
Improved Helper-Objective Optimization Strategy
for Job-Shop Scheduling Problem

Irina Petrova, Arina Buzdalova, Maxim Buzdalov
St. Petersburg National Research University

of Information Technologies, Mechanics and Optics

49 Kronverkskiy prosp.

Saint-Petersburg, Russia, 197101

Email: petrova, afanasyeva, buzdalov@rain.ifmo.ru

Abstract—A single-objective optimization problem can be
solved more efficiently by introducing some helper-objectives
and running a multi-objective evolutionary algorithm. But what
objectives should be used at each optimization stage? This paper
describes a new method of adaptive helper-objectives selection in
multi-objective evolutionary algorithms. The proposed method is
applied to the Job-Shop scheduling problem and compared with
the previously known approach, which was specially developed
for the Job-Shop problem. A comparison with the previously
proposed method of adaptive helper-objective selection based on
reinforcement learning is performed as well.

I. INTRODUCTION

Efficiency of a single-objective optimization problem can be

increased with the helper-objective method [1]. The key idea

of this method is to use some extra criteria (helper-objectives)

and simultaneously optimize the primary criterion and helper-

objectives [1]–[4]. It is not efficient enough to optimize all

criteria simultaneously [1], [5]–[7]. So a way of selecting

helper-objectives during the optimization process is needed.

The paper [1] suggests that it is the most efficient to use

only one helper-objective. However, no optimal strategy for

choosing between helper-objectives is proposed yet [1], [2].

In this paper we propose a new way of choosing helper-

objectives.

The helper-objective approach is based on multi-objective

evolutionary algorithms (MOEAs) which are designed to op-

timize several objectives simultaneously. One of the most

efficient known MOEAs [8] is NSGA-II [9]. This algorithm

selects individuals according to the definition of Pareto-

optimality.

Let us introduce some concepts. Suppose we have a list

of criteria. One of them is the primary criterion called target
criterion. Other criteria are treated as helper-objectives. Op-

timization of a helper-objective is not necessary, and helper-

objectives are used only for increasing efficiency of the target

criterion optimization. This means that we optimize only the

target criterion and the selected helper-objective.

We apply the proposed method to the Job-Shop scheduling

problem and compare the results with the existing methods of

choosing helper-objectives [1]–[4].

A. Job-Shop Scheduling Problem

The Job-Shop scheduling problem consists of n jobs and

m machines. Each job i has at most m operations. Each

operation has a specified machine and processing time. The

processing order of the operations is predefined. Each machine

can process only one operation at time. An operation can

not be interrupted once it is started. No two operations of

a job can be processed simultaneously. To solve the Job-Shop

problem means to schedule the operations on the machines

to minimize the measure of scheduling. There exists several

ways to measure scheduling, i.e. makespan or total flow-time.

The latter is used in this paper and calculated using formula

FΣ =
n∑

i=1

Fi, where Fi is the flow-time of job i — the time

elapsed from the start of the execution of the first operation

until the end of the execution of the last operation of the job i.

B. Previous Methods for Job-Shop

The helper-objective method can be applied to the Job-Shop

scheduling problem in two different ways. In the approach

from the article [1] Fi are treated as helper-objectives. The

helper-objective to be optimized is chosen randomly from the

set of all helper-objectives on each iteration of optimization

process.

There is a method of increasing efficiency of algorithm [1],

described in [2]. The helper-objectives are chosen in increasing

order of minimal possible flow-time of the job corresponding

to the helper-objective. Also in this article usage of the sums of

flow-time of several jobs as the helper-objectives is proposed.

The jobs are assigned to helper-objectives as follows. Assume

that each helper-objective consists of p jobs. The first helper-

objective is the sum of flow-times of p jobs with minimal

possible flow-time, the second one is the sum of flow-times

of the next p jobs and so on.

C. MOEA + RL: Helper-Objective Selection Method

Another method of adaptive helper-objective selection was

proposed in our previous works [3], [4]. The method is

called MOEA + RL, as it is based on reinforcement learning

(RL) [10], [11]. In reinforcement learning, an agent applies

actions to an environment. After applying of each action, the

environment returns some representation of its state and an

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $26.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.151

374

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $31.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.151

374

Fig. 1. Reinforcement-evolutionary interactions in the MOEA + RL method

initial population

h1

h2

next population

next population

...

Fig. 2. The scheme of the MOEA + RL method

immediate numerical reward. The goal of a reinforcement

learning algorithm is to maximize the total reward.

