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Abstract. The non-dominated sorting algorithm by Jensen, generalized
by Fortin et al to handle the cases of equal objective values, has the
running time complexity of O(N logK−1 N) in the general case. Here N
is the number of points, K is the number of objectives and K is thought
to be a constant when N varies. However, the complexity was not proven
to be the same in the worst case.

A slightly modified version of the algorithm is presented, for which it
is proven that its worst-case running time complexity is O(N logK−1 N).

Keywords: Non-dominated sorting, worst-case running time complex-
ity, multi-objective optimization.

1 Introduction

In the K-dimensional space, a point A = (a1, . . . , aK) is said to dominate a point
B = (b1, . . . , bK) when for all 1 ≤ i ≤ K it holds that ai ≤ bi and there exists j
such that aj < bj . Non-dominated sorting of points in the K-dimensional space
is a procedure of marking all points which are not dominated by any other point
with the rank of 0, all points which are dominated by at least one point of the
rank of 0 are marked with the rank of 1, all points which are dominated by at
least one point of the rank i− 1 are marked with the rank of i.

Many well-known and widely used multi-objective evolutionary algorithms
use the procedure of non-dominated sorting, or the procedure of determining the
non-dominated solutions, which can be reduced to non-dominated sorting. These
algorithms include NSGA-II [6], PESA [5], PESA-II [4], SPEA2 [11], PAES [9],
PDE [2], and many more. The time complexity of a single iteration of these
algorithms is often dominated by the complexity of a non-dominated sorting
algorithm, so optimization of the latter makes such multi-objective evolutionary
algorithms faster.

In Kung et al [10], the algorithm for determining the non-dominated solutions
is proposed with the complexity of O(N logK−1N), where N is the number of
points and K is the dimension of the space. It is possible to use this algorithm to
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perform non-dominated sorting: first, the non-dominated solutions are found and
assigned the rank of 0. Then, these solutions are removed, the non-dominated
solutions from the remaining ones are found and assigned the rank of 1. The
process repeats until all the solutions are removed. This leads to the complexity
of O(N2 logK−1 N) in the worst case, if the maximum rank of a point in the
result is O(N).

Jensen [8] was the first to propose an algorithm for non-dominated sorting
with the complexity of O(N logK−1 N). However, his algorithm was developed
for the assumption that no two points share a common value for any objective,
and the complexity was proven for the same assumption. The first attempt to fix
this issue belongs, to the best of the authors’ knowledge, to Fortin et al [7]. The
corrected (or, as in [7], “generalized”) algorithm works in all cases, and for the
general case the performance is still O(N logK−1 N), but the only upper bound
that was proven for the worst case is O(N2K).

We present a modified version of this algorithm, for which we prove that its
running time is O(N logK−1 N) for fixed K. The rest of the paper is structured
as follows. Section 2 contains the description of the new algorithm. In Section 3,
the proof of the worst-case running time complexity is given. In Section 4, some
words are given on the performance of the original algorithm by Fortin et al.
Section 5 concludes.

2 Algorithm Description

In this section, the modified algorithm is described. We try to be as much com-
patible with the notation of the original paper [7] as possible.

Multi-objective evolutionary algorithms work with candidate solutions to the
problem they solve, or individuals. Each individual is evaluated and assigned a
fitness. The fitness q = f(p) of the individual p in a multi-objective problem is
a vector of K objectives. We assume that the objectives are to be minimized.

The individuals along with their fitnesses are the input data for the non-
dominated sorting algorithm. The algorithm should assign a rank to each indi-
vidual, as described in Section 1. As two individuals with the same fitness will
be assigned the same rank, the algorithm first groups the individuals by their
fitnesses, and then works directly with fitnesses, assuming that no two fitnesses
are equal in all objectives.

Let qk be the k-th objective of the fitness q, q1:k be the first k objectives.
The relation q1:k ≺ t1:k means that q dominates over t in first k objectives.
Throughout all the listings in this paper, we denote as rank(q) the rank assigned
to the fitness q.

