling Automation with IEC

61499," in 9th IEEE International Conference on Industrial

Informatics (INDIN 2011), Caparica, Lisbon, Portugal, 2011,

pp. 573-578.

[6] M. Colla, A. Brusaferri, and E. Carpanzano, "Applying the IEC-

61499 Model to the Shoe Manufacturing Sector," in 11th IEEE

International Conference on Emerging Technologies and

Factory Automation (ETFA 2006), Prague, Czech Republic,

2006, pp. 1301-1308.

[7] M. Sorouri, V. Vyatkin, and S. Xie, "Distributed Control Design

of Medical Devices Using Plug-and-Play IEC 61499 Function

Blocks," in 19th International Conference Mechatronics and

Machine Vision in Practice (M2VIP 2012), Auckland, New

Zealand, 2012, pp. 450-455.

[8] C. Pang, V. Vyatkin, Y. Deng, and M. Sorouri, "Virtual Smart

Metering in Automation and Simulation of Energy-Efficient

Lighting System," in 18th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA 2013),

Cagliari, Italy, 2013, pp. 1-8.

[9] L. Wang, G. Adamson, M. Holm, and P. Moore, "A review of

function blocks for process planning and control of

manufacturing equipment," Journal of Manufacturing Systems,

vol. 31, pp. 269-279, 2012.

[10] D. Dimitrova, S. Panjaitan, I. Batchkova, and G. Frey, "IEC

61499 Component Based Approach for Batch Control Systems,"

in 17th World Congress, Seoul, Korea, 2008, pp. 10875-10880.

[11] G. Zhabelova and V. Vyatkin, "Multiagent Smart Grid

Automation Architecture Based on IEC 61850/61499 Intelligent

Logical Nodes," IEEE Transactions on Industrial Electronics,

vol. 59, pp. 2351-2362, 2012.

[12] J. Chouinard and R. Brennan, "Software for Next Generation

Automation and Control," in 4th IEEE International Conference

on Industrial Informatics (INDIN 2006), Singapore, 2006, pp.

886-891.

[13] T. Strasser, J. H. Christensen, A. Valente, J. Chouinard, E.

Carpanzano, A. Valentini, et al., "The IEC 61499 Function

Block Standard: Launch and Takeoff," presented at the ISA

Automation Week 2012, Orlando, US, 2012.

[14] J. H. Christensen, T. Strasser, A. Valentini, V. Vyatkin, and A.

Zoitl, "The IEC 61499 Function Block Standard: Software

Tools and Runtime Platforms," presented at the ISA

Automation Week 2012, Orlando, US, 2012.

[15] Holobloc Inc. (2014). FBDK 2.1 - The Function Block

Development Kit [Online]. Available:

http://www.holobloc.com/fbdk2/

[16] C. Sünder, A. Zoitl, J. H. Christensen, V. Vyatkin, R. W.

Brennan, A. Valentini, et al., "Usability and Interoperability of

IEC 61499 based distributed automation systems," in 4th IEEE

International Conference on Industrial Informatics (INDIN

2006), Singapore, 2006, pp. 31-37.

[17] P. Tait, "A path to industrial adoption of distributed control

technology," in 3rd IEEE International Conference on

Industrial Informatics (INDIN 2005), Perth, Australia, 2005, pp.

86-91.

[18] J. L. M. Lastra, A. Lobov, and L. Godinho, "Closed loop control

using an IEC 61499 application generator for scan-based

controllers," in 10th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA 2005),

Catania, Italy, 2005, pp. 323-330.

[19] The University of Auckland. (2014). FBench - Open Source

Function Block Engineering Tool [Online]. Available:

http://oooneida-fbench.sourceforge.net

[20] K. Thramboulidis and C. Tranoris, "Developing a CASE Tool

for Distributed Control Applications," The International

Journal of Advanced Manufacturing Technology, vol. 24, pp.

24-31, July 2004 2004.

[21] C. Schwab, M. Tangermann, and A. Lueder, "The modular

TORERO IEC 61499 engineering platform - Eclipse in

automation," in 10th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA 2005),

Catania, Italy, 2005, pp. 8 pp.-272.

[22] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sunder, A.

Valentini, et al., "Framework for Distributed Industrial

Automation and Control (4DIAC)," in 6th IEEE International

Conference on Industrial Informatics (INDIN 2008), Daejeon,

Korea, 2008, pp. 283-288.

[23] 4DIAC. (2014). Framework for Distributed Industrial

Automation (4DIAC) [Online]. Available:

http://www.fordiac.org

[24] Eclipse Platform. (2014). [Online]. Available:

http://www.eclipse.org

[25] ICS Triplex ISaGRAF. ISaGRAF Workbench [Online].

Available: http://www.isagraf.com

[26] nxtControl. (2014). nxtSTUDIO - Engineering software for all

tasks [Online]. Available:

http://www.nxtcontrol.com/en/products/nxtstudio.html

[27] "Function blocks - Part 1: Architecture," IEC 61499-1: 2005, p.

111, 2005.

[28] V. Dubinin and V. Vyatkin, "Towards a Formal Semantic

Model of IEC 61499 Function Blocks," in 4th IEEE Conference

on Industrial Informatics (INDIN 2006), Singapore, 2006, pp. 6-

11.

[29] V. Vyatkin, "The IEC 61499 standard and its semantics," IEEE

Industrial Electronics Magazine, vol. 3, pp. 40-48, 2009.

[30] V. Vyatkin and J. Chouinard, "On comparisons of the ISaGRAF

implementation of IEC 61499 with FBDK and other

implementations," in 6th IEEE International Conference on

Industrial Informatics (INDIN 2008), Daejeon, Korea, 2008, pp.

289-294.

[31] V. Dubinin and V. Vyatkin, "Semantics-robust Design Patterns

for IEC 61499," IEEE Transactions on Industrial Informatics,

vol. 8, pp. 279 - 290, 2012.

[32] W. Rumpl, F. Auinger, C. Dutzler, and A. Zoitl, "Platforms for

Scalable Flexible Automation Considering the Concepts of IEC

61499," in Knowledge and Technology Integration in

Production and Services. vol. 101, V. Mařík, L. Camarinha-

Matos, and H. Afsarmanesh, Eds., ed: Springer US, 2002, pp.

237-246.