In the MOEA + RL method the multi-objective algorithm,

MOEA, is treated as an environment. To apply an action means

to select a helper-objective from the set of all helper-objectives.

Once a helper-objective is selected, the next population of the

MOEA is generated, the corresponding state and reward are

returned and so on. The scheme of the MOEA + RL method

is shown in Fig. 2, where hi is selected with reinforcement

learning. The interaction between a reinforcement learning

algorithm and an evolutionary one in the MOEA + RL method

is shown in Fig. 1, where i is the number of the current

population. Properties of helper-objectives usually are not

known in advance, so the agent should learn which objective

is the most efficient one at the current optimization stage.

The reward is based on the difference of the target criterion

value calculated on the best individuals in two successive

generations of the MOEA. There can be different kind of

state definitions. In this work we used two types of states: a

single state and the time interval state. The latter is based on

assumption that the significance of the environment changes

caused by the agent increases with the number of population.

So the state is logarithmically inversely proportional to the

number of population and is calculated as follows: s(t) =

z − � log(n+1−t)

log((n+1)
1
z)
�, where z is the states count and n is the

total number of populations. An example of the time interval

state is illustrated in Fig. 3.

� � � � � � �	
�����
�

������� ������� �������

Fig. 3. Time interval state example (z = 3, n = 7)

initial population

h1,t1 h2,t2
h3,t3

p1

h1,t'1 h2,t'2
h3,t'3

p2 p3

p1 p2 p3

...

Fig. 4. The scheme of the proposed method

II. NEW METHOD DESCRIPTION

Let us denote helper-objectives as H = {hi}. We optimize

target criterion — total flow-time and the helper-objective

which is selected from H on each iteration of the MOEA.

The scheme of the proposed method is shown in Fig. 4.

Assume that there are c helper-objectives. ti populations of

the MOEA are generated for each hi. So there are c generated

populations on each iteration of the algorithm. An individual

that has the best value of the target criterion is called the

best individual in the population. A population which has

the best individual with the best value of the target criterion

is selected for the next step of the algorithm. Values of ti
are updated randomly and the next iteration is started. In the

method described in Section I-C an individual that has a good

value of target criterion may be lost if an inefficient helper-

objective is chosen. There is no such issue in the new method,

since the best individual is preserved by design.

III. EXPERIMENT DESCRIPTION

Helper-objectives are calculated as sums of flow-times of k

jobs: hi =
ik∑

j=k(i−1)+1

Fj . The jobs are assigned to the helper-

objectives as proposed in the article [2]: first k jobs with

minimal possible flow-time are assigned to the first helper-

objective, next k jobs are assigned to the second one and so

on. The number of helper-objectives is �nk � where n is the

number of jobs.

As in the previous works [1], [2], permutations with repeti-

tions are used for representation of an individual. For decoding

individuals, Giffler-Thompson schedule builder [1], [12] is

used. Generalized Order Crossover [13] and Position Based

Mutation [12] are used as evolutionary operators. As in the

paper [1], the mutation is always performed after crossover.

375375

Algorithm 1 Method description

1: Form initial population G0

2: Initialize iteration counter: k = 0
3: while (specified number of populations is not reached) do
4: for (hi ∈ H) do
5: Initialize population counter: j = 0
6: while (j is not equal to ti) do
7: Generate the next population gj
8: Update the population counter: j ← j + 1
9: end while

10: Count value of the target criterion of the best indi-

vidual in the population gti : r(gti)
11: end for
12: Select the next population: Gn+1 = gmax, r(gmax) =

max
i

r(gti)

13: Update the iteration counter: k ← k + 1
14: Update ti
15: end while

Preliminary experiments show that the best results are

achieved when the number of individuals in the population is

150 and the probability of crossover is 0.8. As in the article [2]

there were 20,000 fitness evaluations per run.

The NSGA-II algorithm is used in the approaches described

in [1], [2] with which the proposed method has been compared,

so NSGA-II is used in this work. We tried to reproduce the

experiment from the article [2], but we have not achieved the

same results. So we compared results obtained using the pro-

posed method with results obtained using our implementation

of the algorithm from the article [2]. Values of the NSGA-II

parameters used in the experiments are shown in Table I.

