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Abstract—Consider optimization problems, where a target
objective should be optimized. Some auxiliary objectives can
be used to obtain the optimum of the target objective in
less number of objective evaluations. We call such auxiliary
objective a supporting one. Usually there is no prior knowledge
about properties of auxiliary objectives, some objectives can be
obstructive as well. What is more, an auxiliary objective can
be both supporting and obstructive at different stages of the
target objective optimization. Thus, an adaptive online method
of objective selection is needed. Earlier, we proposed a method
for doing that, which is based on reinforcement learning.

In this paper, a new algorithm for adaptive online selection
of optimization objectives is proposed. The algorithm meets the
interface of a reinforcement learning agent, so it can be fit
into the previously proposed framework. The new algorithm
is applied for solving some benchmark problems with single-
objective evolutionary algorithms. Specifically, LEADINGONES
with ONEMAX auxiliary objective is considered, as well as the
MH-IFF problem. Experimental results are presented. The pro-
posed algorithm outperforms Q-learning and random objective
selection on the considered problems.

I. INTRODUCTION

Evolutionary algorithms (EAs) are often used to optimize

a single objective (in other words, a fitness function). Single-

objective optimization can often benefit from multiple objec-

tives [1], [2]. Some researchers introduce additional objec-

tives to escape from the plateaus [3]. Decomposition of the

primary objective into several objectives also helps in many

problems [4], [5]. Additional objectives may also arise from

the problem structure [6].

Different approaches may be applied to a problem with the

“original” objective, which can be called the target objective,

and some auxiliary objectives. The multi-objectivization ap-

proach is to optimize all auxiliary objectives at once using

a multi-objective optimization algorithm [4], [5]. The helper-
objective approach is to optimize simultaneously the target

objective and some (not necessarily all, in most cases, only

one) auxiliary objectives, switching between them from time

to time [7].

The approaches above are designed in the assumption that

the auxiliary objectives are crafted to help optimizing the target

objective. However, this is not always true, especially when

the auxiliary objectives are generated automatically, or their

properties are unknown. In fact, the auxiliary objectives may

support or obstruct the optimization process. To cope with
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Fig. 1. EA+RL general scheme

such situations, the EA+RL method was developed [8], where

EA stands for an evolutionary algorithm and RL stands for

reinforcement learning. The idea of this method is to use a

single-objective evolutionary algorithm and switch between

the objectives. To find the most suitable objective for the

optimization, RL algorithms are used [9].

In this paper a new EA+RL-like method is proposed. It

does not use any particular RL algorithm, but suggests a

new approach to maintain a selection strategy using rewards.

The method is evaluated on some benchmark problems and

compared with the original EA+RL approach.

The rest of the paper is organized as follows. First, the

previously proposed EA+RL method is described. Second, the

new algorithm is described and compared with the approach

used in EA+RL. Finally, the experimental study is presented.

II. EA+RL METHOD

In the EA+RL method, a RL agent interacts with an

evolutionary algorithm. The scheme of the method is shown

in the Fig. 1, where t is the number of the current iteration.

The agent selects an objective between the auxiliary objectives

and the target one. Then, the selected objective is passed to

the evolutionary algorithm. The next generation is evolved

using the selected objective as the fitness function. The agent

receives a numerical reward and some representation of the

state. Then the agent updates its strategy using the obtained

information and the process repeats. There are a number of

approaches of state definition [8], [10], [11]. In this paper a

single state is used, i. e. the evolutionary algorithm is treated

as a stateless environment.

Let us discuss EA+RL in more detail. We should explain

how the RL agent updates its strategy and how it selects an

objective. We also should consider how rewards are defined.
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Fig. 2. General scheme of the proposed algorithm

A. Selection Strategy

Different RL algorithms can be used to implement the

agent. Let us consider the Q-learning algorithm with a greedy

strategy. This algorithm maintains the total expected reward

estimation Q(s, a) for each pair of state s and action a (in the

EA+RL method an action corresponds to a selected objective).

At each time when a reward r is obtained, Q is updated

using the following formula: Q(s, a) = Q(s, a) + α(r +
γmax

a′
Q(s′, a′) − Q(s, a)), where s′ is the next state, the

parameter α influences the rate of learning and γ is a discount

factor [9]. The selection of an action (objective) to be applied

is made using Q values. In the ε-greedy exploration strategy,

a random action is taken with a probability of ε, otherwise

the action a = argmaxa′ Q(s, a′) is taken, which is the

most efficient in the current state s. If ε = 0, we call such

exploration strategy a greedy one.

