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ABSTRACT
In evolutionary optimization, it is important to use efficient
evolutionary operators, such as mutation and crossover. But
it is often difficult to decide, which operator should be used
when solving a specific optimization problem. So an auto-
matic approach is needed. We propose an adaptive method
of selecting evolutionary operators, which takes a set of pos-
sible operators as input and learns what operators are ef-
ficient for the considered problem. One evolutionary algo-
rithm run should be enough for both learning and obtaining
suitable performance. The proposed EA+RL(O) method is
based on reinforcement learning. We test it by solving H-IFF
and Travelling Salesman optimization problems. The ob-
tained results show that the proposed method significantly
outperforms random selection, since it manages to select ef-
ficient evolutionary operators and ignore inefficient ones.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
evolutionary algorithms; parameter control

1. INTRODUCTION
Evolutionary operators such as mutation and crossover are

used to generate offsprings. Operators influence the perfor-
mance of an algorithm a lot [8]. Choosing the best operator
manually is resource and time consuming, so automation is
needed. There are different techniques of adjusting evolu-
tionary algorithms [4], including methods for adjusting and
modifying of operators, but there is no the most efficient
one. Therefore, a new method of adjusting evolutionary al-
gorithm by choosing evolutionary operators is of interest.
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Reinforcement learning is usually used to adjust some nu-
merical parameters of evolutionary algorithms, such as mu-
tation rate or population size [3, 9, 11]. To the best of our
knowledge, there is only one method of selecting operators
with reinforcement learning [10]. One of the most important
differences between the method we propose and this one is
that we apply the selected operator to the whole popula-
tion, while in the method described in [10] an operator is
chosen separately for each individual. We also applied sim-
pler definitions of states and reward, which are needed for
reinforcement learning.

In our previous works, we proposed the EA+RL method
of extra fitness function selection based on reinforcement
learning [2]. The method was shown to be efficient, both em-
pirically (for a number of problems, including a real-world
application [1]) and theoretically (for a model OneMax prob-
lem [2]). Thus in this paper we propose a method of evo-
lutionary operators selection based on our previous ideas,
which seems to be promising.

2. METHOD DESCRIPTION
It is assumed that there is a finite set of evolutionary op-

erators consisting of mutation and crossover operators. It
is unknown which operators are the most efficient ones, this
information should be learned by the reinforcement learn-
ing agent (an efficient operator allows to optimize the fitness
function in a less number of generations). The agent chooses
an operator and the next population of the evolutionary al-
gorithm is generated. Then an immediate numerical reward,
as well as some representation of the algorithm state, are re-
turned to the agent. The agent updates its estimations with
the new values and the process repeats.

The scheme of the described method is shown in Fig. 1.
The proposed method is similar to the previously proposed
EA+RL, but here an evolutionary operator is selected in-
stead of an extra fitness function. Thus let us call the newly
proposed method EA+RL(O), where ”O” stands for ”opera-
tor”.

The reward is calculated as the difference of the best indi-
vidual fitness in a two consequent generations of the evo-
lutionary algorithm. We used different states definitions
for different problems, they are described later in the corre-
sponding sections.

In reinforcement learning algorithms, the agent learns to
perform such actions, that maximize the total reward, which
is proportional to the sum of all immediate rewards [5, 13].
So in the proposed method the operators that maximize
the fitness function should be selected eventually. In other
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Figure 1: Scheme of the proposed EA+RL(O)
method

words, the most efficient operators should be selected, since
the goal of an evolutionary algorithm is the fitness function
optimization.

3. EXPERIMENT 1: H-IFF OPTIMIZATION
PROBLEM

In this section the first problem solved using the pro-
posed method is described. It is a model problem called
Hierarchical-if-and-only-if function (H-IFF), which is often
used to test genetic algorithms [6,14].