Theoriginal algorithmfromFortin et al [7]makesuse of the followingprocedures:

– NonDominatedSort(P , K), the main procedure, receives a population P
where each individual has a fitness withK objectives and returns the result of
the non-dominated sorting — a sequence of Pareto fronts on which the given
individuals reside. It does some preparation work, invokes NDHelperA and
constructs the answer.



530 M. Buzdalov and A. Shalyto

1: procedure NDHelperA(S, k)
2: if |S| < 2 then return
3: else if |S| = 2 then
4: {s(1), s(2)} ← S

5: if s
(1)
1:k ≺ s

(2)
1:k then

6: rank(s(2)) ← max{rank(s(2)),rank(s(1)) + 1}
7: end if
8: else if k = 2 then
9: SweepA(S)
10: else if |{sk|s ∈ S}| = 1 then
11: NDHelperA(S, k − 1)
12: else
13: L,M,H ← SplitBy(S,median{sk|s ∈ S}, k)
14: NDHelperA(L, k)
15: NDHelperB(L, M , k − 1)
16: NDHelperA(M , k − 1)
17: NDHelperB(L ∪M , H , k − 1)
18: NDHelperA(H , k)
19: end if
20: end procedure

Fig. 1. The procedure NDHelperA. It assigns ranks to fitnesses from S using the first
k objectives.

1: procedure NDHelperB(L, H, k)
2: if L = {} or H = {} then return
3: else if |L| = 1 or |H | = 1 then
4: for all h ∈ H , l ∈ L do
5: if l1:k � h1:k then
6: rank(h) ← max{rank(h),rank(l) + 1}
7: end if
8: end for
9: else if k = 2 then
10: SweepB(L, H)
11: else if max{lk|l ∈ L} ≤ min{hk|h ∈ H} then
12: NDHelperB(L, H , k − 1)
13: else if min{lk|l ∈ L} ≤ max{hk|h ∈ H} then
14: m ← median{sk|s ∈ L ∪H}
15: L1,M1,H1 ← SplitBy(L,m, k)
16: L2,M2,H2 ← SplitBy(H,m, k)
17: NDHelperB(L1, L2, k)
18: NDHelperB(L1, M2, k − 1)
19: NDHelperB(M1, M2, k − 1)
20: NDHelperB(L1 ∪M1, M2, k − 1)
21: NDHelperB(M1, M2, k)
22: end if
23: end procedure

Fig. 2. The procedure NDHelperB. It adjusts ranks of fitnesses from H using the
first k objectives by comparing them with fitnesses from L.
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1: procedure SplitBy(S, m, k)
2: L ← {s ∈ S|sk < m}
3: M ← {s ∈ S|sk = m}
4: H ← {s ∈ S|sk > m}
5: return L, M , H
6: end procedure

Fig. 3. The generic split procedure. In each resulting set, the original order of elements
is preserved.

– NDHelperA(S, k) assigns ranks to the fitnesses from the set S based on the
first k objectives. It is recursive and may call itself, NDHelperB, SweepA
and SplitA.

– NDHelperB(L, H , k) assigns ranks to the fitnesses from the set H by
comparing them to the fitnesses from the set L based on the first k objectives.
It is recursive and may call itself, SweepB and SplitB.

– SweepA(S) assigns ranks to the fitnesses from the set S based on the first
two objectives. It is implemented using the sweep-line approach, and its
running time complexity is O(|S| log |S|).

– SweepB(L, H) assigns ranks to the fitnesses from the set H by comparing
them to the fitnesses from the set L based on the first two objectives. It is
implemented using the sweep-line approach, and its running time complexity
is O((|L| + |H |) log |L|).

– SplitA(S, k) partitions the set of fitnesses S in two sets around its median
for the objective k and balances the resulting sets using the elements equal
to the median.