TABLE I
NSGA-II PARAMETERS

Parameter Value
Runs of the algorithm 200
Individuals in a population 150
Crossover probability 0.8
Fitness evaluations 20000

We also considered the MOEA + RL method for the same

set of the Job-Shop instances using the same number of fitness

evaluations per run. The Delayed Q-learning [14] algorithm

was used. Preliminary experiments demonstrate that the best

results are achieved using parameters shown in Table II. A

single state and the time interval state described in Section I-C

were used. For the time interval state, z = 3 was used. Two

helper-objectives were considered. These values turned to be

efficient during the preliminary experiment.

TABLE II
DELAYED Q-LEARNING PARAMETERS

Parameter Description Value
m update period 5
γ discount factor 0.7
ε bonus reward 0.1

IV. EXPERIMENT RESULTS

Experiment results are shown in Tables III, IV, V. During

the experiments, instances of the Job-Shop scheduling problem

used in the papers [1], [2] were considered. The name of an

instance is shown in the first column. Sizes of the instances are

shown in the second column. For example, an instance of size

10×5 consists of ten jobs and five machines. The best known

solution is shown in the third column. In the fourth column

there are shown results of our implementation of the previously

known approach [2]. This approach was designed specially

for the Job-Shop problem and can not be applied for other

problems. All the results are shown as average result of 200

runs in percent above the best known solution and calculated

as average−best
best

· 100%, where ”average” is the average result,

”best” is the best known solution. The dark grey background

corresponds to be best result for each problem instance, while

the light grey background corresponds to the second best

result.

In the Table III the results obtained using the proposed

method are shown. The last three columns contain results

obtained using the proposed method using two, five or ten

helper-objectives. For example, if the Job-Shop scheduling

problem consists of ten jobs and we use two helper-objectives,

each helper-objective is the sum of five jobs. For all analyzed

instances the proposed method outperforms the previously

known approach. The best results are achieved using two

helper-objectives.

TABLE III
THE PROPOSED METHOD RESULTS

Instance Size Best so-
lution

Previous
method
[2]

2
helpers

5
helpers

10
helpers

la01 10 × 5 4832 3.190 2.603 3.942 4.397
la02 10 × 5 4459 2.987 2.784 4.108 5.118
la16 10 × 10 7393 6.193 6.070 6.619 7.429
la17 10 × 10 6555 4.089 3.821 4.525 5.257
ft10 10 × 10 7501 9.216 8.936 10.448 10.859
la11 20 × 5 14805 9.064 8.798 11.677 13.061
la12 20 × 5 12484 10.364 9.729 13.441 15.728
la26 20 × 10 20234 10.565 10.172 11.322 12.244
la27 20 × 10 20844 10.261 10.117 11.135 11.922
ft20 20 × 5 14279 12.853 12.823 16.276 18.550
swv01 20 × 10 20688 20.909 20.690 23.041 24.179
swv02 20 × 10 21682 18.597 18.553 20.402 22.230
swv06 20 × 15 28863 18.026 16.920 18.545 19.490
swv07 20 × 15 27385 18.878 18.565 19.724 20.653

The results obtained using the previously proposed

MOEA + RL method are shown in the Table IV. MOEA + RL

outperformed the previously known method on 7 problem

instances out of 14 ones.

The best results of each method are shown in Table V. The

proposed method outperforms all considered approaches for

13 problem instances out of 14 ones. For the la-16 problem

instance, the proposed method shows the second best result

after the MOEA + RL method. The results obtained with

the previously known method implementation are dominated

for all problem instances. To sum up, the proposed method

376376

TABLE IV
THE MOEA+RL METHOD RESULTS

Instance Size Best so-
lution

Previous
method
[2]

Single
state

Time interval
state

la01 10 × 5 4832 3.190 2.787 2.972
la02 10 × 5 4459 2.987 3.221 2.953
la16 10 × 10 7393 6.193 6.288 6.007
la17 10 × 10 6555 4.089 4.084 4.226
ft10 10 × 10 7501 9.216 9.363 9.440
la11 20 × 5 14805 9.064 9.843 9.582
la12 20 × 5 12484 10.364 11.614 11.253
la26 20 × 10 20234 10.565 10.541 10.453
la27 20 × 10 20844 10.261 10.376 10.610
ft20 20 × 5 14279 12.853 14.354 13.493
swv01 20 × 10 20688 20.909 21.762 21.239
swv02 20 × 10 21682 18.597 19.025 19.124
swv06 20 × 15 28863 18.026 17.589 17.814
swv07 20 × 15 27385 18.878 18.809 19.267

of adaptive helper-objectives selection turns to be the most

efficient one for the considered set of the Job-Shop problem

instances.