B. Reward Definition

The goal of RL is to optimize total amount of reward [9].

In the EA+RL method, an immediate reward is based on the

difference between the best target objective values in two

sequential iterations. Hence, the total reward being maximized

is roughly equivalent to the difference between the final and

the initial values of the target objective.

III. PROPOSED ALGORITHM

A general scheme of the proposed algorithm is shown in

Fig. 2. Compare it with the EA+RL scheme (Fig. 1). The

reward is passed to the Q-handler (equivalent of the RL

agent) only when it is changed since the previous iteration.

Otherwise, it is checked whether a stagnation occurred. If so,

a random fitness function is selected. Otherwise, a previously

selected fitness function is used.

Therefore, the idea behind this algorithm is to gain reward

during a number of iterations (while it does not change) and

only then update selection strategy. Thus, the same objective

can be applied for some number of iterations before gaining

a positive effect on the target objective value.

If the reward does not change for a long time, a random

objective should be chosen. To be more precise, the stagnation

criterion is as follows. Let “ch” be the number of iterations

performed since the reward changed for the last time. Let “lu”

be the number of iterations between the start of the algorithm

and the last change of reward. Stagnation appears when “lu”

is equal to “ch”.

Algorithm 1 The new algorithm for objective selection

1: iterations counter: i = 0
2: counter of iterations since reward change: ch = 0
3: iteration number of last update: lu = 0
4: previous reward value: prev = 0
5: randomly choose current objective obj
6: while (terminal state is not reached) do
7: evolve new EA generation using obj
8: calculate reward: r = new fitness− previous fitness

9: if (reward changed: r �= prev) then
10: calculate update value: val = r − prev
11: update Q-value: Q[obj] = val +Q[obj]
12: select objective: obj = argmaxa Q[a]
13: update previous reward: prev = r
14: reset iterations since change: ch = 1
15: set iteration number of last update: lu = i
16: else
17: if (stagnation: ch == lu) then
18: randomly select obj different from current

19: reset iterations since change: ch = 1
20: else
21: increase iterations since change: ch = ch+ 1
22: increase iterations counter: i = i+ 1

In Algorithm 1 a detailed pseudocode of the proposed

algorithm is shown. The term “Fitness” refers to the best value

of the target objective in a generation. The “New fitness” is

the target fitness obtained after applying the selected objective

and generating a new generation. The “Previous fitness” refers

to the target fitness in the previous generation.

Comparison of the proposed algorithm with the EA+RL

method is as follows.

A. Selection Strategy

Consider how an objective is selected. The selection of an

objective is made with the Q-handler in a greedy way: obj =
argmaxobj′ Q(obj). But note that not only the Q-handler can

select an objective. An objective can also be selected randomly

in the case of stagnation, or the previously selected objective

can be selected again in the case when the reward value did

not change.

B. Reward Definition

The reward itself is calculated as the difference between the

best target fitness values in two sequential generations, as in

the previous EA+RL implementations. However, the update

formula for the Q-handler is Q[obj] = Q[obj] + r − r′, there

“obj” is the selected objective, i.e. the action, r is the new

reward, r′ is the previous reward value. So Q values are

updated with reward differences, not with rewards.

IV. EXPERIMENTS

In this section results of several experiments are shown. We

consider three combinations of toy yet theoretically important

problems: LEADINGONES and ONEMAX [12], XDIVK and

ONEMAX [13] and MH-IFF mh-iff. In the first two problems,

the ONEMAX function is used as auxiliary objective. The
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TABLE I
AVERAGE NUMBER OF GENERATIONS NEEDED TO REACH THE OPTIMUM

FOR THE XDIVK AND ONEMAX PROBLEM

n k Fixed obj. Random EA+RL Proposed
12 2 111.614 83.099 76.960 59.564
16 2 200.663 122.871 132.683 86.218
20 2 273.861 181.505 184.564 125.921
18 3 1212.22 372.624 439.277 116.733
24 3 2685.05 910.267 861.921 186.109
30 3 5365.62 1592.54 1611.42 245.109
24 4 15649.6 2437.60 2358.84 183.584
32 4 41529.4 5597.32 8301.37 277.238
40 4 93228.1 19659.2 14004.8 415.446
30 5 1.887e5 16378.8 15187.3 248.218
40 5 ∞ 55365.7 56800.2 360.436
50 5 ∞ 1.834e5 ∞ 588.792

value of ONEMAX is the number of bits in a candidate solution

set to one. The rest of the functions are described in the

corresponding sections. In each of the following sections,

the proposed algorithm is compared with random selection

of objectives, as well as with the previously known EA+RL

method.