3.1 Problem Description
Consider the H-IFF optimization problem. The search

space consists of bit strings of a fixed length l. The func-
tion takes a bit string B = b1b2 . . . bl as an argument and
interprets it as a binary tree of string blocks. The root of
the tree is the input string itself, and the siblings are the
left (BL) and the right (BR) halves of their parental blocks.
The fitness function f is a sum of lengths of those blocks
that consist of equally valued bits. Its recursive formula is
given below. Notice that there are two possible optima in
this problem. One optimum is a string of 0-bits and another
is a string of 1-bits.

f(B) =


1 if |B| = 1, else

|B|+ f(BL) + f(BR) if ∀i{bi = 0} or ∀i{bi = 1}
f(BL) + f(BR) otherwise

3.2 State definition
Consider a string block Bmax that consists of equal val-

ued bits (all zeros or all ones) and has the maximal length
among all other such blocks in the current population. The
state of the evolutionary algorithm used in the reinforcement
learning algorithm is calculated as log2 Bmax.

3.3 Evolutionary Operators
The following operators are used in the evolutionary algo-

rithm optimizing H-IFF:

• inversion mutation: a one random bit of an individual
is inverted;

• tail inversion mutation: all the bits after a random
position in an individual are inverted;

• obstructive mutation: an individual is replaced with
the 010101 . . . 01 string;

• two-point crossover: a segment of a random length
is chosen at random, then the corresponding bits of
parents are swapped;

• hybrid crossover: each bit of the first parent are re-
placed with the corresponding bit of the second parent
with some probability (we used probability of 0.5).

Applying the obstructive mutation operator decreases the
fitness function. This operator is included in the set of oper-
ators in order to demonstrate that the proposed EA+RL(O)
method is able to ignore inefficient operators. The inversion
mutation is expected to be less powerful than the tail inver-
sion one, because the former inverts just one bit. Thus it
should be checked that EA+RL(O) selects inversion muta-
tion less frequently.

3.4 Experiment Description
During the experiment, the EA+RL(O) algorithm was run

101 times with the obstructive operator included, as well as
with the obstructive operator excluded for the same number
of times. An evolutionary algorithm with a random operator
selection was also run for 101 times in order to compare
it with the proposed method. The length of an individual
was 64 bits, hence the maximal possible fitness value was
448. In each run, the evolutionary algorithm was stopped
when the maximal possible fitness value was reached. There
were 100 individuals in a generation. The probability of
applying an operator was 100% in all cases. To perform a
crossover, the tournament selection of one tour was used,
the probability of selecting the fitter individual was 90%.
The Q-learning algorithm with softmax and ε-greedy (ε =
0.1) exploration strategies [13] was used as the reinforcement
learning algorithm.

3.5 Experiment Results
The average number of generations needed to obtain the

maximal possible value of H-IFF function using considered
algorithms is shown in Table 1. One can conclude, that
using EA+RL(O) allows to maximize H-IFF in less number
of generations than a random strategy does. According to
the one-way ANOVA test we have performed [12], p-value for
the EA+RL(O) and random selection was less than 5×10−4,
so they are statistically distinguishable.

It is also important to notice that EA+RL(O) success-
fully handles the obstructive operator case. The number of
generations needed to optimize H-IFF in the presence of the
obstructive operator is comparable to the number of gener-
ations needed when there is no obstructive operator.

Table 1: Average number of generations needed to
obtain the maximal possible H-IFF value

Algorithm Generations
in average

Deviation

Without the obstructive operator
EA+RL(O), softmax 801.8 298.1
EA+RL(O), ε-greedy 850.0 292.4
Random operator selection 1295.7 454.7

With the obstructive operator
EA+RL(O), softmax 863.8 277.1
EA+RL(O), ε-greedy 890.6 308.0
Random operator selection 1654.2 478.8

In Fig. 2 the number of times when the operator was se-
lected is shown for each operator. As expected, EA+RL(O)
selects the obstructive operator for the least number of times.
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Figure 2: Number of times each operator was se-
lected, %

It also selects the tail inversion mutation more often than the
less powerful inversion mutation. Random selection chooses
each operator equiprobably, which leads to worse perfor-
mance of the evolutionary algorithm.