– SplitB(L, H , k) partitions the sets of fitnesses L and H into two sets each
around the median of the largest set for the objective k and balances the
resulting sets using the elements equal to the median.

Procedures NonDominatedSort, SweepA and SweepB remain the same
as in Fortin et al [7]. The procedures SplitA and SplitB are not used by the
modified algorithm.

We redefine the procedures NDHelperA, which is shown in Fig. 1, and
NDHelperB, which is shown in Fig. 2. These procedures use the procedure
SplitBy, which is shown in Fig. 3.

The rest of this section concentrates on differences between the original al-
gorithm by Fortin et al and the proposed algorithm. The correctness of the
proposed algorithm can be proven in the same way as the correctness of the
original one.

2.1 Splitting into Three Parts, NDHelperA

The difference between the modified NDHelperA and its original version is
that the set S is split into three parts (line 12–13) instead of two parts as in
Fortin et al [7]. Generally, we have three sets:
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– the set L of the elements with the k-th objective less than the median;
– the set M of the elements with the k-th objective equal to the median;
– the set H of the elements with the k-th objective greater than the median.

In the original algorithm, the set M was added either to L or to H , depending
on their size. The correctness of the algorithm does not depend on the exact way
of splitting. Consider that we split S = (L ∪M) ∪H , so that we call:

– NDHelperA(L ∪M , k);
– NDHelperB(L ∪M , H , k − 1);
– NDHelperA(H , k).

It cannot be predicted without extra assumptions how the set L ∪M will be
split in the first recursive call to NDHelperA. However, any split such that
all values of the k-th objective in the left are strictly less than all such values
on the right is valid, and if the algorithm used it, the correctness would be
preserved. In particular, the set L ∪M can be split into L and M . After that,
NDHelperA(L ∪M , k) can be further expanded as follows:

– NDHelperA(L, k);
– NDHelperB(L, M , k − 1);
– NDHelperA(M , k).

However, it is known that the k-th objective in M is the same for all fitnesses,
which means that NDHelperA(M , k) can be rewritten as NDHelperA(M ,
k − 1). So finally the procedures are called in the following way:

– NDHelperA(L, k);
– NDHelperB(L, M , k − 1);
– NDHelperA(M , k − 1);
– NDHelperB(L ∪M , H , k − 1);
– NDHelperA(H , k).

This is exactly what one can see in lines 14–18 of the updated version of
NDHelperA.

2.2 Splitting into Three Parts, NDHelperB

The ideas from Section 2.1 can be applied to the procedure NDHelperB as
well. Assuming we have some pivot (in the original algorithm it is the median
of the largest of the L and H sets), we have six sets after the split:

– L1 — the elements of L with k-th objective less than the pivot;
– M1 — the elements of L with k-th objective equal to the pivot;
– H1 — the elements of L with k-th objective greater than the pivot;
– L2 — the elements of H with k-th objective less than the pivot;
– M2 — the elements of H with k-th objective equal to the pivot;
– H2 — the elements of H with k-th objective greater than the pivot.
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In the original algorithm, the sets M1 and M2 are joined either to L1 and L2

or to H1 and H2, depending on the sizes of L1, L2, H1, H2. Note that, although
performance depends on the particular choice, correctness does not. To perform
the analysis, we merge Mi with Li. This results in the following sequence of
recursive calls:

– NDHelperB(L1 ∪M1, L2 ∪M2, k);
– NDHelperB(L1 ∪M1, H2, k − 1);
– NDHelperB(H1, H2, k).

Using the same reasoning as in Section 2.1, the first call can be expanded to:

– NDHelperB(L1, L2, k);
– NDHelperB(L1, M2, k − 1);
– NDHelperB(M1, M2, k).

The last call can be rewritten asNDHelperB(M1,M2, k−1) because all values
of the k-th objective are the same in all fitnesses. So the final call sequence is:

– NDHelperB(L1, L2, k);
– NDHelperB(L1, M2, k − 1);
– NDHelperB(M1, M2, k − 1);
– NDHelperB(L1 ∪M1, H2, k − 1);
– NDHelperB(H1, H2, k).

