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Abstract—The problem of protein conformation motion model-
ing is an open problem in the structural computational biology.
It is difficult to solve it using methods of molecular dynamics
or quantum physics because these methods deal with time
intervals of nanoseconds or microseconds, while conformation
motions take time of millisecond order. In addition, these methods
cannot take external forces into consideration. To deal with these
problems, numerous approximated and coarse-grained methods
are developed, which use ideas from geometry and motion
planning.

We present a new coarse-grained method of modeling the
protein motion between two given conformations. The method
is based on optimization of a cost function similar to the one in
the Monge-Kantorovich mass transfer problem. The optimization
is performed using sep-CMA-ES, which makes the running time
of an iteration linear in the number of amino acids in a protein.

The proposed method is compared with some of the existing
methods on several molecules. It is shown that the results of the
proposed method are more accurate than of the other methods.

I. INTRODUCTION

Structural biology of biopolymers has made substantial

progress on the way to understanding the spatial structure of

proteins, cellular localization, and predicting their functions

and interactions with other proteins and small molecules. The

development of such basic instruments of structural biology

as X-ray crystallography and nuclear magnetic resonance and

the exponential growth in the number of recognized protein

structures accumulated in the Protein Data Bank [1] has led

to new methods of mathematical modeling for both the three-

dimensional structures themselves and their specific properties,

in particular, conformation motion. The ability to change con-

formations is essential for proteins. Studying protein molecule

dynamics in time can help to answer questions regarding the

order in which protein conformations follow each other and

regarding molecular motion trajectories across stable states. It

is known that many protein functions are actually implemented

in motion [2]. Obviously, this is due to the fact that during

such behavior different active centers (hot spots) may become

exposed at the molecular surface. If we suppose that a protein

molecule has several active centers responsible for interaction

with different substances, then modeling the motion of these

proteins may give us the key to predicting their functions [2].

Moreover plausible trajectories of protein between static con-

formations can serve as an input for modern techniques of

flexible docking and virtual screening in modern pharmacol-

ogy. Functional properties of such proteins with hidden or

temporarily closed active centers may remain unclear if the

structures are static and only show up in conformation motion

modeling. This is extremely important for both theoretical

metabolomic and signaling studies and applied drug design,

as a way to predict, for instance, side effects of new active

substances. This, in turn, may help us understand how proteins

behave and search for the regulators of their functions.

There are several ways for prediction of protein trajectories.

The most precise ones are molecular dynamics techniques [3]–

[7]. However, these methods have restricted use because of

high computational complexity (leading to very long simu-

lation times even on modern supercomputers) and the low

probability of escaping from an energy region close to a stable

state. These drawbacks make it virtually infeasible to model

conformation motion of protein molecules (especially large

proteins) by protocols of molecular dynamics.

The second group of methods for proteins trajectory predic-

tion are based on geometry analysis [8], [9]. Their advantages

include a relatively low computational cost (i.e., high compu-

tation speed) and a possibility to overcome energetic barriers

bounding a region close to the stable state. But at the same

time implementation of these techniques can violate protein

geometry. Later works [10] construct more complicated mod-

els of a conformation motion and use optimization methods to

minimize cost functions. We also consider the elastic network

models [11]–[14] to belong to this group.

The third group of methods originates from motion plan-

ning. These include probabilistic roadmaps [15], [16], rapidly

exploring random trees [17], [18], and stochastic roadmap

simulation [19]. For example, in a probabilistic roadmap,

individual conformations are connected to form a graph in

which well-known shortest path algorithms can be applied to

approximate the optimal transition. However, to appropriately

weigh the edges of this graph one needs to have some way

to estimate the transition cost between conformations, albeit

on a smaller scale, that is, methods from the first two groups

may still be needed.

In this paper we introduce an approach for prediction and

construction of plausible conformation trajectory in proteins.

This technique is based on the same mass transportation

problem as in [10], but uses the sep-CMA-ES algorithm [20]
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for its optimization. We describe our methods and show its

efficiency on the example of calmodulin transition modeling

between a compact (PDB ID: 1PRW [21]) and an open (PDB

ID: 1OSA [22]) state, as well as on the example of transitions

between all pairs of conformations of the 2M3M protein [23].