TABLE V
COMPARING THE BEST RESULTS OF ALL METHODS

Instance Size Best so-
lution

Previous
method
[2]

MOEA+RL Proposed
method

la01 10 × 5 4832 3.190 2.787 2.603
la02 10 × 5 4459 2.987 2.953 2.784
la16 10 × 10 7393 6.193 6.007 6.070
la17 10 × 10 6555 4.089 4.084 3.821
ft10 10 × 10 7501 9.216 9.363 8.936
la11 20 × 5 14805 9.064 9.582 8.798
la12 20 × 5 12484 10.364 11.253 9.729
la26 20 × 10 20234 10.565 10.453 10.172
la27 20 × 10 20844 10.261 10.376 10.117
ft20 20 × 5 14279 12.853 13.493 12.823

swv01 20 × 10 20688 20.909 21.239 20.690
swv02 20 × 10 21682 18.597 19.025 18.553
swv06 20 × 15 28863 18.026 17.589 16.920
swv07 20 × 15 27385 18.878 18.809 18.565

V. CONCLUSION

A new method of choosing helper-objectives during the opti-

mization process is proposed. The achieved results outperform

results of previously known method designed for the Job-Shop

problem on 14 problem instances, as well as the results of the

previously proposed MOEA + RL method on 13 instances. For

the proposed method, usage of sums of flow-times for several

jobs as helper-objectives was studied. The best results were

achieved using two helper-objectives.

VI. ACKNOWLEDGMENTS

The research was supported by Ministry of Education and

Science of Russian Federation in the context of Federal

Program “Scientific and pedagogical personnel of innovative

Russia”.

REFERENCES

[1] M. T. Jensen, “Helper-objectives: Using multi-objective evolutionary
algorithms for single-objective optimisation: Evolutionary computation
combinatorial optimization,” Journal of Mathematical Modelling and
Algorithms, vol. 3, no. 4, pp. 323–347, 2004.

[2] D. F., Lochtefeld, and F. W. Ciarallo, “Helper-objective optimization
strategies for the job-shop scheduling problem,” Appl. Soft Comput.,
vol. 11, no. 6, pp. 4161–4174, 2011.

[3] M. Buzdalov and A. Buzdalova, “Adaptive selection of helper-objectives
for test case generation,” in 2013 IEEE Conference on Evolutionary
Computation, vol. 1, June 20-23 2013, pp. 2245–2250.

[4] M. Buzdalov, A. Buzdalova, and I. Petrova, “Generation of Tests for
Programming Challenge Tasks Using Multi-Objective Optimization,” in
GECCO (Companion), C. Blum and E. Alba, Eds. ACM, 2013, pp.
1655–1658.

[5] A. Buzdalova and M. Buzdalov, “Increasing efficiency of evolutionary
algorithms by choosing between auxiliary fitness functions with rein-
forcement learning,” in ICMLA (1). IEEE, 2012, pp. 150–155.

[6] ——, “Adaptive selection of helper-objectives with reinforcement learn-
ing,” in ICMLA (2). IEEE, 2012, pp. 66–67.

[7] ——, “Increasing efficiency of evolutionary algorithms by choosing
between auxiliary fitness functions with reinforcement learning,” in
Proceedings of the 11th International Conference on Machine Learning
and Applications, ICMLA 2012, vol. 1, 2012, pp. 150–155.

[8] C. Coello, G. Lamont, and D. Van Veldhuisen, Evolutionary Algorithms
for Solving Multi-objective Problems, ser. Genetic and evolutionary
computation series. Springer Science+Business Media, LLC, 2007.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II,” Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[10] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[11] A. Gosavi, “Reinforcement learning: A tutorial survey and recent
advances,” INFORMS Journal on Computing, vol. 21, no. 2, pp. 178–
192, 2009.

[12] M. T. Jensen, P. Dissertation, and T. Jensen, “Robust and flexible
scheduling with evolutionary computation,” Tech. Rep., 2001.

[13] C. Bierwirth, “A generalized permutation approach to job shop schedul-
ing with genetic algorithms,” OR Spektrum, vol. 17, pp. 87–92, 1995.

[14] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman,
“PAC Model-free Reinforcement Learning,” in Proceedings of the 23rd
International Conference on Machine Learning (ICML 2006), 2006, pp.
881–888.

377377

