
OneMax Helps Optimizing XdivK:
Theoretical Runtime Analysis for RLS and EA+RL

Maxim Buzdalov
ITMO University

49 Kronverkskiy prosp.
Saint-Petersburg, Russia

mbuzdalov@gmail.com

Arina Buzdalova
ITMO University

49 Kronverkskiy prosp.
Saint-Petersburg, Russia

abuzdalova@gmail.com

ABSTRACT

There exist optimization problems with the target objective,
which is to be optimized, and several extra objectives, which
can be helpful in the optimization process. The previously
proposed EA+RL method is designed to adaptively select
objectives during the run of an optimization algorithm in
order to reduce the number of evaluations needed to reach
an optimum of the target objective.

The case when the extra objective is a fine-grained version
of the target one is probably the simplest case when using an
extra objective actually helps. We define a coarse-grained
version of OneMax called XdivK as follows: XdivK(x) =
⌊OneMax(x)/k⌋ for a parameter k which is a divisor of n —
the length of a bit vector. We also define XdivK+OneMax,
which is a problem where the target objective is XdivK and
a single extra objective is OneMax.

In this paper, the randomized local search (RLS) is used
in the EA+RL method as an optimization algorithm. We
construct exact expressions for the expected running time of
RLS solving the XdivK problem and of the EA+RL method
solving the XdivK+OneMax problem. It is shown that the
EA+RL method makes optimization faster, and the speedup
is exponential in k.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning; G.1.6 [Numerical

Analysis]: Optimization

General Terms

Algorithms, Experimentation, Performance, Theory

Keywords

helper-objectives, expected running time, multiobjectiviza-
tion

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-

tation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

ACM 978-1-4503-2881-4/14/07.

http://dx.doi.org/10.1145/2598394.2598442.

1. INTRODUCTION
Single-objective optimization can often benefit from mul-

tiple objectives [7]. Additional objectives may be introduced
to escape from the plateaus [2]. Primary objective may be
decomposed into several objectives [4]. Additional objec-
tives may also arise from the problem structure [6].

Different approaches may be applied to a problem with
the “original” (target) objective and some extra objectives.
The multi-objectivization approach is to optimize all extra
objectives simultaneously [4]. The helper-objective approach
is to optimize simultaneously the target objective and one
or more extra objectives, switching between them [5].

These approaches assume that extra objectives are crafted
to help optimizing the target objective. In general case, ex-
tra objectives may support or obstruct optimization process.
The EA+RL method was developed to cope with that [3].
Its idea is to use a single-objective evolutionary optimiza-
tion algorithm and switch between the objectives. To select
objectives, reinforcement learning is used.

We show that for the XdivK benchmark problem with
the parameter k EA+RL with the OneMax extra objective
speeds up optimization by the factor of at least 2k−2. Proofs
and details are available in supplementary materials [1].

2. DEFINITIONS
The well-known OneMax problem is defined as follows.

Given n, the size of the problem. The search space con-
sists of all bit vectors of length n. The fitness function of
a bit vector is the number of bits set to one. One needs to
maximize the fitness function.

The XdivK problem is defined in this paper in the similar
way. The fitness function is the number of bits set to one
divided evenly by the parameter k. The parameter k is a
divisor of n. The problem XdivK+OneMax has the target
objective XdivK and a single extra objective OneMax.

We consider a simplistic optimization algorithm called
“randomized local search” (RLS). It stores the current can-
didate solution x. An iteration of this algorithm first con-
structs y, a copy of x with one random bit flipped, and if y
is not worse than x according to the fitness function, then x
is replaced by y.

3. EXPECTED RUNNING TIME
In this section, we derive the exact expressions for the

expected running time for both XdivK problem solved by
RLS and XdivK+OneMax problem solved by RLS under
the control of reinforcement learning. We assume that the

201

Figure 1: An overview of the Markov chain. The

states correspond to OneMax fitness value, the clus-

ters of states correspond to XdivK fitness value.

RL state is determined solely by the value of XdivK fitness
function, and the reward is equal to the difference of XdivK

fitness values in consecutive optimization states. There are
n bits in the bit vector, and the division factor is k, such
that n mod k = 0. The following fact is proven [1]:

Lemma 1. The EA+RL algorithm never returns to any

state where some reward has been obtained.

This means that in the case of XdivK+OneMax both
the XdivK and the OneMax fitness functions are always
chosen with the probability of 1/2.

To compute the expected running time of the algorithms,
we construct Markov chains for them. The state of a Markov
chain is determined in this paper by the OneMax fitness
value. The states are clustered into consecutive groups of
n/k states, except for the terminal state n, which is on its
own (Fig. 1). The clusters correspond to the states with the
same value of XdivK fitness. The probabilities for different
algorithms are given in supplementary materials [1].