II. CONFORMATION MOTION AND COST EVALUATION

Proteins are biopolymers constructed from multiple amino

acid residues. In proteins, one considers the backbone, which

consists of the atoms N i, Ci
α, Ci, Ni+1, Ci+1

α , Ci+1, . . . con-

nected by covalent bonds to make a chain, and sidechains,

which are unique to each amino acid. In this work, we ignore

the sidechains, and their mass is added to the corresponding

atoms from the backbone. This is motivated by the fact that

changes in sidechains require much less energy than changes

in the backbone.

The lengths of the bonds between the atoms in the backbone

are nearly constant during all the conformation motion. The

planar angles formed by consecutive bonds (namely, N i–

Ci
α–Ci, Ci

α–Ci–N i+1 and Ci–N i+1–Ci+1
α ) are also almost

constant. The torsion angles between bonds Ci
α–Ci and N i+1–

Ci+1
α is always equal to π. However, the torsion angles

between N i–Cαi and Ci–N i+1, and between Ci–N i+1 and

Ci+1
α –Ci+1 can change. This makes transformations between

conformations possible, and the conformation itself can be

defined, up to translations and rotations, by the values of the

variable torsion angles.

Assume the protein has N amino acids. Then there are 3N
atoms in the backbone and 3N − 3 torsion angles, out of

which 2N−2 are variable. A conformation can be determined

by a vector ω of 2N − 2 values of torsion angles in the

range of (−π;π]. More specifically, Cartesian coordinates

of the atoms can be restored from the torsion angles using

the method from [24]. However, this conformation can be

arbitrarily rotated and translated in space.

A. Conformation Motion and its Cost

A conformation motion is modelled in this paper as a

function from time to the Cartesian coordinates of the form:

M(t) = X(TC(ω(t)), T (t), R(t)),

where ω(t) is the function from time to the torsion angle val-

ues, TC(ω) is the function that restores Cartesian coordinates,

T (t) is the function from time to translation vector, R(t) is

the function from time to rotation matrix, X(c, t, r) applies the

transition vector t and the rotation matrix r to the sequence

of atom coordinates c. There are two constraints: M(0) is the

initial conformation X0, and M(1) can be achieved from the

final conformation X1 by translation and rotation only.

The cost of a motion is similar to the function from the

Monge-Kantorovich mass transportation problem [25]:

C(M) =

3N∑
i=1

mi · lip,

where N is the number of amino acids (so the number of

atoms in the backbone is 3N ), mi is the associated mass of

the i-th atom (it consists of the mass of the atom and masses

of all the connected atoms from the corresponding sidechain),

li is the length of a path that is made by the i-th atom during

the conformation motion M , and p is a parameter, which is

typically equal to 1 or 2.

B. Discrete Version

We need to discretize the definition of the conformation

motion, as well as its cost, to allow its modeling and evaluation

in finite time. To do this, we define the number of intermediate
conformations K and give the definition of the discretized
conformation motion as follows:

Mj = X(TC(ωj), Tj , Rj),

where j (0 ≤ j ≤ K + 1) is the integer index of a discrete

moment of time, and the definitions of ωj , Tj and Rj are the

same as the definitions of TC(t), T (t), R(t) above, except that

they are now discrete. Again, M0 is the initial conformation

X0, and MK+1 can be achieved from the final conformation

X1 by translation and rotation only.

The cost can be discretized as follows:

C(M) =
3N∑
i=1

mi

⎛
⎝

K∑
j=0

lj,j+1
i

⎞
⎠

p

, (1)

where lj,j+1
i is the distance travelled by atom between the

discrete moments of time j and j +1, which is approximated

as the Euclidean distance between the atom locations at these

moments.

However, as we do not impose additional restrictions on

lj,j+1
i , they can be arbitrary. In fact, when p ≥ 1, the minimum

is reached if l0,1i is the distance between the i-th atom in X0

and the i-th atom in X1 and lj,j+1
i = 0 if j > 0. This, in turn,

corresponds to the unrealistic motion when the protein makes

all the movement during the first discrete time step and does

not move during all other time steps.

Instead, we will optimize the following cost function:

C(M) =
3N∑
i=1

mi

K∑
j=0

(
lj,j+1
i

)p

. (2)

There are two reasons to select this modification of expression.

First, it can be shown that, when K goes to infinity, the

motions that deliver the minimums to the expressions (1) and

(2) coincide. Second, as shown below, there exist efficient

algorithms which align the structures while minimizing (2),

but the authors are unaware of similarly efficient algorithms

that do the same for (1). We can write the expression (2) as:

C(M) =

K∑
j=0

Dj ;Dj =
3N∑
i=1

mi

(
lj,j+1
i

)p

,

where Dj is effectively the cost of transition from the con-

formation at step j to the conformation at step j + 1. If

all ωj are fixed, then we can minimize Dj separately by

appropriately aligning the pairs of consecutive conformations,

so we compute the minimal possible cost for arbitrary fixed ωj .
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This makes it possible to optimize the cost by changing only

the values of ωj and computing the translation and rotation

vectors exactly.

