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Abstract: Using extra objectives in evolutionary algorithms helps to avoid getting stuck in local optima and
increases genetic diversity. We consider a method based on a reinforcement learning (RL) algorithm that se-
lects objectives in evolutionary algorithms (EA) during optimization. The method is called EA+RL. In some
researches, reinforcement learning algorithms for stationary environments were used to adjust evolutionary algo-
rithms. However, when properties of extra objectives change during the optimization process, we propose that it
is better to use reinforcement learning algorithms which are specially developed for non-stationary environments.
We present an initial research towards EA+RL for a non-stationary environment. A new reinforcement learning
algorithm is proposed to be used in the EA+RL method. We also formulate a benchmark problem with some
extra objectives, which behave differently at different stages of optimization. Thus, non-stationarity arises. The
new algorithm is applied to this problem and compared with the methods which were used in other researches.
It is shown that the proposed method chooses the extra objectives which are efficient at the current optimization
stage more often and obtains higher values of the target objective being optimized.
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1 Introduction

Using extra objectives in evolutionary algorithms helps to avoid getting stuck in local optima and increases
genetic diversity [9]. The corresponding approach is called multiobjectivization. Several methods of multiob-
jectivization and details of one of them, the previously proposed EA+RL method, are described below.

1.1 Multiobjectivization

Some methods of multiobjectivization that increase efficiency of evolutionary algorithms (EA) exist. These
methods help to avoid local optima [7,9]. One of them is based on decomposing the target objective into several
components, which are optimized simultaneously [9]. The components should be independent, but it is not
always easy or possible. Another method is to use some additional objectives that are used in combination with
the original objective [7]. This approach was successfully applied to some practical problems, for example, the
Job Shop Scheduling Problem and the Traveling Salesman Problem [7, 10]. At each step of the algorithm, one
or several extra objectives are optimized [10]. They can be selected in random order [7] or using an ad-hoc
heuristic [10]. The first approach is general, but does not take into account any features of an optimization
problem, while the second one can be applied only to a specific problem. The EA+RL method was designed to
deal with these issues [2].

1.2 EA+RL Method

In the EA+RL method, reinforcement learning (RL) [13] is used to select an objective, which is optimized in
the current iteration of an EA. So the EA is treated as an environment for the RL agent. The method was
previously shown to be efficient for a number of problems [2].

In RL, an agent applies some action to an environment, then the environment returns some representation of
its state as well as a numerical reward, and the process repeats. The EA+RL method guides the EA using RL by
choosing optimization objectives, or fitness functions, for each iteration. The EA is treated as an environment.
Each action of the agent corresponds to an objective to be optimized at the current iteration. There is the target
objective, which should be optimized by the EA, and a set of extra objectives. Note that we do not aim to
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Figure 1: EA+RL general scheme

Figure 2: Benchmark problem

maximize the extra objectives, they are just used to increase the efficiency of the target objective optimization.
The method is illustrated in Fig. 1, where t is the number of the current iteration of the EA.

Generally, the goal of RL is to maximize the total reward [13]. In the EA+RL method, the reward is based
on the difference of the target objective values in two sequential iterations. The total reward, which is roughly
equivalent to the difference between the final and the initial values of the target objective, is maximized. So, the
target objective is maximized by RL and its optimization by EA is not necessary. Therefore, on each iteration
only the selected objective is optimized by the EA. Hence, we can use a single-objective EA which typically
runs faster than a multi-objective EA.

In some previous researches, it was implied that the environment was stationary. Precisely, the result of the
action depended only on the state of the environment. Consequently, RL algorithms for stationary environments,
such as Q-learning, were used. However, in the case when properties of extra objectives depend on the stage
of the optimization process, the result of the action can be different in the same RL state. Therefore, RL
algorithms for non-stationary environments should probably be used.

The rest of the paper is organized as follows. First, a benchmark problem is described. Second, we analyze
existing reinforcement learning algorithms for non-stationary environments and propose a new RL algorithm,
which is specially designed to be efficient when dealing with evolutionary algorithms. Then the experiments are
described. Finally, the proposed RL algorithm is compared with the other RL algorithms, which were studied
in other researches of EA+RL.

2 Benchmark Problem

In [1], a benchmark problem with two extra objectives which can be both efficient and inefficient at different
optimization stages was studied. In the current research, a more complex problem, which has the similar
properties, is described.