Let ZX(x) be the expected number of steps for RLS solv-
ing XdivK problem to reach the state x+ 1 from the state
x. It is shown in supplementary materials [1] that:

ZX(x) =
n

n− x
if x mod k = 0,

ZX(x) =
n

n− x
+ ZX (x− 1)

x

n− x
if x mod k 6= 0.

The equivalent value ZR(x) for RLS under EA+RL solv-
ing XdivK+OneMax can be computed as follows:

ZR(x) =
n

n− x
if x mod k = 0,

ZR(x) =
n

n− x
+ ZR(x− 1)

x

2(n− x)
if x mod k 6= 0.

Theorem 1. The following holds for all x:

ZX(x) =

x mod k
∑

i=0

(

n

x−i

)

(

n−1

x

) ; ZR(x) =

x mod k
∑

i=0

2−i

(

n

x−i

)

(

n−1

x

) .

Running times for RLS solving XdivK problem (TX) and
for RLS using EA+RL solving XdivK+OneMax problem
(TR) starting from all-zero bit vector are:

TX(n, k) =

n−1
∑

x=0

ZX(x); TR(n, k) =

n−1
∑

x=0

ZR(x).

Denote
k−1
∑

j=i

n
k
−1
∑

m=0

(n
mk+j−i)
(n−1

mk+j)
as V (n, k, i). It is shown that:

TX(n, k) =
k−1
∑

i=0

V (n, k, i); TR(n, k) =
k−1
∑

i=0

2−iV (n, k, i).

Theorem 2. For constant k, V (n, k, i) = Ω(ni+1) = O(ni+2).

Theorem 3. The complexity of both TX(n, k) and TR(n, k)
for constant k is Ω(nk) and O(nk+1).

Theorem 4. For sufficiently large n and fixed k,

TX(n, k) ≥ 2k−2(1− o(1)) · TR(n, k).

4. CONCLUSION
We presented the exact expressions for TX(n, k) — the ex-

pected running time of RLS solving the XdivK problem, —
and for TR(n, k) — the expected running time of the EA+RL
method using RLS solving the XdivK+OneMax problem
with the RL state equal to the XdivK fitness value and with
the reward equal to the difference of XdivK fitness values
between consecutive states.

Using these expressions, we gave theoretical evidence that
TX(n, k) = Ω(nk) = O(nk+1) for constant k, TR(n, k) =
Ω(nk) = O(nk+1) for constant k, and TX(n, k)/TR(n, k) ap-
proaches at least 2k−2 for constant k and large n.

The values of TX(n, k) and TR(n, k) for several n and k
are presented in supplementary materials [1]. The value of
TX/TR can be seen to grow slowly with n when k is constant.
The ratio is very much similar to 2k−1.

For asymptotic determination, we tabulate the values of
TX(n, k) and TX(n/2, k) for several n and k. The results are
presented in supplementary materials [1]. One can see that
the value of TX(n, k)/TX(n/2, k) approaches 2k as n grows,
which suggests that the reality is TX(n, k) = Θ(nk).

5. REFERENCES
[1] Supplementary materials (proofs and tables). URL:

https://github.com/mbuzdalov/papers/blob/master/2014-
gecco-xdivk/xdivk-extra.pdf.

[2] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein,
F. Neumann, and E. Zitzler. On the Effects of Adding
Objectives to Plateau Functions. Transactions on

Evolutionary Computation, 13(3):591–603, 2009.

[3] A. Buzdalova and M. Buzdalov. Increasing Efficiency of
Evolutionary Algorithms by Choosing between
Auxiliary Fitness Functions with Reinforcement
Learning. In Proceedings of the International

Conference on Machine Learning and Applications,
volume 1, pages 150–155, 2012.

[4] J. Handl, S. C. Lovell, and J. D. Knowles.
Multiobjectivization by Decomposition of Scalar Cost
Functions. In Parallel Problem Solving from Nature –

PPSN X, volume 5199 of Lecture Notes in Computer

Science, pages 31–40. Springer Berlin Heidelberg, 2008.

[5] M. T. Jensen. Helper-Objectives: Using
Multi-Objective Evolutionary Algorithms for
Single-Objective Optimisation: Evolutionary
Computation Combinatorial Optimization. Journal of
Mathematical Modelling and Algorithms, 3(4):323–347,
2004.

[6] D. F. Lochtefeld and F. W. Ciarallo. Helper-Objective
Optimization Strategies for the Job-Shop Scheduling
Problem. Applied Soft Computing, 11(6):4161–4174,
2011.

[7] F. Neumann and I. Wegener. Can Single-Objective
Optimization Profit from Multiobjective Optimization?
In Multiobjective Problem Solving from Nature, Natural
Computing Series, pages 115–130. Springer Berlin
Heidelberg, 2008.

202