If p = 2, then minimizing Dj turns to minimizing the square

of weighed RMSD (i-th atom has a weight of mi), multiplied

by the number of atoms. We can do it effectively using the

Kabsch algorithm [26]. In the rest of the article, p = 2 is used.

C. Atom and Bond Collisions

There is another source of violations of physical properties

of conformation motions in the models — in real life, atoms

cannot collide and appear too close to each other, and the

bonds between the atoms, when treated as sticks between the

atoms, cannot intersect each other. It is possible to compute the

number of collisions in a motion between two conformations,

at least approximately, but this takes O(N2) time, while all

other steps mentioned above (restoring the Cartesian coordi-

nates, aligning the consecutive conformations and computing

the weighed RMSD) take only O(N) time. In this paper

we do not consider collisions when optimizing conformation

motions. However, to compare different methods, we check

and report whether the produced motions contain collisions.

III. SEP-CMA-ES

As described in Section II-B, we can evaluate the cost func-

tion using only the values ωj — the vectors of the values of

torsion angles in the discrete moments of time. To optimize the

cost function, one can use any optimization algorithm. In [10],

the method of conjugate gradients was used. However, we do

not know the properties of the cost function — for example,

we cannot guarantee that it is unimodal — so gradient-based

methods can converge to some non-global optima. To deal with

this problem, we use the evolution strategy with covariance
matrix adaptation (CMA-ES) — an evolutionary algorithm

for global optimization [27].

However, the size of the conformation motion optimization

problem is typically large — for example, the average number

of amino acids in yeast proteins is 466, and titins can reach

27 000 amino acids [28]. This discourages the use of CMA-

ES in its original version [27], which requires computing

eigenvectors of a matrix with the size of O(KN)×O(KN),
in total O(K3N3) time. Instead, we use a modification which

preserves only the diagonal of the covariance matrix, called

sep-CMA-ES [20], which makes the complexity of all matrix

updates equal to O(KN). Although we cannot guarantee

that our problem is separable, the authors of sep-CMA-ES

state [20] that for large problem dimensions their approach is

competitive with the full version of CMA-ES, when comparing

results achieved in given computation budget.

A. Conformation Motion Representation

We need to represent all the ωj vectors as a single real-

valued vector. As we use sep-CMA-ES, the relative order of

the elements in the vector does not matter.

The simplest approach is to simply write out the values

from ωj : ω
(1)
0 , ω

(2)
0 , . . . , ω

(2N−2)
0 , ω

(1)
1 , . . . . However, these

values should be the angles from the range (−π;π] wrapping

around π. As CMA-ES requires adding the values taken from

a normal distribution to these angles, one needs to take care of

that: either truncate every value less than −π to −π and greater

than π to π, or take every result modulo 2π and return it to

the range (−π;π]. In the first case, a difficulty of transiting

from −π to π is introduced, which can make optimization very

hard. In the second case, periodicity of the fitness landscape is

introduced, which makes every function multimodal and also

makes optimization harder.
We deal with these problems by constructing a vector z

that is twice as long as the vector from the first approach and

compute ω
(1)
0 = atan2(z1, z2), ω

(2)
0 = atan2(z3, z4), . . . .

This removes all the problems connected with the periodicity

of angles, but makes the search space twice as big.
To make the search space smaller, we do not optimize the

angles that differ less than 0.03 between the initial and the final

conformations. Instead, these angles are interpolated linearly.

B. Initialization and Parameters
To optimize the cost function using the CMA-ES algorithm,

an initial approximation needs to be constructed. We construct

the initial approximation by linearly interpolating the angles.

The angle interpolation always uses the shortest arc between

the angle values.
The covariance matrix is initialized as follows. For each

diagonal index i we first locate the torsion angle it corresponds

to. The angle difference d for that torsion angle is then

computed between the initial and the final conformation. The

maximum of 0.01 and d2 is then used to initialize the diagonal

element of the covariance matrix.
We use the default settings for the sep-CMA-ES algo-

rithm [20]. The only free parameters left are the population

size and the initial step size. We chose the population size

to be 32, which is the standard population size for many

experiments, and the initial step size to be 0.001.The limit on

the number of iterations of the CMA-ES algorithm is 30000.