In this problem, an individual is a bit string of length n. Let x be the number of bits in an individual which
are set to one. Then the target fitness function (objective) is g(x) = bxk c, where k is constant, k < n and k
divides n. The extra objectives are h1(x) and h2(x), which are described below (1).

h1(x) =



x, x ≤ p1
p1, p1 < x ≤ p2
x, p2 < x ≤ p3
. . .

x, ps < x ≤ n

h2(x) =



p1, x ≤ p1
x, p1 < x ≤ p2
p3, p2 < x ≤ p3
. . .

n, ps < x ≤ n

(1)

Here, each pi is called a switch point. Hence, s is the number of switch points. Note that at each switch point
the properties of hi are changed. The extra-objectives and target objective are illustrated in Fig. 2.

The h1 objective is efficient when x ∈ [0, p1], (p2, p3]...(ps, n] while the h2 objective is efficient in all other
cases. Note that using the proper extra objective allows to distinguish individuals with the same value of the
target objective and give preference to the individual with higher x value. Such an individual is more likely
to produce a descendant with a higher target objective value. Ideally for each EA iteration an extra objective
which is not constant at the current interval of x values should be selected.
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3 Reinforcement Learning in Non-stationary Environments

RL algorithms designed for non-stationary environments are based on algorithms of RL in stationary envi-
ronments. There exist model-free and model-based algorithms. In model-free algorithms, the expected reward
estimation is updated using the agent experience. In model-based algorithms, the agent experience is used to
update the models of transition and reward. The expected reward estimation is updated using these models.

Consider existing methods of RL in non-stationary environments. There exist methods for the case of
continuous time and space [4]. However, we consider discrete optimization problems. Some RL algorithms
for discrete problems are designed for the case of non-stationary reward function [6]. Such algorithms are not
relevant to our research as well, since the reward function in EA+RL does not change.

The Reinforcement Learning Context Detection (RLCD) algorithm is the closest to our needs [11]. This
algorithm deals with a non-stationary environment which can be presented as a composition of stationary
contexts. Models for different contexts are maintained using model-based RL algorithms, such as Dyna or
Prioritized Sweeping [8]. Quality of a model depends on its ability to predict behavior of the environment. At
each algorithm step, the most qualitative model is active.

In our case, a context should be switched when properties of an extra objective change. We have tried to
apply the RLCD algorithm in the EA+RL approach for solving the benchmark problem. However, it appeared
that contexts were not switched when it was needed. What is more, too many models were created, which
slowed down the learning process. So the preliminary experiment showed that RLCD was not efficient for the
considered problem. Therefore, we developed another RL approach inspired by RLCD.

4 Proposed Approach

The preliminary experiment showed that the best results are obtained using Q-learning with greedy exploration
strategy which is a model-free RL algorithm [13]. So, this RL algorithm is used in the proposed approach.
As in the conventional Q-learning, at each iteration, the RL agent selects an action a and applies it to the
environment, which is at state s. Then the expected reward estimation Q(s, a) is updated using the obtained
reward. The core idea of the approach is to reset Q values when the context is changed. Q values are reset
when the following condition is fulfilled: |Q(s, a) − Q(s′, a′)| < δ for some pair (s, a) and (s′, a′), where δ is
some constant, called distinction factor. In this case the expected reward is roughly the same for at least one
pair of the actions and it is hard to decide properly which action to choose. We assume that such situation
indicates that the context has changed and previously obtained Q values are not relevant. The pseudocode of
the proposed approach is presented in Algorithm 1.

The main difference between the proposed approach and RLCD is that, unlike RLCD, a model-free RL
algorithm is used in the new approach. This changed the way the context change is detected.

5 Experiment Description

Several configurations of the formulated benchmark problem were solved using EA+RL with three different RL
algorithms. All the considered algorithms were run 100 times on every problem instance, then the results were
averaged. Configurations with 5 and 10 switch points were considered. Different values of individual length n
were considered. For the case of 10 switch points, individuals with greater lengths were used. The switch points
were evenly distributed along the length of an individual. The cases of k = 10 and k = 25 were considered.

There were 100 individuals in a generation. Mutation operator flipped each bit with the probability of
0.001. Shift crossover [3] was applied with the probability of 0.7. Problem instances with 5 and 10 switch points
were optimized for 3000 and 7000 iterations, correspondingly. The considered RL algorithms were Q-learning
with ε-greedy strategy [13], Delayed Q-learning [12] and the proposed algorithm. The first two algorithms were
previously used in the EA+RL method for various problems. Their parameters were taken from [2]. For the
ε-greedy Q-learning, learning rate was set to α = 0.6, discount factor was γ = 0.01, exploration probability was
ε = 0.3. In Delayed Q-learning [12] the following parameters were used: update period m = 5, discount factor
γ = 0.01, bonus reward ε = 0.4. Parameters of the proposed method were set during a preliminary experiment.
They were: learning rate α = 0.6, discount factor γ = 0.01 and distinction factor δ = 0.001. The reward was
calculated as the difference of the target objective value calculated on the best individuals in two successive
iterations of the EA. As in [2], RL states were represented as vectors of the fitness functions ordered by the
value of (f(xc) − f(xp))/f(xc), where f is a fitness function to be measured, xp is the number of bits set to
one in the best individual from the previous generation, and xc is the number of bits set to one in the best
individual from the current generation.