One can see exactly this sequence in lines 17–21 of the procedureNDHelperB.

2.3 The Choice of Pivot

Consider the last case of NDHelperB where the pivot is chosen. The original
choice of Jensen [8], followed by Fortin et al [7], was to choose the pivot in such
a way that the sizes of sets in the recursive calls did not exceed 3N/4, where
N = |H | + |L|. In the case of the proposed algorithm, it is more important to
ensure the sizes of the recursive calls with the same k to be small, while not caring
for the sizes of the middle sets M1 and M2. This forced us to choose the pivot to
be the median of k-th objectives of L∪H , which ensures that |L1|+ |L2| ≤ N/2
and |M1|+ |M2| ≤ N/2.

3 Running Time Estimation

Let us outline the statements about the procedures above:

– In the last case of NDHelperA, |L| ≤ N/2 and |H | ≤ N/2, where N = |S|.
This is due to the choice of the pivot equal to the median of k-th objectives
of elements from S.

– In the last case of NDHelperB, |L1|+ |L2| ≤ N/2 and |H1|+ |H2| ≤ N/2,
where N = |L| + |H |. As already noted in Section 2.3, this is due to the
choice of the pivot.

This helps us to prove the necessary theorems.
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3.1 Running Time of NDHelperB

Theorem 1. The running time of NDHelperB(L,H, k) is

TB(L,H, k) = O(N logk−1 N)

for constant k ≥ 2, where N = |H |+ |L|.

Proof. Consider the boundary cases where |L| ≤ 1 or |H | ≤ 1. In this case, the
running time is Θ(1) or Θ(Nk), both are O(N logN).

The non-boundary cases are proven using induction by k. The base case
is k = 2. NDHelperB(L,H, 2) just calls SweepB(L,H), which is O((|L| +
|H |) log |L|) = O(N logN).

For k > 2, assume that the induction statement is proven for k − 1. In the
worst case, the running time of NDHelper(L,H, k) is:

TB(L,H, k) = TB(L1, L2, k)+

+ TB(L1,M2, k − 1)+

+ TB(M1,M2, k − 1)+

+ TB(L1 ∪M1, H2, k − 1)+

+ TB(H1, H2, k)+

+Θ(|L|+ |H |).

where the Θ(|L| + |H |) addend corresponds to finding the pivot and splitting
the sets. The addends 2–4 and 6 in the expression above can be summarized as
O(N logk−2 N) by the induction assumption. It is known that |L1|+ |L2| ≤ N/2
and |H1|+ |H2| ≤ N/2. If we rewrite TB(A,B, k) as T ′

B(|A| + |B|, k), then:

TB(L,H, k) = T ′
B(N, k) ≤ 2T ′

B(N/2, k) +O(N logk−2 N).

From the results of Bentley [3], it follows that:

TB(L,H, k) = O(N logk−1 N).��

3.2 Running Time of NDHelperA

Theorem 2. The running time of NDHelperA(S, k) is

TA(S, k) = O(N logk−1 N)

for constant k ≥ 2, where N = |S|.

Proof. In the boundary case of |S| ≤ 2, the running time is Θ(k) = Θ(1).
The non-boundary cases are proven using induction by k. The base case is k =

2. NDHelperA(S, 2) calls SweepA(S), which is O(|S| log |S|) = O(N logN).
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For k > 2, assume that the induction statement is proven for k − 1. The
running time of NDHelperA(S, k) is at most:

TA(S, k) = TA(L, k)+

+ TB(L,M, k − 1)+

+ TA(M,k − 1)+

+ TB(L ∪M,H, k − 1)+

+ TA(H, k)+

+Θ(|S|).

where the Θ(|S|) addend corresponds to finding the pivot and splitting the sets.
The addends 2–4 and 6 can be summarized as O(N logk−2 N) by the induction
assumption. It is known that |L| ≤ N/2 and |H | ≤ N/2. Using [3], we find that:

TA(S, k) = T ′
A(N, k) ≤ 2T ′

A(N/2, k) +O(N logk−2 N) =

= O(N logk−1 N).��

From the last theorem it immediately follows that the running time of the
whole algorithm is O(N logK−1 N).