IV. EXPERIMENTS

Presentation of the experimental results has the following

structure. In Section IV-A, the proposed method is compared

on one conformation motion with several existing methods:

MovieMaker [8], PATH-ENM [13] and PMPF [10]. In Sec-

tion IV-B, the proposed method is run on one conformation

motion (2M3M, model 1 – 2M3M, model 18), but with differ-

ent initial approximations. Experiments show that the results

depend on the initial approximation, which is an evidence of

multimodality of the problem. In Section IV-C, the proposed

method is compared with the PMPF algorithm [10], shown

to be the best of the existing methods in Section IV-A, on

conformation motions between all pairs of conformations of

the 2M3M protein.

A. One Motion, Many Algorithms
In this section, we compare experimentally five algorithms

for conformation motion prediction: the MovieMaker algo-

rithm [8], which performs linear interpolation of Cartesian
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TABLE I
COMPARISON OF PROTEIN CONFORMATION MODELING METHODS

Algorithm Cost Collisions
MovieMaker 223901.05 1778.53
PATH-ENM 508114.45 39.73

Torsion interpolation 282094.01 0.0
PMPF 204672.29 0.0

CMA-ES 191173.62 0.0

coordinates of atoms, the PATH-ENM algorithm [13] based on

a elastic network model, the algorithm of linear interpolation

of torsion angles, which we use as an initial approximation in

our method, the PMPF tool [10] and the proposed method.

As a benchmark, we used two conformations of calmodulin:

the first one has the PDB ID 1OSA [22], and the second one is

1PRW [21]. The RMSD distance between them exceeds 16Å.

In fact, these conformations are from different calmodulins,

but their similarity degree reaches 87%. This pair was chosen

because 1OSA is a good representer of an open calmodulin

structure, while 1PRW is very compact.

All the algorithms constructed a conformation motion with

44 intermediate conformations. This number is chosen for

two reasons. First, all methods can compute a motion with

a predefined number of intermediate conformations except for

PATH-ENM, which determines it by itself. Second, when the

parameter p of the cost is not equal to 1, it is impossible to

compare the quality of the results with different number of

intermediate conformations.

In Table I, the algorithms are compared by the conforma-

tion motion cost described in Section II-B and by collision

quotient. The latter is defined as follows: for all pairs of

consecutive conformations, all pairs of backbone bonds are

considered in motion between the conformations. For each

pair of bonds, the minimal distance d between any two points

on them is computed. A collision quotient for this pair is

(D − d)/D, where D is the minimal length of a backbone

bond. The collision quotients are summed up for all bond pairs

for all pairs of consecutive conformations.

One can see that, as expected, the MovieMaker algorithm

produces a relatively low cost result, but the number of

collisions is very high. PATH-ENM produced the result that is

slightly better in collisions, but the cost is twice as big. The

torsion angle interpolation produces suprisingly good results,

including a relatively low cost and no intersections. The PMPF

algorithm, which also uses the torsion angle interpolation as an

initial approximation, optimized this result by almost a third.

The proposed algorithm shows the best results by both criteria.

B. Multimodality

In this section, we compare the results of the proposed

method for different initial approximations. The conformation

motion studied in this section is the motion between the first

and 18th model of the 2M3M protein [23]. For this motion,

the torsion angles with indices 268 and 271 in the backbone

differ by more than 1.5 radians between the initial and the

final conformation, so it may make sense to interpolate them

linearly in two possible directions each — using the shortest

arc or the longest arc — resulting in four possible initial

approximations in total.

For each initial approximation we conducted eight runs of

the proposed method. In Table II, the results are presented.

We conducted the Wilcoxon rank sum tests from the R pack-

age [29] for all pairs of configurations. All p-values appeared

to be less than 0.0009. This is an experimental evidence of

the fact that the considered problem is multimodal.

C. Many Motions, Two Algorithms

In this section, we compare experimentally two methods

for conformation motion prediction: the proposed one and the

PMPF method from [10]. The comparison is performed on all

pairs of conformations of the 2M3M protein [23]. This protein

has 21 conformations. We constructed conformation motions

from all conformations to all other conformations using the

proposed method and the PMPF method.

Due to the results of Section IV-B, in the experiments we

chose the initial approximation the following way:

1) The set S of torsion angles that differ by more than 1.2

radians between the initial and the final conformations

is constructed.