The Wilcoxon signed ranks test was performed to check if the new algorithm and the previously used ones are
statistically distinguishable. This test is suitable for analyzing of results obtained by evolutionary approaches,
since it is non-parametric [5]. Statistical significance was tested at α = 10−2 level.
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Algorithm 1 The proposed approach: Q-learning with resets

1: Form initial generation G0

2: Initialize Q(s, a)← 0 for each state s and action a
3: Initialize iteration counter: k ← 0
4: while (specified number of generations or maximum value of target objective not reached) do
5: Evaluate current state sk and pass it to agent
6: Select action: a where Q(s, a)← max

a′
Q(s, a′)

7: Generate next generation Gk+1

8: Calculate reward r
9: Q(s, a)← Q(s, a) + α(r + γmax

a′
Q(s, a′)−Q(s, a))

10: Initialize reset identifier: reset← false
11: for (each pair (s, a)) do
12: for (each pair (s′, a′)) do
13: if Q(s, a) 6= 0 and Q(s′, a′) 6= 0 and |Q(s, a)−Q(s′, a′)| ≤ δ then
14: Reset of learning is needed: reset← true
15: end if
16: end for
17: end for
18: if reset of learning is needed: reset = true then
19: Set Q(s, a) for each s and a to zero : Q(s, a)← 0
20: end if
21: Update iteration counter: k ← k + 1
22: end while

6 Experiment Results

Results for the k = 10 and k = 25 are shown in Table 1. The first column of each table contains the number of
switch points. The second column contains the length of an individual. The last three columns contain average
fitness achieved using new method, ε-greedy and Delayed Q-learning, respectively. The deviation of the average
fitness obtained by the first two algorithms is about 0.5%, the deviation obtained using Delayed Q-learning is
about 20%. For all analyzed problem instances the new method seems to outperform previously used ones. It
can be noticed that results obtained using Delayed Q-learning algorithm are much worse than the other results.

The p-values obtained when comparing with ε-greedy and Delayed Q-learning are presented in parentheses.
In the case when the length is greater than 1000 p-values are less than 8×10−3, so in that case the new method
is statistically distinguishable from ε-greedy. However, there are instances for which the Delayed Q-learning and
the new method are not distinguishable, although average fitness achieved in the new method is much higher.
This can be due to the fact that the deviation for the Delayed Q-learning algorithm is very high compared to
the one for the proposed method.

The RL agent can choose h0, h1 or target objective at each iteration. The most efficient choice is the choice
of an extra objective, which is equal to x at the current generation. We call such a choice a good one. The Fig. 3
shows the number of different current fitness function choices made by the algorithms in optimization problem
with 5 switch points, k = 10, n = 750. The horizontal axis refers to the number of an iteration, the vertical
axis refers to the number of different choices made at the corresponding generation in 100 runs. At first the
proposed method makes a good choice (h1) more often than other methods, then the proposed method makes
a good choice (h2) more often than other methods and so on. Therefore, the new method makes good choices
more often than ε-greedy algorithm, and the latter makes good choices more often than Delayed Q-learning.

Figure 3: Choices of objectives
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Table 1: Average target objective values

Points Iterations Length New method ε-greedy Delayed Q-learning
k = 10

750 74.52 74.49 (3.4× 10−1) 68.39 (4.4× 10−10)
1000 99.55 99.47 (1.3× 10−1) 87.39 (2.2× 10−16)

3000 1250 124.44 124.19 (8.3× 10−4) 113.69 (2.2× 10−16)
1500 149.03 148.02 (1.5× 10−3) 133.50 (8.1× 10−15)

5
1750 173.98 173.63 (8.4× 10−8) 156.93 (1.9× 10−13)
2000 198.93 197.98 (2.2× 10−16) 186.37 (9.5× 10−14)

5000 2250 222.01 220.23 (7.2× 10−11) 202.80 (1.5× 10−3)
2500 245.52 244.55 (3.0× 10−3) 232.81 (9.9× 10−1)
2000 198.94 198.34 (1.8× 10−12) 170.59 (2.7× 10−13)