In all problems, a candidate solution is a bit vector of

length n. We apply different objective selection methods to

Randomized Local Search (RLS), also known as Random

Mutation Hill Climber [5]. The mutation operator that flips

one randomly chosen bit is used.

In the EA+RL method, the Q-learning algorithm with the

greedy exploration strategy and a single state (i.e. without

states) is used [9]. The parameters of Q-learning are a learning

rate α = 0.5 and a discount factor γ = 0.5. They were set

during a preliminary experiment.

For all the considered problems, 100 runs of each algorithm

are performed for each problem instance, then the results

are averaged. The results of the experiments are tested for

statistical significance at a level p0 = 0.05.

A. XdivK and OneMax Objectives

Consider two objectives: the target one is XDIVK and the

auxiliary one is ONEMAX. XDIVK is evaluated as follows:

ONEMAX value is divided by some parameter k and the

integer part of the result is taken. It was shown by theo-

retical analysis that ONEMAX is a supporting objective for

XDIVK [13].

Experimental results are shown in Table I. Average number

of generations needed to reach the target optimum is presented

for each problem size n and for the each considered approach,

so the lower values are, the better the corresponding method

is. The Fixed obj. column refers to XDIVK optimization by

RLS when no auxiliary objective is used. “Random” stands

for the random selection of objectives applied to RLS. The ∞
sign is used to show that an algorithm have failed to find the

target optimum after 106 iterations.

According to the experimental results, the proposed method

seems to outperform all the considered approaches with growth

of n. One can argue that for the proposed algorithm, as well

as for the the EA+RL method, a one more fitness evaluation is

needed to calculate a reward. But in the most applications of

the reward-based selection methods, one expensive calculation

TABLE II
AVERAGE NUMBER OF GENERATIONS AND ITS STANDARD DEVIATION (IN

BRACES) NEEDED TO REACH THE OPTIMUM FOR THE LEADINGONES AND

ONEMAX PROBLEM.

n Fixed obj. Random EA+RL Proposed
20 216.4 (73.9) 164.6 (65.7) 146.9 (84.1) 136.9 (57.2)
30 473.6 (140.4) 342.3 (120.6) 303.4 (197.4) 246.2 (101.9)
40 817.5 (217.8) 588.1 (187.9) 495.8 (355.3) 392.9 (164.8)
50 1294.0 (309.0) 906.9 (260.4) 765.3 (556.5) 548.7 (235.7)
60 1853.3 (405.9) 1294.2 (348.0) 1110.9 (815.8) 719.6 (314.1)
70 2535.1 (509.8) 1710.6 (431.0) 1423.6 (1117.4) 919.0 (398.5)
80 3226.7 (588.1) 2234.0 (512.2) 1837.7 (1476.7) 1126.4 (513.6)
90 4118.6 (716.2) 2800.9 (636.5) 2231.1 (1877.3) 1288.9 (585.5)

per individual is enough to obtain the values of all the objec-

tives [14]. In the problems considered here, one calculation

of the number of 1-bits is also enough. Values of all the

objectives, as well as the reward value, are simply calculated

using this number. So calculating a reward does not increase

the number of fitness evaluations.

The Wilcoxon signed ranks test was performed to

check if the new algorithm and the other considered

ones can be distinguished. The test was performed us-

ing stats::wilcox.test() procedure from the R lan-

guage [15].

The input data was obtained as follows. The integer pa-

rameter k was selected uniformly at random from the interval

2..5 20 times. An integer multiplier m was selected uniformly

at random from the interval 2..10 20 times as well. Then

each k was multiplied with the corresponding m, so we got

n = k ∗m. Thus, we obtained 20 randomly generated pairs

n, k. The average number of generations needed to reach the

optima of the problem instances corresponding to these n, k
pairs were taken as the input for the Wilcoxon test.

The proposed method was compared with the RLS without

selection, random selection and the EA+RL method using the

“less” alternative [15]. The corresponding p-values are 6.461×
10−5, 7.515× 10−5 and 6.461× 10−5 respectively. All the p-

values are less than p0, so the proposed method is statistically

better than the others.