2) For all subsets of S, a transformation is constructed

where all torsion angles from the subset are interpolated

using the longest arc, whereas all other torsion angles

are interpolated using the shortest arc.

3) The transformation with the smallest cost (as in Section

II-B) is chosen to be the initial approximation.

The costs of the resulting transformations are presented in

Table III. The proposed method produced better results in 159

cases and it was worse in 50 cases. The Wilcoxon signed rank

test from the R package [29], conducted for configurations

from Table III, reported that p-value is 9.16 · 10−7. More

detailed statistics reveal that the proposed method never loses

too much, whereas PMPF can be worse up to an order of

magnitude in certain cases.

For every case, we measure the ratio of |A−B|/min(A,B),
where A is the result of PMPF and B is the result of the

proposed method. In Fig. 1, the plot of these ratios is shown —

for the case the proposed method is worse, the ratio is taken

with the negative sign, and the resulting numbers are sorted.

It can be seen that in the cases the proposed method loses, it

loses only a small percent (4.5% in average). In the cases it

wins, the cost of the PMPF motion is 171% bigger in average,

and the maximum value of the ratio is 14.11.

We also compare the algorithms by the number of inter-

sections. The motions produced by the proposed method con-

tained no intersections. For PMPF, there were no intersections,

but in two motions (3–19 and 2–7) there were the cases when

the distance between two non-adjacent bonds was 87.3% and

91.3% of the bond length, correspondingly. For these motions,

the cost of PMPF motion was much larger than of the proposed

method (8597 vs. 1110 and 7292 vs 707, correspondingly).

Our hypothesis is that for these motions PMPF is stuck in a

local optimum which is far from the global one.
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TABLE II
THE RESULTS OF RUNS FOR THE SAME CONFORMATION MOTION AND DIFFERENT APPROXIMATIONS. EACH ROW CORRESPONDS TO A VARIANT OF

APPROXIMATION, WHICH IS DESCRIBED BY A SET OF TORSION ANGLES THAT ARE INTERPOLATED USING THE LONGEST ARC. ALL VALUES ARE

ROUNDED TO THE NEAREST INTEGER.

Variant 1 2 3 4 5 6 7 8 mean dev

{} 2737 2724 2729 2724 2699 2740 2679 2754 2723 22
{268} 2321 2185 2296 2268 2303 2161 2414 2342 2286 77
{271} 2119 2091 2143 2107 1934 1958 2007 1959 2040 78

{268, 271} 1532 1532 1526 1534 1522 1526 1543 1527 1530 6

TABLE III
COMPARISON OF PMPF AND THE PROPOSED METHOD ON ALL CONFORMATIONS OF 2M3M PROTEIN. THE PART OF THE TABLE ABOVE THE MAIN

DIAGONAL CONTAINS THE ENTRIES FOR THE PROPOSED METHOD, THE PART BELOW THE DIAGONAL CONTAINS THE ENTRIES FOR PMPF. FROM EACH

CELL PAIR (i, j)–(j, i), CORRESPONDING TO THE SAME MOTION COMPUTED BY DIFFERENT METHODS, THE ONE THAT HAS THE LOWER COST IS MARKED

GRAY. ALL VALUES ARE ROUNDED TO THE NEAREST INTEGER.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1077 1216 1130 780 999 1803 977 2745 1814 2083 392 3369 1010 1354 753 1540 1548 1430 616 0

2 2280 708 789 446 1621 1919 278 1054 1520 2445 903 1408 624 665 626 665 812 587 556 1075

3 4621 10140 533 885 1469 1932 707 1442 1292 2612 1049 1907 642 1417 669 919 603 648 621 1233

4 4074 3387 518 1060 1134 1193 868 1318 673 3283 953 2249 1113 1673 1086 778 922 1106 1110 1144

5 822 415 5093 1295 1449 1686 450 1868 1650 2018 755 2278 571 815 616 1085 981 1190 303 781

6 1008 1677 8616 1991 1526 1444 1366 2253 858 3065 613 3112 1316 1759 872 2059 1911 1748 893 977

7 3857 22442 23316 2666 9262 7287 1821 2526 722 2988 1589 3362 1799 3002 1668 2042 2070 2733 1378 2169

8 983 314 7292 3975 437 1351 6698 1457 1318 2093 755 1574 494 574 515 659 833 632 338 985

9 2776 1234 13001 1274 2221 2299 9420 1666 2394 5893 2290 790 1783 2237 1901 1372 1541 1466 1994 2729