4. EXPERIMENT 2: TRAVELLING SALES-
MAN PROBLEM

Consider another optimization problem. Let us test the
proposed EA+RL(O) method by solving the Travelling Sales-
man Problem (TSP), which is NP-hard [7]. We consider it
as a problem of finding a Hamiltonian cycle with minimal
weight in a fully connected weighted graph. Therefore this
is a minimization problem.

4.1 State Definition
The state used in the reinforcement learning algorithm is

represented as a vector of values, those are listed below.

• Population number interval. Numbers of generations
are split in four intervals: [0 . . . 400), [400 . . . 1600),
[1600 . . . 3200), [3200 . . . 6400) and the number of a cur-
rent interval is put in the first position of the vector.

• Fitness function interval. The fitness of the best in-
dividual in the current population is divided by the
fitness of the best individual in the initial population.
This value can belong to a one of the following inter-
vals: [0, 0.2), [0.2, 0.5), [0.5, 0.8), [0.8, 1]. The number
of the corresponding interval is put in the second po-
sition of the vector.

Notice that, if we replace the numerical values mentioned
above with parameters, this state is problem-independent,
thus can be used for solving any problem with EA+RL(O)
method. Concept of this state is close to the one proposed
in [10].

4.2 Evolutionary operators
In our approach, an individual is a correct permutation of

vertices. All the considered operators preserve the correct-
ness. The operators are as follows:

• inversion mutation: the order of vertices is inverted
starting from a randomly chosen position;

• shuffle mutation: vertices are shuffled starting from a
randomly chosen position;

• swapping mutation: two randomly chosen vertices are
swapped;

• one-point match crossover with repair [7];

• two-point match crossover with repair [7].

4.3 Experiment Description
Five fully connected graphs of 80 vertices with edge weights

from 0 to 100 were randomly generated. Then both an
evolutionary algorithm with random operator selection and
EA+RL(O) were run on these graphs for 100 times each.
The algorithms were stopped after 6400 generations were
evolved. There were 100 individuals in a generation. The
probability of applying an operator was 100% in all cases.
To perform a crossover, the tournament selection of one tour
was used, the probability of selecting the fitter individual
was 90%. As the reinforcement learning algorithm, the Q-
learning algorithm with softmax and ε-greedy (ε = 0.1) ex-
ploration strategies was used [13].

4.4 Experiment Results
In Table 2 the best fitness in the final generation averaged

over all the algorithm runs is shown. It can be seen that
EA+RL(O) outperforms the evolutionary algorithm with
random selection of operators. According to the one-way
ANOVA test we performed [12], p-value for the EA+RL(O)
and random selection is less than 5× 10−4, so they are sta-
tistically distinguishable.

Table 2: Average best fitness of TSP obtained in the
final generation

Algorithm Best fitness
in average

Deviation

EA+RL(O), ε-greedy 1304.2 73.9
EA+RL(O), softmax 1323.9 69.8
Random operator selection 1436.0 68.4

In Fig. 3 the number of times when the operator was se-
lected is shown for each operator. It can be assumed that the
proposed EA+RL(O) algorithm selects the efficient opera-
tors more often than less efficient ones, since it outperforms
random selection. Random selection chooses each operator
equiprobably, which leads to worse performance of the evo-
lutionary algorithm.

In Fig. 4 fitness optimization until the 9600 generations
limit is shown. One can conclude that EA+RL(O) outper-
forms random selection during almost all optimization pro-
cess.

5. CONCLUSION
A new EA+RL(O) method of adaptive selection between

evolutionary operators using reinforcement learning is pro-
posed. The method is aimed to enhance the performance
of an evolutionary algorithm by selecting efficient operators
from a set of ones. EA+RL(O) is based on the previously
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Figure 3: Number of times each operator was se-
lected, %

Figure 4: TSP fitness minimization

proposed EA+RL method used for selection between fitness
functions. The proposed method was tested on two opti-
mization problems. In both cases, it significantly outper-
formed random selection. Future work includes testing the
proposed method on a wider range of problems, as well as
obtaining its runtime analysis. It is also important to com-
pare it with some other methods of evolutionary algorithms
adjusting.
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