B. LeadingOnes and OneMax Objectives

In this problem, the target objective is LEADINGONES and

the auxiliary objective is still ONEMAX. LEADINGONES is

another well-known problem, where the number of one bits

from the beginning of the candidate solution to the first zero-

bit is calculated [12].

Experimental results are shown in Table II. The same nota-

tion as for the previous problem is used. Standard deviations

are also presented (in braces). The Fixed obj. column refers

to LEADINGONES optimization by RLS when there is no

auxiliary objective.

As for the previous problem, the proposed algorithm seems

to outperform all the considered approaches with growth of n.

The Wilcoxon signed ranks test with the “less” alternative [15]

was used to compare the proposed algorithm with the other

methods. Integer lengths n were selected uniformly at random

from the interval 10..100, then the corresponding average

number of generations needed to reach the optima were used as
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TABLE III
AVERAGE FITNESS VALUES AND THEIR STANDARD DEVIATION (IN

BRACES) FOR THE MH-IFF PROBLEM

n Fixed obj. Random EA+RL Proposed
16 41.6 (6.2) 80.0 (0.0) 49.1 (15.6) 63.0 (19.0)
32 83.4 (9.5) 62.0 (8.7) 87.2 (20.8) 108.9 (42.5)
64 167.7 (14.3) 122.6 (11.8) 170.0 (15.9) 203.9 (87.2)
128 338.5 (21.3) 242.5 (16.5) 336.6 (21.1) 387.9 (175.9)
256 675.1 (30.6) 488.9 (23.3) 676.6 (30.6) 718.5 (280.0)
512 1345.6 (37.1) 978.9 (32.3) 1345.9 (35.7) 1389.6 (377.3)
1024 2697.5 (59.2) 1954.3 (49.8) 2702.8 (58.5) 2787.2 (854.0)
2048 5401.7 (79.1) 3920.2 (68.9) 5390.2 (75.4) 6147.6 (3762.5)

an input for the test. All the p-values were 4.764×10−5, which

is less than p0. Thus, the proposed algorithm is statistically

better than the other ones.

C. MH-IFF Problem

Consider the MH-IFF benchmark problem. The target

objective is Hierarchical-if-and-only-if function, H-IFF [5].

H-IFF should be maximized. Its formula f is given below,

where B is a bit string individual, BL and BR are its left and

right halves respectively.

The target objective f and the auxiliary objectives f0 and

f1 have the following formula:

fk(B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |B| = 1 and b1 �= k,

1 if |B| = 1 and b1 = k,

|B|+ fk(BL) + fk(BR) if ∀i{bi = k},
fk(BL) + fk(BR) otherwise.

f(B) = f0 + f1

The objectives f0 and f1 allow to escape from local optima

of f [5], hence they are supporting ones.

During the experiment, different bit string lengths n were

considered. An algorithm was run until 500000 fitness function

evaluations were performed. The value of the target objective

f obtained in the final generation was averaged over all the

runs of an algorithm. Average target objective values obtained

using different algorithms are presented in the Table III, as

well as the corresponding standard deviation (in braces). The

Fixed obj. column refers to optimization of f using RLS while

no auxiliary objective is used. The greater values correspond

to the higher efficiency of the corresponding algorithm, since

the goal is to maximize f .

The proposed algorithm was compared with the H-IFF,

random selection and EA+RL using Wilcoxon rank sum test

with the “greater” alternative [15]. For the each considered n,

target objective values obtained after each of 100 runs were

taken as an input for the test.

For the comparison with random selection, all the p-values

were less than p0. For the other two methods, p-values are

less than p0 for the lengths from 8 to 64 only. For the greater

lengths, it was impossible to distinguish the proposed method

from the RLS without selection and the EA+RL method

using Wilcoxon rank sum test. Alghough, the average target

objective values obtained with the proposed algorithm were

still better also for the greater lengths. Thus, probably a more

powerful statistical test would help.

V. CONCLUSION

A new algorithm for online auxiliary objectives selection is

proposed. It is empirically evaluated on three benchmark prob-

lems. For the considered problems, the proposed algorithm

seems to outperform not only a conventional evolutionary

algorithm without auxiliary objectives, but also the previously

known EA+RL method of objectives selection, as well as the

random selection approach. The proposed algorithm is shown

to be statistically distinguishable from the random selection

for all the considered problems.
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