10 1919 5849 4129 2188 2223 3817 683 3749 3034 2799 873 2797 1357 2412 1380 1308 1249 1669 1090 1861

11 4163 2471 7178 4051 2029 3160 6997 2098 6574 4040 2196 5947 2328 1900 2627 2909 3054 2907 1940 2094

12 403 858 7410 1200 704 628 1698 698 2359 1411 2217 2746 712 1145 528 1439 1328 1040 478 388

13 3343 1483 6121 5061 2285 8118 15452 1628 2339 13072 6596 2775 2011 2697 2160 1811 1774 1557 2214 3388

14 2353 641 8295 6509 551 1266 5855 474 2092 2238 2333 677 2042 1058 491 925 839 700 385 998

15 1411 660 10803 1795 792 1968 6814 601 2578 2676 1856 1085 2725 1061 921 1193 1358 1156 826 1357

16 783 622 1709 1121 591 1006 4714 490 1981 1554 2616 488 2116 459 886 1209 968 946 306 763

17 3769 730 4597 1961 4179 2079 2544 827 1962 1365 3132 4696 8203 3855 3841 1152 481 879 1083 1539

18 2853 781 2883 2708 1573 1887 3922 2747 1707 1297 6451 4845 10599 1511 3317 1025 464 642 901 1547

19 2087 566 9788 1209 1133 1724 11832 597 1405 8722 2920 1004 1597 667 1078 921 3628 5667 965 1420

20 568 585 743 8598 308 1111 4265 311 2398 1656 1929 418 2221 363 877 293 3920 2872 934 617

21 0 2314 3813 3966 841 1057 4666 981 2780 1690 4131 413 3347 2325 1445 793 5073 2856 2393 568

−50 0 50 100 150

0

5

10

15

Index

D
iff
er
en

ce

Fig. 1. The plots of differences between the motion costs of proposed method and PMPF divided by the smallest cost. In the cases where the proposed
method is worst, the ratio is taken with the negative sign. The differences are sorted.

V. DISCUSSION

In this section, we discuss the problems that are not solved

up to the necessary degree in the current research and outline

the basis for future work on the topic of the current paper.

A. Multimodality Problem

As shown in Section IV-B, the problem of conformation

motion optimization is multimodal. Different possible approx-

imations have significant distances in the configuration space

with highly undesirable solutions between them. This suggests

that there are even bigger distances between different local

optima.

The approach which tests many possible interpolation di-

rections for angles that change a lot can produce accurate

solutions for many cases, but this makes it necessary to

perform many optimization runs for a single conformation

motion. One of the possible ideas is to use generational

evolutionary optimizers, like differential evolution, which are

able to focus on several hot spots simultaneously.

B. Updating Initial Approximations

Constructing a suitable initial approximation for optimiza-

tion is difficult. Sometimes it is needed to optimize all pairwise

motions between all conformations of the given protein (as we

did with 2M3M). In this case, one can benefit from optimizing

simple and low-cost motions first and then updating initial

approximations for the complex motions from the shortest

paths in the graph of already computed motions.
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C. Protein Backbone Intersections

Optimizing the mass transportation function can not, in

many situations, produce a conformation motion without self-

intersections of the backbone. These self-intersections vio-

late physical constraints. However, integration of the penalty

function that finds and reports intersections is not an easy

task, because optimal alignment and computation of mass

transportation can be made in O(N), and straightforward in-

tersection computation requires O(N2) expensive operations.

A more efficient way to find intersections is needed.

D. From Backbone to Full Molecule

The proposed method generates a conformation motion, but

the only atoms it outputs are the backbone atoms (C, N and

Cα). Most software packages require a full set of atoms. Some

programs are able to restore sidechains, but when it is done

for all conformations from the motion, the motion of each

sidechain may not be optimal any longer. Some heuristics are

needed to restore the sidechains in their motions, which also

try to minimize mass transportation and avoid collisions.

VI. CONCLUSION

We have presented a new algorithm for protein conformation

motion modeling. In this algorithm, the problem of construc-

tion of a reasonably good conformation motion is formulated

as a mass transportation problem. The mass transportation cost

function is then minimized using the sep-CMA-ES algorithm.

The algorithm does not violate the constrants on bond lengths

and on backbone planar angles by construction and achieves

low values of conformation motion cost.

The code for the experiments is published at GitHub1. This

work was financially supported by the Government of Russian

Federation, Grant 074-U01.
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