5000 2250 223.36 220.79 (2.2× 10−16) 184.47 (1.1× 10−12)
2500 245.28 244.61 (1.2× 10−4) 204.42 (7.2× 10−1)
2750 269.38 269.14 (5.0× 10−3) 226.14 (5.7× 10−1)

10
3000 294.22 293.73 (2.8× 10−5) 249.96 (9.6× 10−1)

9000 3250 318.92 318.70 (1.4× 10−2) 268.66 (9.7× 10−1)
3500 343.79 343.33 (4.0× 10−5) 285.76 (9.9× 10−1)
3750 368.52 367.90 (1.3× 10−5) 307.72 (9.9× 10−1)

k = 25
750 29.45 29.40 (2.5× 10−1) 26.01 (2.2× 10−16)
1000 39.18 39.14 (2.2× 10−1) 36.20 (8.9× 10−14)

3000 1250 49.02 49.00 (2.4× 10−1) 45.86 (2.8× 10−9)
1500 59.00 58.92 (6.0× 10−3) 54.77 (4.3× 10−8)

5
1750 68.96 68.02 (4.0× 10−15) 61.17 (1.8× 10−11)
2000 78.17 77.23 (4.9× 10−16) 70.54 (1.9× 10−1)

5000 2250 87.30 87.12 (8.0× 10−3) 79.70 (9.8× 10−1)
2500 97.01 96.89 (4.0× 10−3) 84.62 (5.3× 10−1)

In Table 2 averaged percentage of good choices is presented for the constant k = 10. The first column
contains the number of switch points. The second column contains the length of an individual. The last three
columns contain average number of good choices in percentage of all fitness function choices using the proposed
approach (new), ε-greedy Q-learning (Q) and Delayed Q-learning (DQ) respectively. Deviation of the average
choices percentage obtained by the first two algorithms is about 8%, by Delayed Q-learning – about 100%. The
p-values obtained when comparing with ε-greedy and Delayed Q-learning are presented in parentheses. In the
case when the length is greater than 1000 p-values are less than 7× 10−4. Hence, in that case the new method
is statistically distinguishable from the previously used ones.

It can be noted that the proposed method makes good choices more often than the ε-greedy. However, there
exist problem instances on which Delayed Q-learning was choosing the effective extra-objective more often than
the new algorithm. At the same time, in this case the average fitness value obtained by using Delayed Q-learning
is much worse than the one obtained by using the proposed approach, as shown in Table 1. It can be explained
by the fact that the corresponding fitness and choices deviation for the Delayed Q-learning algorithm is very
high compared to the one for the proposed method. The results concerning the number of different choices for
the case of k = 25 are quite similar. For brevity, they are not presented.

7 Conclusion

A new reinforcement learning approach was proposed, which can be used in the EA+RL framework. It was
designed for dealing with non-stationarity, which arises when properties of extra objectives depend on the stage
of optimization. The proposed approach was used to solve a benchmark problem. The achieved results are
better than the results obtained with ε-greedy Q-learning and Delayed Q-learning algorithms. The Wilcoxon
signed ranks test showed that the performance of the proposed method is statistically distinguishable from
the others. In the future research the proposed algorithm can probably be improved by using the previous
experience, i. e. storing Q values obtained before reset and re-using them.
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Table 2: Different objective choices, k = 10

Good,%
Points Length

New Q DQ
750 62 50 (1.3× 10−5) 46 (8.0× 10−3)
1000 55 51 (1.0× 10−2) 47 (2.6× 10−1)
1250 51 43 (7.0× 10−4) 36 (1.7× 10−5)
1500 50 39 (2.2× 10−16) 35 (1.0× 10−10)

5
1750 48 39 (2.2× 10−16) 37 (9.2× 10−10)
2000 46 39 (2.2× 10−16) 29 (2.1× 10−15)
2250 37 23 (2.2× 10−16) 37 (8.5× 10−7)
2500 30 17 (2.2× 10−16) 26 (4.1× 10−14)
2000 47 49 (1.3× 10−8) 33 (6.9× 10−13)
2250 42 29 (2.2× 10−16) 36 (3.6× 10−6)
2500 26 19 (2.2× 10−16) 38 (1.2× 10−4)
2750 29 21 (2.2× 10−16) 41 (3.9× 10−3)

10
3000 34 26 (2.2× 10−16) 33 (5.1× 10−7)
3250 39 29 (2.2× 10−16) 36 (1.6× 10−5)
3500 41 33 (2.2× 10−16) 38 (4.6× 10−5)
3750 43 35 (2.2× 10−16) 37 (4.6× 10−5)
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