4 Discussion

In this section, two topics are discussed. First, the worst case given in [7] is
shown to be not only “very unlikely”, but not happening when K is thought to
be a constant. Second, some ideas are given that may help to apply the proof
above, with some more detailed case analysis, to the original algorithm.

4.1 The Worst-Case Bound for the Original Algorithm

In [7], the worst-case running time estimation for the original algorithm is de-
duced from the following recurrence:

TA(N,K) = TA(N − 1,K) + TA(1,K)+

+ TB(N − 1, 1,K − 1) +Θ(N).

Such split can only occur in the case when there is only one element larger
than the median. As the median elements are always merged to the set which
size is smaller, there is at most one element smaller than the median. We can
predict that TA(N−1,K) will either be split as “one smaller element” and “N−2
median elements”, or just be delegated to TA(N − 1,K − 1).

The actual situation is that, in such heavily imbalanced cases, K decreases as
N decreases. This makes the “worst cases” be implementable only if K = Θ(N).
As an example, one may construct the following test case:
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(0, 0, 0, . . . , 0, 0, 1),

(0, 0, 0, . . . , 0, 1, 1),

. . .

(0, 0, 1, . . . , 1, 1, 1),

(0, 1, 1, . . . , 1, 1, 1),

(1, 1, 1, . . . , 1, 1, 1).

Here the recurrence for the running time for both the original algorithm and
the modified version appears to be:

TA(N,K) = TA(N − 1,K − 1) + TA(1,K)+

+ TB(N − 1, 1,K − 1) +Θ(N).

The solution can be written as TA(N,K) = Θ(N2K). However, N = K, so K
is not a constant anymore. In the situation of K depending on N , the analysis
which produced the expression O(N logK−1 N) actually gives another result, so
comparison of the expressions for constant K and for varying K is not valid.

As a final remark to this section, the “proof” of the worst-case performance
in the original paper does not prove that there exists a sequence of tests with
constant K and growing N , such that the running time of the algorithm grows
as O(N2K). It just considers a class of tests where K = Θ(N).

4.2 Applicability of the Proof to the Original Algorithm

The authors believe that the proof similar to the one given in this paper can
be constructed for the original algorithm from [7]. The reason is that, in the
heavily imbalanced cases (when |M | > max(|L|, |H |) for NDHelperA, and
when |M1| > max(|L1|, |H1|) and |M2| > max(|L2|, |H2|) for NDHelperB, see
Fig. 1 and Fig. 2) the splits in both procedures go in exactly the same way as in
the proposed algorithm. As the running time complexity in both well balanced
and heavily imbalanced cases is the same, the authors think that the overall
complexity is the same.

The immediate application of the proof to the original algorithm cannot be
performed because the splits in a partially balanced case for NDHelperB are
quite unpredictable due to the algorithm for pivot selection. The proper analysis
of such case is welcome.

5 Conclusion

A new version of the non-dominated sorting algorithm is presented. The ideas of
the algorithm were first presented by Jensen [8] and corrected by Fortin et al [7]
to handle the cases of equal objectives. The presented version differs from the
latter in the way the splits in the procedures NDHelperA and NDHelperB
are performed, as well as in the way the pivot is selected in NDHelperB.
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We proved the running time complexity is O(N logK−1 N) in the worst case for
this version.

The implementation of the algorithm, along with some benchmarks, is avail-
able at GitHub [1].

This work was financially supported by the Government of Russian Federa-
tion, Grant 074-U01.
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